
Fully Gap-Dependent Bounds for Multinomial Logit Bandit

Appendices

A Concentration Inequalities

We introduce the concentration inequalities used in this paper. We begin with the Hoeffding’s celebrated inequality
for the sum of bounded variables (Hoeffding, 1963).

Lemma A.1 (Chernoff-Hoeffding’s inequality). Consider n independent bounded random variables X1, . . . , Xn ∈
[0, 1]. Let X̄ = 1

n

∑n
i=1Xi and µ = E[X̄]. We have P(|X̄ − µ| ≥

√
log(2/δ)

2n ) ≤ δ.

Next we state the multiplicative Chernoff inequalities for the geometric random variables (Agrawal et al., 2019).
We say a random variable is geometric if P(X = m) = p(1− p)m.

Lemma A.2 (Agrawal et al. (2019), Corollary D.1). Consider n i.i.d. geometric random variables X1, . . . , Xn

with expectation E[Xi] = µ ≤ 1. Let X̄ = 1
n

∑n
i=1Xi. We have

(a) P(|X̄ − µ| >
√

48X̄ log(
√
N`+1)

n + 48 log(
√
N`+1)

n ) ≤ 6
N`2 ,

(b) P(|X̄ − µ| >
√

24µ log(
√
N`+1)

n + 48 log(
√
N`+1)

n ) ≤ 4
N`2 ,

(c) P(X̄ ≥ 3µ
2 + 48 log(

√
N`+1)

n ) ≤ 3
N`2 .

We rephrase the above lemma into the below form. Lemma A.3 can be proved by following Appendix D in
(Agrawal et al., 2019). Similar inequalities with constants smaller than 48 were shown in (Jin et al., 2019; Janson,
2018).

Lemma A.3. Consider n i.i.d. geometric random variables X1, . . . , Xn with expectation E[Xi] = µ ≤ 1. Let
X̄ = 1

n

∑n
i=1Xi. We have

(a) P(|X̄ − µ| >
√

48X̄ log(2/δ)
n + 48 log(2/δ)

n ) ≤ 6δ,

(b) P(|X̄ − µ| >
√

24µ log(2/δ)
n + 48 log(2/δ)

n ) ≤ 4δ,

(c) P(X̄ ≥ 3µ
2 + 48 log(2/δ)

n ) ≤ 3δ.

The following lemma is a direct corollary of Lemma A.3. It can be proved by following the proof of Lemma 4.1 in
(Agrawal et al., 2019, Appendix A). Here “∧” means logical and.

Lemma A.4. Consider n i.i.d. geometric random variables X1, . . . , Xn with expectation E[Xi] = µ ≤ 1. Let

X̄ = 1
n

∑n
i=1Xi and ε =

√
48X̄ log(2/δ)

n + 48 log(2/δ)
n . Then we have

P({X̄ − ε ≤ µ ≤ X̄ + ε} ∧ {ε ≤
√

196µ log(2/δ)

n
+

196 log(2/δ)

n
}) ≥ 1− 13δ.

We state another concentration inequality to the geometric random variables. The following inequality is focused
on the upper tail of the geometric random variables.

Lemma A.5 (Janson (2018), Theorem 2.1). Consider n independent “shifted” geometric random variables
X1, . . . , Xn that P(Xi = k) = pi(1 − pi)k−1. Let p∗ = min1≤i≤n pi > 0, X =

∑n
i=1Xi, µ = E[X]. We have

P(X ≥ λµ) ≤ e−p∗µ(λ−1−lnλ).

B Proofs for Section 3.1

B.1 Proof of Proposition 1

Proof of Proposition 1. In (Rusmevichientong et al., 2010, Section 2.1), it was shown that the optimal revenue is

θ∗ = max{θ ∈ R : max
S⊆[N ]:|S|≤K

∑
i∈S

vi(ri − θ) ≥ θ}.
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Let S = arg maxS⊆[N ]:|S|≤K{
∑
i∈S vi(ri − θ∗)}. By the above equation, we have∑

i∈S
ui =

∑
i∈S

vi(ri − θ∗) ≥ θ∗.

Next we show the above “≥” is actually “=”. Suppose instead, it is “>”, then we have∑
i∈S

vi(ri − θ∗) > θ∗,∑
i∈S

viri > (1 +
∑
i∈S

vi)θ
∗,∑

i∈S viri

1 +
∑
i∈S vi

> θ∗,

which implies that R(S,v) > θ∗ and contradicts to that θ∗ is the optimal revenue. As a result, we have
θ∗ =

∑
i∈S ui. Note that when “=” holds, by repeating the above argument, we have R(S,v) = θ∗ and thus

S = S∗ by Assumption 1. Therefore,

S∗ = arg max
S⊆[N ]:|S|≤K

{
∑
i∈S

ui}.

It is clear that

arg max
S⊆[N ]:|S|≤K

{
∑
i∈S

ui} = F([N ],K,u),

because to maximize the sum of scores under the capacity constraint, it suffices to pick all items with positive
and top-K scores.

B.2 Proof of Lemma 3.1

We prove Lemma 3.1 to show the sample complexity guarantee of Algorithm 1. We first reveal the relation
between the gap of advantage score and the suboptimality gap of each item.

Lemma B.1 (Relation between ∆i and ui). For items i, j ∈ [N ], we have the following statements.

(a) If i ∈ S∗, j /∈ S∗, then ∆i ≤ ui − uj. In addition, ∆i ≤ ui.
(b) If i /∈ S∗, j ∈ S∗, then ∆i ≤ uj − ui. If in addition |S∗| < K, then ∆i ≤ −ui.

Proof. For (a), let S = (S∗ \ {i}) ∪ {j}. Note that ∆i ≤ R(S∗,v)−R(S,v), so by Lemma B.2, we have

∆i ≤ (1 +
∑
l∈S

vl)(R(S∗,v)−R(S,v)) = ui − uj .

Let S = S∗ \ {i} and repeat the previous argument, we have ∆i ≤ ui. For (b), let S = (S∗ \ {j}) ∪ {i}. Similarly,
we have

∆i ≤ (1 +
∑
l∈S

vl)(R(S∗,v)−R(S,v)) = uj − ui.

When |S∗| < K, we let S = S∗ \ {j} and repeat the previous argument to obtain ∆i ≤ −ui.

Lemma B.2 (Revenue Comparison Lemma). Let S ⊆ [N ] be an assortment. Then we have (1 +
∑
i∈S vi)(θ

∗ −
R(S,v)) =

∑
i∈S∗\S ui −

∑
i∈S\S∗ ui.

Proof. We have

(1 +
∑
i∈S

vi)(θ
∗ −R(S,v)) = (1 +

∑
i∈S

vi)θ
∗ −

∑
i∈S

viri

= θ∗ −
∑
i∈S

vi(ri − θ∗)
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(Proposition 1) =
∑
i∈S∗

ui −
∑
i∈S

ui

=
∑

i∈S∗\S

ui −
∑

i∈S\S∗
ui.

Next we prove Lemma 3.1 in twofold. First, we analyze the guarantees of the accept-reject stage at Lines 6-10 in
Algorithm 1.

Lemma B.3 (Accept-Reject). In phase k, before Line 6, we have A(k−1) ⊆ S∗ ⊆ A(k−1) t B(k−1) and ui ∈
[ξ̌i, ξ̂i], ξ̂i − ξ̌i ≤ εk

2 for i ∈ B(k−1). Then after Line 10, we have A(k) ⊆ S∗ ⊆ A(k) tB(k) and B(k) ⊆ {i ∈ [N ] :
∆i ≤ εk}.

To facilitate readability, we divide the lemma into two lemmas and prove them separately.

Proof of Lemma B.3. We combine Lemmas B.4 and B.5.

Lemma B.4. Under the context of Lemma B.3, we have A(k) ⊆ S∗ ⊆ A(k) tB(k).

Lemma B.5. Under the context of Lemma B.3, we have B(k) ⊆ {i ∈ [N ] : ∆i ≤ εk}.

We prove these two lemmas. Let B1
acc = {b ∈ B(k−1) : ξ̌b > 0}, B1

rej = {b ∈ B(k−1) : ξ̂b < 0}. If |B(k−1)| > M , we

let B2
acc = {b ∈ B(k−1) : ξ̌b > β}, B2

rej = {b ∈ B(k−1) : ξ̂b < α}, where M,α, β are defined in Algorithm 1.

Proof of Lemma B.4. We recall that the notion “t” requires A(k) ∩B(k) = ∅, so we show this first. This follows
directly from A(k) = A(k−1) ∪Bacc, B

(k) ⊆ B(k−1) \Bacc, and A(k−1) ∩B(k−1) = ∅.

Next, we show A(k) ⊆ S∗ ⊆ A(k) tB(k). It suffices to show i ∈ S∗ \A(k−1) for i ∈ Bacc and i /∈ S∗ \A(k−1) for
i ∈ Brej. Suppose |B(k−1)| ≤M . Since ub ≥ ξ̌b, we have

B1
acc ⊆ {b ∈ B(k−1) : ub > 0} ⊆ F(B(k−1),M,u) = S∗ \A(k−1),

which implies A(k) ⊆ S∗. We have ub ≤ ξ̂b < 0 for b ∈ Brej, which implies b /∈ S∗ and thus S∗ ⊆ (A(k−1) t
B(k−1)) \Brej = A(k) tB(k).

Now consider |B(k−1)| > M . For every i ∈ Bacc, since i ∈ B1
acc, we have ui > 0. Since i ∈ B2

acc, we have
ui ≥ ξ̌i > β. By the definition of β, we know that #{b ∈ B(k−1) : ub ≥ ui} ≤M . Therefore, ui is positive and
top-M . Thus i ∈ F(B(k−1),M,u) = S∗ \A(k−1).

For every i ∈ Brej, if i ∈ B1
rej, then ui ≤ ξ̂i < 0 is negative, thus i /∈ S∗. Otherwise we have i ∈ B2

rej. By the

definition of α, we have that ui ≤ ξ̂i < α and thus #{b ∈ B(k−1) : ub > ui} > M . Therefore, ui is not top-M .
Thus i /∈ S∗ \A(k−1).

Proof of Lemma B.5. We show B(k) ⊆ {i ∈ B(k−1) : ∆i ≤ εk} by showing that ∆i > εk implies i /∈ B(k). Fix
i ∈ B(k−1) such that ∆i > εk.

1. Suppose i ∈ S∗. We will show that i ∈ Bacc. By Lemma B.1, we have ∆i ≤ ui and thus

ξ̌i ≥ ξ̂i −
εk
2
≥ ui −

εk
2
≥ ∆i −

εk
2
≥ εk −

εk
2

=
εk
2
> 0,

which implies i ∈ B1
acc. Note that when |B(k−1)| ≤M , we have Bacc = B1

acc and thus we conclude.

When |B(k−1)| > M , it remains to show i ∈ B2
acc. By the definition of β, it suffices to show #{j ∈ B(k−1) : ξ̌i >

ξ̂j} ≥ |B(k−1)| −M , which is equivalent to #{j ∈ B(k−1) : ξ̌i ≤ ξ̂j} ≤M .

For every j ∈ B(k−1), if ξ̂j ≥ ξ̌i, then we have uj + εk
2 ≥ ξ̂j ≥ ξ̌i ≥ ui −

εk
2 . Therefore, uj ≥ ui − εk ≥ ui −∆i. In

summary, we have {j ∈ B(k−1) : ξ̂j > ξ̌i} ⊆ {j ∈ B(k−1) : ξj ≥ ξi −∆i}. By Lemma B.1, we have ξi − ξj′ ≥ ∆i

for every j′ ∈ [N ] \ S∗. Thus {j ∈ B(k−1) : ξj ≥ ξi −∆i} ⊆ S∗. Recall that A(k−1) ⊆ S∗ ⊆ A(k−1) tB(k−1). So

{j ∈ B(k−1) : ξ̂j ≥ ξ̌i} ⊆ S∗ \ A(k−1) and thus #{j ∈ B(k) : ξ̂j ≥ ξ̌i} ≤ K − |A(k−1)| = M , which completes the
proof.
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2. Suppose i /∈ S∗. We will show that i ∈ Brej. Suppose |S∗| < K. By Lemma B.1, we have ∆i ≤ −ξi. Therefore,

ξ̂i ≤ ξi +
εk
2
< −εk +

εk
2
< 0,

which implies i ∈ B1
rej.

Now consider |S∗| = K. Since i /∈ S∗ and i ∈ B(k−1), we must have |B(k−1)| ≥ M + 1 > M . In the

following, we show that i ∈ B2
rej. By the definition of α, it suffices to show #{j ∈ B(k−1) : ξ̌j > ξ̂i} ≥ M .

For every j ∈ S∗ ∩ B(k−1), by Lemma B.1, we have ∆i ≤ uj − ui. Therefore, we have ξ̌j ≥ uj − εk
2 ≥

∆i + ui − εk
2 ≥ ∆i − εk

2 + ξ̂i − εk
2 > ξ̂i, which implies {j ∈ B(k−1) : ξ̌j > ξ̂i} ⊇ S∗ ∩ B(k−1) and thus

#{j ∈ B(k−1) : ξ̌j > ξ̂i} ≥M .

Proof of Lemma 3.1. By a union bound, the probability that EST returns confidence intervals ui ∈ [ξ̌i, ξ̂i], ξ̂i− ξ̌i ≤
εk
2 within CEST · |B

(k−1)| log(N/δ(k))
ε2k

time steps for every phase k ∈ N is at least

∞∏
k=1

(1− δ(k)) =

∞∏
k=1

(1− δ

3k2
) ≥ 1−

∞∑
k=1

δ

3k2
≥ 1− δ

3

π2

6
≥ 1− δ.

We condition on the above event. Note that A(0) ⊆ S∗ ⊆ A(0)tB(0). By combining Lemma B.3 with an induction
over phases, we can show that A(k) ⊆ S∗ ⊆ A(k) t B(k) and B(k) ⊆ {i ∈ [N ] : ∆i ≤ εk} for every phase k.
Therefore, when M = 0, the algorithm returns the optimal assortment S∗. The sample complexity of SAR-MNL
with EST is

T .
∞∑
k=1

|B(k−1)| · CEST log(N/δ(k))

ε2k

.
∞∑
k=1

∑
i∈[N ]

I{∆i ≥ εk}

 · CEST log(Nk/δ)

ε2k

=
∑
i∈[N ]

∞∑
k=1

CEST log(Nk/δ)

ε2k
· I{∆i ≥ εk}

.
∑
i∈[N ]

dlog ∆−1
i e∑

k=1

CEST log(Nk/δ)

εk
·

. CEST ·
∑
i∈[N ]

logN + log log ∆−1
i + log δ−1

∆2
i

.

B.3 Proof of Lemma 3.2

Before proving the lemma, we first specify the skipped formulas in Algorithm 2. Let C0 = 196, C2 = 1024, δ = δ0
15N .

We define τ = C2C0 log(2/δ)
ε2 and

v̌i = 0 ∨ (v̄i − σ(vi)), v̂i = 1 ∧ (v̄i + σ(vi)), σ(vi) =

√
48v̄i log(2/δ)

Ti
+

48 log(2/δ)

Ti
,

where Ti = Kτ is the number of offering. For each item i ∈ A∪B, we define v̄i = ni
Ti

, where ni is the total number
of time steps with outcome “item i”. One may realize that “keep offering until no purchase” is the same as the
epoch-based offering in (Agrawal et al., 2019) and that EST-NAIVE uses a simplified version by only offering
singletons. We adopt the notions, calling it “epoch” and referring Ti as the number of epochs.

Next we give a proof of the sample complexity guarantee using previous results in (Agrawal et al., 2019). Our
proof frequently uses the big-O notations to suppress the constants, whose exact values can be calculated by
following the proofs in Appendix D.3.
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Proof of Lemma 3.2. 1. We prove that EST-NAIVE returns the confidence intervals ui ∈ [ξ̌i, ξ̂i] with high

probability. By Lemma 4.1 in (Agrawal et al., 2019), we have that vi ∈ [v̌i, v̂i] and v̂i − v̌i ≤ Õ(
√
vi/Ti) = Õ( εviK )

with probability 1−O(Nδ). By Lemma 4.2 in (Agrawal et al., 2019), we find that θ̌ ≤ θ∗ ≤ θ̂ if v̌i ≤ vi ≤ v̂i for
every i ∈ A ∪B. Furthermore, for the assortment S = arg maxS⊆A∪B:|S|≤K R(S, v̂), we have

R(S, v̂)−R(S, v̌) =

∑
i∈S v̂iri

1 +
∑
i∈S v̂i

−
∑
i∈S v̌iri

1 +
∑
i∈S v̌i

≤
∑
i∈S v̂iri

1 +
∑
i∈S v̌i

−
∑
i∈S v̌iri

1 +
∑
i∈S v̌i

≤
∑
i∈S

(v̂i − v̌i)ri (7)

≤
∑
i∈S

(v̂i − v̌i)

≤ KO(
ε

K
)

≤ O(ε).

Note that R(S, v̂) = θ̂ and R(S, v̌) ≤ θ̌, so we conclude that θ̂ − θ̌ ≤ O(ε). Finally, we note that ui = vi(ri − θ∗)
and that vi ∈ [0, 1], (ri − θ∗) ∈ [−1, 1]. Therefore, we have ξ̂i − ξ̌i ≤ |v̂i − v̌i|+ |θ̂ − θ̌| ≤ O(ε).

2. We conclude by showing EST-NAIVE achieves CEST = O(K2) in Lemma 3.1. When we keep offering a singleton
assortment {i} until the outcome “no purchase” occurs, it will take us 1 + vi ≤ 2 time steps in expectation. So in
expectation, EST-NAIVE uses

Kτ
∑

i∈A∪B
(1 + vi) ≤ 2K|A ∪B|τ ≤ 2K2τ

time steps. Using the concentration inequalities, we can turn the expectation argument into a high probability
one, showing that EST-NAIVE returns in O(K2τ) time steps with probability at least 1−O(δ). Thus we prove
that CEST = O(K2) for EST-NAIVE.

Finally, we discuss two questions: why the procedure only offers singletons and why the accuracy needs to be ε
K .

For the first question, we discuss its optimality under the epoch-based offering framework (Agrawal et al., 2019),
which is used by almost all previous MNL-bandit work. Under this framework, the accuracy of our estimation to
vi solely depends on Ti, the number of epochs that offers item i.

Let us consider that all items have vi = Θ(1) and compare two offering schemes for an assortment S: (i) offer
S for an epoch; (ii) for each item i ∈ S, offer the singleton assortment {i} for an epoch. Both offering schemes
increase Ti by 1 for every i ∈ S and thus lead to the same accuracy. Moreover, in expectation, the number of
time steps used by the first scheme is (1 +

∑
i∈S vi) and that used by the second scheme is

∑
i∈S(1 + vi). When

vi = Θ(1), we have (1 +
∑
i∈S vi) �

∑
i∈S(1 + vi). As a result, both schemes use a similar number of time steps,

so we do not benefit from offering an assortment with size greater than 1, i.e. offering singletons could be enough.

For the second question, we consider that all items have vi = Θ( 1
K ). We note that if we need to estimate ui to a

given accuracy ε, we need to estimate θ∗ to such accuracy: θ̂ − θ̌ ≤ ε. We observe that when vi = Θ( 1
K ), the step

in Eq. (7) is almost tight, because

(1 +
∑
i∈S

v̌i) � (1 +
∑
i∈S

vi) � (1 +
∑
i∈S

1

K
) � (1 + |S| 1

K
) � 1.

To estimate θ∗ to the accuracy ε, by Eq. (7), we need that

θ̂ − θ̌ ≤ · · · ≤
∑
i∈S

(v̂i − v̌i) ≤ · · · ≤ ε. (8)

Since |S| can be O(K), we need to estimate each vi to the accuracy ε
K in order to achieve Eq. (8), which suggests

that estimating to the accuracy ε
K could be necessary.
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Note that we explain these two questions under different instances, namely vi = Θ(1) and vi = Θ( 1
K ), so it is still

possibly to design an estimation procedure that adapts to these different instances. Actually, this is what we
show in Section 3.3 and Appendix D.

C Proofs for Section 3.2

The following lemma shows that the maximization of the reduced revenue function is monotonic in its parameters
and thus we can use Eq. (2) to compute the confidence interval of the optimal revenue.

Lemma C.1 (Monotonicity). Assume A ⊆ S∗ ⊆ A t B and let M = min{K − |A|, |B|}. Suppose ζ ∈ [ζ̌, ζ̂]

and νi ∈ [ν̌i, ν̂i] for every i ∈ B. Let θ̌, θ̂, ξ̌i, ξ̂i be those defined in Eqs. (2) (5). Then we have θ∗ ∈ [θ̌, θ̂] and

ξi ∈ [ξ̌i, ξ̂i] for i ∈ B.

Proof. First, we show θ∗ ∈ [θ̌, θ̂]. We will only show θ∗ ≤ θ̂, since the proof of θ∗ ≥ θ̌ is similar. By Eq. (2), we
have

θ̂ = max
S⊆B:|S|≤M

R(S, ν̂, ζ̂) ≥ R(S∗ \A, ν̂, ζ̂).

Also we have

θ∗ = R(S∗ \A, ν, ζ) =
ζ +

∑
i∈S∗\A νiri

1 +
∑
i∈S∗\A νi

,

(1 +
∑

i∈S∗\A

νi)θ
∗ = ζ +

∑
i∈S∗\A

νiri,

θ∗ = ζ +
∑

i∈S∗\A

νi(ri − θ∗).

By Proposition 1, we have S∗ = F([N ],K,u), so ui ≥ 0 for i ∈ S∗, thus ri ≥ θ∗ for i ∈ S∗. Therefore,

ζ̂ +
∑

i∈S∗\A

ν̂i(ri − θ∗) ≥ ζ +
∑

i∈S∗\A

νi(ri − θ∗) = θ∗,

ζ̂ +
∑

i∈S∗\A

ν̂iri ≥ (1 +
∑

i∈S∗\A

ν̂i)θ
∗,

ζ̂ +
∑
i∈S∗\A ν̂iri

1 +
∑
i∈S∗\A ν̂i

≥ θ∗,

R(S∗ \A, ν̂, ζ̂) ≥ θ∗.

And we conclude that θ̂ ≥ θ∗. Second, we show ξi ∈ [ξ̌i, ξ̂i]. Recall that ξi = νi(ri − θ∗). We conclude by noting
that (ri − θ∗) ∈ [−1, 1] and that νi ∈ [0, 1].

C.1 Proof of Proposition 2

Proof of Proposition 2. Statement (a) can be proved by noting that P(z = ri) = vi
1+

∑
j∈Z vj

. Statement (c) can

be proved by noting that (E` − 1) follows a geometric distribution with parameter p =
1+

∑
i∈Z vi

1+
∑
i∈Z vi+

∑
i∈S vi

, so it

has mean E[E` − 1] = 1−p
p =

∑
i∈S vi

1+
∑
i∈Z vi

=
∑
i∈S νi.

Now we prove statement (b). When Z = ∅, it was the same as Corollary A.1 in (Agrawal et al., 2019). We
note that Z = ∅ case implies Z 6= ∅ case, because the distribution of xi when we offer the assortment Z t S
under parameter v and stop at outcomes Z t {0} is the same as when we offer S under parameter ν and stops at
outcome 0.

The next lemma bounds the sample complexity when using the generalized epoch-based offering procedure using
statement (c) in last proposition.
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Lemma C.2 (Sum of Epoch Lengths). Suppose we independently explore L ≥ log(1/δ) epochs using Algorithm 3

and the expected length of each epoch ` ∈ [L] is E[E`] ≤ 3. Let T =
∑L
`=1E` be the total number of used time

steps. With probability at least 1− δ, we have T ≤ 8E[T ] ≤ 24L.

Proof. Note that {E` − 1}L`=1 are independent geometric random variables with mean E[E`] ≤ 3. Let λ = 8.
Then λ− 1− lnλ ≥ 3. Let µ = E[T ]. Since µ ≥ L, by Lemma A.5, we have

P(T ≥ 8µ) ≤ e−p∗µ(λ−1−lnλ) ≤ e− 1
3L(λ−1−lnλ) ≤ e−L ≤ δ.

C.2 Enhanced Version of Lemma 3.1

We show that if we assume EST returns an estimation of the reduced advantage score ξi, we can still obtain a
similar sample complexity guarantee as that in Lemma 3.1.

Lemma C.3 (Lemma 3.1 enhanced). Assume A(k−1) ⊆ S∗. Suppose with probability at least 1− δ(k), EST (a)

returns in CEST · |B
(k−1)| log(N/δ(k))

ε2k
time steps in phase k, and (b) ξi ∈ [ξ̌i, ξ̂i] and ξ̂i− ξ̌i ≤ εk

2 for every i ∈ B(k−1),

where ξi = ui
1+

∑
j∈A(k−1) vj

is the reduced score. Then SAR-MNL with EST is δ-PAC with sample complexity

CEST ·O(
∑
i∈[N ]

logN+log δ−1+log log ∆−1
i

∆2
i

).

Proof. We replace Lemma B.3 with Lemma C.4 in the proof of Lemma 3.1.

Lemma C.4. In phase k in Algorithm 1, suppose we have A(k−1) ⊆ S∗ ⊆ A(k−1)tB(k−1), and after invoking EST
in phase k, we have ξi ∈ [ξ̌i, ξ̂i], ξ̂i− ξ̌i ≤ εk

2 for i ∈ B(k−1). Then after Line 10 , we have A(k) ⊆ S∗ ⊆ A(k) tB(k)

and B(k) ⊆ {i ∈ [N ] : ∆i ≤ εk}.

Proof. Let Z = A(k−1) in Lemma C.5. We replace Lemma B.1 with Lemma C.5 and replace the score ui with
the score ξi = ui

1+
∑
j∈A(k−1) vj

in the proof of Lemma B.3 to prove the lemma.

Lemma C.5 (Relation between ∆i and ξi). For a set Z ⊆ S∗ and an item i ∈ [N ] \ Z, we define the reduced
advantage score ξi = ui

1+
∑
l∈Z vi

. Then for items i, j ∈ [N ] \ Z, we have

(a) If i ∈ S∗, j /∈ S∗, then ∆i ≤ ξi − ξj. In addition, ∆i ≤ ξi.
(b) If i /∈ S∗, j ∈ S∗, then ∆i ≤ ξj − ξi. If in addition |S∗| < K, then ∆i ≤ −ξi.

Proof. For (a), let S = (S∗ \ {i}) ∪ {j}. Note that ∆i ≤ R(S∗,v)−R(S,v), so by Lemma B.2, we have

(1 +
∑
l∈Z

vl)∆i ≤ (1 +
∑
l∈S

vl)(R(S∗,v)−R(S,v)) = ui − uj .

Note that ξi = ui
1+

∑
t∈Z vt

for i /∈ Z, so ∆i ≤ ξi − ξj . Let S = S∗ \ {i} and repeat the previous argument, we have

∆i ≤ ξi. For (b), let S = (S∗ \ {j}) ∪ {i}. Similarly, we have

(1 +
∑
l∈Z

vt)∆i ≤ (1 +
∑
l∈S

vt)(R(S∗,v)−R(S,v)) = uj − ui.

Thus ∆i ≤ ξj−ξi. When |S∗| < K, we let S = S∗ \{j} and repeat the previous argument to obtain ∆i ≤ −ξi.

C.3 Estimation Procedure with Generalized Epoch-based Offering

We present an estimation procedure EST-REDUCED (Algorithm 7) to demonstrate the power of the generalized
epoch-based offering.

Lemma C.6. There is a δ-PAC algorithm with sample complexity Õ(
∑N
i=1

K
∆2
i
) using only techniques in Sections

3.1 and 3.2.
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Algorithm 7: EST-REDUCED(A,B, δ0, ε): Estimation of ξi for i ∈ B

1 C0 = 196, C2 = 1024, δ = δ0
15N , τ = C2C0 log(2/δ)

ε2 , Z ← A,nZ = TZ = 0,∀i ∈ B : ni = Ti = 0;
2 ∀i ∈ B : Explore({i}) for Kτ epochs;

3 Compute ζ̌, ζ̂, ν̌i, ν̂i, θ̌, θ̂, ξ̌i, ξ̂i by Eqs. (3) (4) (2) (5) for i ∈ B, return {ξ̌i, ξ̂i}i∈B ;

Proof. We claim that SAR-MNL with EST-REDUCED can serve as the algorithm in the lemma. The statement
(b) in Lemma C.7 shows that EST-REDUCED can serve as the estimation procedure EST in Lemma C.3 and (a)
further shows that EST-REDUCED satisfies CEST = O(K). Thus we conclude by Lemma C.3.

Lemma C.7 (EST-REDUCED). Assume A ⊆ S∗ ⊆ A tB. With probability 1− δ0, (a) EST-REDUCED returns

in O(K|B|τ) time steps, where τ = O( logN/δ0
ε2 ) as defined in Algorithm 7; (b) ξi = ui

1+
∑
j∈A vj

∈ [ξ̌i, ξ̂i] and

ξ̂i − ξ̌i ≤ ε for i ∈ B.

Proof. For (a), we note that the expected epoch length of Explore({i}) is

EE` = 1 + vi ≤ 3.

Whenever B 6= ∅ is not empty, the procedure EST-REDUCED explores at least τ ≥ log(1/δ) epochs, so by Lemma
C.2, with probability at least 1− δ, the total number of time steps used by the procedure is

T ≤ 24L ≤ 24 ·K|B|τ.

For (b), we prove it by applying the results in Lemma D.1. Note that we offer each item i ∈ B for Kτ ≥
Mτ ≥ ( 1

4νi
∧ M

2 )τ epochs, so we meet the conditions in Lemma D.1, whose conclusion shows that (b) holds with
probability at least 1− 14Nδ. We apply a union bound to find that (a)(b) hold simultaneously with probability
at least 1− (δ + 14Nδ) ≥ 1− 15Nδ ≥ 1− δ0.

D Proofs for Sections 3.3 and 3.4

D.1 Error Analysis for Estimation of Advantage Score

We analyze the error of the estimations of νi, ζ when we use the generalized epoch-based offering procedure and
how their error propagates to θ, ξi. By Proposition 2 and Lemma A.4, we know that the tail bound of νi satisfies

ν̂i − ν̌i .
√
νiι

Ti
+

ι

Ti
,

where we use ι = polylog(δ−1, N) to denote the polylogarithmic terms and Ti is the number of epochs that item i
is offered. The major difference between this tail and the common 1√

Ti
-type tail bound (e.g. Lemma A.1) is the

existence of the term
√
νi. We fully exploit this term to show the exploration requirement (i.e. required number

of epochs) of each item i ∈ B in the following lemma.

Lemma D.1 (Exploration Requirement). For every item i ∈ B, if Ti ≥ T ′i τ , where T ′i = ( 1
4νi
∧ M

2 ) and

τ = O( log(N/δ0)
ε2 ) is as defined in Algorithm 5, then with probability at least 1− 14Nδ, we have ξi ∈ [ξ̌i, ξ̂i] and

ξ̂i − ξ̌i ≤ ε for every i ∈ B.

Our focus is to show ξ̂i − ξ̌i ≤ ε, which requires us to combine the tail bound with the error propagation. In the
following proof, we mainly analyze the tail bound itself and defer the error propagation analysis to Lemma D.2.

Proof of Lemma D.1. For an item i ∈ B, by Lemma A.4, with probability at least 1− 13δ, we have νi ∈ [ν̌i, ν̂i]
and

ν̂i − ν̌i ≤ 2(

√
196νi log(2/δ)

Ti
+

196 log(2/δ)

Ti
)
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≤ 2(

√
196νi log(2/δ)

( 1
4νb
∧ M

2 )τ
+

196 log(2/δ)

( 1
4νi
∧ M

2 )τ
)

= 2(

√
196νi log(2/δ)

( 1
4νi
∧ M

2 )C2C0 log(2/δ)
ε2

+
196 log(2/δ)

( 1
4νi
∧ M

2 )C2C0 log(2/δ)
ε2

)

= 2(

√
νiε2

( 1
4νi
∧ M

2 )C2

+
ε2

( 1
4νi
∧ M

2 )C2

)

= 2(

√
νi(4νi ∨ 2

M )

C2
ε+

4νi ∨ 2
M

C2
ε2)

≤ 2(

√
νi(νi ∨ 1

M )

C2/4
ε+

νi ∨ 1
M

C2/4
ε2)

≤ 2(
νi ∨ 1

M√
C2/4

ε+
νi ∨ 1

M

C2/4
ε2)

≤
νi ∨ 1

M√
C2/64

ε. (9)

By Lemma A.1, with probability at least 1− δ, we have ζ ∈ [ζ̌, ζ̂] and

ζ̂ − ζ̌ ≤ 2

√
log(2/δ)

2TZ
≤ 2

√
log(2/δ)

2C2C0 log(2/δ)
ε2

=
ε√

C2C0/2
. (10)

By a union bound, we have with probability at least 1 − (δ + 13|B|δ) ≥ 1 − 14Nδ that νi ∈ [ν̌i, ν̂i], ζ ∈ [ζ̌, ζ̂]
and Eqs. (9)(10) hold for νi and ζ for all i ∈ B. When the event holds, we can use Lemma C.1 to show that

ξi ∈ [ξ̌i, ξ̂i] for all i ∈ B and use Lemma D.2 with ε1 = ε√
C2/64

, ε3 = ε√
C2C0/2

to show that ξ̂i − ξ̌i ≤ 4ε√
C2/64

≤ ε
for all i ∈ B.

Lemma D.2 (Error Propagation). Assume A ⊆ S∗ ⊆ A tB and let M = min{K − |A|, |B|}. Suppose we have

0 ≤ ν̂i− ν̌i ≤ (νi ∨ 1
M )ε1 for every i ∈ B and 0 ≤ ζ̂ − ζ̌ ≤ ε3. Let θ̌, θ̂, ξ̌i, ξ̂i be those defined in Eqs. (2) (5). Then

θ̂ − θ̌ ≤ 2ε1 + ε3 and ξ̂i − ξ̌i ≤ 3ε1 + ε3.

Proof. Note that ν̂i ≥ ν̌i, so ν̂i − ν̌i ≤ (ν̂i ∨ 1
M )ε1. Using Lemma D.3, we have R(S, ν̂, ζ̂)−R(S, ν̌, ζ̌) ≤ 2ε1 + ε3.

Note that θ̂ = R(S, ν̂, ζ̂) and θ̌ ≥ R(S, ν̌, ζ̌), together with Lemma C.1, we prove θ̂ − θ̌ ≤ 2ε1 + ε3.

For every i ∈ B, we have

ξ̂i − ξ̌i ≤ |ν̂i − ν̌i|+ |θ̂ − θ̌| ≤ (νi ∨
1

M
)ε1 + 2ε1 + ε3 ≤ 3ε1 + ε3.

Lemma D.3. Suppose |S| ≤ M . Given ζ, ζ ′ such that 0 ≤ ζ ′ ≤ ζ ≤ 1 and νi, ν
′
i such that 0 ≤ ν′i ≤ νi ≤ 1

for every i ∈ S. Let ε1, ε3 ∈ (0, 1]. Suppose we have νi − ν′i ≤ (νi ∨ 1
M )ε1 and ζ − ζ ′ ≤ ε3. Then we have

R(S, ν, ζ)−R(S, ν′, ζ ′) ≤ 2ε1 + ε3.

Proof. We have

R(S, ν, ζ)−R(S, ν′, ζ ′) =
ζ +

∑
i∈S νiri

1 +
∑
i∈S νi

−
ζ ′ +

∑
i∈S ν

′
iri

1 +
∑
i∈S ν

′
i

≤
(ζ − ζ ′) +

∑
i∈S(νi − ν′i)

1 +
∑
i∈S νi

≤ ε3 +

∑
i∈S(νi + 1/M)ε1

1 +
∑
i∈S νi

≤ ε3 + 2ε1.
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D.2 Proof of Lemma 3.3

Proof of Lemma 3.3. For (a), in EST-ROUGH, we independently explore L = Nτ = 4NK · 196 log(2/δ) ≥
72 log(2/δ) epochs with expected length E[E`] = 1 + vi ≤ 2. By Lemma C.2, with probability at least 1− 4δ, the
sample complexity is bounded by T ≤ 5L . NK log δ−1. For each i ∈ [N ], by Lemma A.4, with probability at
least 1− 13δ, we have ṽi = ν̂i ≥ vi and

ṽi − vi ≤
√

196vi log(2/δ)

τ
+

196 log(2/δ)

τ
≤
√

vi
4K

+
1

4K
≤ 2vi ∨

1

K
.

Using a union bound, (a) holds with probability at least 1− (13N + 4)δ ≥ 1− 17Nδ ≥ 1− δ0.

For (b), let V = 1 +
∑
i∈Z vi. We have

1 +
∑
i∈Z

ṽi ∈ [1 +
∑
i∈Z

vi, 1 +
∑
i∈Z

2vi +
|Z|
K

] ⊆ [V, 2V ].

Therefore, we have

ṽi
1 +

∑
i∈Z ṽi

∈ [vi, 2vi ∨
1

K
]/[V, 2V ] ⊆ [

vi
2V

,
2vi ∨ 1

K

V
] ⊆ [

νi
2
, 2νi ∨

1

K
].

D.3 Proof of Lemma 3.4

Lemma D.4. At the end of EST-ADAPTIVE, for b ∈ B, we have Tb ≥ ( 1
4νb
∧ M

2 )τ .

Proof. Suppose b ∈ Bi. If i < m, we have ν̃b ∈ ( 1
2di
, 1
di

]. By Lemma 3.3, we have (2νb∨ 1
K ) ≥ ν̃b ≥ 1

2di
. Therefore,

di ≥ 1
2(2νb∨ 1

K )
= ( 1

4νb
∧ K

2 ) ≥ ( 1
4νb
∧ M

2 ).

If i = m, we have di = M ≥ M
2 ≥ ( 1

4νb
∧ M

2 ). We conclude by Tb ≥ diτ .

Lemma D.5. With probability at least 1− δ, EST-ADAPTIVE uses T ≤ 120|B|τ time steps.

Proof. Let L be the total number of epochs. Note that for every Bi,j , the expected epoch length of Explore(Bi,j)
is

EE` = 1 +
∑
b∈Bi,j

νb ≤ 1 +
∑
b∈Bi,j

2ν̃b ≤ 1 + |Bi,j | · 2 · 2−i ≤ 1 + di · 2 · 2−i ≤ 1 + 2 = 3.

The total number of epochs is

L = τ ·
m∑
i=0

ci∑
j=1

di

≤ τ ·
m∑
i=0

(

ci−1∑
j=1

|Bi,j |+ di)

≤ τ · (
m∑
i=0

ci−1∑
j=1

|Bi,j |+
m∑
i=0

di)

≤ τ · (|B|+ 2m+1)

≤ τ · (|B|+ 4M)

≤ τ · 5|B|.

Assume B 6= ∅. Then L ≥ τ ≥ log(1/δ). By Lemma C.2, with probability at least 1 − δ, we have T ≤ 24L ≤
120|B|τ .

Proof of Lemma 3.4. By Lemma D.4, we meet the exploration requirement in Lemma D.1. Using a union bound,
we find that Lemmas D.1 and D.5 hold simultaneously with probability at least 1− (δ + 14Nδ) ≥ 1− δ0. Note
that Lemma D.5 implies (a) and Lemma D.1 implies (b).
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D.4 Proofs of Theorems 1 and 2

Proof of Theorem 1. By Lemma 3.3, EST-ROUGH gives a rough estimation of vi with probability at least 1− δ
2 .

Given those rough estimations, by Lemmas 3.1 and 3.4, SAR-MNL with EST-ADAPTIVE is δ
2 -PAC. So the

proposed algorithm returns optimal assortment with probability at least (1− δ
2 )2 ≥ 1− δ and thus it is δ-PAC.

We conclude by noting that we have CEST = O(1) in Lemma C.3 for EST-ADAPTIVE.

Proof of Theorem 2. We stop the algorithm provided in the proof of Theorem 1 at the phase k when εk−1 ≤ ε
3 .

Then we return the assortment S corresponding to θ̂. Specifically, we return S = A(k−1) t S0,

S0 = arg max
S0⊆B(k−1):|S0|≤M

R(S0, ν̂, ζ̂).

Following the proof of Lemma C.3, we can show the desired sample complexity bound. Moreover, the returned
assortment satisfies

θ∗ −R(S,v) ≤ θ̂ −R(S,v)

= R(S0, ν̂, ζ̂)−R(S0, ν, ζ)

(Lemma D.3) ≤ 3εk−1

≤ ε.

E Proofs for Section 4

Our algorithm is to invoke SAR-MNL with δ = 1
T and the procedure EST-REG. Note that this algorithm could

possibly return the optimal assortment S∗ before the time horizon T is reached. In this case, we assume our
algorithm keeps offering S∗ until reaching the time horizon. Note that offering S∗ incurs zero regret.

We use ξ̌
(k)
i , ξ̂

(k)
i for i ∈ B(k−1) to denote the values {ξ̌i, ξ̂i}i∈B(k−1) returned by EST-REG in phase k. We assume

ξ̌
(0)
i = 0 and ξ̂

(0)
i = 1. The following lemma summarizes the important guarantees of SAR-MNL that we need to

show the regret bound.

Lemma E.1. With probability at least 1− 1
T , throughout the algorithm, we have that ui ∈ [ξ̌

(k)
i , ξ̂

(k)
i ], ξ̂

(k)
i − ξ̌

(k)
i ≤

εk
2 , A(k) ⊆ S∗ ⊆ A(k) tB(k), and B(k) ⊆ {i ∈ [N ] : ∆i ≤ εk} for every phase k.

Proof. We claim EST-REG satisfies the condition (b) in Lemma 3.1. Then we can follow the proof of Lemma 3.1 to

show the that with probability at least 1− 1
T , we have ui ∈ [ξ̌

(k)
i , ξ̂

(k)
i ], ξ̂

(k)
i − ξ̌

(k)
i ≤ εk

2 , A(k) ⊆ S∗ ⊆ A(k) tB(k),

and B(k) ⊆ {i ∈ [N ] : ∆i ≤ εk} throughout the algorithm.

To show EST-REG satisfies (b) in Lemma 3.1, we need to analyze the error of the estimations it returns. Note
that EST-REG offers each item i for Ti ≥ Kτ epochs, which satisfies the exploration requirement in Lemma D.1.

Therefore, it returns ui ∈ [ξ̌
(k)
i , ξ̂

(k)
i ], ξ̂

(k)
i − ξ̌(k)

i ≤ εk
2 with the desired probability. Thus it satisfies (b) in Lemma

3.1.

Now we start to analyze the regret. The key observation is that Lemma B.2 enables us to represent the regret
of offering an assortment S in terms of the score difference between S and S∗. Specifically, when Z = ∅, the
regret of Explore(S) is

∑
i∈S∗\S ui −

∑
i∈S\S∗ ui. Therefore, if we know that A(k) ⊆ S∗ ⊆ A(k) t B(k) and we

choose a maximum subset B ⊆ B(k) to construct an assortment S = A tB such that |S| = K, then the regret of
Explore(S) is bounded by

|B|(max
i∈B

ui)− |B∗|(min
i∈B∗

ui) ≤ (K − |A|)( max
i∈B(k)

ui − min
i∈B(k)

ui). (11)

In the following, Lemma E.2 bounds the right hand side of Eq. (11), based on which Lemma E.3 bounds the
regret of EST-REG.

Lemma E.2. We have (maxi∈B(k) ξ̂
(k)
i )− (mini∈B(k) ξ̌

(k)
i ) ≤ 3

2εk and (maxi∈B(k) ξ̂
(k)
i ) ≥ 0.
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Proof. The second statement (maxi∈B(k) ξ̂
(k)
i ) ≥ 0 follows directly from that EST-REG rejects items with negative

scores. Next we show the first statement. We write ξ̌i = ξ̌
(k)
i , ξ̂i = ξ̂

(k)
i and ε = εk

2 . If |B(k−1)| ≤ M , we have

ξ̌i ≤ 0 ≤ ξ̂i for i ∈ B(k) by the definitions of Bacc, Brej and that Bacc, Brej are excluded from B(k). We conclude
by

ξ̂i − ξ̌j ≤ ξ̂i − ξ̌i + ξ̂j − ξ̌j ≤ 2ε.

If |B(k−1)| > M , then we have Bacc = {b ∈ B(k−1) : ξ̌b > (0 ∨ β)} and Brej = {b ∈ B(k−1) : ξ̂b < (0 ∨ α)}.
Therefore, we have ξ̌i ≤ (0 ∨ β) and ξ̂i ≥ (0 ∨ α) for i ∈ B(k). For each i, j ∈ B(k), if ξ̌i ≤ 0, then we have

ξ̂i − ξ̌j ≤ 2ε using previous equation. Otherwise, we have

ξ̂i − ξ̌j ≤ β + ε− ξ̌j ≤ β + 2ε− ξ̂j ≤ 2ε+ β − (0 ∨ α).

It suffices to show β − (0 ∨ α) ≤ ε. Assume β ≥ 0. Next we show β − α ≤ ε. Let ξ̂i1 , . . . , ξ̂iM be the M largest

values of {ξ̂i}i∈B(k−1) . By the definition of α, we have α ≥ min1≤j≤M ξ̌ij . Suppose α ≥ ξ̌ix for x ∈ [M ]. We have

β − α ≤ ξ̂ix − ξ̌ix ≤ ε.

Lemma E.3. The regret incurred by EST-REG in phase k is Reg(k) . |B \ S∗| · K logNT
εk

.

Proof. We note that B = B(k−1) and A = A(k−1). Let B∗ = S∗ \A. For every j ∈ [m], let S′j = A(k−1) tB′j and
B∗j = B∗ ∩B′j . Note that |B′j \B∗j | = M ≥ |B∗ \B∗j |. Since Z = ∅, by Proposition 2 and Lemma B.2, the regret
incurred by Explore(S′j) is

(1 +
∑
i∈S′j

vi)(R(S∗,v)−R(S′j ,v)) =
∑
i∈S∗

ui −
∑
i∈S′j

ui

=
∑

i∈B∗\B∗j

ui −
∑

i∈B′j\B∗j

ui

≤ |B∗ \B∗j | ·max
i∈B
{ui ∨ 0} − |B′j \B∗j | ·min

i∈B
ui

(Lemma E.2) ≤ 3

2
εk−1|B′j \B∗j |

= 3εk|B′j \B∗j |.

Note that for every b ∈ B(k−1) \B∗, there are at most two j ∈ [m] such that b ∈ B′j \B∗j , so we have

m∑
j=1

|B′j \B∗j | ≤ 2|B(k−1) \B∗|. (12)

Thus the regret incurred in phase k is

Reg(k) ≤ Kτ
m∑
j=1

(1 +
∑
i∈S′j

vi)(R(S∗,v)−R(S′j ,v)) ≤ Kτ
m∑
j=1

|B′j \B∗j | ≤ 6εkτ |B(k−1) \B∗|.

Proof of Theorem 3. Since that the event specified in Lemma E.1 happens with probability 1− 1
T and that the

regret is bounded by RegT ≤ T , it suffices we prove the regret bound under the event, which is

RegT =

T∑
k=1

Reg(k)

(Lemma E.3) .
∞∑
k=1

|B(k−1) \ S∗| · K log(NT )

εk

=

∞∑
k=1

K log(NT )

εk
·
∑

i∈[N ]\S∗
I{i ∈ B(k−1)}
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(Lemma E.1) ≤
∞∑
k=1

K log(NT ) ·
∑

i∈[N ]\S∗

I{∆i ≤ εk−1}
εk

=
∑

i∈[N ]\S∗
K log(NT ) ·

∞∑
k=1

I{∆i ≤ εk−1}
εk

.
∑

i∈[N ]\S∗

K logNT

∆i
.

Finally, we discuss why we always offer full assortments in EST-REG. Actually, this is utilized by Eq. (12). If we
do not offer the full assortments, the right hand side of Eq. (12) could become 2|B(k−1)|. Thus we could end up
with a regret bound that depends on S∗, as we show in Section 4.

F Lower Bounds

We recall the definition of P v
S , the probability distribution of assortment S under MNL choice model with

preference parameter v.

P v
S (i) =

{
vi

v0+
∑
j∈S vj

, i ∈ S ∪ {0},
0 otherwise.

(13)

We show the following lower bound under the restriction ∆i . 1
K , which gives us enough freedom to construct a

simple MNL-bandit instance to realize it, as in Lemma F.2. Note that our regret upper bound in Theorem 3 only
depends on items in [N ] \ S∗, so in our lower bound, we only consider the gap sequence of items in [N ] \ S∗. We
highlight that our lower bound is for every K.

Theorem 4. Suppose an algorithm A achieves E[RegT ] . T p on any MNL-bandit instance for a constant
p ∈ (0, 1). For any N ≥ 2,K ≤ N

2 , suboptimality gap sequence {∆i}Ni=K+1 such that maxi ∆i ≤ 1
16K , there is a

MNL-bandit instance I that realizes the gap sequence. Moreover, for this instance, we have S∗ = [K] and the
algorithm incurs regret

lim inf
T→∞

RegT
log T

&
∑

i∈[N ]\S∗

1

K∆i
.

For any assortment S ⊆ [N ] with |S| ≤ K, let TS(T ) be the number of time steps that S is offered. For any
item i ∈ [N ], let Ti(T ) =

∑
|S|≤K:i∈S TS(T ) be the number of time steps that item i is offered. Next we prove

Theorem 4. Our proof is inspired by the proofs of the similar lower bounds in multi-armed bandits (Lattimore
and Szepesvári, 2020).

Lemma F.1 (Bretagnolle-Huber inequality). Let P,Q be two measures over the same measurable space. Let A
be an event. Then

P(A) + Q(A{) ≥ 1

2
exp(−DKL(P ‖ Q)),

where DKL(· ‖ ·) is the Kullback–Leibler divergence between probability measures.

Lemma F.2. Assume the conditions of Theorem 4. For every i ∈ [N ], we let ri = 1 and

vi =


1
K + 1

2K(K−1) , i < K,
1

2K , i = K,
1

2K −
4∆i

1+2∆i
, i > K.

Then I = (N,K, r,v) is a MNL-bandit instance in which ∆i complies with Definition 1.

Proof. Note that for K = 1 we have maxi∈[N ] vi ≤ 1
2K ≤ 1 and for K ≥ 2 we have maxi∈[N ] vi ≤ 1

K +
1

2K(K−1) ≤
1
2 + 1

4 ≤ 1, so we always have maxi∈[N ] vi ≤ 1. Note that by the assumption ∆i ≤ 1
16K we have
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4∆i

1+2∆i
= 4

1/∆i+2 ≤
4

16K+2 ≤
1

4K , so we have mini∈[N ] vi ≥ 1
4K > 0. Since vi, ri ∈ [0, 1], we know that I defines a

MNL-bandit instance.

Let S∗ = {1, 2, . . . ,K} be the optimal assortment in this instance. For every item i ∈ [N ] \ S∗, let S∗i =
arg max|S|≤K:i∈S R(S,v) be the best assortment containing i. We next show ∆i = R(S∗,v) − R(S∗i ,v). By
direct computations, we have S∗i = {1, 2, . . . ,K − 1, i} for i /∈ S∗ and S∗i = S∗ for i ∈ S∗. Therefore, we have

R(S∗,v)−R(S∗i ,v) = 0 = ∆i for i ∈ S∗. Note that
∑K
i=1 vi = 1, so R(S∗,v) = 1

2 . For i /∈ S∗ we have

R(S∗,v)−R(S∗i ,v) =
1

2
−

∑K
i=1 vi −

4∆i

1+2∆i

1 +
∑K
i=1 vi −

4∆i

1+2∆i

=
1

2
−

1− 4∆i

1+2∆i

2− 4∆i

1+2∆i

= ∆i.

Lemma F.3. Under the MNL-bandit instance I defined in Lemma F.2, we have

RegT ≥
1

2

∑
i∈[N ]\S∗

E[Ti(T )] ·∆i.

Proof. Under instance I, for any assortment S ⊆ [N ] with |S| ≤ K, let B = S \ S∗, we have

θ∗ −R(S,v) =
1

2
−

∑
i∈S vi

1 +
∑
i∈S vi

≥ 1

2
−

1−
∑
i∈B

4∆i

1+2∆i

2−
∑
i∈B

4∆i

1+2∆i

=

∑
i∈B

4∆i

1+2∆i

2(2−
∑
i∈B

4∆i

1+2∆i
)

≥
∑
i∈B

∆i

1 + 2∆i

≥
∑
i∈B

∆i

2
,

where in the second-to-third inequality we used α
1+α ≤

α+β
1+α+β for α, β > 0 with α =

∑
i∈S vi and β =∑

i∈S∗ vi −
∑
i∈S max{vi, 1

2K }, and in the fifth-to-last inequality we used ∆i ≤ 1
16K ≤

1
2 .

Recall that St is the assortment offered at time step t. We have

E[RegT ] =

T∑
t=1

E[θ∗ −R(St,v)]

=

T∑
t=1

∑
|S|≤K

E[I{St = S}](θ∗ −R(S,v))

=
∑
|S|≤K

(θ∗ −R(S,v)) ·

(
T∑
t=1

E[I{St = S}]

)

=
∑
|S|≤K

E[TS(T )] · (θ∗ −R(S,v))

≥
∑
|S|≤K

E[TS(T )] ·
∑

i∈S\S∗

∆i

2

=
∑

i∈[N ]\S∗
E[Ti(T )] · ∆i

2
.
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Lemma F.4. Let S ⊆ [N ] with |S| ≤ K be an assortment. Let v,v′ be two preference vectors such that v′x ≥ vx
and v′i = vi for i 6= x. Then

DKL(P v
S ‖ P v′

S ) ≤ (v′x − vx)2

2vx(1 +
∑
i∈S vi)

.

Proof. Recall the definition of P v
S in Eq. (13). Let P = P v

S and Q = P v′

S . We have

DKL(P v
S ‖ P v′

S ) =
∑

i∈S∪{0}

vi
1 +

∑
j∈S vj

· log
vi/(1 +

∑
j∈S vj)

v′i/(1 +
∑
j∈S v

′
j)

=
∑

i∈S∪{0}
i 6=x

vi
1 +

∑
j∈S vj

· log
1 +

∑
j∈S vj

1 +
∑
j∈S v

′
j

+
vx

1 +
∑
j∈S vj

· log
v`/(1 +

∑
j∈S vj)

v′x/(1 +
∑
j∈S v

′
j)

= log
1 +

∑
j∈S v

′
j

1 +
∑
j∈S vj

+
vx

1 +
∑
j∈S vj

log
vx
v′x
.

Denote δ = v′x − vx ≥ 0 and V = 1 +
∑
j∈S vj . We have

DKL(P v
S ‖ P v′

S ) = log(1 +
δ

1 +
∑
j∈S vj

)− vx
1 +

∑
j∈S vj

log(1 +
δ

vx
)

≤ δ

V
− vx
V

(
δ

vx
− δ2

2v2
x

)

≤ δ2

2vxV
,

where we used Taylor’s formula x− x2

2 ≤ log(1 + x) ≤ x in the second-to-third inequality.

Lemma F.5. Let I = (N,K, r,v), I ′ = (N,K, r,v′) be two MNL-bandit instances and A be an algorithm. Let P
be the probability measure induced by A and I and P′ be that by A and I ′. We have

DKL(P ‖ P′) =
∑
|S|≤K

E[TS(T )]DKL(P v
S ‖ P v′

S ).

Proof. The lemma can be proved by following the proof of Lemma 15.1 in (Lattimore and Szepesvári, 2020).

Lemma F.6. Under the assumptions of Theorem 4 and the MNL-bandit instance defined in Lemma F.2, for
algorithm A and any item i ∈ [N ] \ S∗, we have

lim inf
T→∞

E[Ti(T )]

log T
≥ 1− p

32K∆2
i

.

Proof. Fix an item i ∈ [N ] \ S∗. For instance I, we have

E[RegT ] =

T∑
t=1

E[θ∗ −R(St,v)])

≥
T∑
t=1

E[I{i ∈ St} · (θ∗ −R(St,v))]

≥
T∑
t=1

E[I{i ∈ St} ·∆i]

= E[Ti(T )] ·∆i. (14)



Jiaqi Yang

We construct another MNL-bandit instance I ′. Let ε ∈ (0, 1
2K ) be a parameter. We define a preference vector v′

such that

v′j =

{
vj , j 6= i,

1
2K + ε, j = i.

Then I ′ = (N,K, r,v′) is an MNL-bandit instance. For any algorithm A, let P be the probability measure given
by A and I, and P′ be that given by A and I ′. From now on, we use E to denote the expectation under P, and
E′ to denote that under P′.

For instance I ′, direct computations give that

max
|S|≤K

R(S,v′) = R({1, . . . ,K − 1, i},v′) =
1 + ε

2 + ε
,

max
|S|≤K:i/∈S

R(S,v′) = R({1, . . . ,K},v′) =
1

2
.

Thus we have

E′[RegT ] =

T∑
t=1

E[ max
|S|≤K

R(S,v′)−R(St,v)]

≥
T∑
t=1

E′[I{i /∈ St} · ( max
|S|≤K

R(S,v′)−R(St,v
′))]

≥
T∑
t=1

E′[I{i /∈ St}] · (
1 + ε

2 + ε
− 1

2
)

≥
T∑
t=1

E′[I{i /∈ St}] ·
ε

4
. (15)

Recall that in the proof of Lemma F.2, we showed vi ≥ 1
4K . For any assortment S, by Lemma F.4, we have

DKL(P v
S ‖ P v′

S ) ≤
(ε+ 4∆i

1+2∆i
)2

2vi(1 +
∑
i∈S vi)

≤ (ε+ 4∆i)
2

2vi

≤ 2K(4∆i + ε)2.

By Lemma F.5, we have

DKL(P ‖ P′) =
∑
|S|≤K

E[TS(T )]DKL(P v
S ‖ P v′

S )

=
∑

|S|≤K:i∈S

E[TS(T )]DKL(P v
S ‖ P v′

S )

≤
∑

|S|≤K:i∈S

E[TS(T )] · 2K(4∆i + ε)2

= 2K(4∆i + ε)2 · E[Ti(T )].

Let A = {Ti(T ) > T
2 } be an event. By Lemma F.1, we have

P(A) + P′(A{) ≥ 1

2
exp(−DKL(P ‖ P′))

≥ 1

2
exp(−2K(4∆i + ε)2 · E[Ti(T )]).
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By Markov’s inequality, we have E[Ti(T )] ≥ P(A) · T2 and
∑T
t=1 E′[I{i /∈ St}] ≥ P′(A{) · T2 . Together with Eqs.

(14) (15), we have

E[RegT ] + E′[RegT ] ≥ E[Ti(T )] ·∆i +

T∑
t=1

E′[I{i /∈ St}] ·
ε

4

≥ T

2
(P(A)∆i + P′(A{) · ε

4
)

≥ T

2
min{∆i,

ε

4
}(P(A) + P′(A{))

≥ T

2
min{∆i,

ε

4
} exp(−E[Ti(T )] · 2K(4∆i + ε)2)

Recall that E[RegT ] + E′[RegT ] ≤ 2T p for some p ∈ (0, 1). As a result, we have

lim inf
T→∞

E[Ti(T )]

log T
≥ 1

2K(4∆i + ε)2
(1− p− lim sup

T→∞

log( 4
min{∆i,

ε
4}

)

log T
)

=
1− p

2K(4∆i + ε)2
.

Let ε→ 0, we have

lim inf
T→∞

E[Ti(T )]

log T
≥ 1− p

32K∆2
i

.

Proof of Theorem 4. We consider the MNL-bandit instance defined in Lemma F.2. By Lemmas F.3 and F.6, we
have

lim inf
T→∞

E[RegT ]

log T
≥ 1

3

∑
i∈[N ]\S∗

lim inf
T→∞

E[Ti(T )]

log T

≥
∑

i∈[N ]\S∗

1− p
96K∆i

.


