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Algorithm 2 Infinite Q-learning with UCB-Hoeffding
1: Initialized: Q(x, a)← 1

1−γ and N(x, a)← 0 for all (x, a) ∈ S ×A.
2: Define ι(k)← log (SAT (k + 1)(k + 2)), H ← ln(2/(1−γ)∆min)

ln(1/γ) , αk = H+1
H+k .

3: for step t ∈ [T ] do
4: Take action at ← argmaxa′Q(xt, a

′), observe xt+1.
5: k = N(xt, at)← N(xt, at) + 1,
6: bk ← c2

1−γ

√
Hι(k)/k, ▷ c2 is a constant that can be set to 4

√
2.

7: V̂(xt+1)← maxa′∈A Q̂(xt+1, a
′),

8: Q(xt, at)← (1− αk)Q(xt, at) + αk

[
r(xt, at) + bk + γV̂(xt+1)

]
,

9: Q̂(xt, at)← min
{
Q̂(xt, at), Q(xt, at)

}
.

6 Algorithm for Discounted MDP

The pseudocode is listed in Algorithm 2. We acknowledge that Algorithm 2 relies on knowing a lower bound on
∆min, and we leave it an open problem to develop a parameter-free algorithm.

7 Proofs for Discounted MDP

Notations Let Qt(s, a), Q̂t(s, a), V t(s), V̂ t(s), N t(s, a) denote the value of Q(s, a), Q̂(s, a), V (s), V̂ (s), N(s, a)
right before the t-th step, respectively. Let τ(s, a, i) := max {t : N t(s, a) = i− 1} be the step t at which (xt, at) =
(x, a) for the i-th time. We will abbreviate N t(xt, at) for nt when no confusion can arise. αi

t is defined same as
that in the finite-horizon episodic setting.

Proof of Theorem 3.2 We shall decompose the regret of each step as the expected sum of discounted gaps
using the exact same argument as Eq (1), where the expect runs over all the possible infinite-length trajectories5

taken by Algorithm 2:

(V ∗ − V πt)(st) = E

[ ∞∑
h=0

γh∆(xt+h, at+h)

∣∣∣∣∣at+h = πt+h (st+h)

]
. (18)

Based on this expression, the expected total regret over first T steps can be rewritten as

E[Regret(T )] = E

[
T∑

t=1

(V ∗ − V πt) (xt)

]
= E

[
T∑

t=1

E

[ ∞∑
h=0

γh∆(xt+h, at+h)

]]

= E

[
T∑

t=1

∞∑
h′=t

γh′−t∆(xh′ , ah′)

]
(19)

Our next lemma is borrowed from Wang et al. (2019), which shows that Algorithm 2 satisfies optimism and
bounded learning error with high probability. By abuse of notation, we still use Econc to denote the successful
concentration event in this setting. Recall that Algorithm 2 specifies ι(t) = log (SAT (t+ 1)(t+ 2)) and βt =

c3
1−γ

√
Hι(t)

t .

Lemma 7.1 (Bounded Learning Error). Under Algorithm 2, event Econc occurs w.p. at least 1− 1
2T :

Econc :=

{
∀(x,a,t) ∈ S ×A× N+ : 0 ≤

(
Q̂t−Q∗

)
(x, a) ≤

(
Qt−Q∗)(x, a)

≤
α0
nt

1− γ
+

nt∑
i=1

γαi
nt

(
V̂τ(x,a,i)−V ∗

)(
xτ(x,a,i)

)
+βnt

}
.

5For the convenience of analysis, when proving the upper bound we remove the constraint t ∈ [T ] in the for-loop of
line 3. Instead, we allow the algorithm to take as many steps as we need, even yielding infinite-length trajectories.
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Then we proceed to present an analog of Lemma 4.3 that bounds the weighted sum of learning error in the
discounted setting.
Lemma 7.2 (Weighted Sum of Learning Errors). Under Econc, for every (C,w)-sequence {wt}t≥1, the following
holds.

∑
t≥1

wt

(
Q̂t −Q∗

)
(xt, at) ≤ γHC

1− γ
+O

(√
wSAHCι(C) + wSA

(1− γ)
2

)
(20)

Proof. Recall that Lemma 7.1 bounds the learning error
(
Q̂t −Q∗

)
(xt, at) on Econc. Thus we have:

∑
t≥1

wt
α0
nt

1− γ
≤
∑
t≥1

I
[
nt = 0

]
· w

1− γ
=

SAw

1− γ
; (21)

∑
t≥1

wtβnt =
∑
s,a

∑
i

wτ(s,a,i)βi=
c3
√
H

1− γ

∑
s,a

∑
i

wτ(s,a,i)

√
ι(i)

i

≤ c3
√
H

1− γ

∑
s,a

Cs,a/w∑
i=1

w

√
ι(C)

i
≤ 2c3

√
H

1− γ

∑
s,a

√
Cs,awι(C)

(
Cs,a :=

∑
i≥1

wτ(s,a,i)

)
≤ 2c3

1− γ

√
SAHCwι(C); (Cauchy-Schwartz inequality) (22)

Moreover,

∑
t≥1

wt

nt∑
i=1

γαi
nt

(
V̂τ(x,a,i)−V ∗

)(
xτ(x,a,i)

)
=γ
∑
t≥1

(
V̂ t − V ∗

)
(xt+1)

∑
i≥nt+1

wτ(xt,at,i)α
nt+1
i

=γ
∑
t≥1

(
V̂ t+1 − V ∗

)
(xt+1)

∑
i≥nt+1

wτ(xt,at,i)α
nt+1
i + γ

∑
t≥1

∑
i≥nt+1

wτ(xt,at,i)α
nt+1
i

(
V̂ t − V̂ t+1

)
(xt). (23)

We let

w̃t+1 :=
∑

i≥nt+1

wτ(xt,at,i)α
nt+1
i ,

and further simplify (23) to be

γ
∑
t≥2

w̃t

(
V̂ t − V ∗

)
(xt) + γ

∑
t≥1

w̃t+1

(
V̂ t − V̂ t+1

)
(xt). (24)

For the first term of (24), we claim that {w̃t}t≥2 is a (C, (1 + 1/H)w)-sequence. This can be verified by a similar
argument to Ineq (15). We also have(

V̂ t − V ∗
)
(xt) = V̂ t(xt)− V ∗(xt) = Q̂t(xt, at)− V ∗(xt) ≤ Q̂t(xt, at)−Q∗(xt, at) =

(
Q̂t −Q∗

)
(xt, at).

Therefore, the first term can be upper bounded by

γ
∑
t≥2

w̃t

(
V̂ t − V ∗

)
(xt) ≤ γ

∑
t≥2

w̃t

(
Q̂t −Q∗

)
(xt, at). (25)

For the second term of (24), we have the following observation:
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γ
∑
t≥1

w̃t+1

(
V̂ t − V̂ t+1

)
(xt) ≤ γ(1 + 1/H)w

∑
s

∑
t≥1

(
V̂ t − V̂ t+1

)
(s)

≤ γ(1 + 1/H)w
∑
s

V̂ 1(s) ≤ γ(1 + 1/H)wS

1− γ
. (26)

.

Plugging (25) and (26) back into (24), we obtain

∑
t≥1

wt

nt∑
i=1

γαi
nt

(
V̂τ(x,a,i)−V ∗

)(
xτ(x,a,i)

)
≤γ
∑
t≥2

w̃t

(
Q̂t −Q∗

)
(xt, at) +

γ(1 + 1/H)wS

1− γ
. (27)

Finally, combining (21), (22) and (27) and Lemma 7.1, we conclude that∑
t≥1

wt

(
Q̂t −Q∗

)
(xt, at)

≤
∑
t≥1

wt

 α0
nt

1− γ
+ βnt + γ

nt∑
i=1

αi
nt

(
V̂ τ(s,a,i) − V ∗

)(
xτ(s,a,i)+1

) (Lemma 7.1)

≤ SAw

1− γ
+

2c3
1− γ

√
SAHCwι(C) +

γ(1 + 1/H)wS

1− γ
+ γ

∑
t≥2

w̃t

(
Q̂t −Q∗

)
(xt, at) (28)

Note that the last term in Ineq (28) is another weighted sum of learning errors starting from step 2, where the
weights form a (C, (1 + 1/H)w)-sequence. We can therefore repeat this unrolling argument for H times. Our
choice of H in Algorithm 2 guarantees not only the bounded blow-up factor of weights, but also sufficiently
small contribution of learning error after step H. In particular, we define a family of weights: when h = 0,{
w

(h)
t

}
t≥h+1

= {wt}t≥1 is a (C,w) sequence; ∀h ∈ [H]
{
w

(h)
t

}
t≥h+1

is a
(
C, (1 + 1/H)hw≤ew

)
sequence. Note

that our previous definition of w̃ is exactly w
(1)
t .∑

t≥1

wt

(
Q̂t −Q∗

)
(xt, at)

≤
H∑

h=0

γhO

(√
(1 + 1/H)hwSAHCι(C) + (1 + 1/H)hwSA

1− γ

)
+ γH

∑
t≥H+1

w
(H)
t

(
Q̂t −Q∗

)
(xt, at)

≤ O

(√
wSAHCι(C) + wSA

(1− γ)
2

)
+

γH

1− γ

∑
t≥H+1

w
(H)
t . (29)

Using the fact that the weights after H unrolling
{
w

(H)
t

}
t≥H+1

is a
(
C, (1 + 1/H)Hw≤ew

)
-sequence completes

the proof.

Note that we have clarified in Ineq (3) that on Econc where optimism holds, sub-optimality gaps can be bounded
by clipped learning error of Q-function. Again we divide its range

[
∆min,

1
1−γ

]
into disjoint subintervals and

bound the sum inside each subinterval independently.
Lemma 7.3. Let N = ⌈log2 (1/∆min(1−γ))⌉. On Econc, for every n ∈ [N ],

C(n) :=

∣∣∣∣∣{t ∈ N+ :
(
Q̂t −Q∗

)
(xt, at) ∈

[
2n−1∆min, 2

n∆min

)}∣∣∣∣∣
≤ O

(
SA

4n∆2
min (1− γ)

5 ln

(
SAT

(1− γ)∆min

))
.
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Again, based on Lemma 7.1, we prove Lemma 7.3 by choosing a particular sequence of weights.

Proof. For every n ∈ [N ], let

w
(n)
t := I

[(
Q̂t −Q∗

)
(xt, at) ∈

[
2n−1∆min, 2

n∆min

)]
, (30)

then C(n) =
∑∞

t=1 w
(n)
t and

{
w

(n)
t

}
t≥1

is a (C(n),1)-sequence. According to Lemma 7.2,

(
2n−1∆min

)
·C(n) ≤

∑
t≥1

w
(n)
t

(
Q̂t −Q∗

)
(xt, at)

≤γHC(n)

1− γ
+O


√
SAHC(n)ι

(
C(n)

)
+ SA

(1− γ)
2


=
∆min

2
C(n) +O


√
SAHC(n)ι

(
C(n)

)
+ SA

(1− γ)
2

 .

H =
ln
(

2
∆min(1−γ)

)
ln (1/γ)


Now we proceed to solve the above inequality for C(n). For simplicity, let δ = 2n−2∆min and C(n) = SAC ′.
Then we have the following:

δ · SAC ′ ≤
(
2n−1 − 1

2

)
∆minC

(n) ≤ O

(
SA

√
HC ′ι(SAC ′) + 1

(1− γ)
2

)
,

δC ′
1
≤ O

( √
C ′

(1− γ)
5/2

√
ln (SATC ′) ln

1

∆min (1− γ)

)
,

C ′ ≤ O

(
1

δ2 (1− γ)
5 ln

1

∆min (1− γ)
ln (SATC ′)

)
, (31)

where 1 comes from the definition H = ln(2/∆min(1−γ))
ln(1/γ) . Solving Ineq (31) yields

C ′ ≤ 1

δ2 (1− γ)
5 ln

(
SAT

∆min (1− γ)

)
.

Finally, substituting C(n) = SAC ′ and δ = 2n−2∆min yields the desired formula.

Proof of Theorem 3.2. We continue the calculation based on the regret decomposition in Eq (19). For every
infinite-length trajectory traj ∈ Econc,

T∑
t=1

∞∑
h′=t

γh′−t∆(xh′ , ah′ |traj)
2
=

∞∑
h=1

∆(xh, ah)

min{T,h}∑
t=1

γt ≤ 1

1− γ

∞∑
h=1

∆(xh, ah|traj)

3
≤ 1

1− γ

∑
t≥1

clip
[(

Q̂t −Q∗
)
(xt, at|traj)

∣∣∣∆min

]
4
≤ 1

1− γ

N∑
n=1

2n∆minC
(n)

5
≤ O

(
SA

∆min (1− γ)
6 ln

(
SA

pϵ (1− γ)∆min

))
. (32)

For the above inequalities, 2 comes from an interchange of summations, 3 is by optimism of estimated
Q-values, 4 is because we can add an outer summation over subintervals n ∈ [N ] and bound each of them by
their maximum value times the number of steps inside. Finally, 5 follows directly from Lemma 7.3.
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On the other hand, for trajectories outside of Econc, since sub-optimality gaps are upper bounded by 1/1−γ, we
have:

T∑
t=1

∞∑
h′=t

γh′−t∆(xh′ , ah′ |traj) ≤
T∑

t=1

∞∑
h′=t

γh′−t 1

1− γ
≤ T

(1− γ)
2 . (33)

Therefore, combining Ineq (32) and (33) gives us

E[Regret(T )] = E

[
T∑

t=1

∞∑
h′=t

γh′−t∆(xh′ , ah′)

]

≤ P(Econc) · O

(
SA

∆min (1− γ)
6 ln

(
SAT

(1− γ)∆min

))
+ P

(
Econc

)
· T

(1− γ)
2

≤ O

(
SA

∆min (1− γ)
6 ln

(
SAT

(1− γ)∆min

))
, (34)

where the last step is comes from P
(
Econc

)
≤1/2T . Ineq (34) is precisely the assertion of Theorem 3.2.

8 Difficulty in Applying Optimistic Surplus

The closest related work is by Simchowitz and Jamieson (2019) who proved the logarithmic regret bound for a
model-based algorithm. Simchowitz and Jamieson (2019) introduced a novel property characterizing optimistic
algorithms, which is called optimistic surplus and defined as

Ek,h(x, a) := Qk
h(x, a)−

[
rh(x, a) + Ph(x, a)

TV k
h+1

]
. (35)

Under model-based algorithm with bonus term bkh, surplus can be decomposed as follows, where P̂ is the estimated
transition probability:

Ek,h(x, a) =
(
P̂T
h(x, a)− PT

h(x, a)
)
V ∗
h+1 +

(
P̂T
h(x, a)− PT

h(x, a)
) (

V k
h+1 − V ∗

h+1

)
+ bkh.

The analysis of model-based algorithms is to first bound the regret (V ∗ − V πk) by a sum over surpluses that are
clipped to zero whenever being smaller than some ∆-related quantities, then combine the concentration argument
and properties of specially-designed bonus terms bkh to provide high probability bound for surpluses. However,
for model-free algorithms, estimates of transition probabilities are no longer maintained, so P̂h is a one-hot vector
reflecting only the current step’s empirical sample drawn from the real next-state distribution. In this scenario,
concentration argument of

(
P̂ − P

)
cannot give us log T regret.

Following the update rule of Q-learning with learning rate αi and upper confidence bound bi, the surplus becomes

Ek,h(x, a) = α0
tH +

(
t∑

i=1

αi
tV

ki

h+1(x
ki

h+1)− Ph(x, a)
TV k

h+1

)
+

t∑
i=1

αi
tbi,

in which t = nk
h(x, a) is the number of times (x, a) has been visited, and αi

t = αi

∏t
j=i+1(1−αj) is the equivalent

weight associated with the i-th visit of pair (x, a). This indicates that the surplus of an episode is closely
correlated with estimates of value functions during previous episodes. The correlation makes the analysis more
difficult. Therefore, we use a very different approach to analyze Q-learning in this paper.
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