Appendix for TenIPS: Inverse Propensity Sampling
for Tensor Completion

This appendix is organized as follows. Section [A] upper bounds the tensor completion error in the general case.
Section [B] proves the upper bounds for both the general and the special cases. Section [C|computes the gradients in
NoNCONVEXPE for propensity estimation. Section |D| numerically studies the sensitivity of propensity estimation
algorithms (CONVEXPE and NONCONVEXPE) to their respective hyperparameters.

A Error in tensor completion (Algorithm 1 and 3): general case

We first state Theorem |5} the tensor completion error in the most general case. For brevity, we denote DAC(TP) and
X(P) by X and X, respectively, in which P is the true propensity tensor.

Theorem 5. Consider an order-N tensor B € RIVXIN and two order-N tensors P and A with the same
shape as B. FEach entry B;, . .. of B is observed with probability P;, . .. from the corresponding entry of
P.  Assume there exist constants P, € (0,00) such that ||Alle < @, ||Blloc = %. Denote the spikiness
C
parameter sy := Py /Iin1/||Bllr. Then under the conditions of Lemma 2, with probability at least 1 — m -
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On the right-hand side of Equation [1} the first term comes from the error between X(P) and B when projected
onto the truncated column singular spaces in each mode n € [N]; the second and third terms come from the
projection error of B onto the above spaces. 1



Now we state Theorem 4 from the main paper, a corollary of the above Theorem [5|in the special case that the
tensor is cubical and every unfolding has the same rank.

Theorem 4. (Restated) Consider an order-N cubical tensor B with size Iy = -+ = Iy = I and multilinear
rank r{™C = ... = U = < I, and two order-N cubical tensors P and A with the same shape as B. Each
entry B;, .in of B is observed with probability P;, . ;. from the corresponding entry of P. Assume I > rNlogl,

and there exist constants ¥, € (0,00) such that ||Allcc < &, ||Blloc = 3. Further assume that for each n € [N],
o1 (BM . . . . .
the condition number % < Kk is a constant independent of tensor sizes and dimensions. Then under the

conditions of Lemma 2, with probability at least 1 — I~ the fized multilinear rank (r,r,...,r) approzimation
X(P) computed from CONVEXPE and TENIPS (Algorithms 1 and 3) with thresholds T > 0 and v > « satisfies
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B Proof for Theorem [4] and 5

in which C' depends on k.

B.1 Proof for Theorem [5], the general case

We first show the proof for Theorem [5] the general case. This is the full version of the proof sketch in Section 5.2
of the main paper. We start with Lemma [6] on how the error in propensity estimates propagates to the error in
the inverse propensity estimator X(P), then bound the error between X(P) and B.

Lemma 6. Instate the conditions of Lemma 2 and further suppose ||B||oo = ¥. Then with probability at least
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The second inequality comes from ‘JA’Z-IZ-Q...iN > o(—v) and P; 4,...;py > o(—a); the last inequality follows Lemma
0

We then state two lemmas that we will apply to tensor unfoldings. Lemma [7]is the matrix Bernstein inequality.
Lemma [8] is a variant of the Davis-Kahan sin(©) Theorem [I].

Lemma 7 (matrix Bernstein for real matrices [2, Theorem 1.6.2]). Let Si,..., Sk be independent, centered
random matrices with common dimension m X n, and assume that each one is uniformly bounded

ES;=0 and ||Si| <L foreachi=1,... k.

Introduce the sum



and let v(Z) denote the matriz variance statistic of the sum:

v(Z) = max {|[E(ZZ7)]|, [IE(Z" Z)||}

:max{nzwsis:)n, n;E(s:si)}.

i=1

Then
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Lemma 8 (Variant of the Davis-Kahan sin(©) Theorem [3], [4, Theorem 4]). Let A, A € RP*4 have singular values
O1> ... 2 Omin(pyg) @A 01 > ... > Oin(p,q) Tespectively, and have singular vectors {u;}7_y, {vi}i—q and {u;}i_,,
{%}1 1, respectively. Let V = (v17~-~ r) € R?PX7, V = (D1, ,0,) ER™T, V) = (Uyg1, - ,0,) € RPM7T)
and V| = (Upp1, - ,0,) € RP=7) - Assume that o2 3+1 > 0, then
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Identical bounds also hold if V' and V are replaced with the matrices of left singular vectors U and (7, where U =
(Upy Ui 1, - -5 us) € RPXD and U = (Uy, Upy1, - - -, Us) € RP*? have orthonormal columns satisfying ATuj = 0,v;
and ATa; = 6,0; forj=rr4+1,...,s.

Upper bound on [|X(")(P) — B™|:  We decompose it into the error between X (P) and X (P), and the
error between X (P) and B, and independently bound these two terms:
1XM (@) — BO || < I XM (P) — X| + | XM — B

P
() Py _ x(n) (1) (n) (5)
<X (P) = XJg 4 X — B,
The first RHS term is bounded by Lemma @ the error given by propensity estimation. Note that we can get a
tighter bound if we can directly bound || X(™(P) — X(||. The second RHS term can be bounded by Lemma
the matrix Bernstein inequality, as below.

For each (i1,...,iy), define the random variable
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With probability at least 1 — [I,, 4+ I(_y)] exp [f %], the sum of random variables is bounded as
L I In

I Z Z - Z Sivisin|l < €||B||r. Notice the difference between the propensity-reweighted observed tensor
Li=lix=1  iy=1

X(P) and the true tensor B

= 1
x(?)_B: Z 7‘Bobs®8(i1;i27"'7iN>_‘B

(i1 i, in)EQ * 82N

— Z (%71)13@8(1'1,1‘2,...,1‘1\;)7 Z B © E(i1,02,.--,iN)

. X 11821 . X
(i1,42,..,in)EQ 1IN (i1,42,..,iN)EQ



I, I In
is an instance of Z Z e Z 8iyiy-iy Over the randomness of entry-wise observation, hence we can use the
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matrix Bernstein inequality (Lemma (7)) to bound [|X(P) — B||. Together with Equations [4| and |5, we get the
upper bound on ||X(™)(P) — BM||.

How ||5C(”)(§) — B(")|| propagates into the final error in TENIPS (Algorithm 3): In TENIPS,

X(P) = [5C(3A>) X Qf Xz Xy QH $1Q1 X2 Xn Qn = X(P) x1 Q1Q] X2+ xn QnNQL-

W(P)

This projects each unfolding of 5C(UA’) onto the space of its top left singular vectors. Thus by adding and subtracting
B x4 QlQI Xg oo XN QNQ—A'—, within the Frobenius norm, we decompose the error as

1X(P) — B2 = 1X(P) x1 Q@] X2 - xn QnQk — B2
= | X(P) x1 Q1Q] X2+ xn QNQN — B x1 Q1Q] X2+ xn QNQY
+ B x1Q1Q] X2 xn QNQN — B|E
= [I(X(P) — B) x1 QiQ] X2+ xn QnQLII
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)
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First, we show that the cross term (3) is zero, since it is the product of two terms in mutually orthogonal subspaces.
For each n € [N],

[(X(P) = B) x1 Q1Q] x2--- xn QnQL]™ = Q, e,

where eﬁl”) is the mode-n unfolding of the tensor C,,, defined as

Cn = [(D_C(UA’) —B)x1 Q) - XNQN] X1 Q1 Xpo1 Qre1 X1 Qi1 XN QN

Thus we have
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Next, for Terms @ and @), we introduce more notation before we analyze the error. Define Yg = B, and for each
n € [N] let

Yn =B x1 Q1Q] X2+ X, QnQ, .

Thus B x1 Q1Q] X9 - XN QNQrx —B =Yy — Yo = N Yn — Yn_1). Each n € [N] in the sum satisfies
1 N

n=1
yn - yn—l = yn—l Xn (QnQI - I)
This allows us to analyze each mode individually.

For Term (D, for any n € [N], we have
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ne[N]

< min {r, - [XB)" - 307},

n€[N]



the RHS of which can be bounded from Section [B.1l
As for Term @), it can be bounded using a technique similar to [, Lemma B.1]. For each n € [N],
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in which @ and @ vanish when rt4¢ < r, since (U,), = 0.

In the general case:

e The error between projections of B(™) onto U,, and Q,, is
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in which the last inequality comes from Lemma [§]
e The residual Q) = El i1 0 2(B(n)) = ( ﬁf))Q is the 7,,-th tail energy for B(.

e The inner product of projections is
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in which the first inequality comes from tr(AB) < A (A)tr(B) for positive semidefinite matrices A, B, and
the second from last inequality comes from Lemma [§]

Together, the above conclude the proof for Theorem

B.2 Proof for Theorem |4, the special case

Recall the high-probability upper bound of Theorem [5} Equation [I] is
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We denote f(n) ~ g(n) if there exist universal constants C;,Cy and Ny such that Cig(n) < f(n) < Cag(n) for
each n > Np.



For an order-NN cubical tensor B with size I; = = Iy = I, multilinear rank r{*® = ...

= =r < I, and
target multilinear rank (r,r,...,r), we choose € ~ \/%. In this scenario:

e From Lemma 6, we have

||5C@) - X||p Qsp 1 1 s
|B|w = o(—y)o(—a) \/461“/7—(\/[75 + \/E) ~ I7NE = O(e).

e When I > rNlogl, ¢|B™|p = O(%HB(”)HF) = O(o1(B™)) for every n € [N].

e For every n € [N], the tail singular values aj(B(”)) =0forj=r+1,...,1.
Thus in the upper bound of Theorem [5] Equation [T] above:

e The first term
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e In the proof of Theorem Term (B and @ vanish when 7t < r, since (U,),. = 0. Together with
(n
% < k for every n € [N], the second term in the upper bound of Equation
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e The third term —~ ZN: (Tr:)) =0.
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Together, we have the simplified high-probability upper bound
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As for the probability lower bound 1 — ——— I, + I exp { F :
ot I~ 2t lenle | = o s
e With the universal constant C1 > 0, we have ; ilc =0(I1).

e The sum of probabilities from the matrix Bernstein inequality
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Thus the probability is at least 1 — I~!. This concludes the proof for Theorem



C Gradient computation for NONCONVEXPE (Algorithm 2)

For any y € R and X € R"™*" we define the scalar-to-matrix derivative dy/0X as a matrix of the same size as
X, with the (4, j)-th entry [0y/0X];; = Oy/0X,; for every i € [m], j € [n].

Recall that in NONCONVEXPE, we use the gradient descent algorithm to minimize

I In
FEM AU nev) =) D = Qypin log o(G% <1 UY g -+ Xy Uiy i) (6)

— (1= Qyyiy) Jog{1 = o[(§" x1 Uf* 2+ X UR )iy win

in which o is the link function. Denote A := G %, Ulﬂ Xg oo XN va{. When we use the logistic link function
o(x) =1/(14 e *), f is the sum of entry-wise logistic losses between the true binary mask tensor Q and the

observation probability tensor o(A).

We first show the gradient of the logistic loss, and we omit the calculations.

Lemma 7. (gradient of the logistic loss) For the logistic loss {(x,y) = —ylogo(xz) — (1 — y)log(1 — o(z)), we
have 00/0x = o(x) — y.

We then show Lemma [§] for the chain rule of gradients of real-valued functions over matrices.

Lemma 8. (chain rule of scalar-to-matriz derivatives) Let A be a matriz of sizem xn, and g : R — R be a
continuously differentiable function. Define the real-valued function G : R™*™ — R as

Then:

1. If X, Y are matrices of size m X p and p X n, respectively, and A = XY, then

2. If X)Y, Z are matrices of size m X p, p X q and q X n, respectively, and A = XY Z, then

0G(A)  _10G(A) +
Y =X HA Z

Proof. We show our proof in a similar fashion as [0, Lemma 2|. In Case 1,

0Xi; o0, if ki

for every k,i € [m], I € [n], j € [p]. Thus

ij
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In Case 2, since Ay = ZZXMYiijl, we have

i=1 j=1

= X]“'Zjl. Thus

9G(A) i "L OG(A) 0Aw
B 0Ay 0Y;;

These conclude the proof for Lemma [§] based on the definition of scalar-to-matrix derivatives. O

Finally, we show the gradients {0f/0U, },e[n] and 0f/0G in Theorem @
Theorem 9. (gradients of the objective function in Algorithm 2) For each n € [N], with

I, Iz 1

N
FEM AU mem) = DD > = Qupig logo[(§7% xa Ui o -+ xn Uiy i

— (1 — Qil...iN)log{l — 0[(9A X1 UIA Xg XN U]G)““\,H,
and A = G x4 U{q Xo oo XN Uﬁ, we have:

1. The gradient with respect to the factor matriz U,
af af

=

E = gam U ®ULz@-eUielf ol -aUl,) ("™

2. The gradient with respect to the unfolded core tensor (QA)(")

L:( A)T. of
a(g4) ) " pAm)

(U oUL, @ - UReU' @U@ 0 UL,).

Proof. With the Tucker decomposition of fl, we have A = Ul (g . (U,ﬁl ® U,ﬁ_z ® - QULRU! ®
U@ o Uf_l)T for the unfolding in each of the n € [N] [7]. Thus we can apply each case of Lemma (8] to the
corresponding case here, with A to be A, O

With Lemma we have 0f/ OA = U(fl) — Q) for the logistic link function . This can be inserted into Theorem@
for the gradients {9f/0U,, }ne|n) and 0f /05, but note that Theorem |§| does not rely on this result.

D Sensitivity of propensity estimation algorithms to hyperparameters

We study the sensitivities of CONVEXPE (Algorithm 1) and NONONVEXPE (Algorithm 2) to their respective
hyperparameters.

The most important hyperparameters in CONVEXPE are 7 and . Ideally, we want to set 7 = 6 and v = «; this
is not possible in practice, though, since we do not know the 6 and a of the true parameter tensor A. In the
setting of the third experiment in Section 6.1 of the main paper, we study the relationship between relative errors
of propensity estimates and the ratios 7/6 and v/« in Figure @ We can see that the performance is much more
sensitive to 7 than v, and a slight deviation of 7/6 from 1 results in a much larger propensity estimation error.

The most important hyperparameter in NONCONVEXPE is the step size t. We show both the convergence and
the change of propensity relative errors at various step sizes in Figure[7] We can see that the relative errors
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Figure 6: Hyperparameter sensitivity of CONVEXPE (Algorithm 1) to 7 and ~.
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Figure 7: Hyperparameter sensitivity of NONONVEXPE (Algorithm 2) to step size ¢t. Since the objective function
is the logistic loss between the mask tensor Q and the parameter tensor A, the relative loss in Figure [7a]is the
ratio of actual logistic loss to the best logistic loss computed from the true parameter tensor. Propensity error in
Figure is |P — P||r/||P||¢, the same as in the main paper.

of propensity estimates steadily decrease at all step sizes at which the gradient descent converges. Also, the
respective rankings of relative losses and propensity errors at different step sizes are the same across all iterations,
indicating that the relative loss is a good surrogate metric for us to seek a good propensity estimate. Thus
practitioners can select the largest step size at which NONCONVEXPE converges; it is 5 x 1076 in our practice.
This is much easier than the selection of 7 in CONVEXPE.
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