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Appendix

A Notation and Useful Propositions

Let V be a Hilbert space with inner product 〈·, ·〉V and the induced norm ‖ · ‖V . For A : V → V , we denote an
operator norm of A as ‖A‖op, that is,

‖A‖op
def
= sup

v∈V

‖Av‖V
‖v‖V

.

For a, b ∈ V , we define an outer product a⊗V b : V → V as follows:

(a⊗V b)v
def
= 〈b, v〉V a, ∀v ∈ V.

Let W be a closed subspace of V , then a projection onto W is well defined and we denote its operator by PW .
Then we have

v = PW v + PW⊥v, ∀v ∈ V.

Furthermore, we define a partial order � between linear, positive semi-definite and self-adjoint operators
A,B : V → V as follows:

A � B def⇐⇒ 〈Av, v〉V ≤ 〈Bv, v〉V , ∀v ∈ V.

The following inequality shows that the difference between the square root of two self-adjoint positive semi-definite
operators is bounded by the square root of the difference of them.

Proposition 1. Let V be a separable Hilbert space. For any compact, positive semi-definite, self-adjoint operators
S, S̃ : V → V , the following inequality holds:

‖S1/2 − S̃1/2‖op ≤ ‖S − S̃‖
1/2
op (9)

Proof. Since S1/2 − S̃1/2 is also a compact and self-adjoint operator, it allows eigendecomposition of itself. Then
let λmax be the eigenvalue with largest absolute value and v be the corresponding normalized eigenfunction of
S1/2 − S̃1/2, i.e.,

(S
1/2 − S̃1/2)v = λmaxv.

Since (9) obviously holds if S = S̃, we can assume that λmax > 0 without loss of generality. Because S1/2 is
positive semi-definite, we have

〈v, Sv〉V = ‖S1/2v‖2V
= ‖S̃1/2v + λmaxv‖2V
= 〈v, S̃v〉V + λ2

max + 2λmax〈v, S
1/2v〉V

≥ 〈v, S̃v〉V + λ2
max.

Thus we have

‖S − S̃‖op ≥ 〈v, (S − S̃)v〉V
≥ λ2

max = ‖S1/2 − S̃1/2‖2op,

which completes the proof.

The following inequality is a generalization of the Bernstein inequality to random operators on separable Hilbert
space and used in Lemma 1 to derive the concentration of integral operators.
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Proposition 2 (Proposition 3 in Rudi and Rosasco (2017)). Let V be a separable Hilbert space and let
X1, X2, . . . , Xn be a sequence of independent and identically distributed self-adjoint random operators on V .
Assume that EXi = 0 and there exists B > 0 such that ‖Xi‖op ≤ B almost surely for any 1 ≤ i ≤ n. Let S be the
positive operator such that EX2

i ≤ S. Then for any δ ∈ (0, 1], the following inequality holds with probability at
least 1− δ: ∥∥∥∥∥ 1

n

n∑
i=1

Xi

∥∥∥∥∥
op

≤ 2Bβ

3n
+

√
2‖S‖opβ

n
,

where β = log 2trS
‖S‖opδ .

B Basic Properties of RKHS

In analyses of kernel methods, it is common to assume X is compact, ρX has the full support and k is continuous
because under such assumptions we utilize Mercer’s theorem to characterize RKHS Cucker and Smale (2002);
Aronszajn (1950). However, such an assumption may not be adopted under the strong low noise condition in
which ρX may not have full support. In this section, we explain some basic properties of reproducing kernel
Hilbert space (RKHS) under more general settings based on Dieuleveut and Bach (2016); Steinwart and Scovel
(2012).
First, for given kernel function k and its RKHS H, we define a covariance operator Σ : H → H as follows:

〈f,Σg〉H = 〈f, g〉L2(ρX ), ∀f, g ∈ H.

It is well-defined through Riesz’ representation theorem. Using reproducing property, we have

Σ = EX∼ρX [k(·, X)⊗H k(·, X)],

(Σf)(z) = EX∼ρX [f(X)k(X, z)], ∀f ∈ H. (10)

where expectation is defined via a Bochner integration. From the representation (10), we can extend the covariance
operate to f ∈ L2(ρX ). We denote this by T : L2(ρX )→ L2(ρX ) as follows:

(Tf)(z) = EX∼ρX [f(X)k(X, z)], ∀f ∈ L2(ρX ).

Im(T ) ⊂ L2(ρX ) is verified since k(·, x) is uniformly bounded by Assumption 2. Also, we can write T using
feature expansion (4) as

T = Eω∼τ [ϕ(·, ω)⊗L2(ρX ) ϕ(·, ω)], (11)

since

(Tf)(z) = EX∼ρX [f(X)Eω∼τ [ϕ(X,ω)ϕ(z, ω)]]

= Eω∼τ [〈f, ϕ(·, ω)〉L2(ρX )ϕ(z, ω)].

Following Dieuleveut and Bach (2016), here we denote a set of square integral function itself by L2(dρX ), that is,
its quotient is L2(ρ(X )), which is separable Hilbert space. We can also define the extended covariance operator
T : L2(ρX )→ L2(dρX ) as follows:

(T f)(z) = EX∼ρX [f(X)k(X, z)], ∀f ∈ L2(ρX ).

Here we present some properties of these covariance operators Σ, T, T from Dieuleveut and Bach (2016).

Proposition 3.

1. Σ is self-adjoint, continuous operator and Ker(Σ) = {f ∈ H | ‖f‖L2(ρX ) = 0}.

2. T is continuous, self-adjoint, positive semi-definite operator.

3. T 1/2 : Ker(T )⊥ → Ker(Σ)⊥ is well-defined and an isometry. In particular, for any f ∈ Ker(Σ)⊥ ⊂ H, there
exists g ∈ Ker(T )⊥ ⊂ L2(ρX ) such that ‖f‖H = ‖g‖L2(ρX ).
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We denote the extended covariate operator associate with kM by TM : L2(ρX ) → L2(ρX ) and TM : L2(ρX ) →
L2(dρX ).

As with (11), we have

TM =
1

M

M∑
i=1

ϕ(·, ωi)⊗L2(ρX ) ϕ(·, ωi),

E[TM ] = T.

The next lemma provides a probabilistic bounds about the difference of the two covariate operators T and TM .

Lemma 1. For any δ ∈ [0, 1), the following inequality holds with probability at least 1− δ:

‖T − TM‖op ≤ R
2

(
2β

3M
+

√
2β

M

)

where β = log 2R2

‖T‖opδ .

Proof. Let Xi = T − ϕ(·, ωi)⊗L2(ρX ) ϕ(·, ωi). Then T − TM = 1
M

∑M
i=1Xi. Also, we have

EXi = 0,

Xi � T � R2I,

Xi � −ϕ(·, ωi)⊗L2(ρX ) ϕ(·, ωi) � −R2I,

||Xi||op ≤ R2, as a result of two previous inequalities,

EX2
i = E

[
ϕ(·, ωi)⊗L2(ρX ) ϕ(·, ωi)

]2 − T 2

� E
[
ϕ(·, ωi)⊗L2(ρX ) ϕ(·, ωi)

]2
� E

[
〈ϕ(·, ωi), ϕ(·, ωi)〉L2(ρX )ϕ(·, ωi)⊗L2(ρX ) ϕ(·, ωi)

]
� R2T,

trT =

∫
X
k(x, x)dρX (x) ≤ R2.

Let B = R2 and S = R2T in Proposition 2, we have

‖T − TM‖op =

∥∥∥∥∥ 1

M

M∑
i=1

Xi

∥∥∥∥∥
op

≤ 2R2β

3M
+

√
2R2‖T‖opβ

M

≤ R2

(
2β

3M
+

√
2β

M

)
,

which completes the proof.

Let H and HM be RKHSs associate with kernels k and kM , respectively. Using Proposition 3 and Lemma 1, we
have the following proposition, which is essential in the proof of Theorem 1.

Lemma 2. For any δ ∈ (0, 1] and ξ > 0, if

M ≥ max

{
8

3

(
R

ξ

)2

, 32

(
R

ξ

)4
}

log
2R2

‖T‖opδ

holds, the following statement holds with probability at least 1− δ:
For any g ∈ H, there exists g̃ ∈ HM that satisfies
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• ‖g − g̃‖L2(ρX ) ≤ ξ‖g‖H

• ‖g‖H ≥ ‖g̃‖HM
.

Also, for any g̃ ∈ HM , there exists g ∈ H that satisfies

• ‖g − g̃‖L2(ρX ) ≤ ξ‖g̃‖HM

• ‖g‖H ≤ ‖g̃‖HM
.

Proof. We show the first part of the statement. The latter half can be shown in the same manner.

For g ∈ H, set g̃ = T 1/2
M PKer(TM )⊥T −

1/2PKer(Σ)⊥g ∈ HM . Then we have

‖g̃‖HM
= ‖PKer(TM )⊥T −

1/2PKer(Σ)⊥g‖L2(ρX )

≤ ‖T −1/2PKer(Σ)⊥g‖L2(ρX )

= ‖PKer(Σ)⊥g‖H
≤ ‖g‖H.

Moreover, by Proposition 1 and Lemma 1, with probability at least 1− δ, we have

‖g − g̃‖L2(ρX ) = ‖PKer(Σ)⊥g − g̃‖L2(ρX ) (∵ Proposition 3.1)

= ‖T 1/2h− T 1/2
M PKer(TM )⊥h‖L2(ρX )

= ‖T 1/2h− T 1/2
M h‖L2(ρX )

≤ ‖T 1/2 − T 1/2
M ‖op‖h‖L2(ρX )

≤ ‖T − TM‖
1/2
op ‖g‖H

≤

(
R2

(
2β

3M
+

√
2β

M

))1/2

‖g‖H

≤ R

((
2β

3M

)1/2

+

(
2β

M

)1/4
)
‖g‖H

where h = T −1/2PKer(Σ)⊥g ∈ L2(ρX ) and β = log 2R2

‖T‖opδ .

Solving the equation max

{(
2β
3M

)1/2

,
(

2β
M

)1/4
}
≤ ξ

2R , we get a desired result.

C Proof of Theorem 1

In this section, we give the complete statement and proof of Theorem 1.

Theorem 1. Define ξ > 0 such that

ξ = min

{(
ε

2p+1C(δ)‖g∗‖H

)1/1−p

,
λε2

24 · 3R2L‖g∗‖H
,

(
λ3ε4

27 · 32R4L2L(g∗)

)1/2

,

(
λ3ε4

27 · 32R4L3‖g∗‖H

)1/3
}
.

Then a number of random features M which satisfies

M ≥ max

{
8

3

(
R

ξ

)2

, 32

(
R

ξ

)4
}

log
2R2

‖T‖opδ

is enough to guarantee, with probability at least 1− 2δ, that

‖gλ − gM,λ‖L∞(ρX ) ≤ ε.
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Proof. By Lemma 2, for given ξ > 0, if we have a number of feature M such that

M ≥ max

{
8

3

(
R

ξ

)2

, 32

(
R

ξ

)4
}

log
2R2

‖T‖opδ
,

we can take g̃λ ∈ HM , g̃M,λ ∈ H which satisfy the following conditions:

‖gλ‖H ≥ ‖g̃λ‖HM
(12)

‖gM,λ‖HM
≥ ‖g̃M,λ‖H (13)

‖g̃M,λ − gM,λ‖L2(ρX ) ≤ ξ‖gM,λ‖HM
(14)

‖g̃λ − gλ‖L2(ρX ) ≤ ξ‖gλ‖H (15)

By λ-strong convexity with respect to RKHS norm, we have

L(gλ) +
λ

2
‖gλ‖2H +

λ

2
‖gλ − g̃M,λ‖2H ≤ L(g̃M,λ) +

λ

2
‖g̃M,λ‖2H (16)

L(gM,λ) +
λ

2
‖gM,λ‖2HM

+
λ

2
‖gM,λ − g̃λ‖2HM

≤ L(g̃λ) +
λ

2
‖g̃λ‖2HM

. (17)

In addition, by L-Lipschitzness of L with respect to L2(ρX ) norm in Assumption 1 and (14)(15), we have

L(g̃M,λ) ≤ L(gM,λ) + L‖g̃M,λ − gM,λ‖L2(ρX )

≤ L(gM,λ) + Lξ‖gM,λ‖HM
(18)

L(g̃λ) ≤ L(gλ) + L‖g̃λ − gλ‖L2(ρX )

≤ L(gλ) + Lξ‖gλ‖H (19)

By inequalities (16)(17)(18)(19) and (12)(13), we have

L(gλ) +
λ

2
‖gλ‖2H +

λ

2

(
‖gλ − g̃M,λ‖2H + ‖gM,λ − g̃λ‖2HM

)
≤ L(g̃M,λ) +

λ

2
‖g̃M,λ‖2H +

λ

2
‖gM,λ − g̃λ‖2HM

≤ L(gM,λ) + Lξ‖gM,λ‖HM
+
λ

2
‖gM,λ‖2HM

+
λ

2
‖gM,λ − g̃λ‖2HM

≤ L(g̃λ) +
λ

2
‖g̃λ‖2HM

+ Lξ‖gM,λ‖HM

≤ L(gλ) +
λ

2
‖gλ‖2H + Lξ (‖gλ‖H + ‖gM,λ‖HM

) .

Thus we have

‖gλ − g̃M,λ‖2H + ‖gM,λ − g̃λ‖2HM
≤ 2Lξ

λ
(‖gλ‖H + ‖gM,λ‖HM

) . (20)

In addition, by (17) and (19), we have

λ

2
‖gM,λ‖2HM

≤ L(g̃λ) +
λ

2
‖g̃λ‖2HM

≤ L(gλ) + Lξ‖gλ‖H +
λ

2
‖gλ‖2H. (21)

Combining (20) and (21), we obtain

‖gλ − g̃M,λ‖2H + ‖gM,λ − g̃λ‖2HM
≤ 2Lξ

λ

(
‖gλ‖H +

(
2

λ
L(gλ) +

2Lξ

λ
‖gλ‖H + ‖gλ‖2H

)1/2
)

≤ 2Lξ

λ

(
‖g∗‖H +

(
2

λ
L(g∗) +

2Lξ

λ
‖g∗‖H + ‖g∗‖2H

)1/2
)

≤ 2Lξ

λ

(
2‖g∗‖H +

(
2

λ
L(g∗)

)1/2

+

(
2Lξ

λ
‖g∗‖H

)1/2
)
.
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In the second inequality, we used ‖g∗‖H ≥ ‖gλ‖H and L(g∗) + λ
2 ‖g∗‖

2
H ≥ L(gλ) + λ

2 ‖gλ‖
2
H. In the third inequality,

we used
√
a+
√
b ≥
√
a+ b for a, b > 0. Then by Assumption 2, we obtain

‖gM,λ − g̃λ‖L∞(ρX ) ≤ Rmax

{(
12Lξ

λ
‖g∗‖H

)1/2

,

(
72L2ξ2

λ3
L(g∗)

)1/4

,

(
72L3ξ3

λ3
‖g∗‖H

)1/4
}
. (22)

On the other hand, by Assumption 3, we have

‖gλ − g̃λ‖L∞(ρX ) ≤ C(δ)‖gλ − g̃λ‖pH+
M

‖gλ − g̃λ‖1−pL2(ρX )

≤ C(δ)(‖gλ‖H + ‖g̃λ‖HM
)p(ξ‖gλ‖H)1−p

≤ 2pC(δ)ξ1−p‖g∗‖H (23)

with probability at least 1− δ. In the second inequality, we used the fact that

‖g‖H+
M

= inf{‖g1‖H + ‖g2‖HM
| g = g1 + g2, g1 ∈ H, g2 ∈ HM}.

Combining (22) and (23), we have

‖gλ − gM,λ‖L∞(ρX ) ≤ ‖gλ − g̃λ‖L∞(ρX ) + ‖g̃λ − gM,λ‖L∞(ρX )

≤ max

{
2p+1C(δ)‖g∗‖Hξ1−p, R

(
24 · 3Lξ

λ
‖g∗‖H

)1/2

,

R

(
27 · 32L2ξ2

λ3
L(g∗)

)1/4

, R

(
27 · 32L3ξ3

λ3
‖g∗‖H

)1/4
}
.

As a result, define ξ > 0 which satisfies

ξ = min

{(
ε

2p+1C(δ)‖g∗‖H

)1/1−p

,
λε2

24 · 3R2L‖g∗‖H
,

(
λ3ε4

27 · 32R4L2L(g∗)

)1/2

,

(
λ3ε4

27 · 32R4L3‖g∗‖H

)1/3
}
,

then we have ‖gλ − gM,λ‖L∞(ρX ) ≤ ε with probability at least 1− 2δ.

D Proof of Theorem 2

The following theorem shows that if k is a Gaussian kernel and kM is its random Fourier features approximation,
then the norm condition in the assumption is satisfied. The proof is inspired by the analysis of Theorem 4.48 in
Steinwart and Christmann (2008).

Theorem 2. Assume supp(ρX ) ⊂ Rd is a bounded set and ρX has a density with respect to Lebesgue measure
which is uniformly bounded away from 0 and ∞ on supp(ρX ). Let k be a Gaussian kernel and H be its RKHS,
then for any m ≥ d/2, there exists a constant Cm,d > 0 such that

‖f‖L∞(ρX ) ≤ Cm,d‖f‖
d/2m
H ‖f‖1−d/2m

L2(ρX )

for any f ∈ H. Also, for any M ≥ 1, let kM be a random Fourier features approximation of k with M features
and H+

M be a RKHS of k + kM . Then with probability at least 1− δ with respect to a sampling of features,

‖f‖L∞(ρX ) ≤ Cm,d
(

1 +
1

δ

)d/4m

‖f‖d/2mH+
M

‖f‖1−d/2m
L2(ρX )

for any f ∈ H+
M .

Proof. For notational simplicity, we denote supp(ρX ) by X ′. From the boundedness of X ′ and the condition on
ρX , the following relation holds for any f ∈ L∞(ρX ):

‖f‖L∞(ρX ) = ‖f‖L∞(X ′) (24)

‖f‖L2(ρX ) ≥ C1‖f‖L2(X ′), (25)
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where C1 > 0 is a constant. From the discussion after Theorem 2, for any f ∈Wm(X ′) (m ≥ d/2) there exists a
constant C2 > 0 such that the following inequality holds:

‖f‖L∞(X ′) ≤ C2‖f‖
d/2m
Wm(X ′)‖f‖

1−d/2m
L2(X ′) . (26)

Here Wm(X ′) is Sobolev space with order m defined as follows:

Wm(X ′) =
{
f ∈ L2(X ′)

∣∣∣ ∂(α)f ∈ L2(X ′) exists for all α ∈ Nd with |α| ≤ m
}
,

where ∂(α) is the α-th weak derivative for a multi-index α = (α(1), . . . , α(d)) ∈ Nd with |α| =
∑d
i=1 α

(i).
Combining (24), (25) and (26), we have

‖f‖L∞(ρX ) ≤ C‖f‖
d/2m
Wm(X ′)‖f‖

1−d/2m
L2(ρX ), (27)

where C > 0 is a constant. So it suffices to show that H and H+
M can be continuously embedded in Wm(X ′). For

H, it can be shown in the same manner as Theorem 4.48 in Steinwart and Christmann (2008). For H+
M , we first

define a spectral measure of the kernel function k + kM as

τ+(ω) =
1

M

M∑
i=1

δ(ω − ωi) + τ(ω),

where δ is a Dirac measure on Ω. Then a kernel function k + kM can be written as

(k + kM )(x, x′) =

∫
Ω

ϕ(x, ω)ϕ(x′, ω)dτ+(ω),

and from Bach (2017b), for any f ∈ H+
M , there exists g ∈ L2(τ+) such that

f(x) =

∫
Ω

g(ω)ϕ(x, ω)dτ+(ω),

‖f‖H+
M

= ‖g‖L2(τ+).

Let us fix a multi-index α = (α(1), . . . , α(d)) ∈ Nd and |α| = m. For α ∈ Nd, we write ∂α = ∂α
(1)

1 · · · ∂α(d)

d . We
then have

‖∂αf‖2L2(X ′) =

∫
X ′

(
∂αx

∫
Ω

g(ω)ϕ(x, ω)dτ+(ω)

)2

dx

≤
∫
X ′

(∫
Ω

|g(ω)|∂αxϕ(x, ω)dτ+(ω)

)2

dx

≤ ‖g‖2L2(τ+)

∫
X ′

∫
Ω

|∂αxϕ(x, ω)|2dτ+(ω)dx.

Because we consider ϕ as a random Fourier feature, Ω = Rd and

ϕ(x, ω) = C ′eiω
>x,

∂αxϕ(x, ω) = ωαC ′eiω
>x

where C ′ > 0 is a normalization constant and ωα =
∏d
i=1 ω

(i)αi
for ω = (ω(1), . . . , ω(d)) ∈ Rd and α =

(α(1), . . . , α(d)) ∈ Nd. So we have

‖∂αf‖2L2(X ′) ≤ ‖g‖
2
L2(τ+)

∫
X ′
C ′2

∫
Ω

ω2αdτ+(ω)dx

≤ C ′2vol(X ′)‖f‖2H+
M

(
Eω∼τ

[
ω2α

]
+

1

M

M∑
i=1

ω2α
i

)
.
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We note that because τ is Gaussian, Eω∼τ
[
ω2α

]
is finite for any α ∈ Nd. Because ωi ∼ τ and ω2α

i is non negative,
from Markov’s inequality we have

1

M

M∑
i=1

ω2α
i ≤

1

δ
Eω∼τ

[
ω2α

]
with probability at least 1− δ. As a result, we have

‖∂αf‖2L2(X ′) ≤
(

1 +
1

δ

)
C ′2vol(X ′)‖f‖2H+

M

Eω∼τ
[
ω2α

]
.

So we can compute Sobolev norms of f as follows:

‖f‖2Wm(X ′) =
∑
|α|≤m

‖∂αf‖2L2(X ′)

≤
(

1 +
1

δ

)
C ′2vol(X ′)‖f‖2H+

M

∑
|α|≤m

Eω∼τ
[
ω2α

]
. (28)

Substitute (28) to (27) and define Cm,d = C
(
C ′2vol(X ′)

∑
|α|≤m Eω∼τ

[
ω2α

])d/4m
, we get a desired result.

Remark. We note that the assumption that k is Gaussian is only used to derive Eω∼τ
[
ω2α

]
is finite for all

α ∈ Nd. This means that if ψ(x− y) = k(x− y) belongs to Schwartz class (a space of rapidly decreasing function)
Yoshida (1995), its Fourier transform τ also belongs to this class, thus the above finite moment property is
satisfied.

E Proof of Theorem 3

In this section, we provide the complete statement and the proof of Theorem 3. First, we provide some useful
propositions which are appeared in Nitanda and Suzuki (2019).

The first proposition suggests that there exists a sufficiently small λ > 0 such that gλ is also the Bayes classifier.

Proposition 4 (Proposition A in Nitanda and Suzuki (2019)). Suppose Assumption 3, 5, 6, 7 hold. Then, there
exists λ > 0 such that ‖gλ − g∗‖L∞(ρX ) ≤ m(δ)/2.

The second proposition shows that the distance between expected estimator E[gT+1] and the population risk
minimizer gM,λ converges sub-linearly.

Proposition 5 (Modified version of Proposition C in Nitanda and Suzuki (2019)). Suppose Assumption 2, 4

holds. Consider Algorithm 1 with ηt = 2
λ(γ+t) and αt = 2(γ+t−1)

(2γ+T )(T+1) and assume assume ‖g1‖H ≤ (2γ1 + 1/λ)GR

and η1 ≤ min{1/L, 1/2λ}. Then, it follows that

‖E[gT+1]− gλ‖2H ≤
2

λ

(
18G2R2

λ(2γ + T )
+

λγ(γ − 1)

2(2γ + T )(T + 1)
‖g1 − gλ‖2H

)
.

The last proposition is about the concentration of the estimator around its mean.

Proposition 6 (Modified version of Proposition 2 and D in Nitanda and Suzuki (2019)). Suppose Assumption 1,

2 and 4 holds. Consider Algorithm 1 with ηt = 2
λ(γ+t) and αt = 2(γ+t−1)

(2γ+T )(T+1) and assume ‖g1‖H ≤ (2γ1 + 1/λ)GR

and η1 ≤ min{1/L, 1/2λ}. Then, it follows that

P
[∥∥gT+1 − E[gT+1]

∥∥
H ≥ ε

]
≤ 2 exp

(
− λ

2(2γ + T )

26 · 32G2R2
ε2
)
.

Remark. We note that in Nitanda and Suzuki (2019), they assumed only the Lipschitz smoothness of L(g) with
respect to ‖ · ‖H-norm, but they used the Lipschitz smoothness of l(g, z) with respect to ‖ · ‖H-norm in the proof
of Proposition B. Thus we deal with the Lipschitz smoothness of l(·, y) with respect to the first variable instead
(Assumption 4) and correct these proofs.
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Using these propositions, our main result about the exponential convergence of the expected classification error is
shown as follows.

Theorem 3. Suppose Assumptions 1-7 holds. There exists a sufficiently small λ > 0 such that the following
statement holds:
Taking the number of random features M that satisfies

M ≥ max

{
8

3

(
R

ξ

)2

, 32

(
R

ξ

)4
}

log
2R2

‖T‖opδ
(29)

where ξ > 0 is defined as below:

ξ = min

{(
m(δ)

2p+3C(δ′)‖g∗‖H

)1/1−p

,
λm2(δ)

28 · 3R2G‖g∗‖H
,

(
λ3m4(δ)

215 · 32R4G2L(g∗)

)1/2

,

(
λ3m4(δ)

215 · 32R4G3‖g∗‖H

)1/3
}
.

Consider Algorithm 1 with ηt = 2
λ(γ+t) and αt = 2(γ+t−1)

(2γ+T )(T+1) where γ is a positive value such that ‖g1‖HM
≤

(2η1 + 1/λ)GR and η1 ≤ min{1/L, 1/2λ}. Then, with probability 1− 2δ′, for sufficiently large T such that

max

{
36G2R2

λ2(2γ + T )
,
γ(γ − 1)‖g1 − gM,λ‖2HM

(2γ + T )(T + 1)

}
≤ m2(δ)

64R2
,

we have the following inequality for any t > T :

E
[
R(gT+1)−R(E[Y |x])

]
≤ 2 exp

(
−λ

2(2γ + t)m2(δ)

212 · 9G2R4

)
.

Proof. Fix λ > 0 satisfying the condition in Proposition 4. From Theorem 1, if we set a number of features M
satisfying (29), we have

‖gM,λ − g∗‖L∞(ρX ) ≤ ‖gM,λ − gλ‖L∞(ρX ) + ‖gλ − g∗‖L∞(ρX )

≤ m(δ)

4
+
m(δ)

2
=

3m(δ)

4
.

Then sgn(g(X)) = sgn(g∗(X)) almost surely for any g ∈ HM satisfying ‖g − gM,λ‖HM
≤ m(δ)/4R, since

‖g − g∗‖L∞(ρX ) ≤ ‖g − gM,λ‖L∞(ρX ) + ‖gM,λ − g∗‖L∞(ρX )

≤ R‖g − gM,λ‖HM
+ ‖gM,λ − g∗‖L∞(ρX )

≤ m(δ)

4
+

3m(δ)

4
= m(δ)

and |g∗(X)| ≥ m(δ) almost surely. In other words, g is also the Bayes classifier of R(g). Assume

‖E[gT+1]− gM,λ‖HM
≤ m(δ)

8R
. (30)

Then, substituting ε = m(δ)/8R in Proposition 6, we have∥∥gT+1 − gM,λ

∥∥
HM
≤
∥∥gT+1 − E[gT+1]

∥∥
HM

+ ‖E[gT+1]− gM,λ‖HM
≤ m(δ)

4R

with probability at least 1− 2 exp
(
−λ

2(2γ+T )m2(δ)
212·32G2R4

)
. In other words, gT+1 is also the Bayes classifier with same

probability. By definition of the expected classification error, we have

E[R(gT+1)]−R(E[Y |x]) ≤ 1− 2 exp

(
−λ

2(2γ + T )m2(δ)

212 · 32G2R4

)
.

Finally, to satisfy (30), the required number of iteration T is obtained by Proposition 5, which completes the
proof.
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F Proof of Corollary 1

Although gλ converges to g∗ as λ→ 0 as shown in Proposition 4, specifying its convergence rate is difficult in
general. To derive its rate, first we need the local strong convexity, which is a strong convexity on a arbitrary
compact set.

Assumption 8. φ : R→ R is µ(U)-strongly convex on a bounded set [−U,U ] ⊂ R, i.e.,

φ(ζ1)− φ(ζ2)− φ′(ζ2)(ζ1 − ζ2) ≥ µ(U)

2
(ζ1 − ζ2)2.

holds for any ζ1, ζ2 ∈ [−U,U ].

Lemma 3. Assume supp(ρX ) ⊂ Rd is a bounded set and ρX has a density with respect to Lebesgue measure, which
is uniformly bounded away from 0 and ∞ on supp(ρX ). Let k be a Gaussian kernel and l satisfies Assumption 8.
Then for arbitrary small ε > 0, there exists a constant C > 0 such that

‖gλ − g∗‖L∞(ρX ) ≤ C‖g∗‖H
(

λ

µ(R‖g∗‖H)

) 1
2−ε

.

Proof. By definition of gλ, we have

L(g∗) +
λ

2
‖g∗‖2H ≥ L(gλ) +

λ

2
‖gλ‖2H, (31)

‖g∗‖H ≥ ‖gλ‖H. (32)

In addition, it holds that

g∗(x) ≤ R‖g∗‖H, (33)

gλ(x) ≤ R‖gλ‖H ≤ R‖g∗‖H

for all x ∈ X . Furthermore, since g∗ attains infimum of L among all measurable functions, we have∫
Y
∂ζ l(g∗(·), y)dρ(y|·) ≡ 0, (34)

where ∂ζ denotes a partial derivative of l with respect to the first variable.
Then we obtain

‖gλ − g∗‖2L2(ρX ) =

∫
X
|gλ(x)− g∗(x)|2 dρX (x)

≤
∫
X×Y

2

µ(R‖g∗‖H)
{l(gλ(x), y)− l(g∗(x), y)

− ∂ζ l(g∗(x), y)(gλ(x)− g∗(x))}dρ(x, y) (∵ (33) and Assumption 8)

=

∫
X×Y

2

µ(R‖g∗‖H)
{l(gλ(x), y)− l(g∗(x), y)} dρ(x, y) (∵ (34))

=
2

µ(R‖g∗‖H)
(L(gλ)− L(g∗))

≤ λ

µ(R‖g∗‖H)

(
‖g∗‖2H − ‖gλ‖2H

)
(∵ (31))

≤ λ

µ(R‖g∗‖H)
‖g∗‖2H (∵ (32)).

Finally, applying the first part of Theorem 2 with p = d/2m, we obtain

‖gλ − g∗‖L∞(ρX ) ≤ Cp‖gλ − g∗‖pH‖gλ − g∗‖
1−p
L2(ρX )

≤ 2pCp

(
λ

µ(R‖g∗‖H)

) 1−p
2

‖g∗‖H

for any 0 < p < 1 and get a desired result.
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Corollary 1. Assume supp(ρX ) ⊂ Rd is a bounded set and ρX has a density with respect to Lebesgue measure,
which is uniformly bounded away from 0 and ∞ on supp(ρX ). Let k be a Gaussian kernel and l be logistic loss.
Under Assumption 5-7, the following statement holds:
Taking a regularization parameter λ and a number of random features M that satisfies

λ . log3 1 + 2δ

1− 2δ
· 1

(2 + eR‖g∗‖H + e−R‖g∗‖H)‖g∗‖3H
,

M &

((
1 + 1

δ′

)
‖g∗‖4H

λ3 log4 1+2δ
1−2δ

)2

log
1

δ′
.

Consider Algorithm 1 with ηt = 2
λ(γ+t) and αt = 2(γ+t−1)

(2γ+T )(T+1) where γ is a positive value such that ‖g1‖HM
≤

(2η1 + 1/λ) and η1 ≤ min{4, 1/2λ}. Then, with probability 1− 2δ′, for a sufficiently large T such that

max

{
36

λ2(2γ + T )
,
γ(γ − 1)‖g1 − gM,λ‖2HM

(2γ + T )(T + 1)

}
≤

log2 1+2δ
1−2δ

64
,

we have the following inequality for any t ≥ T :

E
[
R(gt+1)−R(E[Y |x])

]
≤ 2 exp

(
−λ

2(2γ + t)

212 · 9
log2 1 + 2δ

1− 2δ

)
.

Proof. When l is logistic loss, we have φ(v) = log(1 + exp(−v)) and φ′′(v) = 1
2+ev+e−v . Thus it follows that

Assumption 8 is satisfied with µ(U) = 2
1+e−U+eU

. To satisfy the condition

‖gλ − g∗‖L∞(ρX ) ≤ m(δ)/2,

required λ is easily derived from Lemma 3 with, for example, ε = 1/6. In addition, since φ′′(v) ≤ 1/4 and
φ′(v) ≤ 1 for any v ∈ R, Assumption 4 and Assumption 1 are satisfied with L = 1/4 and G = 1, respectively.
Substituting them and m(δ) = log((1 + 2δ)/(1− 2δ)), R = 1 in Theorem 3, we get a desired result.


