Fully Gap-Dependent Bounds for Multinomial Logit Bandit

Appendices

A Concentration Inequalities

We introduce the concentration inequalities used in this paper. We begin with the Hoeffding’s celebrated inequality
for the sum of bounded variables (Hoeffding, 1963).

Lemma A.1 (Chernoff-Hoeffding’s inequality). Consider n independent bounded random variables X1,..., X, €
[0,1]. Let X = 13" | X; and p = E[X]. We have P(|X — p| > \/%) < 4.

Next we state the multiplicative Chernoff inequalities for the geometric random variables (Agrawal et al., 2019).
We say a random variable is geometric if P(X =m) =p(1 —p)™

Lemma A.2 (Agrawal et al. (2019), Corollary D.1). Consider n i.i.d. geometric random variables Xi,..., X,
with expectation E[X;] = p < 1. Let X = 13" | X;. We have

(a) P(IX — p| > \/W+ log(VNEH) )

(b) P(|X . Ml > 24p log(VNE+1) + 48 log(\/ﬁé—&-l))
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(¢) P(X > 3 4 A8los(VNET))
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We rephrase the above lemma into the below form. Lemma A.3 can be proved by following Appendix D in
(Agrawal et al., 2019). Similar inequalities with constants smaller than 48 were shown in (Jin et al., 2019; Janson,
2018).

Iiemma A.3. Consider n i.i.d. geometric random variables X1, ..., X, with expectation E[X;] = u < 1. Let
X=1%" X, We have

(a) P(|X _ M| > /48X1(;Lg(2/5) + 4810%52/5)) S 65,

(b) P(|X _ ,LL| > /24#105(2/5) + 4810i(2/5)) S 46,
(c) P(X > 3 4 $8losC@/0)) 35,

The following lemma is a direct corollary of Lemma A.3. It can be proved by following the proof of Lemma 4.1 in
(Agrawal et al., 2019, Appendix A). Here “A” means logical and.

Lemma A.4. Consider n i.i.d. geometric random variables X1, ..., X, with expectation E[X;] = u < 1. Let
X=13" X, ande= A8X10g(2/0) | 48108(2/0)  Then, e have
n i=1 n n .

196 10g(2/9) n 196 log(2/4)

PUX —e<u<X Ae<
({X—e<pu<X+epn{e< - -

1) >1-136.

We state another concentration inequality to the geometric random variables. The following inequality is focused
on the upper tail of the geometric random variables.

Lemma A.5 (Janson (2018), Theorem 2.1). Consider n independent “shifted” geometric random variables
Xi1,..., X, that P(X; = k) = pi(1 — p))*"'. Let p, = mini<i<,pi > 0,X = >0, X;,u = E[X]. We have
P(X > M) < e Pri(A=1-InA),

B Proofs for Section 3.1
B.1 Proof of Proposition 1
Proof of Proposition 1. In (Rusmevichientong et al., 2010, Section 2.1), it was shown that the optimal revenue is

= R: —0)>10
0" = max{0 € mz‘%{KKZU 0) 1.
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Let S = argmaxgcn)\sj<x {2ies vi(ri — 0%)}. By the above equation, we have

Zui = Z’Ui(Ti — 9*) Z 9*

€S €S

“_»

Next we show the above “>” is actually . Suppose instead, it is “>”, then we have

ZU,‘(M — 9*) > 9*,
€S
D wiri > (1+ ) vi)b7,

i€S €S
D ics Uil
1+ iesvi
which implies that R(S,v) > 6* and contradicts to that 6* is the optimal revenue. As a result, we have

0* = > ,cs ui- Note that when “=" holds, by repeating the above argument, we have R(S,v) = 0" and thus
S = S* by Assumption 1. Therefore,

> 0%,

S* = argmax {Zuz}

SCI[N]:|SI<K ;25
It is clear that

arg max {Zui}:f([N},K,u),
SCINTISI<K %

because to maximize the sum of scores under the capacity constraint, it suffices to pick all items with positive
and top-K scores. O

B.2 Proof of Lemma 3.1

We prove Lemma 3.1 to show the sample complexity guarantee of Algorithm 1. We first reveal the relation
between the gap of advantage score and the suboptimality gap of each item.

Lemma B.1 (Relation between A; and u;). For items i,j € [N], we have the following statements.

(a) If i€ S*,j¢S* then Ay <wu; —uy;. In addition, A; < u;.
(b) Ifi ¢ S*,5 € S*, then A; < u; — ;. If in addition |S*| < K, then A; < —u;.

Proof. For (a), let S = (S*\ {i}) U{j}. Note that A; < R(S*,v) — R(S,v), so by Lemma B.2, we have

A< (1+ ) w)(R(S*,v) = R(S,v)) = u; — uj.
les

Let S = S*\ {i} and repeat the previous argument, we have A; < u;. For (b), let S = (S*\ {j}) U {i}. Similarly,
we have
A, < (1+ ZU[)(R(S*,’U) — R(S,v)) = u; —u;.
les

When [S*| < K, we let S = 5%\ {j} and repeat the previous argument to obtain A; < —u;. O
Lemma B.2 (Revenue Comparison Lemma). Let S C [N] be an assortment. Then we have (14, qv;)(0* —
R(S5,v)) = Xicg\s Ui — Dies\s+ Ui-

Proof. We have

1+ ) v) (0" = R(S,v)) = (1+ Y _0)0" = > vir;

€S €S €S

= 9* — Zvi(Ti — 9*)

i€S
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(Proposition 1) = Z u; — Zui

i€eS* €S
= E U; — E Uj - O
i€5=\S i€S\S*

Next we prove Lemma 3.1 in twofold. First, we analyze the guarantees of the accept-reject stage at Lines 6-10 in
Algorithm 1.

Lemma B.3 (Accept-Reject). In phase k, before Line 6, we have A*=1 C §* € A*=1 | BE=1) gnd u; €
[6,6],& —& < % foric B* =1 Then after Line 10, we have A®) C §* € A®) U B®) and B®) C {i € [N]:
Ai S Ek}.

To facilitate readability, we divide the lemma into two lemmas and prove them separately.

Proof of Lemma B.3. We combine Lemmas B.4 and B.5. O

Lemma B.4. Under the context of Lemma B.3, we have AR C g* C AK) | B(F),
Lemma B.5. Under the context of Lemma B.3, we have B*) C {i € [N]: A; < e}

We prove these two lemmas. Let Bl = {be B*=D ¢ > 0},BL. = {be B* 1 :& < 0}. If [B*D| > M, we

rej
let B2, ={be B*1D.& >3}, Br2ej ={be B*1 . & < a}, where M, a, § are defined in Algorithm 1.
Proof of Lemma B.4. We recall that the notion “L” requires A®*) 0 B*) = (§, so we show this first. This follows
directly from A®) = A*=D B, .., B*®) € B*-1\ B,.., and A*~D n BF-1) = ¢,

Next, we show A®) C §* C A®) 1y B, Tt suffices to show i € S* \ A®=1 for i € B,e. and i ¢ S*\ A®=1 for
i € Brej. Suppose |B*=1| < M. Since uy, > &, we have

Bl C{be B* Yy >0} C F(B* Y M u) =85\ A®D,

which implies A®) C §*. We have u;, < éb < 0 for b € Byej, which implies b ¢ S* and thus S* C (A(k_l) U
BF=D)\ By = AR 1 B,

Now consider |[B*~1| > M. For every i € Bacc, since i € Bl.., we have u; > 0. Since i € B2,., we have

u; > & > 3. By the definition of 8, we know that #{b e B*=1Y .y > u;} < M. Therefore, u; is positive and
top-M. Thus i € F(B*=D M, u) = 5*\ Ak,

For every i € By, if i € BL;, then u; < él < 0 is negative, thus i ¢ S*. Otherwise we have i € B2.. By the

rej’ rej*
definition of a, we have that u; < & < a and thus #{b € BE=D sy > u;} > M. Therefore, u; is not top-M.
Thus i ¢ S*\ A1), O

Proof of Lemma B.5. We show B®*) C {i e BE-D . A, < €x} by showing that A; > ¢, implies i ¢ B® . Fix
i € B*=1 guch that A; > ¢y.

1. Suppose i € S*. We will show that i € B,... By Lemma B.1, we have A; < u; and thus

e 2 €k €k €L €k €L
>E ks B A s TR
51_51 2_“1 9 = i Q_Gk B 2>07
which implies i € Bl... Note that when |B(*~1| < M, we have B,.. = Bl.. and thus we conclude.
When |B*~D| > M, it remains to show i € B2... By the definition of £, it suffices to show #{j € B#~1 : ¢ >
&;} > |B*=1| — M, which is equivalent to #{j € B*~D : § < &1 < M.

For every j € B if fj > &;, then we have uj + G > éj > & > u; — S Therefore, u; > u; — € > u; — A;. In
summary, we have {j € B(=1 . éj > &Y C{jeBF Y ¢ >¢& — A} By Lemma B.1, we have & — £ > A;
for every j' € [N]\ S*. Thus {j € B*=1 : ¢ > ¢ — A;} C S*. Recall that A®~Y C §* C A*=D =1 S0
{j e BE=1 . fj > &) C 8%\ AR and thus #{j € B® : éj > &} < K — |A®=D| = M, which completes the
proof.
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2. Suppose ¢ ¢ S*. We will show that ¢ € B,j. Suppose |S*| < K. By Lemma B.1, we have A; < —¢;. Therefore,

~ € €
§i§§i+§<*fk+§<ov

which implies i € BreJ

Now consider |S*| = K. Since i ¢ S* and i € B*~1 we must have |[B*~V| > M +1 > M. In the
following, we show that i € B2.. By the definition of a, it suffices to show #{j € B*~1 : & > &1 > M.

rej*

For every j € S* N B~V by Lemma B.1, we have A; < uj — u;. Therefore, we have EJ > u; — % >

Aj 4wy — % > A; - % + & — % > &, which implies {j € B*=V : ¢ > &} 2 5* n B* Y and thus
#{jGB(k_l) :gj >§Z}2M O

Proof of Lemma 3.1. By a union bound, the probability that EST returns confidence intervals u; € [éz, él} , éi —§ <

(=1 ()
S within Cgst - B [1oe(N/9" ) time steps for every phase k € N is at least

=
oo oo (oo}
é § w2
— o)y = 1——> N o >1-->1-6.
1o Ho-ga=1-2 g521-5% >

We condition on the above event. Note that A C §* € A BO), By combining Lemma B.3 with an induction
over phases, we can show that A% C §* C A% 1y B(*) and B®) C {i € [N]: A; < e} for every phase k.
Therefore, when M = 0, the algorithm returns the optimal assortment S*. The sample complexity of SAR-MNL
with EST is

> log(N/§F)
T< Z|B(k_1)‘ Cest ogg J6W))
k=1 €k
> Cest log(Nk/§
< S Hai >} | %(/)
k=1 \i€[N] k
Cestlog(NEK/6
- Z %(/) A > e}
i€[N] k=1 “k
Mog A7 1]
< Z Cest log(Nk/6)
. €k
i€[N] k=1
log N +loglog A, —1—10(51
S Cest - Z g g iz & 0
1E[N]

B.3 Proof of Lemma 3.2

Before proving the lemma, we first specify the skipped formulas in Algorithm 2. Let Cy = 196, Cy = 1024, = 15 -
We define 7 = %ﬁu/é) and
487, 1og(2/9) n 481og(2/9)

T)Z‘:0\/(51'—0'(’01')),{}1‘:1/\(51'4‘0'(’01')), O'(UZ‘): E TZ s

where T; = K7 is the number of offering. For each item i € AU B, we define v; = T , where n; is the total number
of time steps with outcome “item 7”. One may realize that “keep offering until no purchase” is the same as the
epoch-based offering in (Agrawal et al., 2019) and that EST-NAIVE uses a simplified version by only offering
singletons. We adopt the notions, calling it “epoch” and referring T; as the number of epochs.

Next we give a proof of the sample complexity guarantee using previous results in (Agrawal et al., 2019). Our
proof frequently uses the big-O notations to suppress the constants, whose exact values can be calculated by
following the proofs in Appendix D.3.
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Proof of Lemma 3.2. 1. We prove that EST-NAIVE returns the confidence intervals u; € [5},51] with high
probability. By Lemma 4.1 in (Agrawal et al., 2019), we have that v; € [0, 9;] and o; — ¥; < O(y/v:/T;) = (6;?)
with probability 1 — O(NJ). By Lemma 4.2 in (Agrawal et al., 2019), we find that 0<0"<0ifv; <v; <, for
every i € AU B. Furthermore, for the assortment S = argmaxgc aup:|s)<x F(S,0), we have

R(S ﬁ) _ R(S ’D) — ZiGS i)iri _ ZiGS 'Di'f‘i
7 ’ T4+ ies®i 14250
Dies Vit _ Y ics ViTi

N 1+Zi€5 (& 1+Zies (&

<Z i — Vi) (7)

€S

<Z -—vz

€S
< KO(%)
< O(e).

Note that R(S,) = 6 and R(S, ) < 6, so we conclude that § — 6 < O(e). Finally, we note that u; = vi(r; — 6%)
and that v; € [0,1], (r; — 6*) € [—1,1]. Therefore, we have & — & < |6; — 0| + |0 — 6] < O(e).

2. We conclude by showing EST-NAIVE achieves Cgst = O(K?) in Lemma 3.1. When we keep offering a singleton
assortment {i} until the outcome “no purchase” occurs, it will take us 1+ v; < 2 time steps in expectation. So in
expectation, EST-NAIVE uses
Kt Z (14 v;) <2K|AUB|T < 2K2%r
i€AUB

time steps. Using the concentration inequalities, we can turn the expectation argument into a high probability
one, showing that EST-NAIVE returns in O(K?27) time steps with probability at least 1 — O(d). Thus we prove
that Cest = O(K?) for EST-NAIVE. O

Finally, we discuss two questions: why the procedure only offers singletons and why the accuracy needs to be &.
For the first question, we discuss its optimality under the epoch-based offering framework (Agrawal et al., 2019),
which is used by almost all previous MNL-bandit work. Under this framework, the accuracy of our estimation to
v; solely depends on T;, the number of epochs that offers item .

Let us consider that all items have v; = ©(1) and compare two offering schemes for an assortment S: (i) offer
S for an epoch; (ii) for each item i € S, offer the singleton assortment {i} for an epoch. Both offering schemes
increase T; by 1 for every ¢ € S and thus lead to the same accuracy. Moreover, in expectation, the number of
time steps used by the first scheme is (14 )", ¢ v;) and that used by the second scheme is } . (1 4 v;). When
v; = O(1), we have (14, gv;i) X > ,cg(1+ ;). As a result, both schemes use a similar number of time steps,
so we do not benefit from offering an assortment with size greater than 1, i.e. offering singletons could be enough.

For the second question, we consider that all items have v; = @(%) We note that if we need to estimate u; to a

given accuracy €, we need to estimate 6* to such accuracy: 6 — 6§ < . We observe that when v; = @(%), the step
in Eq. (7) is almost tight, because

L+ o) =<1+ v) = 1+Z )< (1+15]= )
i€S i€S i€S

To estimate 6* to the accuracy €, by Eq. (7), we need that
f—0<-- <> (t;—1;)<---<e (8)

Since |S| can be O(K), we need to estimate each v; to the accuracy & in order to achieve Eq. (8), which suggests

that estimating to the accuracy + could be necessary.
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Note that we explain these two questions under different instances, namely v; = ©(1) and v; = @(%), so it is still

possibly to design an estimation procedure that adapts to these different instances. Actually, this is what we
show in Section 3.3 and Appendix D.

C Proofs for Section 3.2

The following lemma shows that the maximization of the reduced revenue function is monotonic in its parameters
and thus we can use Eq. (2) to compute the confidence interval of the optimal revenue.

Lemma C.1 (Monotonicity). Assume A C §* C AU B and let M = min{K — |A|,|B|}. Suppose ¢ € [(,(]
and v; € [, for every i € B. Let 0,0,&;,&; be those defined in Eqs. (2) (5). Then we have 0* € [6,60] and

& € [&,&) fori € B.

Proof. First, we show 6* € [0, é] We will only show 6* < 8, since the proof of 6* > 6 is similar. By Eq. (2), we
have

6 — 7,6) > R(S*\ A,0,0).
sc Bt PO ZHEN AP

Also we have
¢+ Zies*\A ViT;
142 csavi
(1+ Z v)0* =C+ Z ViTs,
i€S*\ A i€ \A

0" =C+ > wilri—07).

i€S*\ A

0* = R(S™\ A,v,¢) =

)

By Proposition 1, we have S* = F([N], K,u), so u; > 0 for ¢ € S*, thus r; > 6* for i € S*. Therefore,

C+ D b= 0)>C+ Y wilri—07) =07,

1€S*\A 1€S*\ A
¢+ Z vy > (14 Z ;)0",
i€S*\ A i€S*\A

¢+ ZiES*\A U1
1+ iesnabi

R(S*\ A,9,¢) > 0",

> 0%,

And we conclude that 8 > 6*. Second, we show &; € (&, él] Recall that & = v;(r; — 6*). We conclude by noting
that (r; — 6*) € [-1,1] and that v; € [0, 1]. O

C.1 Proof of Proposition 2

Proof of Proposition 2. Statement (a) can be proved by noting that P(z =r;) = . Statement (c) can

43 ez vi
icz Vit ics Vi

v;
1+ZjEZ vj
be proved by noting that (E, — 1) follows a geometric distribution with parameter p = 7 =

1— El Vi
has mean E[E, — 1] = =2 = ﬁ = icsVir

, 80 it

Now we prove statement (b). When Z = (), it was the same as Corollary A.1 in (Agrawal et al., 2019). We
note that Z = () case implies Z # ) case, because the distribution of z; when we offer the assortment Z LI S
under parameter v and stop at outcomes Z LI {0} is the same as when we offer S under parameter v and stops at
outcome 0. 0

The next lemma bounds the sample complexity when using the generalized epoch-based offering procedure using
statement (c) in last proposition.
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Lemma C.2 (Sum of Epoch Lengths). Suppose we independently explore L > log(1/8) epochs using Algorithm 3
and the expected length of each epoch ¢ € [L] is E[Ey) < 3. Let T = ZeL=1 E; be the total number of used time
steps. With probability at least 1 — 6, we have T < 8E[T] < 24L.

Proof. Note that {E, — 1}}_, are independent geometric random variables with mean E[E,] < 3. Let A = 8.
Then A —1—1InX > 3. Let u = E[T]. Since g > L, by Lemma A.5, we have

]P)(T > 8/1') < e—p*u()\—l—lnA) < e—%L()\—l—ln)\) < €_L < 5. O

C.2 Enhanced Version of Lemma 3.1

We show that if we assume EST returns an estimation of the reduced advantage score &;, we can still obtain a
similar sample complexity guarantee as that in Lemma 3.1.

Lemma C.3 (Lemma 3.1 enhanced). Assume A=Y C S*. Suppose with probability at least 1 — 6%, EST (a)
returns in Cgst- IB(kil)“:zg(N/é(k)) time steps in phase k, and (b) & € €, &) and & — & < & for every i € B*Y),

k
where & =

———2%—— s the reduced score. Then SAR-MNL with EST is §-PAC with sample complexity
42 jeath—1) ¥

log N+log 6 "1 +log log Ai_l
Cest- O(X i A? )-

i

Proof. We replace Lemma B.3 with Lemma C.4 in the proof of Lemma 3.1. O

Lemma C.4. In phase k in Algorithm 1, suppose we have AF=D c g+ € ARV BE=1 " and after invoking EST
in phase k, we have §; € [§;,6],6 — & < % fori € B =1 Then after Line 10 , we have A®) C §* C AK) | B(F)
and B®) C {i € [N]: A; < e}

Proof. Let Z = A%~V in Lemma C.5. We replace Lemma B.1 with Lemma C.5 and replace the score u; with

the score & = H_Z];“W in the proof of Lemma B.3 to prove the lemma. O

Lemma C.5 (Relation between A; and &;). For a set Z C S* and an item i € [N]\ Z, we define the reduced

advantage score &; = H—zjuiv Then for items i,j € [N]\ Z, we have
lez "
(a) If i€ S*, j¢&S* then A; <& —&;. In addition, A; < §&;.
(b) If i ¢ S*,j € S*, then A; < & —&. If in addition |S*| < K, then A; < —§&;.

Proof. For (a), let S = (S*\ {i}) U{j}. Note that A; < R(S*,v) — R(S,v), so by Lemma B.2, we have
(1+ Zvl)Ai <1+ Zvl)(R(S’*, v) — R(S,v)) = u; — u;.
lez les
Note that ¢; = ﬁ fori¢ Z,so A; <& —¢&j. Let S = 5%\ {i} and repeat the previous argument, we have
A; <¢&. For (b), let S = (5 \ {j}) U {i}. Similarly, we have
(1+ th)Ai <1+ th)(R(S*, v) — R(S,v)) = uj — u,.
lez les

Thus A; < & —¢&. When |S*| < K, we let S = S*\ {j} and repeat the previous argument to obtain A; < —§;. [

C.3 Estimation Procedure with Generalized Epoch-based Offering

We present an estimation procedure EST-REDUCED (Algorithm 7) to demonstrate the power of the generalized

epoch-based offering.

Lemma C.6. There is a §-PAC algorithm with sample complexity 5(2?21 %) using only techniques in Sections

3.1 and 3.2.
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Algorithm 7: EST-REDUCED(A, B, dg, €): Estimation of §; for i € B

Co =196, Cy = 1024,8 = 2o 7 = ©DlsCl) "7 o Ay =T, =0,Yie B:n; =T, =0;

Vi € B : Explore({i}) for K7 epochs;
Compute éa 67 Ui, ﬁ’ia éa éa€i7£’i by ]Eqb (3) (4) (2) (5) for i € B? return {5i7éi}i€3;

Proof. We claim that SAR-MNL with EST-REDUCED can serve as the algorithm in the lemma. The statement
(b) in Lemma C.7 shows that EST-REDUCED can serve as the estimation procedure EST in Lemma C.3 and (a)
further shows that EST-REDUCED satisfies Cgst = O(K). Thus we conclude by Lemma C.3. O

Lemma C.7 (EST-REDUCED). Assume A C S* C AU B. With probability 1 — 0y, (a) EST-REDUCED returns
in O(K|B|t) time steps, where T = O(logeﬂ) as defined in Algorithm 7; (b) & = T o © &,&] and
Jj€ J

éi—fiﬁeforieB.
Proof. For (a), we note that the expected epoch length of Explore({i}) is
EE,=1+4+v; <3.

Whenever B # () is not empty, the procedure EST-REDUCED explores at least 7 > log(1/4) epochs, so by Lemma
C.2, with probability at least 1 — 4, the total number of time steps used by the procedure is

T < 24L < 24-K|B|r.

For (b), we prove it by applying the results in Lemma D.1. Note that we offer each item i € B for KT >
Mt > (& A &)1 epochs, so we meet the conditions in Lemma D.1, whose conclusion shows that (b) holds with
probability at least 1 — 14N§. We apply a union bound to find that (a)(b) hold simultaneously with probability

at least 1 — (6 + 14NJ) > 1 — 15N§ > 1 — dp. O

D Proofs for Sections 3.3 and 3.4

D.1 Error Analysis for Estimation of Advantage Score

We analyze the error of the estimations of v;,( when we use the generalized epoch-based offering procedure and
how their error propagates to 0,&;. By Proposition 2 and Lemma A.4, we know that the tail bound of v; satisfies

" . Vil L
Ui =V S| o
T

where we use ¢ = polylog(d—!, N) to denote the polylogarithmic terms and T is the number of epochs that item i

is offered. The major difference between this tail and the common \/%—type tail bound (e.g. Lemma A.1) is the

existence of the term /v;. We fully exploit this term to show the exploration requirement (i.e. required number
of epochs) of each item i € B in the following lemma.

Lemma D.1 (Exploration Requirement). For every item i € B, if T; > T!/7, where T = (4114 A %) and
T = O(I%(EM) is as defined in Algorithm 5, then with probability at least 1 — 14N8, we have & € [€;,&;] and

E}—é < € for every i € B.

Our focus is to show él — & < ¢, which requires us to combine the tail bound with the error propagation. In the
following proof, we mainly analyze the tail bound itself and defer the error propagation analysis to Lemma D.2.

Proof of Lemma D.1. For an item i € B, by Lemma A.4, with probability at least 1 — 135, we have v; € [7;, 1]
and

196v; log(2/0) n 1961og(2/9)
T; T;

)

Vi =V = (
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196v;10g(2/9) , 19610g(2/0)

<2 )
(ﬁ/\%)T (41ui /\%)T
(o A M) CeColsp@I8) (1 ) CaCoTog@/m)
VZ'€2 62
- ERN TN AM>C)
4v; 2 2 i, o) 2
W CITRE A o
Cg 02
<2 viviVap) | ViV 2)
Ca/4 Cy/4
Vi V ﬁ vi V 1\1/[ 2
2 €+ €
= Co/d | Co/4 )
L
< MiVar o
Cy/64

By Lemma A.1, with probability at least 1 — 4, we have ¢ € [¢,{] and

log(2/0) <9 log(2/96) €

2T, — 20200 log(2/8) /C5Cy /2

By a union bound, we have with probability at least 1 — (8§ 4+ 13|B|6) > 1 — 14N§ that v; € [, 4],¢ € [C, (]
and Egs. (9)(10) hold for v; and ¢ for all i € B. When the event holds, we can use Lemma C.1 to show that

(10)

fz fl,fz];or all 4 € B and use Lemma D.2 with ¢; = T €3 = \/TTO/ to show that & — & < \/0727/64 §De
orallt e b.

Lemma D.2 (Error Propagation). Assume A C S* C AUB and let M = min{K — |A|,|B|}. Suppose we have
0<v;—v; <(y; )61 for everyi € B and 0 < { — ¢ < e3. Let 0,0,&;.&; be those defined in Eqgs. (2) (5). Then
é—é§261+63 andfl fl < 3€1 + €3.

) (Svl)aé)§2€1 + €3.
< 2e + €3.

Proof. Note that 0; > 7, s0 0, — ; < (U; V M)q Using Lemma D.3, we have R(S, é
Note that 6 = R(S, D, é) and 0 > R(S, 7, (), together with Lemma C.1, we prove  — 6

For every ¢ € B, we have
1
5 §z<|Vz_Vz|+‘ |§( \/M)
Lemma D.3. Suppose |S| < M. Given (,¢" such that 0 < (' < ¢ <1 and v;, v} such that 0 < v, < 1y; <1

for every i € S. Let e1,e3 € (0,1]. Suppose we have v; — v, < (v; V ﬁ)el and ¢ — ¢’ < e3. Then we have
R(Sa v, C) - R(S7 VlaC/) S 261 + €3.

61+2€1+63S361+€3. O

Proof. We have
R(S.0.0) - RS,/ () = & 2es Pt Gt Bones 1T
1+ esvi 1+ ies Vi
< ¢—d¢)+ Zies(Vi - V;)
- 1 + EiES v;
Yies(vi +1/M)e
1+ Zies Vi
< €3 + 2e¢;. O

<e+
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D.2 Proof of Lemma 3.3

Proof of Lemma 3.3. For (a), in EST-ROUGH, we independently explore L = N7 = 4NK - 196log(2/6) >
721og(2/8) epochs with expected length E[E;] =1 + v; < 2. By Lemma C.2, with probability at least 1 — 44, the
sample complexity is bounded by T < 5L < NKlogd~!. For each i € [N], by Lemma A.4, with probability at
least 1 — 130, we have 9; = 0; > v; and

. 196v;1log(2/0)  1961og(2/9) 1
o < < — —
Vi Vi > . + Jn 4K+4K_2’U1\/K
Using a union bound, (a) holds with probability at least 1 — (13N +4)6 > 1 —17TN§ > 1 — §p.
For (b), let V =14 >, ., v;. We have

1+ 0 € 1+Zv1,1+22v1+— [V, 2V].

1€EZ 1€EZ 1€EZ

Therefore, we have

V; 1 v 20V & v; 1
e iy 20; V V., 2V ! K1 cC 2,20 v =]. O
17y C e2u v g VVIC oy =l e [ v 7
D.3 Proof of Lemma 3.4
Lemma D.4. At the end of EST-ADAPTIVE, for b € B, we have T, > (ﬁ A %)T
Proof. Suppose b € B;. If i < m, we have i, € (2d vq L1 By Lemma 3.3, we have (21/bv ) > >
1 _ (1 K 1
d; > 225V ) (m A 7) (4l/b A )
Ifi:m,wehavedi:M>M>(% %) We conclude by Ty, > d;7. O

Lemma D.5. With probability at least 1 — 6, EST-ADAPTIVE uses T' < 120|B|7 time steps.

Proof. Let L be the total number of epochs. Note that for every B; ;, the expected epoch length of Explore(B; ;)
is
EE, =1+ > u<1+ Y 20 <1+[Bi;|-2-27"<1+d;-2-27"<1+2=3.
beBi)j beBiwj

The total number of epochs is

m Ci—1

=T ZZ|BJ

i=0 j=1
<7-(|B|+ 2™
<7-(|B|+4M)
<7-5|B].

Z i)

Assume B # (). Then L > 7 > log(1/§). By Lemma C.2, with probability at least 1 — d, we have T' < 24L <
120|B|r. 0

Proof of Lemma 3.4. By Lemma D.4, we meet the exploration requirement in Lemma D.1. Using a union bound,
we find that Lemmas D.1 and D.5 hold simultaneously with probability at least 1 — (6 + 14N§) > 1 — §p. Note
that Lemma D.5 implies (a) and Lemma D.1 implies (b). O
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D.4 Proofs of Theorems 1 and 2

Proof of Theorem 1. By Lemma 3.3, EST-ROUGH gives a rough estimation of v; with probability at least 1 — g.
Given those rough estimations, by Lemmas 3.1 and 3.4, SAR-MNL with EST-ADAPTIVE is g—PAC. So the

proposed algorithm returns optimal assortment with probability at least (1 — g)Q >1— ¢ and thus it is §-PAC.
We conclude by noting that we have Cgst = O(1) in Lemma C.3 for EST-ADAPTIVE. O

Proof of Theorem 2. We stop the algorithm provided in the proof of Theorem 1 at the phase k& when ¢,_1 < £.
Then we return the assortment S corresponding to 0. Specifically, we return S = A®—1D 1 S,

So = arg max R(So, 7, ().
SoCBE=1:[So| <M

Following the proof of Lemma C.3, we can show the desired sample complexity bound. Moreover, the returned
assortment satisfies

0" — R(S,v) < 0 — R(S,v)
= R(SO7 ﬁa 6) - R(S07 v, C)
(Lemma D.3) < 3e,_1
<e. O

E Proofs for Section 4

Our algorithm is to invoke SAR-MNL with ¢ = % and the procedure EST-REG. Note that this algorithm could
possibly return the optimal assortment S* before the time horizon T is reached. In this case, we assume our
algorithm keeps offering S* until reaching the time horizon. Note that offering S* incurs zero regret.

We use fi(k), fi(k) for i € B®=1 to denote the values {gi,éi}ieB(k—l) returned by EST-REG in phase k. We assume
é;o) =0 and éi(o) = 1. The following lemma summarizes the important guarantees of SAR-MNL that we need to

show the regret bound.

Lemma E.1. With probability at least 1 — %, throughout the algorithm, we have that u; € [fi(k), éi(k)], fi(k) —fvi(k) <
<, AR C §* C AR 4 B®) | gnd B C {i € [N]: A; < e} for every phase k.

Proof. We claim EST-REG satisfies the condition (b) in Lemma 3.1. Then we can follow the proof of Lemma 3.1 to
show the that with probability at least 1 — %, we have u; € [éﬁ’“),éf’“)], éz(k) - €§’“) <% AW C gr C AW BH),
and B®) C {i € [N]: A; < €} throughout the algorithm.

To show EST-REG satisfies (b) in Lemma 3.1, we need to analyze the error of the estimations it returns. Note
that EST-REG offers each item i for T; > K7 epochs, which satisfies the exploration requirement in Lemma D.1.
Therefore, it returns u; € [fvgk),fi(k)], Q(k) — ék) < & with the desired probability. Thus it satisfies (b) in Lemma
3.1. O

Now we start to analyze the regret. The key observation is that Lemma B.2 enables us to represent the regret
of offering an assortment S in terms of the score difference between S and S*. Specifically, when Z = (), the
regret of Explore(S) is 3 ;cge\ g Ui — 2 ;es\ s+ wi- Therefore, if we know that AR C §* € A® 1 B® and we
choose a maximum subset B C B®*) to construct an assortment S = A U B such that |S| = K, then the regret of
Explore(S) is bounded by

) — * i ) < — R i .
| Bl(maxu;) — | B7|(min ui) < (K — |A)( max u; — min u;) (11)

In the following, Lemma E.2 bounds the right hand side of Eq. (11), based on which Lemma E.3 bounds the
regret of EST-REG.

Lemma E.2. We have (max;c g 55’”) — (min;e g Efk)) < 3¢, and (max;e g éfk)) > 0.
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Proof. The second statement (max;c g ffk)) > 0 follows directly from that EST-REG rejects items with negative
scores. Next we show the first statement. We write & = é(k),éi = fi(k) and e = %. If |B*=1| < M, we have

7

£ <0< for i € B® by the definitions of Baee, Brej and that Bace, Brej are excluded from B*). We conclude
by
§i—& <& —&+& —& <2

If [B*#=D| > M, then we have Baee = {b € B#1 : & > (0V )} and Bej = {b € B*D . & < (0Va)}.
Therefore, we have & < (0V ) and & > (0V a) for i € B®). For each i,j € B®, if £ < 0, then we have
& — fj < 2e using previous equation. Otherwise, we have

§—&<Bre—§<P+2—§<2+B—(0Va).

It suffices to show § — (0 V ) < e. Assume [ > 0. Next we show § — a <e. Let ém e 7§AZ-M be the M largest
values of {&;};cpv-1). By the definition of «, we have o > mini<;<n Elj Suppose a > Slx for € [M]. We have
B-a<é, —§, <e O

Lemma E.3. The regret incurred by EST-REG in phase k is Reg® < |B\ §*| - KI%NT.

Proof. We note that B = B*~1) and A = A*~1. Let B* = §*\ A. For every j € [m], let S} = A=) B} and
B¥ = B* N B}. Note that |B} \ Bf| = M > |B* \ B}|. Since Z = (), by Proposition 2 and Lemma B.2, the regret
incurred by Explore(S}) is

1+ ) v)(R(S"0) = R(Sj,0) = > ui— > u

i€S] i€S* i€S]
- > w- Y
i€ B*\ By i€ Bj\ By

< |B*\ B*|. . _ 1B\ B*| - minw:
< |B*\ Bj| - max{u; v 0} — [B; \ Bj| - minu;

3 .
(Lemma E.2) < §6k_1|B; \ B}
= 3ex| B} \ Bj|.

Note that for every b € B(*~1) \ B* there are at most two j € [m] such that b € B} \ By, so we have

> IBj\ B;| < 2|B*V\ B*|. (12)
j=1
Thus the regret incurred in phase k is
m m
Reg™ < Kr> (14 Y v)(R(S*,v) — R(Sj,v)) < K7 Y | B;\ Bj| < 66,7 B*~1\ B7. O
j=1 ies) j=1

Proof of Theorem 3. Since that the event specified in Lemma E.1 happens with probability 1 — % and that the
regret is bounded by Regr < T, it suffices we prove the regret bound under the event, which is

T
Regr = Z Reg®

k=1

= Klog(NT
(Lemma E3) < S [B*-1\ 57 Klog(NT)

k=1 €k

Klog(NT) Z I{i ¢ B+1)
€k i€[N]\S*

M

E
I
—
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= {A; <ep—1}
(Lemma E.1) Z Klog(NT) Z —
k=1 i€[N]\S*

E Klog(NT) - E 7]I{AZ < kb
. €k
i€[N]\S* k=1

ie[N]\S* v

Finally, we discuss why we always offer full assortments in EST-REG. Actually, this is utilized by Eq. (12). If we

do not offer the full assortments, the right hand side of Eq. (12) could become 2|B%*~1|. Thus we could end up
with a regret bound that depends on S*, as we show in Section 4.

F Lower Bounds

We recall the definition of P§, the probability distribution of assortment S under MNL choice model with
preference parameter v.

Vi N
Pg(l) _ ) votiesv5’ i€ Su{o}, (13)
0 otherwise.
We show the following lower bound under the restriction A; < K, which gives us enough freedom to construct a

simple MNL-bandit instance to realize it, as in Lemma F.2. Note that our regret upper bound in Theorem 3 only
depends on items in [N]\ S*, so in our lower bound, we only consider the gap sequence of items in [N]\ S*. We
highlight that our lower bound is for every K.

Theorem 4. Suppose an algorithm A achieves E[Regr| < TP on any MNL-bandit instance for a constant

€ (0,1). For any N > 2, K < & suboptimality gap sequence {A;}N. k41 Such that max; A; < 4=, there is a
MNL-bandit instance L that realzzes the gap sequence. Moreover, for this instance, we have S* = [K] and the
algorithm incurs regret

.. RegT 1
lim inf 1 > Z
iE[NJ\S*

For any assortment S C [N] with |S| < K, let Ts(T) be the number of time steps that S is offered. For any
item 7 € [N], let Ti(T') = }_|5<x.ses Ts(T') be the number of time steps that item i is offered. Next we prove
Theorem 4. Our proof is inspired by the proofs of the similar lower bounds in multi-armed bandits (Lattimore
and Szepesvéri, 2020).

Lemma F.1 (Bretagnolle-Huber inequality). Let P,Q be two measures over the same measurable space. Let A
be an event. Then

P(4) + Q(A%) > 7 exp(~ Do (B || ),

where Dk, (- || ) is the Kullback—Leibler divergence between probability measures.

Lemma F.2. Assume the conditions of Theorem 4. For every i € [N], we let r; =1 and

1 1 .
® Tarm=n, <K
v, = ﬁ, i=K7
1 _4A; ;
sk~ Tr2a; 1> K.

Then T = (N, K,r,v) is a MNL-bandit instance in which A; complies with Definition 1.

2K

Proof Note that for K = 1 we have max;enjvi < s < 1 and for K > 2 we have maX;e(N) Vi < % +
v; < 1. Note that by the assumption A; < ﬁ we have

m <3 —I- < 1, so we always have max;c|n)
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an, 4 4 1 . 1 .
TroA; = /A3 < ToRkT2 < 7R S0 We have min;epnyv; > g7z > 0. Since v;, r; € [0,1], we know that Z defines a

MNL-bandit instance.

Let S* = {1,2,..., K} be the optimal assortment in this instance. For every item i € [N]\ S*, let S} =
arg max|s|<x:ics I2(S,v) be the best assortment containing i. We next show A; = R(S*,v) — R(S},v). By
direct computations, we have S = {1,2,..., K — 1,3} for i ¢ S* and S} = S* for ¢ € S*. Therefore, we have
R(S*,v) — R(Sf,v) =0= A, for i € S*. Note that Zfil v; =1, so R(S*,v) = 4. For i ¢ S* we have

K 40
* * 1 Zi:l Ui — TQlAz
R(S,v)—R(Si,v):§— e A
L4310 — 19k
R Sl £=7.v]
2 2 - 1+2A;
= Ai' D

Lemma F.3. Under the MNL-bandit instance T defined in Lemma F.2, we have

1
Regr > 1 Y E[T(D)]
i€[N]\S*

Proof. Under instance Z, for any assortment S C [N] with |S| < K, let B =S5\ S*, we have

_ Dics Vi

1
_ R(S, 'U) = 5 71 n Zies v
1
2

1A,
1 - ien Tiak;

Ty 4A;
2 ZieB 1+2A;
Yien Tiok
i€B 14+2A;

1A,
22 =2 iep T24;)

> 4
s 1124

A;
ZZ?a

ieB
where in the second-to-third inequality we used 1+a < lf:;rfﬁ for a, 86 > 0 With a = ) .cqvi and § =
Yicss Vi — Djes max{v;, 577 }, and in the fifth-to-last inequality we used A; < 14 < 3.

Recall that S; is the assortment offered at time step t. We have

T
E[Regr] = 3 E[0* — R(S,,v)]

= Z Z [1{S; = S}](8* — R(S,v))

Il
SR
ngh

=
=
—
"
N———

ISI<K
= Y BT (6" - R(Sv)
IS1<K
> ¥ Enm Y G
|S|<K i€S\S*
= Y Bm@) 5 -
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Lemma F.4. Let S C [N] with |S| < K be an assortment. Let v,v" be two preference vectors such that v, > v,
and v} = wv; fori# x. Then

/ (V! —v,)?
D Pl PY) < z
KL( S || S ) = 2%(1 + Zies Ui)

Proof. Recall the definition of P¢ in Eq. (13). Let P = Pg and Q = Pg’/. We have

/ v; vi/ (143 5e505)
DyL(Pg || P§) = -log :
z‘eszu;{o} L+ ies vy O /(L4355 v5)
= Z U ~10g1+zjesvj + Yz -log o/t 2 jes )
iesu{o} 1+Zj€S vy 1+EjeSU;' 1+Zjes Uj U;/(1+Zjes U;)
i#x
= log 1+ ZjES U;' Yz log i

L+3esvi  14+25e5v v

Denote § = vy —v; > 0and V =143, gv;. We have

/ ) v ]
Dk (P8 || P§) =log(1 + ) — z log(1 4+ —)
5 s 1 +Zj€S vy 1 +Zj€S Uj Vg
9 _ Ui(i _ 572)
VvV Ve, 202
52
= 20,V
where we used Taylor’s formula x — % <log(1l + x) < z in the second-to-third inequality. O

Lemma F.5. LetZ = (N, K,r,v),7' = (N, K,r,v’) be two MNL-bandit instances and A be an algorithm. Let P
be the probability measure induced by A and  and P’ be that by A and Z'. We have

Do (P | F) = > EITs(T)|Dxe(PY | P)-
IS|<K
Proof. The lemma can be proved by following the proof of Lemma 15.1 in (Lattimore and Szepesvéri, 2020). O

Lemma F.6. Under the assumptions of Theorem 4 and the MNL-bandit instance defined in Lemma F.2, for
algorithm A and any item i € [N]\ S*, we have

. LB 1-p
lim inf > .
Thee logT = 32KA?

Proof. Fix an item ¢ € [N]\ S*. For instance Z, we have

T
E[Regr] = Y E[6" — R(S,v)])
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We construct another MNL-bandit instance Z’. Let € € (0, ﬁ) be a parameter. We define a preference vector v’

such that
’U/- _ {Ujv J 7é 2,

J 1 s
W+E’ J =7

Then Z' = (N, K, r,v’) is an MNL-bandit instance. For any algorithm A, let P be the probability measure given
by A and Z, and P’ be that given by A and Z’. From now on, we use E to denote the expectation under P, and
E’ to denote that under P'.

For instance Z', direct computations give that

1+e€
N=RU{l,.... K —1,i},v') =
‘g‘lgggR(S,v) R{1,..., yi},v") pp

1
N = R{1,...,K},v') = =
s T o RS V) = R({L o, Ky o) = 5

Thus we have

[M]=

E'[Regr] = Y E[max R(S,v") — R(S,v)]

|S|I<K

~
Il
—

[M]=

B/ ¢ Si} - (max R(S.0) = R(S.v)]

H_
Il
-

1+e 1

2+6_§)

E'I{i ¢ Si}] - (

[M]=

o~
Il
-

@)

M=

E'[I{i ¢ S:3- - (15)

o~
Il
_

Recall that in the proof of Lemma F.2, we showed v; > ﬁ. For any assortment S, by Lemma F.4, we have

4N,
< (6 + 1+2A; )2
T 20i(1+ Y e vi)
< (6 + 4A1)2
- 2v;
< 2K (4A; + €)%

DxwL(P§ || P§)

By Lemma F.5, we have

Dyi(P || P)= Y E[Ts(T)]Dxu(PY || PY)

[SI<KK

= > E[Ts(D)DxL(PE | PY)
|S|I<K:ieS

< ) E[Ts(T)]-2K(4A; +¢)?
|S|<K:ieS

= 2K (4A; + €)* - E[T:(T)).

Let A= {T;(T) > L} be an event. By Lemma F.1, we have

P(A) + P'(A%) > %exp(—DKL(P IP")

> 1 exp(-2K (44, + o) - E[T(T)))
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By Markov’s inequality, we have E[7;(T)] > P(A) - £ and Zthl E'[1{i ¢ S,}] > P'(AL). L. Together with Egs.
(14) (15), we have

E[Regy] +E'[Regy] > E[T(D)] - A+ Y E'I{i ¢ Si}] - ¢

> T R4+ P(AY - )
> T min{A;, S}B(A) + P(4%))
> £ min{A;, S} exp(~E[T(T)] - 2K (42 +¢)?)

Recall that E[Regy]| + E'[Regy] < 2TP for some p € (0,1). As a result, we have

4
. E[T{(T)] 1 . log(mrarzy)
lim inf > 1—p—1 LA Cr 3 A
Th logT — 2K(4A; + 6)2( p l;njolip logT
_1-p

2K(4A2 + 6)2 '

)

Let € — 0, we have
. . JE[T:(1T)] 1-p
| f > . O
Thee logT = 32KA?

Proof of Theorem 4. We consider the MNL-bandit instance defined in Lemma F.2. By Lemmas F.3 and F.6, we

have

.. .E[Regy] _ 1 .. E[T{(T)]
> = L\
i o 25 >0 mint S
i€[N]\S*
I—p
> .
- Z 96K A, -

iE[N]\S*



