Stability and Differential Privacy of Non-smooth Pairwise Learning

A Supplementary

A.1 Supporting Theorems and Lemmas

Let us recall the excess risk of a randomized algorithm A defined as €5k (A(S)) = R(A(S)) — R(w..), which can
be decomposed by

erisk (A(S)) = R(A(S)) — Rs(A(S)) + Rs(w.) — R(w.) + Rs(A(5)) — Rs(w.). (A.14)

Hence, before introducing the proofs we will give some theorems and lemmas that are repeatedly used to bound

each term in Equation (A.14).

Here we simply assume bounds for ||w|. A simple lemma indicates that if w is bounded, then ¢(w,-,-) is
also bounded. In the subsequent sections, we will characterize the bounds for the iterates {w;} whenever the
parameter space W is bounded or unbounded.

Lemma A.6. Suppose { is nonnegative, conver and G-Lipschitz. Let M = sup, ,, £(0,z,2'). For any w € W
that w < B for some 0 < B < oo, then sup, , {(w,z,2') < M + GB.

Proof. By convexity of £, we have for any z, z’

Uw,z,2") <supl(0,z,2') + (w,0l(w,z,2')) < M + |w||||0¢(w,z,2')|, < M + GB
where the second inequality is due to Cauchy-Schwarz inequality. The proof is complete by taking the supremum.
O

The first theorem in this section is the the high probability generalization bound of UAS algorithms in pairwise
learning. This theorem is an extension of Theorem 1 in |Lei et al. (2020) for generalization bound of uniformly
stable algorithms in pairwise learning.

Theorem A.6. Suppose { is nonnegative, convexr and G-Lipschitz. Let A be a e-UAS randomized algorithm for
pairwise learning. Suppose the output of A is bounded by B and let M = sup, ,, £(0,2,2"). Then we have for
any v € (0,1), with probability at least 1 — ~v with respect to the sample S and the internal randomness of A,

R(A(S)) — Rs(A(S)) < de + 48v/BeGeln(n)] In(e/7) + 12v/Ze(M + GB)y | ).

n

Proof. According to Theorem 1 in|Lei et al.|(2020)), we only need to check the expected boundedness of £(A(S), -, -)
and the uniform stability of A. For the boundedness part, by Lemma [A.6 we know

|E[¢(A(S),z,2)]| < M +GB
for any z,2z’. For the uniform stability, since A is e-UAS, by the Lipschitz continuity of ¢ we have
sup [£(A(S),2,2') — L(A(S),2,2)| < G| A(S) — A(S)||2 < Ge.

z,z’

The proof is complete. O

The next corollary is a direct application of Theorem [A.6, which states if UAS holds with high probability, then
so is the generalization.

Corollary A.5. Let A be a randomized algorithm for pairwise learning. If for any o € (0,1), we have, for any
neighborhood datasets S, S’,

P [JA(S) = A(S)l2 > €] < 0.

Suppose £ is nonnegative, convex and G-Lipschitz. Suppose the output of A is bounded by B and let M =
sup, , £(0,2,2’). Then we have for any v € (0,1),

Ps 4| R(A(S)) — Rs(A(S)) > 4e + 48v/6eGe[In(n)] In(e/~) + 12v/2e(M + GB) IH(Z/ 7)} <7+ 0.
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Proof. Denote E = {A|[A(S)—A(S)|l, > €} and F = {S, AR(A(S)) — Rs(A(S)) > 4de +
48v/6eGe[In(n)] In(e/v) 4+ 12v/2e(M + GB)+/In(e/v)/n}. Then by assumption we have P4[A € E] < 7p. By
Theorem @, for any v € (0,1), we have Pg 4[5S, A € F|A ¢ E] < ~. Then the following identity holds
Pga[S, A€ F] =Pg 4[S,Ac FNA€E|+PsalS,Ac FNA¢E]
=Pg 4[S, A € F|A € E|P[A € E]|+Pg 4[S,Ac F|A ¢ E|P[A ¢ E]
<7 + -
The proof is completed. O

Combining Corollary [A.5 and the stability result in Theorem [I} we arrive at the following generalization bound
for Algorithm [1]

Corollary A.6. Suppose { is nonnegative, conver and G-Lipschitz. Let Br = ||Wr| and M = sup, ,, £(0,z,2).
If we run Algorithm Efor T > n iterations under random selection with replacement rule. For any v € (0 1),
with probability at least 1 —~ with respect to the sample S and the internal randomness of Algorithm[I, we have

R(Wr)— R (Wr) < 2v/enG(4+48V6eG n(n)] ln(26/’y))<\/f+ V3T ln(e? In(2/ 7)) +12v3¢(M +GBr) @

Proof. By Theorem [1} elementary inequality and the fact that stability is monotonically increasing, we have with
probability at least 1 — /2,

372 1n?(eT) In?(2
[z — w2 <tene (1 4 SCTIINEA))
The proof is completed by convexity of || - |2 and applying Theorem @With probability 1 — 7. O

The next theorem gives a bound on Rg(w,) — R(w.) by Hoeffding inequality of U-statistics Hoeftding| (1963]).

Theorem A.7. Suppose { is convex and G-Lipschitz. Let M = sup, , £(0,2,2") and B = ||w.||,. For any
€ (0,1), with probability at least 1 — v with respect to the sample S, we have

Rs(w.) — R(w.) < (M + GB) @

Proof. The result is derived by applying Hoeffding inequality since ¢(w.,z,z") < M + GB for any z,z’ according
to Lemma [A.6. O

Next we give an upper bound on the optimization error Rg(Wr) — Rg(wy). The results are inspired by Kar
et al. (2013)), where they consider the online-to-batch generalization bound for pairwise learning. Our bound in
the next theorem is given for optimization bound on finite sample.

Theorem A.8. Suppose £ is nonnegative, convexr and G-Lipschitz. Suppose there are some non-decreasing
sequence 0 < By < oo such that ||will, < By, and let M = sup, ,/ £(0,2,2') and B = [|w.||,. Suppose we run

Algorithm [I for T iterations, then with probability at least 1 — ~ with respect to the sample S and the internal
randomness of Algorithm[I, we have

2 2
Rs(Wr)—Rg(w,) < ZRt CoW,)+ ZRt eowg)+3—+£+ 6M+3GB\/ /” +3GBr ,/ 2T/7

fl fl

where Wy = {w € W||w||, < B} and Wp = {w € W|||w||, < B} are subspaces of W.

In order to prove Theorem |A.8, we decompose RS(WT) Rs(w,) as in Kar et al.| (2013) and bound each part
separately. In particular, recall that L; ;(w) = Zk 10w, 2, ,,2;,). We have the following lemmas.

Lemma A.7. Assume ( is nonnegative, convex and G-Lipschitz. Let Wy = {w e W||w|, < Bi} and let
M = sup, ,, £(0,2,2"). With probability 1 —~, we have

In(T'/7)
o

'ﬂ \

T T
2
:E Lt+1 Wt ST :E é O Wt + 3(M + GBT)
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Proof. For any w, denote Ly i(w) = LSy e LS l(W,2i,2;,). This allows us to decompose the risk as
follows
T
T Z — Ly (wy) Z Rs(wi) = Liy1(Wi) + L1 (We) — Liya(we)
=1 Piiq Qi1
By construction, we have ]Ezl.t+1 [Qt+1]2iy,- - ,2;,] = 0 and hence the sequence @2, -, Q7 forms a martingale

difference sequence. By Lemma@we have Q¢11 lies in [-M — GBy, M + GB;] C [-M — GBr, M + GBr] as
By’s are non-decreasing. An application of the Azuma-Hoeffding inequality shows that with probability at least

1_7a

S e

'ﬂ \

We now analyze each term P; individually. Let us start by introducing a ghost sample {z;

z’<k follows the same distribution as z;,. By linearity of expectation, we have

n t
Z%Zé Wt7zza zk ]

i=1 k=1

i 2y, ), where each

:\H

fis(wi) = [

where the expectation is taken over {z] }2:1' It allows us to write P; as follow

n t n t
1 ~ 1 1 ~
P, :E{ ; . Z:E Wy, Z;, Z lk } — Liyi(wy) < v‘,s;?\;t]E[n; n ;f(w,zz',z;k)} — Li1(w)
églﬁ+1(zi1v T ’Zif,)'
Since ¢ is bounded by A;, the expression g¢11(2:,, - ,2;,) can have a variation of at most (M + GB;)/t when

changing any of its ¢ variables. Hence an application of McDiarmid’s inequality gives us, with probability at
least 1 — 7,

In(1/~
G (a1 22) < By g -+ 2]+ (0 + @By [0
For any w € Wi, let f(w,z') = $= 31" | /(w,2;,2). Then we can write By, ... 2, [g¢+1(2i,, - ,24,)] as follow

t

Fow,z)| =3 f(wz,)|

1 k=1

M~

o (i 220)) = B [ sp B

~
Il

t t
< IE{z,ﬂ,k,z [ sup Zf w, zk Zf W ) Ziy, :| ]E{z%7 z, ,o’k}|: sup Zok sz;k) - f(w7zlk)):|
k=1

wEW, k=1 wEW, k=

E{Zlkﬁgk}[ suy;; Zokf ZE W, Zi,Zi, } < ffZIE{zlk (,k}[ sup Zokﬁ w zz,z,k)} = 2R (L o W,).
t k=1 i=1 Wi =1
Thus we have, with probability at least 1 — ,

In(1
P, < 2R,(LoW,) + (M + GB,) H(Qt”)-

The Lemma holds by applying a union bound on P; and taking the average over t. O

Lemma A.8. Suppose { is nonnegative, conver and G-Lipschitz. Let Wp = {w € W|||lwl|l, < B} and let
M = sup, , £(0,2,2"). With probability 1 — v, we have

Liyi(w.) — Rs(w,) <

z:: (Lo Wg) +3(M + GB) @

'ﬂ\w

HMH
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Proof. Similar to the proof of Lemma[A.7 by replacing w; with w.. O

Lemma A.9. Suppose { is nonnegative, convex and G-Lipschitz. Suppose ||w.|ly < B. Suppose we run Algo-
rithm [ for T iterations, then we have

T
. B2 nG?
; t+1 Wt Lt+1(W*) < ﬁ + T

Proof. By the update rule of Algorithm [T} we have

S = llwe — w5 + ﬁ2\}8it+1(wt)H§ — 2n(w; — Wy, OL¢11(Wy))

W1 — w3 =||we — n0Lis1(wi) — w

<|lwi — w5 + n* G — 2p(wi — W, 0Ly 1 (wy)).

Therefore, by the convexity of [A/t+]_, we have

S b1 L) <3 o o) < 35 I TG
t+1 (Wt t+1 (Wi =2 t w0 OLt41(We)) < 2 2 9
2
Il ne?
- 2n 2
the Lemma holds by dividing T" over both sides. O

Proof of Theorem[A.8, By the convexity of the empirical loss Rg, we have

1

Rs(WT) — Rg(w,) ST Rs(wy) — RS(W*)

] =

t

Il
-

1

=7 (Rs(wy) — Lig1(we) + Les1(wa) — Re(w) + Ly (we) — ﬁt+1(W*))- (A.15)

M=

t

Il
—

The conclusion follows from Lemma E, @ both with probability 1 — v/2 and Lemma @ O

A.2 Proof of Theorem 2|

Theorem A.9 (Theoremrestated). Suppose £ is nonnegative, conver and G-Lipschitz. Suppose W is bounded
with diameter D and let M = sup, ,, £(0,2,2"). Assume we run Algorithlefor T > n iterations under random
selection with replacement rule. For any v € (0,1), with probability at least 1 — ~y, with respect to the sample S
and the internal randomness of Algorithm[I, we have

D*  nG? In(67 (6
R(wr) = ZRt CoW)+ o+ Lo +6(M +GD) w +19¢(M +GD) w

T V3T In(eT) In(6/7) )

n

+2v/enG(4+48V6eG [In(n)] In(6e/7)) (

Proof of Theorem[A.9 Since W is bounded by D, we have B = B; = D. Furthermore, by Lemmal[A.6, we have
sup,, , {(w,2z,2') < M + GD and sup,, , {(wy,2z,2') < M + GD. The proof is completed by recalling the error

decomposmon (A.14), applying Corollary E Theorem E 7 and E each with probability 1 — ~/3. O

A.3 Proof of Theorem [

Theorem A.10 (Theorem [3| restated). Suppose € is nonnegative, convexr and G-Lipschitz. Denote M =
sup, ./ £(0,2,2") and D = [[w.|,. Assume we run Algorithm Efor T > n iterations under random selection
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with replacement rule. For any vy € (0,1), with probability at least 1 —~ with respect to the sample S and internal
randomness of Algorithm[I, we have

T
_ 2 D% nG? In(67'/~)
R(WT) 7R(W*) S?ti - (Rt(ZOWt)+Rt(£OWD)) +ﬁ+7+(6M+3GD) T

+27/enG(4+48V/6eG In(n)] In(6e/+)) (VT + V3T ln(e? ln(6‘/v))
122601+ 6@+ 20 2P 1 ar 4 iy RO,

+3G/(G2+2M)nn(6T/7)

Although the boundedness assumption on the parameter space W is removed, the next lemma characterizes the
bound of the iterates w; by the sum of stepsizes.

Lemma A.10. Suppose { is nonnegative, convex and G-Lipschitz. Denote M = sup, ,, £(0,2,2"). Let {w} be
the sequence of iterates by Algorithm[I with n < 1. Then

Iwiall? < (G + 20t

Proof. By the update rule of Algorithm [1], we have

A 2 A 2 A
[Weialls =[[we = 90Lowr (we) |, = [IWell3 +0?||0Les1(We) ||, — 20(we, OLiia (We))
<|will3 +nG? — 2n(wi, OLi1(we)) < [[Well3 +1G? + 20 (L41(0) — Ligr (wy))
<[[well3 +n(G* +2M),

where the first inequality holds since ¢ is G-Lipschitz and n < 1, the second inequality is due to the convexity of
£ and the last inequality is due to the nonnegativity of £ and the definition of M. O

Proof of Theorem|A.10. By assumption and Lemma@ we have B =D and B; = \/(G? + 2M)n Therefore
by Lemma@ we also get sup, , {(W.,2,2") < M + GD and sup, , £(wy,2,2") < M + G\/(G* + 2M . The
proof is completed by recalling the error decomposition applylng Corollary E Theorem E and |:
with probability 1 — ~/3 each.

O

A.4 Proof of Theorem [5

In this section, we give utility bound of Algorithm [2l Recall the error decomposition scheme as follows

erisk(Wpriv) = R(Wpriv) — R(W.) = R(Wpriv) — R(Wr) + R(wr) — R(w.)
= R(Wpriv) — R(Wr) + R(Wwr) — Rs(Wr) + Rg(Wr) — Rg(w.) + Rs(w,) — R(w.). (A.16)
Notice that R(Wr)— R(w.) yields similar excess risk as Theorem [A.9. Hence the difference here is the additional

term R(Wpyiv) — R(Wr) due to the added noise u. The next lemma is a Chernoff type bound for the £ norm of
Gaussian vectors.

Lemma A.11 (Chernoff bound for the ¢ norm of Gaussian vector). Let Xy, -+, X4 be i.i.d standard Gaussian
random variables and X = [X1,---, Xq] € R%. Then for any 7 € (0,1), with probability at least 1 — exp(—d7?/8)
there holds | X |3 < (1 +7)d.

The next lemma tells us the error incurred by R(Wpyiv) — R(Wr) is bounded by the added noise u.

Lemma A.12. Suppose { is nonnegative, convexr and G-Lipschitz. Consider Wyr, and W from Algorithm @
For any v > 0, and for any v € (exp(—d/8),1), with probability at least 1 — -y, we have

R(Wpriv) — R(Wr) < 2GoVdIn/*(1/7).
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Proof. By the definition of R, we have

R(Wpriv) — R(Wr)

Ez .z’ é(wpriva z, Z/) - é(wTa z, Z/)]
IEz z’ <Wpr1V v7VT7 aé(wprixu z, ZI)>]

)

[
[
Eg ([T (Wr + 1) = W [|2[|06(Wpiv, 2, 2')]|2]
[
E

IAIA

IA

<Ezz ([all2]|06(Wpriv, 2, 2') | 2]
<G| (A.17)
where the first inequality is due to the convexity of ¢, the second inequality is by Cauchy-Schwarz inequality, the
third inequality is by the non-expansiveness of projection and the last inequality is because ¢ is G-Lipschitz for
any w,z,z’. Now, since u ~ N (0,0%I;), then by Lemma [A.11, for v € (exp(—d/8),1) we have with probability
1- e

full, < ova(1+ (SO0,

Plugging the above inequality back into Equation (A.17) we get the desired result. O

Theorem A.11 (Theorem [5| restated). Suppose £ is nonnegative, convex and G-Lipschitz, and W is bounded
with diameter D. Consider Algorithm[2 for T iterations under random selection with replacement rule. For any
privacy budget € > 0, any 6 > 0 and for any v € (max{49, exp(—d/8)},1), with probability at least 1 —~, we have

2 2

T
4 D nG In(8T /~ In(8e/~v
R(Wpri) — ? 5 t(LoW) + 2T + N +6(M + GD) % + 19¢(M+GD) %

+2/eGn(4+ 48V6G In(n)] In(8e/7)) (VT + V3T ln(ez) In(2/ 6)) + 2GoVdIn' /4 (4/7).

Proof. For any neighborhood datasets S and S’, Theorem [1| implies with probability least 1 — ¢/2 that

[Wr — Willa < 2VeGn

(ﬁ+ \/ETIH(GZ) ln(2/5))_ (A.18)

Since v > 44, we know the (A.18) holds with probability at least 1 —~/8. Applying Corollary [A.6 with (A.18)
we know with probability at least 1 — /4 we have

R(Wr) — Rs(Wr) < 2v/eGr(4 + 486G In(n)] In(Se /7)) (ﬁ | V3T In(eT) In(2/ 5))

n

+12v2¢(M + GD) @. (A.19)

Recalling the error decomposition (6)) and applying Theorem Theorem [A.8 and Lemma [A.12 each with
probability 1 — v/4 together with (A.19), we have the desired bound. O

A.5 Rademacher Complexity for AUC Maximization and Similarity Metric Learning

Firstly we look at the Rademacher complexity for AUC maximization.

Lemma A.13. Given the parameter space W = {w € RY|||lw|l, < D}, and denote k = supy|[x||,. the

Rademacher complezity of H = {hw|w € W} can be upper bounded by R,(H) < %.
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Proof. Starting with the definition, the Rademacher complexity can be upper bounded by

t

sup 1Zokhw(xi,xik)] = %Z]E

-1 |PEM YD =1 [WeWr VT
1
1 n 1 t D n t 2 2
SEZE WSS&HWHQ ;Z%(Xi—xz'k) j SEZ E Z:Uk(xz‘—xm)

k=1 2

DI~ ,1\° 2Dk
=— E|: X; — X5, :| Si
tz(z ! ) g

where the first inequality is due to Cauchy-Schwarz inequality, the third identity is due to {0} }%_; are indepen-
dent random variables with mean zero. O

Next we turn our focus to similarity metric learning.

Lemma A.14. Consider the parameter space defined via the nuclear norm W = {W € Réxd, [wlg, < D}, where
lwl|ls, denotes the nuclear norm of a matriz w. The complexity of H = {hw : w € W} is bounded by

DIE[IXI2XX T2 Iogd
(X113 ]st\/@) (A.20)

Ry(H) :o( v

where || - ||s.. denotes the largest singular value.

Proof. The complexity of H = {hw : w € W} is bounded by

t

1
Rt(H) :ﬁZE % ng(xi — Xik)(xi — Xik)T
1=1

t n
1 - 1
%%t;0k<“@(xi_xik)(xi_xik) >] < E;E ig%”wnsl

k=1 Seo
1
o N . D|E[IX|3XXT]||¢_Viogd
<= D B> okl —xi) (xi — x5, —O< = >a
nt i=1 k=1 Soo \/E
where || - ||s., denotes the largest singular value of a matrix and we have used Lemma [A.17 in the last step. O

For any p > 1, the Schatten-p norm of a matrix W € R%*? is defined as the £p-norm of the vector of singular
values (W) := (o1(W),...,04(W))T (the singular values are assumed to be sorted in non-increasing order),
ie., |[Wls, :=lo(W)|l,. Let & =E[XX"]. We assume d > 3.

The following Khintchine-Kahane inequality [Lust-Piquard and Pisier| (1991) provides a powerful tool to control
the ¢-th norm of the summation of Rademacher series. The following form can be found in |Qiu and Wicks
(2014).

Lemma A.15 (Matrix Khintchine). Let Xi,..., X, be a set of symmetric matrices of the same dimension and
let 1,...,0, be a sequence of independent Rademacher random variables. For all ¢ > 2,
n 1 L qﬂ' n 1
a \a -1 2\3
(B | Y oxill} )" <274 TN XD, (A.21)
i=1 i=1

The following inequality is the Bernstein inequality for a summation of independent matrices Tropp (2015)).

Lemma A.16 (Matrix Bernstein). Let Z1,...,Z, be independent, mean-zero and symmetric random matrices
in R Assume that each one is uniformly bounded

E[Z)=0 and ||Zi|ls.. <L foreachi=1,...,n.
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Introduce the sum S =Y_"_| Z; and let v(S) denote the matriz variance statistic of the sum

5| Y Bz
i=1

Then I
E[IS]s..] < v20(S) 108(2d) + < los(2d).

Lemma A.17. Let 01,...,0, be independent Rademacher variables. Then

) Toa(9d 2 o||E[|X|I2X X T2
N d<\ﬁog< Jsup,[x[3 , 20/ X113 H|sw)' (A22)

1 n

7]EH E JiXiX,LT

n —1 n \/’FL
i=

Under the mild assumption \/log(2d) sup, [|x||3 < \/ﬁHE[HXH%XXT]Hi we get

) O(Fogdumnx%XXTH!éW).

1 n
EEH >_oixix] Jn
=1

Proof. By the concavity of the square-root function, we know
Y L z
]EUHZO'iXiXiTHS (E HZO’zXz T||S < 4\/7H szx XiX; )
i=1
1
<277 \/Edé ( Z XiX;rXiXZT) :
e
i=1

where we have used Lemma |A.15 and ||[W s, < [[W]s, < de [W]ls. forall W € R4, If we choose ¢ = 2logd

(d > 3), then
Vadis = /2logdd=od = \/2elogd

Sq

)

Soo

and therefore

[N

'XiXZ‘

< (S )

n
o = 2%\/7710gd<H inxjxixj
i=1

oo

.

It then follows from the concavity of the square-root function that

(NI

EHZO’ZXZ i mlogd ( HZX X; XiX ) (A.23)
It is clear
EH‘ ixixjxixi } <E [H lex XX —Elex XX, . } + H]Ezn:xixjxixiT
=t > i=1
=E[| ZX%X XX Eszx XX SJ +n[E[IX 13X XT] HSN. (A.24)
For all i € [n], denote Z; = ||x;||3x;x, — [HXszXz ] Tt is clear that

E[i Zi) = iE[IIxﬂleixI |- Z (Ellxl3xxT) (Bl 3] )

1=

=nE[|X[3XX "] - nE[| X[3X X TE[IX[3XXT] < nE[|IX[ISXX ]
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and therefore

n
E[S 22 ’ < H]E X|6xxT H . A25
[z, < nlenxixxT] (A.25)
Furthermore,
1Zills. < SHPHXiXZXz‘&TH&c < sup [|x][3. (A.26)

We can apply Lemma [A.16| with the above bound of variance and magnitude (A.26), and derive

n
1
IE[H 3 ZiHSw] < \/QnHE[HXHgXXT] |5, log(2d) + 3 sup x|} log(24).
This together with the sub-additivity of the square-root function and implies
n 1
(B[l ol )
. : 4
<]EH‘ZXX X;X EZXZX X;X oo]) + (nHE[HXH%XXT]HSW)

I log(2d
o[BI IR0 | tog(2) + YD s x4 B3
We plug the above inequality back into 7 and get the inequality

fIEH Zolx X,

IN

IN

<2t /7 10gd<(210g(2d 3 [E[IXISXX T2

Soo

N V/log(2d) sup, ||x||3 n ||]E[||X||§XXT]H§°O
V3n NG

). (A.27)

It is clear that

1 1
[Elx1Sx XY} < sup Il [EX XX

This together with Cauchy-Schwartz inequality shows that

1
L o |EIXIBXX T 2 log(2d) sup, [|x|13
(2log(2d))in 4 |[E[IXISX X T]||3_ < NG =+ \/722n B

Plugging the above inequality back into (A.27) gives the stated bound (A.22) (272 + 372 < 1). The proof is
complete. O




