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A Proof of Theorem 4.1

Let a stationary point π ∈ Rn+ of the Augmented Lagrangian (7) be such that:

∂Lρ(π,W
k,yk)

∂πi
= 0 ∀i ∈ [n] (20a)

⇔ ∂L(D|π)

∂πi
+ yki + ρ

∂Dp(π||π̃k)

∂πi
= 0. ∀i ∈ [n] (20b)

Let σi(π) = ρ
∂Dp(π||π̃k)

∂πi
+ yki , for all i ∈ [n]. Then, Eq.(20a) is equivalent to:
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∂πi
+ σi(π) = 0 ∀i ∈ [n] . (21)

Partial derivatives of the negative log-likelihood L(D|π) are given by:
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for all i ∈ [n], where Wi = {` |i ∈ A`, c` = i} is the set of observations where sample i ∈ [n] is chosen and
Li = {` |i ∈ A`, c` 6= i} is the set of observations where sample i ∈ [n] is not chosen. Setting ∂L(D|π)

∂πi
from Eq. (22)

to Eq. (21), we have:
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for all i ∈ [n]. Multiplying both sides of Eq. (23) with −πi, i ∈ [n], we have:
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for all i ∈ [n]. Note that
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rewrite Eq. (24) as:
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for all i ∈ [n]. Then, the stationarity condition given by Eq.(20a) is equivalent to:∑
j 6=i

πjλji(π)−
∑
j 6=i

πiλij(π) = πiσi(π) ∀i ∈ [n] , (26)

where λji(π), i, j ∈ [n] , i 6= j are given by Eq. (12).

It is not evident that Eq.(26) corresponds to the balance equations of an MC as, in general, σ(π) = [σi(π)]i∈[n] 6= 0.

Nevertheless, for σi(π) = ρ
∂Dp(π||π̃k)

∂πi
+yki , i ∈ [n], Eq.(26) has the same form as the balance equations in Theorem

4. 2 established by Yıldız et al. (2020). By this theorem, a stationary π ∈ Rn+ satisfying (20a) is also the stationary
distribution of the continuous-time MC with transition rates given by Eq. (10).

B Datasets

Retinopathy of Prematurity (ROP). The Retinopathy of Prematurity (ROP) dataset contains n = 100
vessel-segmented retina images with dimensions d = 224× 224 (Ataer-Cansızoğlu, 2015). Experts are provided
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with two images and are asked to choose the image with higher severity of the ROP disease. Five experts
independently label 5941 image pairs; the resulting dataset contains m = 29705 pairwise comparisons. Note that
some pairs are labelled more than once by different experts.

International Conference on Learning Representations (ICLR). The ICLR Dataset contains abstracts
and reviewer ratings of 2561 papers that are submitted to ICLR 2020 conference and are available on OpenReview
website (Sun, 2020). We choose the top n = 100 papers, and extract d = 768 numerical features from each
abstract using the Deep Bidirectional Transformers (BERT) (Devlin et al., 2019) architecture, pre-trained on
the Books Corpus dataset (Zhu et al., 2015) and English Wikipedia. We normalize X to have 0 mean and unit
variance over samples [n]. We generate all possible m = 120, 324(2, 248, 524) K = 3(4)-way rankings w.r.t. the
relative order of the average reviewer ratings. We add noise to the resulting rankings following the same process
as Movehub-Cost.

Movehub-Cost. The Movehub-Cost dataset contains the total ranking of 216 cities w.r.t. cost of living (Blitzer,
2017). Each city is associated with d = 6 numerical features, which are average costs for cappuccino, cinema,
wine, gasoline, rent, and disposable income. We normalize X to have 0 mean and unit variance over samples [n].
We select n = 50 cities and generate all m = 230, 298(2, 118, 756) K = 4(5)-way rankings w.r.t. the relative order
of the queried cities in the total ranking. To mimic the real-life noise introduced by human labelling, we apply
the following post-processing to the resulting rankings: For each ranking, we sample a value uniformly at random
in [0, 1]. If the value is less than 0.1, we add noise to the ranking by a cyclic permutation of the ranked samples.

Movehub-Quality. The Movehub-Quality dataset contains total ranking of the same 216 cities as Movehub-Cost,
this time w.r.t. quality of life. Each city is associated with d = 5 numerical features, including overall scores
for purchase power, healthcare, pollution, quality of life, and crime. We normalize X to have 0 mean and unit
variance over samples [n]. We select n = 50 cities and generate all m = 230, 298(2, 118, 756) K = 4(5)-way
rankings w.r.t. the relative order of the queried cities in the total ranking. We add noise to the rankings following
the same process as Movehub-Cost.

IMDB. The IMDB Movies Dataset contains IMDB ratings of 14,762 movies, each of which is associated with
d = 36 numerical features (Leka, 2016). We normalize X to have 0 mean and unit variance over samples [n]. We
select n = 50 movies and generate all possible m = 85, 583 K = 4-way rankings w.r.t. the relative order of the
ratings of queried movies. We add noise to the resulting rankings following the same process as Movehub-Cost.
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