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Abstract

This paper presents the first non-asymptotic
result showing a model-free algorithm can
achieve logarithmic cumulative regret for
episodic tabular reinforcement learning if
there exists a strictly positive sub-optimality
gap. We prove that the optimistic Q-
learning studied in [Jin et al. 2018] enjoys

a® (SA%I;YH(H) log (SAT)) cumulative regret

bound where S is the number of states, A
is the number of actions, H is the planning
horizon, T is the total number of steps, and
Apin 18 the minimum sub-optimality gap of
the optimal Q-function. This bound matches
the lower bound in terms of S, A,T up to a
log (SA) factor. We further extend our anal-
ysis to the discounted setting and obtain a
similar logarithmic cumulative regret bound.

1 Introduction

Q-learning (Watkins and Dayan, 1992) is one of the
most popular classes of methods for solving reinforce-
ment learning (RL) problems. @-learning tries to
estimate the optimal state-action value function (Q-
function). With a Q-function, at every state, one can
just greedily choose the action with the largest @ value
to interact with the RL environment. Compared to an-
other popular class of methods, model-based learning,
Q@-learning algorithms (or more generally, model-free
algorithms) often enjoy better memory and time effi-
ciency'. These are the main reasons why @Q-learning is
applied in solving a wide range of RL problems (Mnih
et al., 2015).

'See Section 2 for the precise definitions of model-free
and model-based algorithms in the tabular setting.
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While model-free methods are widely applied in prac-
tice, most theoretical works study model-based RL. In
one of the most fundamental RL frameworks, tabu-
lar RL, which is the focus of this paper, the majority
of works study model-based algorithms (Kearns and
Singh, 1999; Kakade, 2003; Singh and Yee, 1994; Azar
et al., 2013, 2017; Dann and Brunskill, 2015; Dann et al.,
2017; Agarwal et al., 2019; Simchowitz and Jamieson,
2019) with a few exceptions (Strehl et al., 2006; Jin
et al., 2018; Wang et al., 2019; Zhang et al., 2020).
From a regret minimization point of view, the state-
of-the-art analysis demonstrates that one can achieve
a V/T-type regret bound where T is the number of
episodes. Although these bounds are sharp in the
worst-case scenario, they do not reveal the favorable
structures of the environment, which can significantly
decrease the regret.

One such structure is the existence of a strictly posi-
tive sub-optimality gap, i.e., for every state, there is a
strictly positive value gap between the optimal action(s)
and the rest (cf. Definition 2.1). In practice, arguably,
nearly all environments with finite action sets satisfy
some sub-optimality gap conditions. In Atari-games,
e.g., Freeway, the optimal action has a value that is usu-
ally very distinctive from the rest of actions. In many
other environments with finite number of actions, e.g.
those control environments in OpenAl gym (Brockman
et al., 2016), the gap condition usually holds. Similar
gap conditions can be observed in other environments
(see e.g. Kakade (2003)).

Theoretically, the sub-optimality gap is extensively in-
vestigated in the bandit problems, which can be viewed
as RL problems with the planning horizon being 1.
With this structure, one can drastically decrease the
VT-type regret to log T-type regret (Bubeck and Cesa-
Bianchi, 2012; Lattimore and Szepesvari, 2018; Slivkins
et al., 2019). For RL, most existing works that can
leverage this structure require additional assumptions
about the environment, such as finite hitting time and
ergodicity (Jaksch et al., 2010; Tewari, 2007; Ok et al.,
2018) or access to a generator (Zanette et al., 2019).2

2The simulator allows the user to query any state-action
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Recently, Simchowitz and Jamieson (2019) presented
a systematic study of episodic tabular RL with the
gap structure. They presented a novel algorithm which
achieves the near-optimal v/7T-type regret in the worst
scenario and log T-type regret if there exists a strictly
positive sub-optimality gap. Furthermore, they also
provided instance-dependent lower bounds for a class
of reasonable algorithms. See Section 1.1 for more
detailed discussions.

However, to our knowledge, all existing works that ob-
tain log T-type regret bounds are about model-based
algorithms. It remains open whether model-free al-
gorithms such as @-learning can achieve logT-type
regret bounds. Indeed, this is a challenging task. As
discussed in Simchowitz and Jamieson (2019), their
analysis framework cannot be applied to model-free al-
gorithms directly. Later in this section, we also provide
some technical explanations on why their approach is
difficult to adopt.

Our Contributions We answer the aforementioned
open problem by proving that the optimistic Q-
learning algorithm studied in Jin et al. (2018) en-

joys O(SAHG log (SAT)) cumulative regret where S is

Amin

the number states, A is the number of actions, H is
the planning horizon and A, is the minimum sub-
optimality gap. To our knowledge, this is the first
result showing model-free algorithms can achieve log T-
type regret. Furthermore, our bound matches the lower
bound by Simchowitz and Jamieson (2019) in terms of
S, A and T up to a log (SA) factor. Importantly, the
algorithm does not need to know Ap,.

Second, we extend our analysis to the infinite-horizon
discounted setting with the regret defined in Liu and
Su (2020), for which we show the optimistic -learning

achieves (9( Amajiv)ﬁ log < Amif(llT—’y)>) regret where

0<~vy<1 is the discount factor.

Main Challenges Here we explain the main chal-
lenges of using existing analyses and give an overview
of our main techniques at a high level. The existing
proof in Jin et al. (2018) bounds the regret in terms of
a weighted sum of the estimation error of Q-function.
Note the estimation error scales 1/v/T which in turn
gives a v/ T-type regret, but cannot give a log T-type
regret bound.

For model-based algorithms, Simchowitz and Jamieson
(2019) introduced a novel notion, optimistic surplus
(cf. Equation (35)), which can be bounded by the
estimation error of the transition probability. The
logarithmic regret bound can be proved via a clipping
trick on top of the optimistic surplus.

pair.

Unfortunately, as acknowledged by Simchowitz and
Jamieson (2019), their analysis is highly tailored to
model-based algorithms. First, model-free algorithms
do not estimate the probability transition, so we can-
not bound the optimistic surplus via this approach.
Secondly, although we can also obtain a formula for
the optimistic surplus in each episode using the up-
date rules of the @Q-learning algorithm, the formula
depends on the estimation error of @-function in pre-
vious episodes. This dependency makes it difficult to
bound the optimistic surplus. See Section 8 for more
technical details.

Technique Overview In this paper, we adopt an
entirely different counting approach. We first write
the total regret as expected sum over sub-optimality
gaps appearing in the whole learning process, then use
the estimation error of @-function and the definition
of sub-optimality gap to upper bound the number of
times the algorithm takes suboptimal actions.

To obtain a sharp dependency on A, we divide the
interval [Apin, H] (the range of all gaps) into multi-
ple subintervals. We then bound the sum of learning
error in each subinterval by its maximum value times
the number of steps falling into this subinterval. The
number of steps in each layer is bounded through com-
puting the weighted sum of learning error across all the
episodes k € [K]. See detailed discussion in Lemma, 4.3
and Lemma 4.2.

Organization This paper is organized as follows. In
Section 1.1 we discuss related works. In Section 2, we
introduce necessary definitions and backgrounds. In
Section 3, we present our main results and discussions.
In Section 4, we give the proof of our theorem on the
episodic setting. We conclude in Section 5 and leave
remaining proofs to the appendix.

1.1 Related Work

Gap-independent Finite-horizon and Infinite-
horizon Discounted RL 3 There is a long list of
results about regret or sample complexity of tabular
RL, dating back to Singh and Yee (1994). One line of
works require access to a simulator where the agent can
query samples freely from any state-action pair of the
environment and therefore the agent does not need to
design a strategy to explore the environment. (Kearns
and Singh, 1999; Kakade, 2003; Singh and Yee, 1994;
Azar et al., 2013; Sidford et al., 2018b,a; Agarwal et al.,
2019; Zanette et al., 2019; Li et al., 2020).

3There is another line of works on gap-independent
infinite-horizon average-reward setting. This setting is be-
yond the scope of this paper.
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Another line of works drop the simulator assumption
and thus the agent needs to use advanced techniques,
such as upper confidence bound (UCB) to explore the
state space (Azar et al., 2017; Dann and Brunskill, 2015;
Dann et al., 2017, 2019; Jin et al., 2018; Strehl et al.,
2006; Zhang et al., 2020; Simchowitz and Jamieson,
2019; Zanette and Brunskill, 2019; Wang et al., 2019).
In terms of the regret, the state-of-art result shows one

can achieve 6(\/ SAH?T + poly (S, A, H)) regret for

which the first term nearly match the Q (\/ SAH 2T) up

to logarithmic factors (Dann and Brunskill, 2015; Os-
band and Roy, 2016).* Among these results, only a
few are for model-free algorithms (Strehl et al., 2006;
Jin et al., 2018; Wang et al., 2019; Zhang et al., 2020)
and only very recently, Jin et al. (2018); Zhang et al.
(2020) showed Q-learning can achieve VT-type regret
bounds.

Sub-optimality Gap The results about gap-
dependent regret bounds for MDP algorithms can
be categorized into asymptotic bounds and non-
asymptotic bounds. Asymptotic bounds are only valid
when the total number of steps 7T is large enough. These
bounds often suffer from the worst-case dependency
on some problem-specific quantities, such as diameter
and worst-case hitting time. Under the infinite-horizon
average-reward setting, Auer and Ortner (2007) pro-
vided a logarithmic regret algorithm for irreducible
MDPs. Besides dependency on hitting times, their re-
gret also depends inversely on A2, the squared distance
between optimal and second-optimal policy. Along this
direction and improving over previous algorithm of Bur-
netas and Katehakis (1997), Tewari and Bartlett (2008)
proposed an algorithm called Optimistic Linear Pro-
gramming (OLP). OLP is proved to have C'(P)logT
regret asymptotically in 7', where C(P) depends on
some diameter-related quantity as well as the sum over
reciprocals of gaps for (x,a) inside a critical set.

For non-asymptotic bounds, Jaksch et al. (2010)
introduced UCRL2 algorithm, which enjoys

(’3(%3*2‘410gT ) regret where D is the diameter.

More recently, Ok et al. (2018) derived problem-
specific lower bounds for both structured and
unstructured MDPs.  Their lower bound scales
SAlogT for unstructured MDP and clogT for
structured MDP, where this ¢ depends on both the

4 In this paper, we study the same setting as in Jin et al.
(2018) where the reward at each level is in [0, 1], and the
transition probabilities at each level can be different. In
another setting, the total reward is bounded by 1 and the
transition probabilities at each level are the same. The
latter setting is more challenging to analyze and the worst-
case sample complexity is still open (Jiang and Agarwal,
2018; Wang et al., 2020).

minimal action sub-optimality gap and the span of
bias function, which can be bounded by diameter D.
For non-asymptotic bounds, Simchowitz and Jamieson
(2019) proved that model-based optimistic algorithm
StrongEuler has gap-dependent regret bound that holds
uniformly over T'. Moreover, their bounds depend only
on H and not on any term such as hitting time or
diameter. In Section 3, we compare our result with the
one in Simchowitz and Jamieson (2019) in more detail.

2 Preliminaries

Episodic MDP An episodic Markov decision pro-
cess (MDP) is a tuple M := (S, A, H, P,r), where S
is the finite state space with |S| = S, A is the finite
action space with |A| = A, H € Z, is the planning
horizon, Py, : § x A — A(S) is the transition operator
at step h that takes a state-action pair and returns a
distribution over states, and rj, : S x A — [0,1] is the
deterministic reward function at step h. Each episode
starts at an initial state z; € S picked by an adversary.

In this paper, we focus on deterministic policies. A
deterministic policy 7 is a sequence of mappings 7, :
S— Afor h=1,...,H. Given a policy m, for a state
x € S, the value function of state x € S at the h-step
is defined as

Tp = SL"| y

and the associated @Q-function of a state-action pair
(z,a) € § x A at the h-step is
Trp =T
an=a |’

We let 7* be the optimal policy such that V”*(x) =
V*(z) = argmax, V™ (z) and Q™ (z,a) = Q*(x,a) =
argmax, Q™ (x,a) for every (z,a). For episodic MDP,
the agent interacts with the MDP for K € ZT episodes.
For each episode k = 1,..., K, the learning algorithm
Alg specifies a policy 7*, plays 7% for H steps and
observes trajectory (z1,a1), -+, (zm,am). The total
number of steps is T = K H, and the total regret of an
execution instance of Alg is then

H

> rwe(@ne, ww (@)

h'=h

Vi (z) =E

Qn(x,a) :=rp(z,a)

H

S (e, man))

h'=h+1

+E

Regret(K) = i (Vl* — ka)(x’f).
k=1

In this paper we focus on bounding the expected re-
gret E[Regret(K)] where the expectation is over the
randomness from the environment.
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Algorithm 1 Q-learning with UCB-Hoeffding
1: Initialize: Qu(x,a) < H and Np(x,a) < 0 for all
(z,a,h) € S x A x [H].
: Define a; = g—ﬁ, L+ log (SAT2).
: for episode k € [K] do
receive Ij.
for step h € [H] do
Take action aj < argmax, c4Qn(zp,a’),
observe xj,41.
t = Np(xp, ap) < Np(zp,ap) + 1,

AR ol

8: by < c\/H3./t, > cis a constant that can
be set to 4.
9: Qu(xn,an) <+ (I —ay) Qu(n,an) +
ag [ru(zh, an) + Vipr(@ngr) + bel,
10: Vi(xp) < min {H, maxy c4 Qn(zp,a’)}.

Model-free Algorithm V.S. Model-based Algo-
rithm In this paper we focus on model-free Q-
learning algorithms. Formally, by model-free algo-
rithms, we mean the space complexity of the algorithm
scales at most linearly in S in contrast to the model-
based algorithms whose space complexity often scales
quadratically with S (Strehl et al., 2006; Sutton and
Barto, 1998; Jin et al., 2018). For episodic MDP, we
will analyze the @Q-learning with UCB-Hoeffding algo-
rithm studied in Jin et al. (2018) (cf. Algorithm 1). At
a high level, this algorithm maintains an upper bound
of @* for every (s, a) pair and choose the action greed-
ily at every episode. The algorithm uses a carefully
designed step size sequence {ay} to update the upper
bound based on the observed data. Jin et al. (2020)

proved that Algorithm 1 enjoys (\/H4SAT log (SAT))

regret, which is the first v/T-type bound for model-free
algorithms.

Sub-optimality Gap Our paper investigates what
structures of the MDP enable us to improve the /7-
type bound. In this paper we focus on the positive sub-
optimality gap condition (Simchowitz and Jamieson,
2019; Du et al., 2019¢, 2020).

Definition 2.1 (Sub-optimality Gap). Given h € [H],
(x,a) € § x A, the suboptimality gap of (x,a) at level
h is defined as Ap(x,a) =V (z) — Q5 (z,a).
Definition 2.2. Minimum Sub-optimality Gap] De-
note by Amin the minimum non-zero gap: Amin =
ming, 5 o {An(z,a) : Ap(z,a) # 0}.

Note that if {Ap(z,a): Ap(z,a) #0} = 0, then all
the states are the same, and the MDP degenerates.
Otherwise we always have A, > 0. For the rest of
the paper, we focus on the case when A, > 0. In
Section 1 we have discussed why many MDPs admit
this structure. Our main result is a logarithmic regret
bound of Algorithm 1.

Infinite-horizon Discounted MDP In this pa-
per we also study infinite-horizon discounted MDP,
which is a tuple M := (S, A,~, P,r), where every
step shares the same transition operator P and re-
ward function r. Here v denotes the discount factor,
and there is no restart during the entire process. Let
C={S x Ax0,1]}" xS be the set of all possible tra-
jectories of any length. A non-stationary deterministic
policy 7 : C — A is a mapping from paths to actions.
The V function and @ function are defined as below

(Ci = (xlaalarlv e 71'1))
T :JJ‘| 5

> oA (i, w(e)

=2

Vi(z) :=E

S (i ()
=1

Q" (z,a) :=r{z,a) + E

1=
a1=al|’
Let V*(s) and Q*(s,a) denote respectively the value
function and ) function of the optimal policy 7*.

Definition 2.3 (Sub-optimality Gap). Given (z,a) €
S x A, the suboptimality gap of (x,a) is defined as
Alz,a) :=V*(x) — Q*(x,a).

Definition 2.4 (Minimum Sub-optimality Gap). De-
note by Amin the minimum non-zero gap: Amin =
min, , {A(z,a) : A(z,a) # 0}.

Again, if {A(z,a) : A(z,a) # 0} = 0, all the states are
the same, and the MDP degenerates. Otherwise, we
have Apin > 0.

Consider a game that starts at state x;. A learning
algorithm Alg specifies an initial non-stationary policy
m1. At each time step ¢, the player takes action m¢(xy),
observes 7, and xy41, and updates m; to m41. The
total regret of Alg for the first T steps is thus defined
as Regret(T) = Y./, (V* — V™)(z;). This definition
was studied in Liu and Su (2020), which follows the
sample complexity definition in Kakade (2003). For
this setting, we study Algorithm 2. This is a simple
adaptation of Algorithm 1 that takes v into account,
so we defer it to the appendix. We prove Algorithm 2
also enjoys a logarithmic regret bound.

3 Main Theoretical Results
Now we present our main results.

Main Result for Episodic MDP The following
theorem characterizes the performance of Algorithm 1
for episodic MDP. To our knowledge, this is the first
theoretical result showing a model-free algorithm can
achieve logarithmic regret of tabular RL.

Theorem 3.1 (Logarithmic Regret Bound of
Q-learning for Episodic MDP). The expected regret of
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Algorithm 1 for episodic tabular MDP is upper bounded
by E[Regret(K)] < O (% log (SAT)).

An interesting advantage of our theorem is adaptivity.
Note the algorithm we analyze is exactly the same al-
gorithm studied in Jin et al. (2020), which has been
shown to achieve the worst-case v/T-type regret bound.
Theorem 3.1 suggests that one does not need to modify
the algorithm to exploit the strictly positive minimum
sub-optimality gap structure, Algorithm 1 automat-
ically adapts to this benign structure. Importantly,
Algorithm 1 does not need to know Apin.

Proposition 2.2 in Simchowitz and Jamieson (2019) sug-
gested that any algorithm with sub-linear regret in the
worst case, suffer an Q2 (Z(gC ), (2,a)>0 Al(l oy log T)
expected regret. Therefore, the dependencies on S, A
and T are nearly tight in Theorem 3.1.

One may wonder whether it is possible to obtain a
regret bound that only depends the sum of positive
gaps, e.g., O (E(I 0), A1 (,a)>0 Al(:v 2 logT) unlike
ours, which is a multiple of 1/Ap;,. Unfortunately,
Simchowitz and Jamieson (2019) showed, all existing
algorithms, including Algorithm 1 and their algorithm,
suffer an (ﬁ) regret, and new algorithmic ideas
are needed in order to circumvent this lower bound.

We compare Theorem 3.1 with the regret bound for

model-based algorithm in Simchowitz and Jamieson
(2019) (in big-O form):

Z H3 " SH?
ming Ap (z,a)  Amin

(z,a):
Jhe[H],Ap(z,a)>0

SAH

min

+ H*SAmax (S, H) log( ) > log (SAHT)

First recall our bound is for a model-free algorithm
which is more space-efficient and time-efficient than the
model-based algorithm in Simchowitz and Jamieson
(2019). In terms of the regret bound, Theorem 3.1’s
dependency on H is worse than that in their bound.
We remark that simple model-free algorithms may have
a worse dependency on H compared to model-based
algorithms (e.g., see Jin et al. (2018)).

Now let us consider an environment where there are
~ S A state-action pairs whose gap is Apin. Then the
bound in Simchowitz and Jamieson (2019) becomes

(H3SA

min

SAH
+H*SAmax{S,H}log (A : )) log(SAHT).
In this regime, both Theorem 3.1 and their bound have

an ASA_ term. Their bound also has an additional

H*SAmax (H, S)log (SAH> burn-in term which our

bound does not have. When S is large compared to H
and Apin, this term scales S? and can dominate other
terms, so our bound is better. The technical reason
behind this phenomenon is that Algorithm 1 uses the
Hoeffding bound for constructing bonus on @-value,
which does not need burn-in.

Main Result for Infinite-horizon Discounted
MDP Algorithm 1 can be easily generalized to the
discounted MDP. See Algorithm 2 in the appendix.
We also obtain a logarithmic regret bound for infinite-
horizon discounted MDP.

Theorem 3.2 (Logarithmic Regret Bound of
Q-learning for Infinite-horizon Discounted MDP). The
expected regret of Algorithm 2 for infinite-horizon dis-
counted MDP is upper bounded by E[Regret(T)] <

SA SAT
O (Amuﬂ )

e log 7 =,
Theorem 3.2 suggests that model-free algorithms can
achieve logarithmic regret even in the infinite-horizon
discounted MDP setting. The main difference from
Theorem 3.1 is that H is replaced by ﬁ By analogy,
we believe the dependencies on S, A, T and A, are
nearly tight and the dependency 1i

The proof of Theorem 3.2 is deferred to Appendix.

4 Proof of Theorem 3.1
In this section, we prove Theorem 3.1.

Notations Let Qf(z,a), V}¥(z), Nf(z,a) denote the
value of Qp(z,a), Vi (z),and Np(z,a) right before the
k-th episode, respectively. Let I[-] denote the indicator
function. Let 7,(x,a,i) := max {k‘ : NF(z,a) =i — 1}
be the episode k at which (zF,af) = (z,a) for the
i-th time. We will abbreviate Nf(z¥, a¥) for nf when
no confusion can arise. «! is defined by the fol-
lowing: a; = 21 09 = [['_,(1—q;) and o} =

Htt> j=1
ai]_[;:iﬂ(l—aj) (1> 0). Let fp =0 and ﬁt:4c\/HTg‘
fort > 1.

Proof of Theorem 3.1 Our proof starts with the
observation that the regret of each episode can be

rewritten as the expected sum of sub-optimality gaps
for each action:

(Vf - Vfrk) ()
= Vi (ah) - Qi(ah.ab) + (QF - @7 ) (k. ab)

= A1 (o, a) + By papary [(VF - %))

H
=E ZAh(x’f”al,i) af =
h=1
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In order to bound Ap(zF,af) by learning error

@QF — Q;)(zf, af), we define the following concentra-
tion event.

Definition 4.1 (Concentration of Learning Errors).

Econe 1= {V(x,a,h,k:): 0< (Qﬁ—QZ)(x,a) <

oty (2 )Rt

Intuitively, Econc is the event in which all the learning
errors of the value function is both bounded below (by
zero) and bounded above.

We now refer to Jin et al. (2018) for the following
lemma that shows E.one happens with high probability
via a concentration argument.

Lemma 4.1 (Concentration). Event E.one occurs w.p.
at least 1 — /1.

Lemma 4.1 suggests that Algorithm 1 is optimistic on
Econc. Combining with the greedy choice of actions

yields
Vi (k) =Qp, (o, @) <@Qj (o, @) < @5 (a7, a3) - (2)

To bound Ay, (zF, a¥), the following notion introduced
in Simchowitz and Jamieson (2019) is convenient. If we

define clip [x’é} =z - [[z > 4], then Ineq (2) suggests

that Ap(zF,af) can be bounded by clipped estimation
eITor:

Arfeh,af) = clip Vi (a}) — Qieh, )| Auin]

< clip| (QF - Qi) (@} o) | Awin | . (3)

Our main technique to get 1/Ap;, instead of 1/AZ .
regret bound is to classify gaps of state-action pairs
into different intervals and count them separately.
Note the gap can range from A, to H. Thus, we
divide the interval [Apnin, H] into N disjoint inter-
vals: [Amhu 2Amin) s 0, [QN_lAmin, 2NAmin]a where
N = [logy (#/Awmn)].

Lemma 4.2 below is our main technical lemma which
upper bounds the number of steps Algorithm 1 chooses
a sub-optimal action whose suboptimality is in a certain
interval.

Lemma 4.2 (Bounded Number of Steps in Each In-
terval). Under E.one, we have for every n € [N],

(n) . . (@ = Qp) (@, ap) € }
C —‘{(k h) . [QnilAmin;QnAmin)

) , where ¢ = log (SAT2).

Before we give the proof for Lemma 4.2, we first show
how to use Lemma 4.2 to prove Theorem 3.1.

Proof of Theorem 3.1 Since the trajectories inside
Econe have bounded empirical regret, and complemen-
tary event E.one happens with sufficiently low proba-
bility,

E[Regret(K [ZZ Ay (zy, af; ]

k=1h=1
= ZP (traj) Z (xﬁaﬂtraj) (4)
traj
< Z P(traj) Zchp[@h (a:h, ah‘traJ ’Amin]
traj€€conc
+ > P(traj)-TH (5)
traj€€eonc
N
S]P)(gconc) Z 2nAminC(n) + P(gconc) -TH (6)
n=1
N
HSSAL
Sn: 0(2 Amm>+H (7)
6
<0 <IZ S_A 10g(SAT)> .

Above, (4) follows from the definition of expectation, (5)
is because Ineq (3) suggests that for trajectories inside
Econc, gaps can be bounded by clipped learning errors;
whereas for trajectories outside of E.opnc, sub-optimality
gaps never exceed H. (6) follows from adding an outer
summation for state-action pairs over the N disjoint
subintervals, then bounding the estimation error in each
subinterval by its maximum value times the number
of steps it contains. (7) comes from a sum of numbers
in a geometric progression generated by Lemma 4.2,
and the fact that ]P’(Econc) < /7 from concentration
Lemma 4.1. In the final step, we notice that ¢ =
log(SAT?) = O (log(SAT)). O

Proof of Lemma 4.2 The proof of Lemma 4.2
relies on a general lemma (Lemma 4.3) characteriz-
ing a weighted sum of the estimation errors of Q-
function. Then we choose a particular sequence of
weights to prove Lemma 4.2. We remark that this
general idea has appeared in Jin et al. (2018); Wang
et al. (2019); Zhang et al. (2020).

Formally, we use the following definition.

Definition 4.2 ((C,w)-Sequence (Definition 3 in
Wang et al. (2019))). A sequence {wy},.~, is called a
(C,w)-sequence if 0<wy <w for all k and Y, wy, < C.

Lemma 4.3 (Weighted Sum of Learning Errors). On
event Econc, for every h € [H], if {wi} e 15 a (Cyw)-
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sequence, then:

K
Zwk @ — Q;) @}, ap) <ewSAH?+10cVewSACH?..

k=1

Before presenting the proof of Lemma 4.3, we refer the
readers to Jin et al. (2018) for Lemma 4.4 below, which
summarizes the properties of o that will be useful in
our proof.

_H+1 0 _
LEtOthHiit, a; =

H§:1(1_04j) and at—alnj i1 (I1—=aj) for 0 <i <t

Lemma 4.4 (Properties of o).

(i) Zﬁzlai =1 and o = 0 for every t > 1,
S ai=0andad =1 fort=0.

(it) >ope; 0f =14 % for everyi > 1.

Proof of Lemma 4.3 We will recursively bound the
weighted sum of step h by its next step (h+1), and
unroll (H —h+1) times for the desired bound. As
suggested by Lemma 4.1, upper bounds of learning
error holds under £.,nc. Thus we have

K
S (QF — @) ek a)
k=1

7L h

(Ha » B, k+Za k( i) V*h+1) (x?i”fi“”5)

K
k=1

tllﬁx

0
wpHog + Z (YA

k

S (g R

1

(8)

For the first term of (8), nf =0 at most once for every
state-action pair, and we always have wy <w. Thus,

K K
Z wkHoz?l,}2 = Z wi HI [nh
k=1 k=1

— 0] <wSAH. (9)

The second term of (8) can be bounded by the following
inequalities with respective reasons listed below:

Sus-Y Y

(sk, h) (s,0)

(YA

Nh("' a)

=4cVH3LY Y

s,a =2

[Cs, a/wT

<y Y

ﬁsaz)
Vi—=1

<10eVH3L Y /Coaw (12)
<10¢V SACwH?3.. (13)
H3,

Above, (10) comes from prior definition 3; =

when ¢t > 1 and Sy = 0. Note that 7;,(z,a,i) is the
episode where (z,a) is visited for the i-th time, so we
always have n;f(x’a’l) = i— 1. (11) follows from a

rearrangement inequality with C; , defined as C; , :=

E?h(ls a)wT(S’a’Z), where we always keep in mind that
0 < Wrs 0,y < w. (12) follows from the integral conver-
sion of >°, 1/V/i, and (13) is true because of Cauchy-
Schwartz inequality where ES,aCé,a: Zszl wy <C.

For the third term in Ineq (8), we notice that
Vi) = Qk(2¥, ak) due to greedy choice of actions
and Vii(xf) > Q. (xf 1, af ;) by definition. There-
fore (V¥ — Vi) (xf) < (QF — Q}) (. af). Note that
Wk € [K], the third term takes into account all the prior
episodes [ <k where (zF,a¥)=(z},d}), indicating that
the learning error at step [ is only counted by subse-
quent episodes k > when the same (s,a) is visited.
Thus, we exchange the order of summation and obtain

Tz,a,z
E wkE a"(hilh h)

‘rh,(a:’fb ,aﬁ ,Z))

V;:+1) (thrl

k=1
K NS (), a1,)
= Z (Vi = Vi) (@ 40) Z wTh(fL’}L,ah7J)OZJLh+1
1=1 j=n}+1
K Ni(@}, ai,)
Z (Qh—‘rl Q;;,-‘rl) (Z‘ iﬁ—l’ aéH—l) Z ;L(:c h,a,L j)anh+1
=1 j=ni+1
N (], ai,) nl 1

Then for [ € [K] welet oy = 3.

j=nh1
and further simplify the above equation to be

Th(rhvahvj)a

nh

K
T}Léal)
2w D ong (W

K
< Z w; (wal — Q1) (Th 1 ah o).
=1

Vi) (@)
(14)

Next, we use Lemma 4.4 to verify that {w},c( is a
(C, (1—|— %) w)—sequence:

NG ) . .
~ ny+ Nyt L
w; < w E a; <w E a; §1+H w,
j=nl+l j>nlH
K Nh (Ih ah)
nh+1

>, X w

lljn}+1

a
7'h al ab g) Vi

K
> =
=1
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(15)

Plugging the upper bounds of three separate terms in
(9), (13) and (14) back into Ineq (8) gives us

K
> wi(@QF Q) (aF, af) SwSAH+10cV SACwH?,
k=1
K

+Z@l (Q;ZH —Q2+1) (x§1+17 angrl)a

=1

(16)

where the third term is a weighted sum of learning
errors of the same format, but taken at level h + 1. In
addition, it has weights {w; };¢ 5 being a (C, 1 +1/H)w)-
sequence. Therefore, the above analysis will also yield

sz Qhi1— Qi) (@ a) < (1+H>wSAH

1
—|—100\/SAC’ (1—1— H) wH?3. + [weighted sum at (h+2)].

Recursing this argument for h+1,h+2,-- - H gives us

K
Zwk,h @QF—Qp) (zF, af)

k=1
H—h

<> (SAH (1+1/H) w—l—lOC\/SAC A+1/m)" wH?’)

h!=

<H (SAHew—i—lOcv SACewH?’L) .

(17)

which is the desired conclusion.

With Lemma 4.3, we can easily prove Lemma 4.2 by
choosing a particular (C, w)-sequence.

Proof of Lemma 4.2 For every n€[N], h€[H], let
w”’h) [( -

crh =

QZ) ('r]fcm a']fcb) € [QnilAminy 2nAmin)] )

K
Z w](fn,h)

k=1

= {k ( Z — QZ) (Ii,ai) € [ nﬁlAmin; 27FLAmin) }|

e definit \ I d N (n,h)
y definition, Vh € [H]| and n € [N], {wk }ke[K]

is a (C®" 1)-sequence. Now we consider bounding
S W (QF —Q7) (xk, ak) from both sides. On the
one hand, by Lemma 4.3,

K

WP @QE—Q7) («f, aff) < eSAH? +10cV/eSACHPH?,.

k=1

On the other hand, according to the definition of w(”’h)

K

>

k=1

Qh (xh,ah) (2n 1Amln) e,

Combining these two sides, we obtain the following
inequality of C":

(2" Apyin ) CP < eSAH? +10cV eSACHD H5,

Finally, we observe that

H
HSS A,
(n) — nh) <
c h§:1c< _o<4nA2 )

min

which is exactly the statement of Lemma 4.2. O

5 Conclusion and Future Directions

This paper gives the first logarithmic regret bounds
for @-learning in both finite-horizon and discounted
tabular MDPs. Below we list some future directions
that we believe are worth exploring.

H dependence The dependency on H in our regret
bound for episodic RL is H®, which we believe is sub-
optimal. As discussed in Simchowitz and Jamieson
(2019), improving the H dependence is often a chal-
lenging task. Recently, Zhang et al. (2020) showed a
model-free algorithm can achieve near-optimal regret in
the worst case using the idea of reference value function.
It would be interesting to apply this idea to improve
the H dependence in our logarithmic regret bound.

Function Approximation Lastly, we note that re-
cently researchers found the sub-optimality gap assump-
tion is crucial for dealing with large state-space RL
problems where function approximation is needed. Du
et al. (2019¢) presented an algorithm that enjoys poly-
nomial sample complexity if there is a sub-optimality
gap and the environment satisfies a low-variance as-
sumption. Du et al. (2019b, 2020) further showed this
assumption is necessary in certain settings. There is
another line of works putting certain low-rank assump-
tions on MDPs (Krishnamurthy et al., 2016; Jiang
et al., 2017; Dann et al., 2018; Du et al., 2019a; Sun
et al., 2019; Misra et al., 2020). It would be interesting
to extend our analysis to these settings and obtain
logarithmic regret bounds.
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