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Abstract

We study the multinomial logit (MNL) ban-
dit problem, where at each time step, the
seller offers an assortment of size at most K
from a pool of N items, and the buyer pur-
chases an item from the assortment accord-
ing to a MNL choice model. The objective
is to learn the model parameters and max-
imize the expected revenue. We present (i)
an algorithm that identifies the optimal as-
sortment S∗ within Õ(

∑N
i=1 ∆−2

i ) time steps
with high probability, and (ii) an algorithm
that incurs O(

∑
i/∈S∗ K∆−1

i log T ) regret in T
time steps. To our knowledge, our algorithms
are the first to achieve gap-dependent bounds
that fully depends on the suboptimality gaps
of all items. Our technical contributions in-
clude an algorithmic framework that relates
the MNL-bandit problem to a variant of the
top-K arm identification problem in multi-
armed bandits, a generalized epoch-based of-
fering procedure, and a layer-based adaptive
estimation procedure.

1 Introduction

The multinomial logit bandit (MNL-bandit) problem is
an important problem in online revenue management
and has attracted much attention from both opera-
tions research and online learning literature (Kök and
Fisher, 2007; Rusmevichientong et al., 2010; Sauré
and Zeevi, 2013; Agrawal et al., 2016, 2017; Chen
and Wang, 2018; Agrawal et al., 2019; Wang et al.,
2018). In MNL-bandit, at each time step, the seller
offers an assortment of size at most K from the pool
of N homogeneous items and the buyer purchases an
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item from the assortment according to the MNL choice
model, which is arguably the simplest and most widely
used discrete choice model (Train, 2009; Luce, 2012;
Soufiani et al., 2013) and has deep theoretical founda-
tions (McFadden, 1973). The objective of the seller
is to learn the model parameters and maximize the
expected revenue through sequentially offering the as-
sortments. MNL-bandit captures the essence of many
real-world applications, such as retailing, where the
retailer presents a limited number of products on the
shelf and the customer purchases an item according to
the choice model, and online advertising, where the ad
platform displays a limited number of ads and the user
clicks one ad according to the choice model.

In this paper, we study the PAC (probably approx-
imately correct) exploration problem and the regret
minimization problem in MNL-bandit, with a focus
on proving fully gap-dependent sample complexity and
regret bounds that depend on the suboptimality gaps
of all items (detailed in Section 2). There are strong
practical motivations to study these bounds, because
they adapt to every MNL-bandit instance and thus lead
to better performances on good practical instances. Un-
fortunately, there is a lack of studies on such bounds in
previous MNL-bandit literature, and bounds in other
bandits problems focusing on subset selection do not
directly translate to our setting due to the limited
feedback issue. We review these in Section 1.1 after
introducing our challenge, results, and technical contri-
butions.

A central challenge in obtaining fully gap-dependent
bounds for MNL-bandit is that the partial order be-
tween two items can be interfered by other items. We
recall an important reason why we have such bounds
in other bandits settings is that we can obtain pairwise
partial orders between arms to early decide on the op-
timality of some arms. Arms being decided need no
longer be explored and stop contributing to the bounds.
For example, in the top-K arm identification problem,
we obtain the partial order between two arms by com-
paring their estimations (which is independent of the
estimations of other items) and we decide on arms by
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whether they could have top-K means. While in our
setting, the comparison of two items can be interfered
by other items through changing their weights in the
revenue function. We underscore that the changing
of weights is done by changing the denominator of
the fractional revenue function, which contains model
parameters of other items.

Results We define the gaps for items and the prob-
lems in Section 2. Our definitions match the intuition
and naturally extend the definitions in other bandits
settings.

Our main results are three MNL-bandit algorithms
with fully gap-dependent guarantees. For the PAC
exploration problem, we present a δ-PAC algorithm
with sample complexity Õ(

∑N
i=1 ∆−2

i ) and a (δ, ε)-
PAC algorithm with similar guarantee. For the regret
minimization problem, we present an algorithm with
O(
∑
i∈[N ]\S∗

K log T
∆i

) regret bound.

When K = 1, our MNL-bandit setting becomes
the multi-armed bandit setting and our bounds re-
cover their instance-optimal sample complexity and
regret bounds (Lai and Robbins, 1985; Auer et al.,
2002; Slivkins et al., 2019; Lattimore and Szepesvári,
2020). When K ≥ 2, our regret bound recovers the

O(N
2 logNT

∆ ) global gap-dependent regret bound in
(Agrawal et al., 2019), because by definition we have
∆i ≥ ∆, where ∆ = θ∗ − maxS⊆[N ]:|S|≤K{R(S,v) :
R(S,v) 6= θ∗} is the gap between the optimal and
second-best assortments. We compare our sample com-
plexity bound with a previous gap-independent bound
in Section 3.4 after presenting the theorems.

Technical Contributions We present our three
techniques under the context of the PAC exploration
problem in Section 3 and we extend them to the regret
minimization problem in Section 4.

Our first technique is an algorithmic framework in Sec-
tion 3.1, which resolves our central challenge by the
relation in Proposition 1. The relation suggests we
obtain the pairwise partial order of two items by com-
paring the confidence intervals of their advantage scores
(Definition 2) and early decide the items according to
whether they could have positive and top-K advantage
scores. Since this early decision rule is similar to that
of the top-K arm identification problem, we modify the
successive accept-reject algorithm for the latter prob-
lem to obtain an algorithm with fully gap-dependent
guarantees. We add a caveat that the framework itself
does not conclude, because estimating the advantage
score is not a trivial job. As we show in Lemma 3.2,
a naive estimation procedure using only methods in
previous work could lead to two extra K factors in the
sample complexity bound.

Our second technique eliminates an extra K factor by
removing some dependency in the naive procedure, as
we present in Section 3.2. An anomaly in the naive pro-
cedure is that we need to explore accepted items even
though we do not need their scores. To remove this
dependency on accepted items, we define a reduced
revenue function that requires estimating a ratio of
the model parameters. However, previous work only
showed how to estimate the parameters themselves us-
ing the epoch-based offering procedure (Agrawal et al.,
2016, 2019), with which we have to separately estimate
the numerator and denominator of the ratio and suffer
a huge error in the estimation. To resolve this, we gen-
eralize the epoch-based offering procedure to directly
estimate the ratio.

Our third technique eliminates another extra K fac-
tor by a layer-based adaptive estimation procedure in
Section 3.3. By carefully examining the error sources
in the estimations of advantage scores, we find that
the number of explorations for each item should adapt
to the error it incurs, but exact adaption requires full
knowledge of the unknown model parameters. So we
surrogate by putting items with similar adaption re-
quirements into the same layer and handling them
altogether. We emphasize that the layers are still un-
known and they could vary from phase to phase. We
highlight that our surrogate method re-estimates the
layers for each phase while only paying the sample
complexity cost once.

We remark that our first technique indeed provides a
systematic way to apply fractional programming (the
method that proves our relation proposition) to online
learning settings. Thus it may be of independent in-
terests. Our second and third techniques utilizes the
delicate structure of the MNL model, which could in-
spire future studies on MNL-bandit and other bandits
with MNL model.

1.1 Related Work

MNL-bandit was first studied in (Rusmevichientong
et al., 2010; Sauré and Zeevi, 2013), where the algo-
rithms required the knowledge of the global subopti-
mality gap ∆ in advance. Upper confidence bound-
type algorithm and Thompson sampling were shown to
achieve an Õ(

√
NT ) minimax regret bound (Agrawal

et al., 2016, 2017). A matching Ω(
√
NT ) regret lower

bound was shown in (Chen and Wang, 2018). The first

gap-dependent O(N
2 logNT

∆ ) regret bound was shown
in (Agrawal et al., 2019). All bounds we mentioned are
regret bounds, since no previous literature discussed
the PAC exploration problem. Although there was a
reduction from the MNL-bandit to the multi-armed
bandit (Agrawal et al., 2016, 2019), that reduction
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involves exponentially many arms and thus does not
give good gap-dependent bounds.

There is a line of work in multi-armed bandits and com-
binatorial multi-armed bandits that studies the subset
selection problem, where an algorithm learns a subset
to maximize a reward function. Near-optimal fully
gap-dependent regret and sample complexity bounds
have been proved in those settings (Bubeck et al., 2012;
Chen et al., 2017, 2016a, 2013, 2014, 2016b; Rejwan
and Mansour, 2020). While MNL-bandit can be seen as
a subset selection problem, the major difference is that
the feedback in our setting is much more limited. In
their settings, by selecting a subset (some called “super
arm”), the player gets feedback from all arms in the
subset. In our setting, the seller can obtain feedback
only from the purchased item in the subset.

Some recent paper studies the MNL choice model un-
der the dueling bandits framework (Chen et al., 2018;
Saha and Gopalan, 2019), proving fully gap-dependent
bounds. Their setting can be seen as a simplification of
ours through assuming all items have the same reward
ri ≡ 1 and removing the “no purchase” decision. In
their setting, the optimal assortment simply consists
of the items with largest model parameters, so their
focus is to learn the order of the parameter. In our
setting, the optimal assortment depends on the model
parameters in a more complicated manner, so we need
to learn the parameters themselves.

2 Preliminaries

Notations We define α ∧ β = min{α, β}, α ∨ β =
max{α, β}. For any two expressions α and β, if there
exists a constant C > 0 in digits such that α ≤ C · β,
we write α . β. If β . α, we write α & β. If α . β

and β . α, we write α � β. The notions Õ and Θ̃
suppress the logarithmic terms and the relatively small
gap-independent terms in sample complexity bounds,
and the logarithmic terms in regret bounds. We use
both |A| and #A to denote the size of a set A. For two
disjoint sets A,B that A∩B = ∅, we use AtB = A∪B
to denote their union.

Settings and Problems We define the MNL choice
model with parameter vi for each item i ∈ [N ] ∪ {0},
where item i = 0 stands for the “no purchase” decision.
In this model, when the seller offers an assortment S,
the buyer purchases item i ∈ S ∪ {0} with probability
P v
S (i) = vi

v0+
∑
j∈S vj

. Note that “no purchase” decision

is always available to the buyer.

We define an MNL-bandit instance as a quadruple
I = (N,K, r,v), where the reward of item i ∈ [N ]
is ri ∈ [0, 1] and its MNL model parameter is vi ∈

[0, 1]. The seller knows N,K, r, but does not know
v. At each time step t = 1, 2, . . . , the seller offers
an assortment St ⊆ [N ] under the capacity constraint
|St| ≤ K and receive the buyer’s purchase decision
ct ∼ P v

St
. As a result, the seller’s revenue is R(S,v) =

Ei∼Pv
S

[ri] =
∑
i∈S viri

1+
∑
i∈S vi

, where we assume that r0 = 0.

We adopt a common convention that v0 = 1, which
means the “no purchase” decision is the most frequent
outcome (Agrawal et al., 2016, 2017, 2019). We use
S∗ = arg maxS⊆[N ]:|S|≤K R(S,v) to denote the optimal
assortment and θ∗ = R(S∗,v) to denote its revenue.
Next we formally define the suboptimality gap for each
item.

Definition 1 (Suboptimality gap). For every item
i ∈ [N ], we define its suboptimality gap as

∆i =


R(S∗,v)− max

|S|≤K:i∈S
R(S,v), i /∈ S∗

R(S∗,v)− max
|S|≤K:i/∈S

R(S,v), i ∈ S∗.

Our definition has the same form as the suboptimality
gaps in other bandits problems focusing on subset selec-
tion (Bubeck et al., 2013; Chen et al., 2014). Note that
the bounds usually inversely depend on the gaps, so our
definition matches the intuition that items with small
∆i are more difficult to be separated from the optimal
assortment and thus lead to worse bounds. We make
the following uniqueness assumption, which is typically
assumed when studying gap-dependent bounds in ban-
dits literature (Bubeck et al., 2013; Chen et al., 2017;
Karnin et al., 2013).

Our definition is related to the global gap ∆ studied
in previous literature (Rusmevichientong et al., 2010;
Sauré and Zeevi, 2013; Agrawal et al., 2019), by that
we have ∆i ≥ ∆ for every item i. We mention again
that ∆ = θ∗ − maxS⊆[N ]:|S|≤K{R(S,v) : R(S,v) 6=
θ∗} is the gap between the optimal and second-best
assortments.

Assumption 1 (Uniqueness). The optimal assortment
S∗ is unique.

Finally, we define the two problems we study. The
first problem is defined in light of the PAC (probably
approximately correct) learning framework and follows
the definitions of the exploration problems in other
bandits under the fixed-confidence setting (Jamieson
and Nowak, 2014; Rejwan and Mansour, 2020). The
second problem follows the regret definition in previous
MNL-bandit literature (Agrawal et al., 2016, 2017, 2019;
Chen et al., 2018; Chen and Wang, 2018).

Problem 1 (PAC Exploration). An algorithm is (δ, ε)-
PAC with sample complexity T , if it returns an assort-
ment S that θ∗ − R(S,v) ≤ ε in T time steps with
probability 1 − δ. If ε = 0, we say it is δ-PAC. The
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goal is to design δ-PAC and (δ, ε)-PAC algorithms with
minimum sample complexity.

Problem 2 (Regret Minimization). The goal is to
design an algorithm that offers assortments over a
known time horizon T (≥ N) with minimum regret

RegT =
∑T
t=1R(S∗,v)− E[R(St,v)].

3 PAC Exploration

3.1 Algorithmic Framework with Fully
Gap-Dependent Bounds

In this subsection, we introduce an algorithmic frame-
work for which we can obtain fully gap-dependent sam-
ple complexity bounds and, as a direct application,
present a δ-PAC algorithm with sample complexity
Õ(
∑N
i=1K

2∆−2
i ). Our framework is based on relating

the MNL-bandit problem to the positive top-K item
identification (PTOP-K) problem via the notion of
advantage score.

Relate MNL-bandit to PTOP-K We first de-
scribe the goal of the PTOP-K problem, then relate it
with the MNL-bandit problem. To describe the goal,
we define the following function F . Given a capacity
constraint M and a set W where each i ∈ W has a
score ξi ∈ R, we denote the subset containing elements
with positive and top-M scores as

F(W,M, ξ) = {i ∈W : ξi > 0}
∩ {i ∈W : ξi is among the top M of {ξj}j∈W }. (1)

The goal of the PTOP-K problem is to identify the
subset F([N ],K,u) of items, where ui is the specially
constructed score defined with respect to each item
i ∈ [N ] as follows.

Definition 2 (Advantage Score). We define the ad-
vantage score of item i as ui = vi(ri − θ∗).

Now we relate the MNL-bandit problem to the PTOP-
K problem by the following proposition, which states
that they share the same goal of identifying the optimal
assortment S∗ ⊆ [N ].

Proposition 1 (Relate to PTOP-K). S∗ =
F([N ],K,u) and θ∗ =

∑
i∈S∗ ui.

We defer the proof to Appendix B.1, which uses a
classical method in optimization theory called fractional
programming (Dinkelbach, 1967; Rusmevichientong
et al., 2010). Our proposition indicates that pairwise
partial orders and early decision rules in MNL-bandit
are the same as those in the PTOP-K problem, which
is very similar to the top-K arm identification problem.
Since algorithms with fully gap-dependent bounds are
well-studied in the top-K arm problem, we can obtain

such bounds for the MNL-bandit problem by combining
those algorithms with our relation proposition.

However, two issues arise when combining them. First,
the gap-dependent bounds for the top-K problems use
the gaps of scores, not our suboptimality gap for items.
Second, estimating the advantage scores ui is much
more difficult than estimating the means of arms in
the top-K arm problem, because the definition of ui
involves the optimal revenue θ∗, which could depend
on items other than i. In contrast, the mean of each
arm only depends on the arm itself. The first issue can
be resolved by Lemma B.1, which shows that our gap
is always smaller and thus bounds for top-K problems
translate to our MNL-bandit setting. The second issue
is difficult to resolve. In Lemma 3.2, we will show that
a naive solution could lead to two extra K factors in
the guarantee.

Algorithmic Framework Let us assume a proce-
dure EST that estimates the advantage score. We
introduce our algorithmic framework SAR-MNL (Algo-
rithm 1). We summarize below its sample complexity
guarantee and defer the proof to Appendix B.2.

Lemma 3.1 (SAR-MNL). Assume with probability

1−δ(k), EST (a) returns within CEST · |B
(k−1)| log(N/δ(k))

ε2k
time steps in phase k for a numeric constant CEST, and
(b) ui ∈ [ξ̌i, ξ̂i] and ξ̂i − ξ̌i ≤ εk

2 for every i ∈ B(k−1).
Then SAR-MNL with EST is δ-PAC with sample com-

plexity CEST ·O(
∑
i∈[N ]

logN+log δ−1+log log ∆−1
i

∆2
i

).

Our framework is similar to the successive accept-reject
algorithms used to solve the top-K arm identifica-
tion problem (Chen et al., 2017; Rejwan and Man-
sour, 2020; Bubeck et al., 2013). The idea is to alter-
nate in phases between estimate the scores of pending
items and accept-reject them. For each phase k, ac-
cepted items are stored in A(k) and rejected items are
in [N ] \ (A(k) ∪B(k)). In phase k, after building up the
confidence intervals of scores ui at Line 5, the algorithm
accepts-rejects items by some rules. Since

S∗ = F([N ],K,u) = F(A(k−1) ∪B(k−1),K,u)

= A(k−1) t F(B(k−1),M,u),

where M = min{K − |A(k−1)|, |B(k−1)|}, the rules are
to accept items in B(k−1) with positive and top-M
scores and reject those with negative or not top-M
scores. In the framework, Line 6 handles the sign rule
and Lines 7-9 handle the top-M rule.

Estimation Procedure We present a naive estima-
tion procedure EST-NAIVE (Algorithm 2). The proce-
dure estimates the score ui = vi(ri − θ∗) by estimating
both vi and θ∗. Line 3 is because the optimal revenue is
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Algorithm 1: SAR-MNL(δ): Successive Accept-Reject Framework for MNL-bandit

1 A(0) = ∅, B(0) = [N ]; . A(k), B(k) store accepted, pending items

2 for k ← 1, 2, . . . do . maintain A(k) ⊆ S∗ ⊆ A(k) tB(k) for each phase k
3 εk = 2−k, δ(k) = δ

3k2 ,M = M (k−1) = min{K −A(k−1), |B(k−1)|};
4 if M = 0 then return A(k−1);

5 {ξ̌i, ξ̂i}i∈B(k−1) ← EST(A(k−1), B(k−1), δ(k), εk2 ); . estimate the scores

6 Bacc ← {b ∈ B(k−1) : ξ̌b > 0}, Brej ← {b ∈ B(k−1) : ξ̂b < 0};
7 if |B(k−1)| > M then . if |B(k−1)| ≤M then all items have top-M scores

8 α←M -th largest value of {ξ̌i}i∈B(k−1) , β ← (M + 1)-th largest value of {ξ̂i}i∈B(k−1) ;

9 Bacc ← Bacc ∩ {b ∈ B(k−1) : ξ̌b > β}, Brej ← Brej ∪ {b ∈ B(k−1) : ξ̂b < α};
10 A(k) ← A(k−1) ∪Bacc, B

(k) ← B(k−1) \ (Bacc ∪Brej); . accepts-rejects the items

Algorithm 2: EST-NAIVE(A,B, δ, ε): Naive Estimation of ui for i ∈ B
1 for i ∈ A tB do Keep offering {i} until “no purchase” occurs for Kτ times; . τ = Õ( 1

ε2 )
2 ∀i ∈ A tB: Compute the confidence intervals vi ∈ [v̌i, v̂i]; . formulas of v̌i, v̂i in Appendix B.3

3 Compute θ̌ = maxS⊆AtB,|S|≤K R(S, v̌), θ̂ = maxS⊆AtB,|S|≤K R(S, v̂);

4 Compute ξ̌i = (v̌i(ri − θ̂)) ∧ (v̂i(ri − θ̂)), ξ̂i = (v̌i(ri − θ̌)) ∨ (v̂i(ri − θ̌)), return {ξ̌i, ξ̂i};

a monotonic function of the model parameters (Agrawal
et al., 2016, 2019). (We emphasize that the revenue is
not monotonic in general.) The maximization step at
Line 3 can be solve efficiently (Rusmevichientong et al.,
2010). Line 4 is based on 0 ≤ vi ≤ 1 and |ri − θ∗| ≤ 1.
The procedure leads to the following guarantee.

Lemma 3.2. SAR-MNL with EST-NAIVE is δ-PAC
with sample complexity Õ(

∑
i∈[N ]

K2

∆2
i
).

We sketch the proof here and complete it in Appendix
B.3. Note that the procedure offers each item in the
set A ∪B for Õ(Kε2 ) time steps, so it achieves CEST �
K · |A∪B||B| for Lemma 3.1. In the worst case, we have

|A∪B| � K|B|, so we have CEST ≤ K2, which implies
Lemma 3.2.

We inspect the sources of two K factors in Lemma

3.2. The first is because we use that |A∪B||B| ≤ K,

which is ultimately because the naive procedure needs
to estimate vi for i ∈ A. The second is because the
procedure needs to estimate each vi to a fixed accuracy
ε
K in order to estimate θ∗. One may ask why the
procedure only offers singletons at Line 1 and why the
accuracy needs to be ε

K instead of O(ε). Interestingly,
we show in Appendix B.3 that both could be optimal
for some instance.

3.2 Reduced Revenue Function and
Generalized Epoch-based Offering

To eliminate the first K factor in EST-NAIVE, we in-
troduce a reduced revenue function and a generalized

epoch-based offering procedure in this subsection. The
reduced revenue function enables us to estimate θ∗

without estimating the parameters vi for i ∈ A. The
generalized procedure is used to estimate the parame-
ters in the reduced revenue function.

Reduced Revenue Function We note that SAR-
MNL invokes EST with A ⊆ S∗ ⊆ AtB. However, EST-
NAIVE only uses S∗ ⊆ A tB. Now we exploit A ⊆ S∗.
Let M = min{K − |A|, |B|}. For an assortment S
satisfying A ⊆ S, we rewrite its revenue as

R(S,v) =

∑
i∈S viri

1 +
∑
i∈S vi

=
ζ +

∑
i∈S\A νiri

1 +
∑
i∈S\A νi

= R(S \A, ν, ζ),

where we define ζ =
∑
j∈A vjrj

1+
∑
j∈A vj

= R(A,v) and νi =
vi

1+
∑
j∈A vj

for i /∈ A. Note that if we use R(S,v)

to compute the revenue of S, we need |S| param-
eters (vi for each i ∈ S). In contrast, if we use
R(S \ A, ν, ζ), we only need (|S \ A|+ 1) parameters
(νi for i ∈ S \A and ζ). Thus we refer to the function
R(S \A, ν, ζ) as the reduced revenue function, since it
reduces the number of required parameters. We note
that θ∗ = maxS0⊆B:|S0|≤M R(S0, ν, ζ) and Lemma C.1
further shows that the maximization used by θ∗ is still
monotonic in the parameters ν and ζ. Therefore, given
the confidence intervals ζ ∈ [ζ̌, ζ̂] and νi ∈ [ν̌i, ν̂i], we
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have the confidence interval θ∗ ∈ [θ̌, θ̂], where

θ̌ = max
S⊆B:|S|≤M

R(S, ν̌, ζ̌),

θ̂ = max
S⊆B:|S|≤M

R(S, ν̂, ζ̂).
(2)

Generalized Epoch-based Offering With Eq. (2)
in hand, it remains how to estimate ζ and νi. Note
that νi is a ratio of two unknown quantities vi and
(1 +

∑
j∈A vj), so it is virtually impossible to estimate

νi by separately estimating the two quantities. The
generalized epoch-based offering procedure (Algorithm
3) allows us to directly estimate the ratio νi. It general-
izes those used in (Agrawal et al., 2016, 2017, 2019) by
introducing a stopping set Z, which is fixed as Z = ∅
in the original version. When we set Z = A, we can
use the procedure to estimate parameters νi and also
ζ.

Proposition 2 (Generalized Epoch-based Offering).
After Explore(S), we have

(a) z ∈ [0, 1] is an independent bounded random vari-
able with mean ζ;

(b) xi is an independent geometric random variable
with mean νi for every item i ∈ S;

(c) (E`− 1) is an independent geometric random vari-
able with mean

∑
i∈S νi.

We defer the proof to Appendix C.1. Statement (c) can
give the sample complexity bound when using the proce-
dure, as in Lemma C.2. Combined with corresponding
concentration inequalities in Appendix A, statements
(a)(b) can give the confidence intervals ζ ∈ [ζ̌, ζ̂] and
νi ∈ [ν̌i, ν̂i], where

ζ̌ = 0 ∨ (ζ̄ −

√
log(2/δ)

2TZ
),

ζ̂ = 1 ∧ (ζ̄ +

√
log(2/δ)

2TZ
),

(3)

and

ν̌i = 0 ∨ (ν̄i − σ(νi)), ν̂i = 1 ∧ (ν̄i + σ(νi)),

σ(νi) =

√
48ν̄i log(2/δ)

Ti
+

48 log(2/δ)

Ti
.

(4)

Finally, we define the reduced score ξi = νi(ri − θ∗)
and its confidence interval ξi ∈ [ξ̌i, ξ̂i], where

ξ̌i = (ν̌i(ri − θ̂)) ∧ (ν̂i(ri − θ̂)),

ξ̂i = (ν̌i(ri − θ̌)) ∨ (ν̂i(ri − θ̌)).
(5)

Now we assume the procedure EST used by SAR-MNL
estimates ξi instead of ui. In Appendix C.2, we show

that the same sample complexity bound as Lemma 3.1
still hold.

To demonstrate the technique in this subsection, we
show in Appendix C.3 that we can achieve CEST =
O(K) using the generalized epoch-based offering, which

implies an Õ(
∑N
i=1K∆−2

i ) sample complexity bound
and eliminates an extra K factor in EST-NAIVE.

3.3 Layer-based Adaptive Estimation

To eliminate another extra K factor in EST-NAIVE, we
present a layer-based adaptive estimation procedure
based on a detailed error analysis of the reduced revenue
function and the tail bounds in Eqs. (3)(4). The
error analysis in Appendix D.1 suggest we offer each
item b ∈ B for Tb & T ′bτ epochs, where we define

T ′b = ( 1
νb
∧M) and τ = Õ(ε−2). Next we show how

to accomplish this offering task in O(|B|τ) time steps,
which gives CEST = O(1) in Lemma 3.1 and eliminates
the extra K factor. To better convey our idea, we
first consider an ideal but unrealistic case where the
exact values of νb are given. We divide the set B into
m = dlog2Me layers:

Bi = {b ∈ B : νb ∈ (2−(i+1), 2−i]} (0 ≤ i < m),

Bm = {b ∈ B : νb ∈ [0, 2−i]}.
(6)

Let di = 2i for i < m and dm = M . The key observa-
tion is that items form the same layer have similar νb
and need to be explored for a similar number of epochs
(up to a factor κ = 2): we have T ′b ≤ κdi and νb ≤ κ

di
for b ∈ Bi. We note that di ≤ M . Therefore, we can
divide each layer Bi into groups of size di. Since we
have νb . 1

di
for b ∈ Bi, by Proposition 2, the expected

epoch length of explore a group is di · 1
di

= O(1). So if
we explore each group for diτ epochs, in expectation
it costs us diτ time steps, which is τ time steps per
item. Since we have |B| items, we can accomplish the
offering task within O(|B|τ) time steps, which gives
the desired CEST = O(1).

We note that the exact values of νb are not necessary,
since we only need the layer of each item. In fact,
we can surrogate by using a rough estimation of νb
satisfying ν̃b ∈ [νb2 , 2νb ∨

1
M ] in place of νb in Eq. (6) to

divide the layers. Our key observation is still satisfied,
though perhaps with a different factor κ = 4. This
fact is utilized by our layer-based adaptive estimation
procedure EST-ADAPTIVE (Algorithm 5). It first uses
the results from the procedure EST-ROUGH (Algorithm
4) to build up ν̃b at Line 1, based on which it divides
the layers at Line 3. We summarize the guarantees of
our two procedures in the following two lemmas and
defer their proofs to Appendices D.2 and D.3.

Lemma 3.3 (EST-ROUGH). With probability 1− δ0,
(a) EST-ROUGH ends in O(NK log N

δ0
) time steps and
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Algorithm 3: Explore(S): Generalized Epoch-based Offering with Stopping Set Z(Z ∩ S = ∅)
1 Initialize: z ← 0, `← `+ 1, E` = 0,∀i ∈ S : xi ← 0;
2 while true do . Epoch: time steps used in the while-loop
3 t← t+ 1, E` ← E` + 1; . E` is the length of epoch `
4 Offer assortment St = Z ∪ S, observe purchase decision ct;
5 if ct ∈ Z ∪ {0} then z ← rct , break; else xct ← xct + 1;

6 nZ ← nZ + z, TZ ← TZ + 1, ζ̄ ← nZ
TZ

, ∀i ∈ S : ni ← ni + xi, Ti ← Ti + 1, ν̄i ← ni
Ti

;

Algorithm 4: EST-ROUGH(δ0): Rough Estimation of vi for i ∈ [N ]

1 C0 = 196, δ = δ0
17N , τ = 4KC0 log(2/δ), Z ← ∅,∀i ∈ [N ] : ni = Ti = 0;

2 for i ∈ [N ] do Explore({i}) for τ epochs;
3 ∀i ∈ [N ] : compute ν̂i by Eq. (4), let ṽi ← ν̂i, return {ṽi}i∈[N ];

ṽi ∈ [vi, 2vi ∨ 1
K ] for every i ∈ [N ]; (b) In this case,

for every set S ⊆ [N ] with |S| ≤ K, we have ν̃i ∈
[νi2 , 2νi ∨

1
K ], where νi = vi∑

i∈S vi
and ν̃i = ṽi

1+
∑
i∈S ṽi

.

Lemma 3.4 (EST-ADAPTIVE). Assume A ⊆ S∗ ⊆
A t B. With probability 1 − δ0, (a) EST-ADAPTIVE

returns in |B|τ time steps; (b) ξi = ui
1+

∑
j∈A vj

∈ [ξ̌i, ξ̂i]

and ξ̂i − ξ̌i ≤ ε for i ∈ B.

3.4 Putting Everything Together

We combine all our techniques to design a δ-PAC al-
gorithm: we first invoke EST-ROUGH( δ2 ), then invoke

SAR-MNL( δ2 ) with EST-ADAPTIVE. We highlight that
EST-ROUGH is invoked only once while it can help di-
vide layers for every phase, as shown by the statement
(b) in Lemma 3.3.

Our δ-PAC algorithm becomes (δ, ε)-PAC if we termi-
nate it at the phase k satisfying εk . ε and let it return
the assortment corresponding to θ̂. We summarize the
results in the below theorems.

Theorem 1. There is a δ-PAC algorithm with sample
complexity

O(NK log
N

δ
+
∑
i∈[N ]

∆−2
i (log

N

δ
+ log log ∆−1

i )).

Theorem 2. There is a (δ, ε)-PAC algorithm with
sample complexity

O(NK log
N

δ
+
∑
i∈[N ]

(∆ε
i )
−2(log

N

δ
+ log log(∆ε

i )
−1)),

where ∆ε
i = ∆i ∨ ε.

The proofs are deferred to Appendix D.4. Both bounds
have a gap-independent O(NK log N

δ ) term due to EST-
ROUGH, which is arguably much smaller than the gap-
dependent Õ(

∑N
i=1 ∆−2

i ) term.

Theorem 2 translates to an Õ(Nε−2) gap-independent
sample complexity bound, which matches a corollary of
previous Θ̃(

√
NT ) minimax regret bound in (Agrawal

et al., 2016, 2019, 2017; Chen and Wang, 2018) as

follows. Suppose we run an algorithm with Õ(
√
NT )

regret bound for T = O(Nε−2) time steps and uni-
formly choose an assortment S from {S1, . . . , ST }. In

expectation, we have E[θ∗−R(S,v)] = Õ(
√
NT )/T = ε

and thus we get an algorithm with O(T ) = O(Nε−2)
sample complexity.

4 Regret Minimization

In this section, we present fully gap-dependent regret
bounds for Problem 2. Our algorithm is to invoke
SAR-MNL( 1

T ) with our low-regret estimation procedure
EST-REG (Algorithm 6). This algorithm satisfies the
following theorem, whose proof is deferred to Appendix
E.

Theorem 3 (Regret). There is an algorithm that

achieves regret bound O(
∑
i∈[N ]\S∗

K log(NT )
∆i

).

Our procedure achieves low regret by fixing the ac-
cepted set A and offering full assortments. The first
fixing idea has been exploited in (Rejwan and Mansour,
2020). The second idea is our novel technique, without

which we could have a regret bound O(
∑N
i=1

K log(NT )
∆i

)
that depends on S∗.

5 Discussion on Lower Bounds

An interesting question is whether we can prove
fully gap-dependent lower bounds in MNL-bandit for
Problems 1 and 2. To begin with, we prove an
Ω(
∑
i/∈S∗

log T
K∆i

) regret lower bound in Appendix F,
which matches our regret upper bound when K = 1.
Besides, for Problem 1, our sample complexity upper
bound matches the gap-independent sample complexity
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Algorithm 5: EST-ADAPTIVE(A,B, δ0, ε): Layer-based Adaptive Estimation of ξi for i ∈ B

1 C0 = 196, C2 = 1024, δ = δ0
15N ,M = min{K − |A|, |B|}, τ = C2C0 log(2/δ)

ε2 , Z ← A,nZ = TZ = 0,

∀i ∈ B : ni = Ti = 0, ν̃i = ṽi
1+

∑
j∈Z ṽj

; . assume ṽi has been computed by EST-ROUGH

2 for i← 0, 1, . . . ,m = dlog2Me do
3 Compute Bi by Eq. (6) using ν̃b in place of νb, let di = 2i ∨M ;
4 Divide Bi = Bi,1 t · · · tBi,ci so that |Bi,1| = · · · = |Bi,ci−1| = di and |Bi,ci | ≤ di;
5 ∀j ∈ [ci] : Explore(Bi,j) for diτ epochs;

6 Compute ζ̌, ζ̂, ν̌i, ν̂i, θ̌, θ̂, ξ̌i, ξ̂i by Eqs. (3) (4) (2) (5) for i ∈ B, return {ξ̌i, ξ̂i}i∈B ;

Algorithm 6: EST-REG(A,B, δ0, ε): Low-Regret Estimation of ui

1 C0 = 196, C2 = 1024, δ = δ0
13N ,M = min{K − |A|, |B|}, τ = C2C0 log(2/δ)

ε2k
, Z = ∅,∀i ∈ A ∪B : ni = Ti = 0;

2 Create m =
⌈
|B|
M

⌉
sets B′1, . . . , B

′
m ⊆ B so that B ⊆ B′1 ∪ · · · ∪B′m and |B′i| = M ;

3 ∀i ∈ [m]: Explore(A ∪B′i) for K · τ epochs; . we offer full assortments with size (M + |A|)
4 Let ζ̌ = ζ̂ = 0, Compute ν̌i, ν̂i, θ̌, θ̂, ξ̌i, ξ̂i by Eqs. (4) (2) (5) for i ∈ A ∪B, return {ξ̌i, ξ̂i}i∈B ;

bound translated from the previous minimax-optimal
regret bound, as specified earlier in Section 3.4.

Furthermore, we discuss about the difficulties in study-
ing gap-dependent lower bounds in MNL-bandit. Given
an arbitrary gap sequence {∆i}, it is not trivial to re-
alize the gaps, where by realizing we mean to find an
MNL-bandit instance with such gaps. The fractional
revenue function made it hard to determine if a given
gap sequence could correspond to an instance and con-
struct such instance when exists. The hardness in con-
structing instance from gap makes it difficult to prove
lower bounds by following the canonical change-one-
arm lower bound argument for multi-armed bandits.
We believe that perhaps for these reasons, previous
work also did not prove gap-dependent lower bounds
(even in the term of the global gap ∆, which is much
weaker than our gap definition ∆i, as discussed in Sec-
tions 1 and 2) when studying gap-dependent bounds
in MNL-bandit.

6 Conclusion

In this paper, we develop multiple techniques to prove
the fully gap-dependent sample complexity and regret
bounds for the MNL-bandit problems. We leave it a
further direction to prove tighter lower bounds for the
problems. For the upper bound, a significant ques-
tion is whether we can remove the K factor in the
regret bound. It would be worthwhile to prove a fully
gap-dependent regret bound for the original upper con-
fidence bound algorithm in (Agrawal et al., 2016, 2019).
An interesting direction is whether the gap-independent
term in our sample complexity bound can be reduced
or even totally be removed.
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Lattimore, T. and Szepesvári, C. (2020). Bandit Algo-
rithms. Cambridge University Press.

Luce, R. D. (2012). Individual choice behavior: A
theoretical analysis. Courier Corporation.

McFadden, D. (1973). Conditional logit analysis of
qualitative choice behavior. Frontiers in Economet-
rics, pages 105–142.

Rejwan, I. and Mansour, Y. (2020). Top-k combinato-
rial bandits with full-bandit feedback. In Algorithmic
Learning Theory, pages 752–776.

Rusmevichientong, P., Shen, Z.-J. M., and Shmoys,
D. B. (2010). Dynamic assortment optimization
with a multinomial logit choice model and capacity
constraint. Operations research, 58(6):1666–1680.

Saha, A. and Gopalan, A. (2019). Combinatorial ban-
dits with relative feedback. In Advances in Neural
Information Processing Systems, pages 983–993.
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