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A Supplementary

A.1 Supporting Theorems and Lemmas

Let us recall the excess risk of a randomized algorithm A defined as ✏risk(A(S)) = R(A(S))�R(w⇤), which can
be decomposed by

✏risk(A(S)) = R(A(S))�RS(A(S)) +RS(w⇤)�R(w⇤) +RS(A(S))�RS(w⇤). (A.14)

Hence, before introducing the proofs we will give some theorems and lemmas that are repeatedly used to bound
each term in Equation (A.14).

Here we simply assume bounds for kwk. A simple lemma indicates that if w is bounded, then `(w, ·, ·) is
also bounded. In the subsequent sections, we will characterize the bounds for the iterates {wt} whenever the
parameter space W is bounded or unbounded.

Lemma A.6. Suppose ` is nonnegative, convex and G-Lipschitz. Let M = supz,z0 `(0, z, z0). For any w 2 W

that w  B for some 0  B < 1, then supz,z0 `(w, z, z
0)  M +GB.

Proof. By convexity of `, we have for any z, z
0

`(w, z, z
0)  sup

z,z0
`(0, z, z0) + hw, @`(w, z, z

0)i  M + kwkk@`(w, z, z
0)k2  M +GB

where the second inequality is due to Cauchy-Schwarz inequality. The proof is complete by taking the supremum.

The first theorem in this section is the the high probability generalization bound of UAS algorithms in pairwise
learning. This theorem is an extension of Theorem 1 in Lei et al. (2020) for generalization bound of uniformly
stable algorithms in pairwise learning.

Theorem A.6. Suppose ` is nonnegative, convex and G-Lipschitz. Let A be a ✏-UAS randomized algorithm for
pairwise learning. Suppose the output of A is bounded by B and let M = supz,z0 `(0, z, z0). Then we have for
any � 2 (0, 1), with probability at least 1� � with respect to the sample S and the internal randomness of A,

R(A(S))�RS(A(S))  4✏+ 48
p
6eG✏dln(n)e ln(e/�) + 12

p
2e(M +GB)

r
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.

Proof. According to Theorem 1 in Lei et al. (2020), we only need to check the expected boundedness of `(A(S), ·, ·)
and the uniform stability of A. For the boundedness part, by Lemma A.6 we know

��E[`(A(S), z, z0)]
��  M +GB

for any z, z
0. For the uniform stability, since A is ✏-UAS, by the Lipschitz continuity of ` we have

sup
z,z0

|`(A(S), z, z0)� `(A(S0), z, z0)|  GkA(S)�A(S0)k2  G✏.

The proof is complete.

The next corollary is a direct application of Theorem A.6, which states if UAS holds with high probability, then
so is the generalization.

Corollary A.5. Let A be a randomized algorithm for pairwise learning. If for any �0 2 (0, 1), we have, for any
neighborhood datasets S, S

0,

PA

h
kA(S)�A(S0)k2 > ✏

i
 �0.

Suppose ` is nonnegative, convex and G-Lipschitz. Suppose the output of A is bounded by B and let M =
supz,z0 `(0, z, z0). Then we have for any � 2 (0, 1),
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Proof. Denote E = {A|kA(S)�A(S0)k2 > ✏} and F = {S,A|R(A(S)) � RS(A(S)) > 4✏ +

48
p
6eG✏dln(n)e ln(e/�) + 12

p
2e(M + GB)

p
ln(e/�)/n}. Then by assumption we have PA[A 2 E]  �0. By

Theorem A.6, for any � 2 (0, 1), we have PS,A[S,A 2 F |A /2 E]  �. Then the following identity holds

PS,A[S,A 2 F ] =PS,A[S,A 2 F \A 2 E] + PS,A[S,A 2 F \A /2 E]

=PS,A[S,A 2 F |A 2 E]P[A 2 E] + PS,A[S,A 2 F |A /2 E]P[A /2 E]

�0 + �.

The proof is completed.

Combining Corollary A.5 and the stability result in Theorem 1, we arrive at the following generalization bound
for Algorithm 1.

Corollary A.6. Suppose ` is nonnegative, convex and G-Lipschitz. Let BT = kw̄T k and M = supz,z0 `(0, z, z0).
If we run Algorithm 1 for T � n iterations under random selection with replacement rule. For any � 2 (0, 1),
with probability at least 1� � with respect to the sample S and the internal randomness of Algorithm 1, we have

R(w̄T )�RS(w̄T )2
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Proof. By Theorem 1, elementary inequality and the fact that stability is monotonically increasing, we have with
probability at least 1� �/2,

��w̄T � w̄
0

T

��2
2
4e⌘2G2

⇣
T +

3T 2 ln2(eT ) ln2(2/�)

n2

⌘
.

The proof is completed by convexity of k · k2 and applying Theorem A.6 with probability 1� �
2 .

The next theorem gives a bound on RS(w⇤)�R(w⇤) by Hoe↵ding inequality of U-statistics Hoe↵ding (1963).

Theorem A.7. Suppose ` is convex and G-Lipschitz. Let M = supz,z0 `(0, z, z0) and B = kw⇤k2. For any
� 2 (0, 1), with probability at least 1� � with respect to the sample S, we have

RS(w⇤)�R(w⇤)  (M +GB)

r
ln(1/�)

n
.

Proof. The result is derived by applying Hoe↵ding inequality since `(w⇤, z, z
0)  M +GB for any z, z

0 according
to Lemma A.6.

Next we give an upper bound on the optimization error RS(w̄T ) � RS(w⇤). The results are inspired by Kar
et al. (2013), where they consider the online-to-batch generalization bound for pairwise learning. Our bound in
the next theorem is given for optimization bound on finite sample.

Theorem A.8. Suppose ` is nonnegative, convex and G-Lipschitz. Suppose there are some non-decreasing
sequence 0  Bt < 1 such that kwtk2  Bt, and let M = supz,z0 `(0, z, z0) and B = kw⇤k2. Suppose we run
Algorithm 1 for T iterations, then with probability at least 1 � � with respect to the sample S and the internal
randomness of Algorithm 1, we have
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where Wt = {w 2 W |kwk2  Bt} and WB = {w 2 W |kwk2  B} are subspaces of W.

In order to prove Theorem A.8, we decompose RS(w̄T ) � RS(w⇤) as in Kar et al. (2013) and bound each part
separately. In particular, recall that L̃t+1(w) = 1

t

Pt
k=1 `(w, zit+1 , zik). We have the following lemmas.

Lemma A.7. Assume ` is nonnegative, convex and G-Lipschitz. Let Wt =
�
w 2 W

��kwk2  Bt

 
and let

M = supz,z0 `(0, z, z0). With probability 1� �, we have
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Proof. For any w, denote L̃t+1(w) = 1
n

Pn
i=1

1
t

Pt
k=1 `(w, zi, zik). This allows us to decompose the risk as

follows

1
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By construction, we have Ezit+1
[Qt+1|zi1 , · · · , zit ] = 0 and hence the sequence Q2, · · · , QT forms a martingale

di↵erence sequence. By Lemma A.6 we have Qt+1 lies in [�M �GBt,M +GBt] ✓ [�M �GBT ,M +GBT ] as
Bt’s are non-decreasing. An application of the Azuma-Hoe↵ding inequality shows that with probability at least
1� �,
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We now analyze each term Pt individually. Let us start by introducing a ghost sample {z0i1 , · · · , z
0

it}, where each
z
0

ik follows the same distribution as zik . By linearity of expectation, we have

RS(wt) = E
h 1
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t
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,

where the expectation is taken over
�
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. It allows us to write Pt as follow
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Since ` is bounded by At, the expression gt+1(zi1 , · · · , zit) can have a variation of at most (M + GBt)/t when
changing any of its t variables. Hence an application of McDiarmid’s inequality gives us, with probability at
least 1� �,
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For any w 2 Wt, let f(w, z
0) = 1

t
1
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[gt+1(zi1 , · · · , zit)] as follow
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Thus we have, with probability at least 1� �,
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The Lemma holds by applying a union bound on Pt and taking the average over t.

Lemma A.8. Suppose ` is nonnegative, convex and G-Lipschitz. Let WB =
�
w 2 W

��kwk2  B
 

and let
M = supz,z0 `(0, z, z0). With probability 1� �, we have
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Proof. Similar to the proof of Lemma A.7 by replacing wt with w⇤.

Lemma A.9. Suppose ` is nonnegative, convex and G-Lipschitz. Suppose kw⇤k2  B. Suppose we run Algo-
rithm 1 for T iterations, then we have

1

T
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B

2

2T⌘
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2

Proof. By the update rule of Algorithm 1, we have
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.

Therefore, by the convexity of L̂t+1, we have
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2⌘
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2
,

the Lemma holds by dividing T over both sides.

Proof of Theorem A.8. By the convexity of the empirical loss RS , we have

RS(w̄T )�RS(w⇤) 
1

T

TX

t=1

RS(wt)�RS(w⇤)

=
1

T

TX

t=1

�
RS(wt)� L̂t+1(wt) + L̂t+1(w⇤)�RS(w⇤) + L̂t+1(wt)� L̂t+1(w⇤)

�
. (A.15)

The conclusion follows from Lemma A.7, A.8 both with probability 1� �/2 and Lemma A.9.

A.2 Proof of Theorem 2

Theorem A.9 (Theorem 2 restated). Suppose ` is nonnegative, convex and G-Lipschitz. Suppose W is bounded
with diameter D and let M = supz,z0 `(0, z, z0). Assume we run Algorithm 1 for T � n iterations under random
selection with replacement rule. For any � 2 (0, 1), with probability at least 1 � �, with respect to the sample S

and the internal randomness of Algorithm 1, we have
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.

Proof of Theorem A.9. Since W is bounded by D, we have B = Bt = D. Furthermore, by Lemma A.6, we have
supz,z0 `(w⇤, z, z

0)  M +GD and supz,z0 `(wt, z, z
0)  M +GD. The proof is completed by recalling the error

decomposition (A.14), applying Corollary A.6, Theorem A.7 and A.8 each with probability 1� �/3.

A.3 Proof of Theorem 3

Theorem A.10 (Theorem 3 restated). Suppose ` is nonnegative, convex and G-Lipschitz. Denote M =
supz,z0 `(0, z, z0) and D = kw⇤k2. Assume we run Algorithm 1 for T � n iterations under random selection



Stability and Di↵erential Privacy of Non-smooth Pairwise Learning

with replacement rule. For any � 2 (0, 1), with probability at least 1�� with respect to the sample S and internal
randomness of Algorithm 1, we have

R(w̄T )�R(w⇤)
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Although the boundedness assumption on the parameter space W is removed, the next lemma characterizes the
bound of the iterates wt by the sum of stepsizes.

Lemma A.10. Suppose ` is nonnegative, convex and G-Lipschitz. Denote M = supz,z0 `(0, z, z0). Let {wt} be
the sequence of iterates by Algorithm 1 with ⌘  1. Then

kwt+1k22  (G2 + 2M)⌘t.

Proof. By the update rule of Algorithm 1, we have

kwt+1k22 =
��wt � ⌘@L̂t+1(wt)

��2
2
= kwtk22 + ⌘

2
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↵
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2 + 2⌘
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�
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where the first inequality holds since ` is G-Lipschitz and ⌘  1, the second inequality is due to the convexity of
` and the last inequality is due to the nonnegativity of ` and the definition of M .

Proof of Theorem A.10. By assumption and Lemma A.10, we have B = D and Bt =
p

(G2 + 2M)⌘t. Therefore,

by Lemma A.6, we also get supz,z0 `(w⇤, z, z
0)  M +GD and supz,z0 `(wt, z, z

0)  M +G
p

(G2 + 2M)⌘t. The
proof is completed by recalling the error decomposition (A.14), applying Corollary A.6, Theorem A.7 and A.8
with probability 1� �/3 each.

A.4 Proof of Theorem 5

In this section, we give utility bound of Algorithm 2. Recall the error decomposition scheme as follows

✏risk(wpriv) = R(wpriv)�R(w⇤) = R(wpriv)�R(w̄T ) +R(w̄T )�R(w⇤)

= R(wpriv)�R(w̄T ) +R(w̄T )�RS(w̄T ) +RS(w̄T )�RS(w⇤) +RS(w⇤)�R(w⇤). (A.16)

Notice that R(w̄T )�R(w⇤) yields similar excess risk as Theorem A.9. Hence the di↵erence here is the additional
term R(wpriv)�R(w̄T ) due to the added noise u. The next lemma is a Cherno↵ type bound for the `2 norm of
Gaussian vectors.

Lemma A.11 (Cherno↵ bound for the `2 norm of Gaussian vector). Let X1, · · · , Xd be i.i.d standard Gaussian
random variables and X = [X1, · · · , Xd] 2 Rd. Then for any �̃ 2 (0, 1), with probability at least 1� exp(�d�̃

2
/8)

there holds kXk22  (1 + �̃)d.

The next lemma tells us the error incurred by R(wpriv)�R(w̄T ) is bounded by the added noise u.

Lemma A.12. Suppose ` is nonnegative, convex and G-Lipschitz. Consider wpriv and w̄T from Algorithm 2.
For any � > 0, and for any � 2 (exp(�d/8), 1), with probability at least 1� �, we have

R(wpriv)�R(w̄T )  2G�

p
d ln1/4(1/�).
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Proof. By the definition of R, we have

R(wpriv)�R(w̄T ) =Ez,z0 [`(wpriv, z, z
0)� `(w̄T , z, z

0)]

Ez,z0 [hwpriv � w̄T , @`(wpriv, z, z
0)i]

Ez,z0 [k⇧W(w̄T + u)� w̄T k2k@`(wpriv, z, z
0)k2]

Ez,z0 [kuk2k@`(wpriv, z, z
0)k2]

Gkuk2 (A.17)

where the first inequality is due to the convexity of `, the second inequality is by Cauchy-Schwarz inequality, the
third inequality is by the non-expansiveness of projection and the last inequality is because ` is G-Lipschitz for
any w, z, z

0. Now, since u ⇠ N (0,�2
Id), then by Lemma A.11, for � 2 (exp(�d/8), 1) we have with probability

1� �,
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.

Plugging the above inequality back into Equation (A.17) we get the desired result.

Theorem A.11 (Theorem 5 restated). Suppose ` is nonnegative, convex and G-Lipschitz, and W is bounded
with diameter D. Consider Algorithm 2 for T iterations under random selection with replacement rule. For any
privacy budget ✏ > 0, any � > 0 and for any � 2 (max{4�, exp(�d/8)}, 1), with probability at least 1��, we have
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Proof. For any neighborhood datasets S and S
0, Theorem 1 implies with probability least 1� �/2 that
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. (A.18)

Since � � 4�, we know the (A.18) holds with probability at least 1 � �/8. Applying Corollary A.6 with (A.18)
we know with probability at least 1� �/4 we have
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. (A.19)

Recalling the error decomposition (6) and applying Theorem A.7, Theorem A.8 and Lemma A.12 each with
probability 1� �/4 together with (A.19), we have the desired bound.

A.5 Rademacher Complexity for AUC Maximization and Similarity Metric Learning

Firstly we look at the Rademacher complexity for AUC maximization.

Lemma A.13. Given the parameter space W = {w 2 Rd|kwk2  D}, and denote  = supxkxk2. the
Rademacher complexity of H = {hw|w 2 W} can be upper bounded by Rt(H)  2D

p
t
.
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Proof. Starting with the definition, the Rademacher complexity can be upper bounded by
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where the first inequality is due to Cauchy-Schwarz inequality, the third identity is due to {�k}tk=1 are indepen-
dent random variables with mean zero.

Next we turn our focus to similarity metric learning.

Lemma A.14. Consider the parameter space defined via the nuclear norm W =
�
w 2 Rd⇥d

, kwkS1
 D

 
, where

kwkS1 denotes the nuclear norm of a matrix w. The complexity of H = {hw : w 2 W} is bounded by
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where k · kS1 denotes the largest singular value.

Proof. The complexity of H = {hw : w 2 W} is bounded by
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where k · kS1 denotes the largest singular value of a matrix and we have used Lemma A.17 in the last step.

For any p � 1, the Schatten-p norm of a matrix W 2 Rd⇥d is defined as the `p-norm of the vector of singular
values �(W ) := (�1(W ), . . . ,�d(W ))> (the singular values are assumed to be sorted in non-increasing order),
i.e., kWkSp := k�(W )kp. Let ⌃ = E[XX

>]. We assume d � 3.

The following Khintchine-Kahane inequality Lust-Piquard and Pisier (1991) provides a powerful tool to control
the q-th norm of the summation of Rademacher series. The following form can be found in Qiu and Wicks
(2014).

Lemma A.15 (Matrix Khintchine). Let X1, . . . , Xn be a set of symmetric matrices of the same dimension and
let �1, . . . ,�n be a sequence of independent Rademacher random variables. For all q � 2,
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The following inequality is the Bernstein inequality for a summation of independent matrices Tropp (2015).

Lemma A.16 (Matrix Bernstein). Let Z1, . . . , Zn be independent, mean-zero and symmetric random matrices
in Rd⇥d. Assume that each one is uniformly bounded

E[Zi] = 0 and kZikS1  L for each i = 1, . . . , n.
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Introduce the sum S =
Pn

i=1 Zi and let v(S) denote the matrix variance statistic of the sum
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i ]
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Then
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Lemma A.17. Let �1, . . . ,�n be independent Rademacher variables. Then
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Under the mild assumption
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Proof. By the concavity of the square-root function, we know
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where we have used Lemma A.15 and kWkS1  kWkSq  d
1
q kWkS1 for all W 2 Rd⇥d. If we choose q = 2 log d
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It then follows from the concavity of the square-root function that
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It is clear
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For all i 2 [n], denote Zi = kxik22xix
>

i � E
⇥
kxik22xix

>

i

⇤
. It is clear that

E
⇥ nX

i=1

Z
2
i

⇤
=

nX

i=1

E
h
kxik62xix

>

i

i
�

nX

i=1

⇣
E[kxik22xix

>

i ]
⌘⇣

E[kxik22xix
>

i ]
⌘

= nE
⇥
kXk62XX

>
⇤
� nE

⇥
kXk22XX

>
⇤
E
⇥
kXk22XX

>
⇤
� nE

⇥
kXk62XX

>
⇤



Stability and Di↵erential Privacy of Non-smooth Pairwise Learning
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Furthermore,
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We can apply Lemma A.16 with the above bound of variance (A.25) and magnitude (A.26), and derive
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This together with the sub-additivity of the square-root function and (A.24) implies
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We plug the above inequality back into (A.23), and get the inequality
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This together with Cauchy-Schwartz inequality shows that
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Plugging the above inequality back into (A.27) gives the stated bound (A.22) (2�
3
2 + 3�

1
2 < 1). The proof is

complete.


