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Abstract

Although kernel methods are widely used in
many learning problems, they have poor scal-
ability to large datasets. To address this prob-
lem, sketching and stochastic gradient meth-
ods are the most commonly used techniques
to derive computationally efficient learning
algorithms. We consider solving a binary clas-
sification problem using random features and
stochastic gradient descent, both of which are
common and widely used in practical large-
scale problems. Although there are plenty of
previous works investigating the efficiency of
these algorithms in terms of the convergence
of the objective loss function, these results
suggest that the computational gain comes at
expense of the learning accuracy when dealing
with general Lipschitz loss functions such as
logistic loss. In this study, we analyze the
properties of these algorithms in terms of the
convergence not of the loss function, but the
classification error under the strong low-noise
condition, which reflects a realistic property
of real-world datasets. We extend previous
studies on SGD to a random features setting,
examining a novel analysis about the error
induced by the approximation of random fea-
tures in terms of the distance between the
generated hypothesis to show that an expo-
nential convergence of the expected classifica-
tion error is achieved even if random features
approximation is applied. We demonstrate
that the convergence rate does not depend on
the number of features and there is a signifi-
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cant computational benefit in using random
features in classification problems under the
strong low-noise condition.

1 Introduction

Kernel methods are commonly used to solve a wide
range of problems in machine learning, as they provide
flexible non-parametric modeling techniques and come
with well-established theories about their statistical
properties (Caponnetto and De Vito, 2007; Steinwart
et al., 2009; Mendelson and Neeman, 2010). However,
computing estimators in kernel methods can be pro-
hibitively expensive in terms of memory requirements
for large datasets. There are two popular approaches to
scaling up kernel methods. The first is sketching, which
reduces data-dimensionality by random projections. A
random features method (Rahimi and Recht, 2008) is a
representative, which approximates a reproducing ker-
nel Hilbert space (RKHS) by a finite-dimensional space
in a data-independent manner. The second is stochas-
tic gradient descent (SGD), which allows data points to
be processed individually in each iteration to calculate
gradients. Both of these methods are quite effective in
reducing memory requirements and are widely used in
practical tasks.
For the theoretical properties of random features, sev-
eral studies have investigated the approximation quality
of kernel functions (Sriperumbudur and Szabó, 2015;
Sutherland and Schneider, 2015; Szabó and Sriperum-
budur, 2019), but only a few have considered the gen-
eralization properties of learning with random features.
For the regression problem, its generalization proper-
ties in ERM and SGD settings, respectively, have been
studied extensively by Rudi and Rosasco (2017) and
Carratino et al. (2018). In particular, they showed that
O(
√
n log n) features are sufficient to achieve the usual

O(1/
√
n) learning rate, indicating that there is a com-

putational benefit to using random features. However,
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it remains unclear whether or not it is computationally
efficient for other tasks. By Rahimi and Recht (2009),
the generalization properties were studied with Lips-
chitz loss functions under `∞-constraint in hypothesis
space, and it was shown that O(n log n) features are
required for O(1/

√
n) learning bounds. Also, by Li

et al. (2019), learning with Lipschitz loss and standard
regularization was considered instead of `∞-constraint,
and similar results were attained. Both results suggest
that computational gains come at the expense of learn-
ing accuracy if one considers general loss functions.
In this study, learning classification problems with
random features and SGD are considered, and the
generalization property is analyzed in terms of the
classification error. Recently, it was shown that the
convergence rate of the excess classification error can
be made exponentially faster by assuming the strong
low-noise condition (Tsybakov, 2004; Koltchinskii and
Beznosova, 2005) that conditional label probabilities
are uniformly bounded away from 1/2 (Pillaud-Vivien
et al., 2018; Nitanda and Suzuki, 2019). We extend
these analyses to a random features setting to show
that the exponential convergence is achieved if a suf-
ficient number of features are sampled. Unlike when
considering the convergence of loss function, the re-
sulting convergence rate of the classification error is
independent of the number of features. In other words,
an arbitrary small classification error is achievable as
long as there is a sufficient number of random features.
So our result suggests that there is indeed a computa-
tional benefit to use random features in classification
problems under the strong low-noise condition.

Remark Although several studies consider the opti-
mal sampling distributions of features in terms of the
worst-case error and show the superiority of random
features (Bach, 2017b; Rudi and Rosasco, 2017; Li et al.,
2019; Sun et al., 2018), we do not explore this direction
and treat the original random features because these
distributions are generally intractable or require much
computational cost to sample (Bach, 2017b) whereas
an efficient sampling algorithm is proposed in the case
of Gaussian kernel (Avron et al., 2017).
In addition, we should refer to Nyström method
(Williams and Seeger, 2001), which is also a popu-
lar method to scale up kernel methods. In contrast to
random features, Nyström method approximates kernel
function in data-dependent way. As a result, similar
to calculating an optimized sampling distribution on
random features, Nyström method also requires data
points before actual training starts and needs O(nM)
memory, which is more expensive than O(M) in ran-
dom features. These are reasons why we dealt with
original algorithm of random features in this study.

Our Contributions Our contributions are twofold.
First, we analyze the error induced by the approxi-
mation of random features in terms of the L∞-norm
between the generated hypothesis including population
risk minimizers and empirical risk minimizers when
using general Lipschitz loss functions in Section 3. Our
results can be framed as an extension of the analysis of
Cortes et al. (2010); Sutherland and Schneider (2015),
which analyzed the error in terms of the distance be-
tween empirical risk minimizers when using a hinge loss.
However, it is not straightforward to extend these re-
sults to our case since we cannot access the closed-form
solutions, unlike those previous results, when using
the general loss functions and treating population risk
minimizers. In addition, since the true and the approx-
imated minimizer lie in different function spaces, it is
not easy to derive L∞-norm bound between them. We
deal with these difficulties with novel proof techniques.
Second, using the above result, we prove that the ex-
ponential convergence rate of the excess classification
error under the strong low-noise condition is achieved if
a sufficient number of features are sampled in Section 4.
Then we show that there is a significant computational
gain in using random features rather than a full kernel
method for obtaining a relatively small classification er-
ror. We also validate these results through experiments
on synthetic datasets in Section 5.

2 Problem Setting

2.1 Binary Classification Problem

Let X and Y = {−1, 1} be a feature space and the set
of binary labels, respectively; ρ denotes a probability
measure on X × Y, by ρX the marginal distribution
on X, and by ρ(·|X) the conditional distribution on Y ,
where (X,Y ) ∼ ρ. In general, for a probability measure
µ, L2(µ) denotes a space of square-integrable functions
with respect to µ, and L2(X ) denotes one with respect
to the Lebesgue measure. Similarly, L∞(µ) denotes a
space of functions for which the essential supremum
with respect to µ is bounded, and L∞(X ) denotes one
with respect to Lebesgue measure.
In the classification problem, our final objective is to
choose a discriminant function g : X → R such that the
sign of g(X) is an accurate prediction of Y . Therefore,
we intend to minimize the expected classification error
R(g) defined below amongst all measurable functions:

R(g)
def
= E(X,Y )∼ρ [I(sgn(g(X)), Y )] , (1)

where sgn(x) = 1 if x > 0 and −1 otherwise, and I
represents 0-1 loss:

I(y, y′)
def
=

{
1 (y 6= y′)

0 (y = y′).
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By definition, g(x) = E[Y |x] = 2ρ(1|x)−1 minimizesR.
However, directly minimizing (1) to obtain the Bayes
classifier is intractable because of its non-convexity.
Thus, we generally use the convex surrogate loss l(ζ, y)
instead of the 0-1 loss and minimize the expected loss
function L(g) of l:

L(g)
def
= E(X,Y )∼ρ [l(g(X), Y )] . (2)

In general, the loss function l has a form l(ζ, y) = φ(ζy)
where φ : R → R is a non-negative convex func-
tion. The typical examples are logistic loss, where
φ(v) = log(1 + exp(−v)) and hinge loss, where φ(v) =
max{0, 1−v}. Minimizing the expected loss function (2)
ensures minimizing the expected classification (1) if l
is classification-calibrated (Bartlett et al., 2006), which
has been proven for several practically implemented
losses including hinge loss and logistic loss.

2.2 Kernel Methods and Random Features

In this study, we consider a reproducing kernel Hilbert
space (RKHS) H associated with a positive definite
kernel function k : X ×X → R as the hypothesis space.
It is known (Aronszajn, 1950) that a positive definite
kernel k uniquely defines its RKHS H such that the
reproducing property f(x) = 〈f, k(·, x)〉H holds for all
f ∈ H and x ∈ X , where 〈·, ·〉H denotes the inner
product of H. Let ‖ · ‖H denote the norm of H induced
by the inner product. Under these settings, we attempt
to solve the following minimization problem:

min
g∈H

L(g) +
λ

2
‖g‖2H (3)

where λ > 0 is a regularization parameter.
However, because solving the original problem (3)
is usually computationally inefficient for large-scale
datasets, the approximation method is applied in prac-
tice. Random features (Rahimi and Recht, 2008) is
a widely used method for scaling up kernel methods
because of its simplicity and ease of implementation.
Additionally, it approximates the kernel in a data-
independent manner, making it easy to combine with
SGD. In random features, a kernel function k is as-
sumed to have the following expansion in some space
Ω with a probability measure τ :

k(x, y) =

∫
Ω

ϕ(x, ω)ϕ(y, ω)dτ(ω). (4)

The main idea behind random features is to approxi-
mate the integral (4) by its Monte-Carlo estimate:

kM (x, y)
def
=

1

M

M∑
i=1

ϕ(x, ωi)ϕ(y, ωi), ωi
i.i.d.∼ τ. (5)

For example, if k is a shift invariant kernel, by Bochner’s
theorem (Yoshida, 1995), the expansion (4) is achieved

with ϕ(x, ω) = C ′eiω
>x, where C ′ is a normalization

constant. Then, the approximation (5) is called random
Fourier features (Rahimi and Recht, 2008), which is
the most widely used variant of random features.
We denote the RKHS associated with k and kM by H
and HM , respectively. These spaces then admit the
following explicit representation (Bach, 2017b,a):

H =

{∫
Ω

β(ω)ϕ(·, ω)dτ(ω)

∣∣∣∣ β ∈ L2(τ)

}
HM =

{
M∑
i=1

βi√
M
ϕ(·, ωi)

∣∣∣∣∣ |βi| <∞
}
.

We note that the approximation space HM is not nec-
essarily contained in the original space H. For g ∈ H
and h ∈ HM , the following RKHS norm relations hold:

‖g‖H = inf

{
‖β‖L2(τ)

∣∣∣∣ g =

∫
Ω

β(ω)ϕ(·, ω)dτ(ω)

}
‖h‖HM

= inf

{
‖β‖2

∣∣∣∣∣ h =

M∑
i=1

βi√
M
ϕ(·, ωi)

}
.

As a result, the problem (3) in the approximation
space HM is reduced to the following generalized linear
model:

min
β∈RM

L(β>φM ) +
λ

2
‖β‖22 (6)

where φM is a feature vector:

φM
def
=

1√
M

[ϕ(·, ω1), . . . , ϕ(·, ωM )]>.

In this paper, we consider solving the problem (6)
using the averaged SGD. The details are discussed in
the following section.

2.3 Averaged Stochastic Gradient Descent

SGD is the most popular method to solve large scale
learning problems. In this section, we discuss a specific
form of an optimization procedure. For the minimiza-
tion problem (6), its gradient with respect to β is given
as follows:

E
[
∂ζ l(β

>φM (X), Y )φM (X) + λβ
]
,

where ∂ζ is a partial derivative with respect to the first
variable of l. Thus, the stochastic gradient with respect
to β is given by ∂ζ l(β

>φM (X), Y )φM (X) + λβ. We
note that the update on the β parameter corresponds
to the update on the function space HM , because a
gradient on HM is given by

E
[
∂ζ l(β

>φM (X), Y )φM (X) + λβ
]>
φM .
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We consider the averaged variants of SGD, since it is
widely known that gradient averaging gives faster con-
vergence than plain SGD on strongly convex problems
(Lacoste-Julien et al., 2012). The algorithm of random
features and averaged SGD is described in Algorithm
1. Following Nitanda and Suzuki (2019), we set the

Algorithm 1 Random Feature + SGD

Input: number of features M , regularization parame-
ter λ, number of iterations T , learning rates {ηt}Tt=1,
averaging weights {αt}T+1

t=1

Output: classifier gT+1

Randomly draw feature variables ω1, . . . , ωM ∼ τ
Initialize β1 ∈ RM
for t = 1, . . . , T do

Randomly draw samples (xt, yt) ∼ ρ
βt+1 ← βt − ηt

(
∂ζ l(β

>
t φM (xt), yt)φM (xt) + λβt

)
end for
βT+1 =

∑T+1
t=1 αtβt

return gT+1 = β
>
T+1φM

learning rate and the averaging weight as follows:

ηt =
2

λ(γ + t)
, αt =

2(γ + t− 1)

(2γ + T )(T + 1)
,

where γ is an offset parameter for the time index. We
note that an averaged iterate βt can be updated itera-
tively as follows:

β1 = β1,

βt+1 = (1− θt)βt + θtβt+1, θt =
2(γ + t)

(t+ 1)(2γ + t)
.

Using this formula, we can compute the averaged out-
put without storing all internal iterate (βt)

T+1
t=1 .

Computational Complexity If we assume the eval-
uation of a feature map ϕ(x, ω) to have a constant cost,
one iteration in Algorithm 1 requires O(M) operations.
As a result, one pass SGD on n samples requires O(Mn)
computational time. On the other hand, the full kernel
method without approximation requires O(n) computa-
tions per iteration; thus, the overall computation time
is O(n2), which is much more expensive than random
features. For the memory requirements, random fea-
tures needs to store M coefficients, and it does not
depend on the sample size n. On the other hand, we
have to store n coefficients in the full kernel method,
so it is also advantageous to use random features in
large-scale learning problems.

3 Error Analysis of Random Features

Our primary purpose here is to bound the distance be-
tween the hypothesis generated by solving the problems

in each space H and HM . Population risk minimizers
in spaces H,HM are defined as below:

gλ = arg min
g∈H

(
L(g) +

λ

2
‖g‖2H

)
,

gM,λ = arg min
g∈HM

(
L(g) +

λ

2
‖g‖2HM

)
.

The uniqueness of minimizers is guaranteed by the
regularization term.
First, the L∞(ρX )-norm is bound between gλ and gM,λ

when the loss function l(·, y) is Lipschitz continuous.
Then, a more concrete analysis is provided when k is a
Gaussian kernel.

3.1 Error Analysis for Population Risk
Minimizers

Before beginning the error analysis, some assumptions
about the loss function and kernel function are imposed.

Assumption 1. l(·, y) is convex and G-Lipscitz con-
tinuous, that is, there exists G > 0 such that for any
ζ, ζ ′ ∈ R and y ∈ Y,

|l(ζ, y)− l(ζ ′, y)| ≤ G|ζ − ζ ′|.

This assumption implies G-Lipschitzness of L with
respect to the L2(ρX ) norm, because

|L(g)− L(h)| ≤ G
∫
|g(x)− h(x)|dρX (x)

≤ G‖g − h‖L2(ρX )

for any g, h ∈ L2(ρX ). For several practically used
losses, such as logistic loss or hinge loss, this assumption
is satisfied with G = 1.
To control continuity and boundedness of the induced
kernel, the following assumptions are required:

Assumption 2. The function ϕ is continuous and
there exists R > 0 such that |ϕ(x, ω)| ≤ R for any
x ∈ X , ω ∈ Ω.

If k is Gaussian and ϕ is its random Fourier features,
it is satisfied with R = 1. This assumption implies
supx,y∈X k(x, y) ≤ R2, supx,y∈X kM (x, y) ≤ R2 and
it leads to an important relationship R‖ · ‖H ≥ ‖ ·
‖L∞(X ), R‖ · ‖HM

≥ ‖ · ‖L∞(X ).
For the two given kernels k and kM , k + kM is also
a positive definite kernel, and its RKHS includes H
and HM . The last assumption imposes a specific norm
relationship in its combined RKHS of H and HM .

Assumption 3. Let H+
M be RKHS with the kernel

function k + kM . Then there exists 0 ≤ p < 1, and a
constant C(δ) > 0 depends on 0 < δ ≤ 1 that satisfies,
for any f ∈ H+

M ,

‖f‖L∞(ρX ) ≤ C(δ)‖f‖pH+
M

‖f‖1−pL2(ρX )
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with probability at least 1− δ.

For a fixed kernel function, the Assumption 3 is a
commonly used condition in analysis of kernel methods
(Steinwart et al., 2009; Mendelson and Neeman, 2010).
It is satisfied, for example, when the eigenfunctions of
the kernel are uniformly bounded and the eigenvalues
{µi}i decay at the rate i−1/p (Mendelson and Neeman,
2010). In Theorem 2, specific p and C(δ) that satisfy
the condition for the case of a Gaussian kernel and its
random Fourier features approximation are derived.
Here, we introduce our primary result, which bounds
the distance between gλ and gM,λ in terms of L∞(ρX )-
norm. The complete statement, including proof and
all constants, are found in Appendix C.

Theorem 1. Under Assumption 1-3, with probability
at least 1− 2δ with respect to the sampling of features,
the following inequality holds:

‖gλ − gM,λ‖L∞(ρX )

.

(
R4 log R

δ

M

)min{(1−p)/4,1/8}
C(δ)RG3/4‖gλ‖H

λ3/4
.

The resulting error rate is O(M−min{(1−p)/4,1/8}). It can
be easily shown that a consistent error rate of O(M−1/8)
is seen for L2(ρX )-norm without Assumption 3.

Comparison to Previous Results The distance
between empirical risk minimizers of SVM (i.e., l is
hinge loss) were studied in terms of the error induced
by Gram matrices by Cortes et al. (2010); Sutherland
and Schneider (2015). Considering K and KM to be
Gram matrices of kernel k and kM , respectively, they

showed that ‖gλ − gM,λ‖L∞(ρX ) . O(‖K − KM‖
1/4
op ),

where ‖ · ‖op is an operator norm, defined in Appendix
A. Because the Gram matrix can be considered as the
integral operator on the empirical measure, we can
apply Lemma 1 and obtain ‖K −KM‖op . O(M−1/2),
so the resulting rate is O(M−1/8). This coincides with
our result, because when ρX is an empirical measure,
Assumption 3 holds with p = 0. From this perspective,
our result is an extension of these previous results, be-
cause we treat the more general Lipschitz loss function
l and general measure ρX including empirical measure.
Although it is relatively easy to derive the infinite norm
bound in those finite dimentional case, more careful de-
riviation is needed in our setting (infinite dimentional
case) and our analysis is novel.
The case of squared loss was studied by Rudi and
Rosasco (2017); Carratino et al. (2018). In particu-
lar, in Lemma 8 of Rudi and Rosasco (2017), the L2

distance between gλ and gM,λ is shown as O(M−1/2)
(without decreasing λ). While this is a better rate than
ours, our theory covers a wider class of loss functions,

and a similar phenomenon is observed in the case of
empirical risk minimizers for the squared loss and hinge
loss (Cortes et al., 2010).
Approximation of functions in H by functions in HM
is also considered by Bach (2017b), but this result can-
not be applied here because gM,λ is not the function
closest to gλ in HM . Finally, we note that our result
cannot be obtained from the approximation analysis of
Lipschitz loss functions (Rahimi and Recht, 2009; Li
et al., 2019), where the rate was shown to be O(M−1/2)
under several assumptions, because the closeness of the
loss values does not imply that of the hypothesis.

3.2 Further Analysis for Gaussian Kernels

The following theorem shows that if k is a Gaussian
kernel and kM is its random Fourier features approxi-
mation, then the norm condition in Assumption 3 is
satisfied for any 0 < p < 1.

Theorem 2. Assume supp(ρX ) ⊂ Rd is a bounded set
and ρX has a density with respect to Lebesgue measure,
which is uniformly bounded away from 0 and ∞ on
supp(ρX ). Let k be a Gaussian kernel and H be its
RKHS; then, for any m ≥ d/2, there exists a constant
Cm,d > 0 such that

‖f‖L∞(ρX ) ≤ Cm,d‖f‖
d/2m
H ‖f‖1−d/2m

L2(ρX ) (7)

for any f ∈ H. Also, for any M ≥ 1, let kM be a
random Fourier features approximation of k with M
features and H+

M be a RKHS of k + kM . Then, with
probability at least 1− δ with respect to a sampling of
features,

‖f‖L∞(ρX ) ≤ Cm,d
(

1 +
1

δ

)d/4m

‖f‖d/2mH+
M

‖f‖1−d/2m
L2(ρX )

(8)
for any f ∈ H+

M .

We note that the norm relation of the Gaussian RKHS
(7) is a known result of Steinwart et al. (2009) and our
analysis extends this to the combined RKHS H+

M . The
proof is based on the following fact:
Let us denote supp(ρX ) by X ′. First, from Steinwart
et al. (2009) we have[

L2(X ′),Wm(X ′)
]
d/2m,1

= B
d/2
2,1 (X ′)

and there exists a constant C1 > 0 such that

‖f‖[L2(X ′),Wm(X ′)]d/2m,1
≤ C1‖f‖

d/2m
Wm(X ′)‖f‖

1−d/2m
L2(X ′) ,

where Wm(X ′) and B
d/2
2,1 (X ′) denote Sobolev and

Besov space, respectively, and [E,F ]θ,r denotes real
interpolation of Banach spaces E and F (see Steinwart
and Christmann (2008)). Also, by Sobolev’s embedding
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theorem for Besov space, B
d/2
2,1 (X ′) can be continuously

embedded in L∞(X ′). Finally, from the condition on
ρX , there exists a constant C2 > 0 such that

‖f‖L∞(ρX ) = ‖f‖L∞(X ′),

‖f‖L2(ρX ) ≥ C2‖f‖L2(X ′).

Therefore, if it can be shown that RKHS H+
M is con-

tinuously embedded in Wm(X ′), the norm relation (8)
holds. The complete proof is found in Appendix D.
Using this theorem, it can be shown that in the case
of a Gaussian kernel and its random Fourier features
approximation, Assumption 3 is satisfied with p = 1/2
and C(δ) = Cd,d(1 + 1/δ)1/4, and the resulting rate in
Theorem 1 is O(M−1/8).

4 Main Result

In this section, we show that learning classification
problems with SGD and random features achieve the
exponential convergence of the expected classification
error under certain conditions. Before providing our
results, several assumptions are imposed on the clas-
sification problems and loss function. The first is the
smoothness of the loss function.

Assumption 4. l(·, y) is differentiable and L-Lipschitz
smooth. That is, for any ζ, ζ ′ ∈ R and y ∈ Y,

|∂ζ l(ζ, y)− ∂ζ l(ζ ′, y)| ≤ L|ζ − ζ ′|.

Let l(g, z) denote l(g(x), y) for z = (x, y) and ∂gl(g, z)
denote the gradient of l(g, z) with respect to g ∈ H.
Combining Assumption 2 and 4 yields LR2-smoothness
in H, since

〈∂gl(g, z)− ∂gl(g′, z), g − g′〉H
= 〈(∂ζ l(g(x), y)− ∂ζ l(g′(x), y))k(·, x), g − g′〉H
≤ LR2‖g − g′‖2H

holds for any z ∈ X×Y and it is known as an equivalent
condition of smoothness by Theorem 2.1.5 of Nesterov
(2014). The second is the margin condition on the
conditional label probability.

Assumption 5. The strong low-noise condition holds:

∃δ ∈ (0, 1/2) , |ρ(Y = 1|x)− 1/2| > δ (ρX -a.s.)

The third is the condition on the link function h∗
(Bartlett et al., 2006; Zhang, 2004), which connects the
hypothesis space and the probability measure:

h∗(µ) = arg min
α∈R

{µφ(α) + (1− µ)φ(−α)} .

Its corresponding value is denoted by l∗:

l∗(µ) = min
α∈R
{µφ(α) + (1− µ)φ(−α)} .

It is known that l∗ is a concave function (Zhang, 2004).
Although h∗(µ) may not be uniquely determined nor
well-defined in general, the following assumption en-
sures these properties.

Assumption 6. ρ(1|X) takes values in (0, 1), ρX -
almost surely; φ is differentiable and h∗ is well-defined,
differentiable, monotonically increasing, and invertible
over (0, 1). Moreover, it follows that

sgn(µ− 1/2) = sgn(h∗(µ)).

For logistic loss, h∗(µ) = log(µ/(1−µ)), and the above
condition is satisfied. Next, following Zhang (2004), we
introduce Bregman divergence for concave function l∗
to ensure the uniqueness of Bayes rule g∗:

dl∗(η1, η2) = −l∗(η2) + l∗(η1) + l′∗(η1)(η2 − η1).

Assumption 7. Bregman divergence dl∗ derived by l∗
is positive, that is, dl∗(η1, η2) = 0 if and only if η1 = η2.
For the expected risk L, a unique Bayes rule g∗ (up to
zero measure sets) exists in H.

For logistic loss, it is known that dl∗ coincides with
Kullbuck-Leibler divergence, and thus, the positivity
of the divergence holds. If φ is differentiable and h∗
is differentiable and invertible, the excess risk can be
expressed using dl∗ (Zhang, 2004):

L(g)− L(g∗) = EX [dl∗(h
−1
∗ (g(X)), ρ(1|X))].

So, combining Assumptions 6 and 7 implies that Bayes
rule g∗ is equal to h∗(ρ(1|X)), ρX -almost surely and
contained in the original RKHS H. Finally, we intro-
duce the following notation:

m(δ) = max{h∗(0.5 + δ), |h∗(0.5− δ)|}.

Using this notation, Assumption 5 can be reduced
to the Bayes rule condition, that is, |g∗(X)| ≥ m(δ),
ρX -almost surely. For logistic loss, we have m(δ) =
log((1 + 2δ)/(1− 2δ)). Under these assumptions and
notations, the exponential convergence of the expected
classification error is shown.

Theorem 3. Suppose Assumptions 1–7 hold. There
exists a sufficiently small λ > 0 such that the following
statement holds:
Taking the number of random features M that satisfies

M &

(
R4C4(δ′)G3‖g∗‖4H

λ3m4(δ)

)max{ 1
1−p ,2}

R4 log
R

δ′
.

Consider Algorithm 1 with ηt = 2
λ(γ+t) and

αt = 2(γ+t−1)
(2γ+T )(T+1) where γ is a positive value

such that ‖g1‖HM
≤ (2η1 + 1/λ)GR and η1 ≤
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min{1/LR2, 1/2λ}. Then, with probability 1− 2δ′, for
sufficiently large T such that

max

{
36G2R2

λ2(2γ + T )
,
γ(γ − 1)‖g1 − gM,λ‖2HM

(2γ + T )(T + 1)

}
≤ m2(δ)

64R2
,

we have the following inequality for any t ≥ T :

E
[
R(gt+1)−R(E[Y |x])

]
≤ 2 exp

(
−λ

2(2γ + t)m2(δ)

212 · 9G2R4

)
.

The complete statement and proof are given in Ap-
pendix E. We note that although a certain number of
features are required to achieve the exponential con-
vergence, the resulting rate does not depend on M . In
contrast to this, when one considers the convergence
rate of the loss function, its rate depends on M in gen-
eral (Rudi and Rosasco, 2017; Carratino et al., 2018;
Rahimi and Recht, 2009; Li et al., 2019). From this
fact, we can show that random features can save com-
putational cost in a relatively small classification error
regime. A detailed discussion is presented later.

Dependence of γ and λ on T As we can see in
the condition inequality on T , γ adjusts the step size
and consequently affects T , when the exponential
convergence phase starts. Indeed, there is a trade-off
relation in T , that is, the first part of max in the
condition on T is O(1/γ) and the second part is O(γ).
In addition, we note that when we apply non-averaged
SGD, the dependence of λ on T is worse than our av-
eraged SGD, although similar exponential convergence
can be shown in such case. This comes from the fact
that gradient averaging achieves better dependence on
the strongly convex parameter. For further details, see
Nitanda and Suzuki (2019); Lacoste-Julien et al. (2012).

As a corollary, we show a simplified result when learn-
ing with random Fourier features approximation of a
Gaussian kernel and logistic loss, which can be obtained
by setting m(δ) = log((1 + 2δ)/(1 − 2δ)), R = G = 1
and L = 1/4 in Theorem 3 and applying Theorem 2.
In addition, we can specify a required λ to achieve the
convergence in this setting. The complete statement
and proof are given in Appendix F.

Corollary 1. Assume supp(ρX ) ⊂ Rd is a bounded set
and ρX has a density with respect to Lebesgue measure,
which is uniformly bounded away from 0 and ∞ on
supp(ρX ). Let k be a Gaussian kernel and l be logistic
loss. Under Assumption 5-7, the following statement
holds:
Taking a regularization parameter λ and a number of

random features M that satisfies

λ . log3 1 + 2δ

1− 2δ
· 1

(2 + eR‖g∗‖H + e−R‖g∗‖H)‖g∗‖3H
,

M &

((
1 + 1

δ′

)
‖g∗‖4H

λ3 log4 1+2δ
1−2δ

)2

log
1

δ′
.

Consider Algorithm 1 with ηt = 2
λ(γ+t) and αt =

2(γ+t−1)
(2γ+T )(T+1) where γ is a positive value such that

‖g1‖HM
≤ (2η1 + 1/λ) and η1 ≤ min{4, 1/2λ}. Then,

with probability 1− 2δ′, for a sufficiently large T such
that

max

{
36

λ2(2γ + T )
,
γ(γ − 1)‖g1 − gM,λ‖2HM

(2γ + T )(T + 1)

}
≤

log2 1+2δ
1−2δ

64
,

we have the following inequality for any t ≥ T :

E
[
R(gt+1)−R(E[Y |x])

]
≤ 2 exp

(
−λ

2(2γ + t)

212 · 9
log2 1 + 2δ

1− 2δ

)
.

Computational Viewpoint As shown in Theorem
3, once a sufficient number of features are sampled,
the convergence rate of the excess classification error
does not depend on the number of features M . This is
unexpected because when considering the convergence
of the loss function, the approximation error induced
by random features usually remains (Rudi and Rosasco,
2017; Li et al., 2019; Rahimi and Recht, 2009). Thus,
to obtain the best convergence rate, we have to sample
more M as the sample size n increases.
From this fact, it can be shown that to achieve a rela-
tively small classification error, learning with random
features is indeed more computationally efficient than
learning with a full kernel method without approxi-
mation. As shown in Section 2.3, if one runs SGD in
Algorithm 1 with more than M iterations, both the
time and space computational costs of a full kernel
method exceed those of random features. In particular,
if one can achieve a classification error ε such that

ε . exp
(
− log2 max{(1+p)/(1−p),3}m(δ)

)
,

then the required number of iterations n exceeds the
required number of features M in Theorem 3, and the
overall computational cost become larger in a full kernel
method. Theoretical results which suggest the efficiency
of random features in terms of generalization error
have only been derived in the regression setting (Rudi
and Rosasco, 2017; Carratino et al., 2018); this is the
first time the superiority of random features has been
demonstrated in the classification setting. Moreover,
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Figure 1: Subsample of data used in the experiment.

this result shows that an arbitrary small classification
error is achievable as long as there is a sufficient number
of random features unlike the regression setting where
a required number of random features depend on the
target accuracy.

5 Experiments

In this section, the behavior of the SGD with random
features studied on synthetic datasets is described. We
considered logistic loss as a loss function, a Gaussian
kernel as an original kernel function, and its random
Fourier features as an approximation method. Two-
dimensional synthetic datasets were used, as shown
in Figure 1. The dataset support is composed of
four parts: [−1.0,−0.1] × [−1.0,−0.1], [−1.0,−0.1] ×
[0.1, 1.0], [0.1, 1.0]× [−1,−0.1], [0.1, 1.0]× [0.1, 1.0]. For
two of them, the conditional probability is ρ(1|X) = 0.8,
and for the other two, ρ(1|X) = 0.2. This distribution
satisfies the strong low-noise condition with δ = 0.3.
For hyper-parameters, we set γ = 500 and λ = 0.001.
SGD was run 100 times with 12,000 iterations and the
classification error and loss function were calculated
on 100,000 test samples. The average of each run is
reported with standard deviations.
First, the learning curves of the expected classifica-

tion error and the expected loss function are drawn
when the number of features M = 1000, as shown in
Figure 2. Our theoretical result suggests that with
sufficient features, the classification error converges ex-
ponentially fast, whereas the loss function converges
sub-linearly. We can indeed observe a much faster de-
crease in the classification error (left) than in the loss
function (right). Next, we show the learning curves of
the expected classification error when the number of
features are varied as M = 100, 200, 500, 1000 in Figure
3. We can see that the exact convergence of the classifi-
cation error is not attained with relatively few features
such as M = 100, which also coincides with our results.
Finally, the convergence of the classification error is

(a) Classification errors (b) Loss functions

Figure 2: Learning curves of the expected classification
error (left) and the expected loss function (right) by
averaged SGD with 1000 features.

Figure 3: Comparison of learning curves of the expected
classification error with varying numbers of features.

compared in terms of computational cost between the
random features model with M = 500, 1000 and the
full kernel model without approximation. In Figure
4, the learning curves are drawn with respect to the
number of parameter updates; the full kernel model
requires increasing numbers of updates in later itera-
tions, whereas the random features model requires a
constant number of updates. It can be observed that
both random features models require fewer parameter
updates to achieve the same classification error than
the full kernel model for a relatively small classification
error. This implies that random features approxima-
tion is indeed computationally efficient under a strong
low-noise condition.

6 Conclusion

This study shows that learning with SGD and random
features could achieve exponential convergence of the
classification error under a strong low-noise condition.
Unlike when considering the convergence of a loss func-
tion, the resulting convergence rate of the classification
error is independent of the number of features, indi-
cating that an arbitrary small classification error is
achievable as long as there is a sufficient number of
random features. Our results suggest, for the first time,
that random features is theoretically computationally
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Figure 4: Comparison of learning curves with respect
to number of parameter updates.

efficient even for classification problems under certain
settings. Our theoretical analysis has been verified by
numerical experiments.
One possible future direction is to extend our analysis
to general low-noise conditions to derive faster rates
than O(1/

√
n), as Pillaud-Vivien et al. (2018) did in

the case of the squared loss. It could also be interesting
to explore the convergence speed of more sophisticated
variants of SGD, such as stochastic accelerated meth-
ods and stochastic variance reduced methods (Schmidt
et al., 2017; Johnson and Zhang, 2013; Defazio et al.,
2014; Allen-Zhu, 2017).
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