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Appendix

A Technical lemmas

Lemma A.1 (Multiplicative Chernoff bound Chernoff et al. (1952)). Let X be a Binomial random variable with
parameter p, n. For any δ > 0, we have that

P[X < (1− δ)pn] <

(
e−δ

(1− δ)1−δ

)np
.

A slightly looser bound that suffices for our propose:

P[X < (1− δ)pn] < e−
δ2pn

2 .

Lemma A.2 (Hoeffdings Inequality Sridharan (2002)). Let x1, ..., xn be independent bounded random variables
such that E[xi] = 0 and |xi| ≤ ξi with probability 1. Then for any ε > 0 we have

P

(
1

n

n∑
i=1

xi ≥ ε

)
≤ e
− 2n2ε2∑n

i=1
ξ2
i .

Lemma A.3 (Bernsteins Inequality). Let x1, ..., xn be independent bounded random variables such that E[xi] = 0
and |xi| ≤ ξ with probability 1. Let σ2 = 1

n

∑n
i=1 Var[xi], then with probability 1− δ we have

1

n

n∑
i=1

xi ≤
√

2σ2 · log(1/δ)

n
+

2ξ

3n
log(1/δ)

Lemma A.4 (Mcdiarmids Inequality (Sridharan, 2002)). Let x1, ..., xn be independent random variables and
S : Xn → R be a measurable function which is invariant under permutation and let the random variable Z be
given by Z = S(x1, x2, ..., xn). Assume S has bounded difference: i.e.

sup
x1,...,xn,x′i

|S(x1, ..., xi, ..., xn)− S(x1, ..., x
′
i, ..., xn)| ≤ ξi,

then for any ε > 0 we have

P(|Z − E[Z]| ≥ ε) ≤ 2e
− 2ε2∑n

i=1
ξ2
i .

Lemma A.5 (Azuma-Hoeffding inequality). Suppose Xk, k = 1, 2, 3, ... is a martingale and |Xk −Xk−1| ≤ ck
almost surely. Then for all positive integers N and any ε > 0,

P(|XN −X0| ≥ ε) ≤ 2e
− ε2

2
∑N
i=1

c2
i .

Lemma A.6 (Freedman’s inequality Tropp et al. (2011)). Let X be the martingale associated with a filter F
(i.e. Xi = E[X|Fi]) satisfying |Xi −Xi−1| ≤M for i = 1, ..., n. Denote W :=

∑n
i=1 Var(Xi|Fi−1) then we have

P(|X − E[X]| ≥ ε,W ≤ σ2) ≤ 2e
− ε2

2(σ2+Mε/3) .

Or in other words, with probability 1− δ,

|X − E[X]| ≤
√

8σ2 · log(1/δ) +
2M

3
· log(1/δ), Or W ≥ σ2.

Lemma A.7 (Best arm identification lower bound Krishnamurthy et al. (2016)). For any A ≥ 2 and τ ≤
√

1/8
and any best arm identification algorithm that produces an estimate â, there exists a multi-arm bandit problem for
which the best arm a? is τ better than all others, but P[â 6= a?] ≥ 1/3 unless the number of samples T is at least
A

72τ2 .
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B On error metric for OPE

In this section, we discuss the metric considered in this work. Traditionally, most works directly use Mean
Square Error (MSE) E[(v̂π − vπ)2] as the criterion for measuring OPE methods e.g. Thomas and Brunskill
(2016); Thomas (2015); Thomas et al. (2017); Farajtabar et al. (2018), or equivalently, by proposing unbiased
estimators and discussing its variance e.g. Jiang and Li (2016). Alternately, one can consider bounding the
absolute difference between vπ and v̂π with high probability (e.g. Duan et al. (2020)), i.e. |v̂π − vπ| ≤ εprob w.h.p.
Generally speaking, high probability bound can be seen as a stricter criterion compared to MSE since

E[(v̂π − vπ)2] = E[(v̂π − vπ)21E ] + E[(v̂π − vπ)21Ec ]

≤ εprob(δ)2 · (1− δ) +H2 · δ,

where E is the event that εprob error holds and δ is the failure probability. As a result, if both δ and εprob(δ)
can be controlled small, then the high probability bound implies a result for MSE bound. This is realistic, since
δ mostly appears inside the logarithmic term of εprob(δ) so the second term can be scaled to sufficiently small
without affecting the polynomial dependence for the first term.

Table 2: Summary of Uniform OPE results for H-horizon non-stationary setting

Method/Analysis Policy class Guarantee Sample complexity

Simulation Lemma All policies ε-uniform convergence O(H4S2/dmε
2)

Theorem 3.3 All policies ε-uniform convergence O(H4S/dmε
2)

Theorem 3.5 All deterministic policies ε-uniform convergence O(H3S/dmε
2)

Theorem 3.7 local policies ε-uniform convergence O(H3/dmε
2)

Minimax lower bound (Theorem 3.8) ————— over class Mdm Ω(H3/dmε
2)

C Some preparations

In this section we present some results that are critical for proving the main theorems.

Lemma C.1. For any 0 < δ < 1, there exists an absolute constant c1 such that when total episode n >
c1 · 1/dm · log(HSA/δ), then with probability 1− δ,

nst,at ≥ n · d
µ
t (st, at)/2, ∀ st, at.

If state st is not accessible, then nst,at = dµt (st, at) = 0 so the lemma holds trivially.6

Proof of Lemma C.1. Define E := {∃t, st, at s.t. nst,at < ndµt (st, at)/2}. Then combining the multiplicative
Chernoff bound (Lemma A.1 in the Appendix) and a union bound over each t,st and at, we obtain

P[E] ≤
∑
t

∑
st

∑
at

P[nst,at < ndµt (st, at)/2]

≤ HSA · e−
n·mint,st,at

d
µ
t (st,at)

8 = HSA · e−
n·dm

8 := δ

solving this for n then provides the stated result.

Now we define: N := mint,st,at nst,at , then above implies N ≥ ndm/2 (recall dm in Assumption 2.2). Now we
aggregate only the first N pieces of data in each state-action (st, at)

7 of off-policy data D and they consist of

a new dataset D′ = {(st, at, s(i)
t+1, r

(i)
t ) : i = 1, ..., N ; t ∈ [H]; st ∈ S, at ∈ A}, and is a subset of D. For the rest

of paper, we will use either D′ or the original D to create OPEMA v̂π (only for theoretical analysis purpose).
Whether D or D′ is used will be stated clearly in each context.

6In general, non-accessible state will not affect our results so to make our presentation succinct we will not mention
non-accessible state for the rest of paper unless necessary.

7Note we can do this since by definition N ≤ nst,at for all st, at.



Near-Optimal Provable Uniform OPE for Reinforcement Learning

Remark C.2. It is worth mentioning that when use D′ to construct v̂π, nD
′

st,at = N for all st, at. Also,

N := minnDst,at (note nDst,at is the count from D) itself is a random variable and in the extreme case we could

have N = 0 and if that happens v̂π = 0 (since in that case P̂t ≡ 0 and d̂πt is degenerated). However, there is only
tiny probability N will be small, as guaranteed by Lemma C.1.

We wanted to point out that this technique of dropping certain amount of data, is not uncommon for analyzing
model-based method in RL: e.g. Rmax exploration (Brafman and Tennenholtz, 2002) for online episodic setting
(see [Jiang (2018), Notes on Rmax exploration] Section 2 Algorithm for tabular MDP. The data they use is the
known set K with parameter m, in step3 data pairs observed more than m times are not recorded).

C.1 Fictitious OPEMA estimator.

Similar to Xie et al. (2019); Yin and Wang (2020), we introduce an unbiased version of v̂π to fill in the gap
at (st, at) where nst,at is small. Concretely, every component in v̂π is substituted by the fictitious counterpart,

i.e. ṽπ :=
∑H
t=1〈d̃πt , r̃πt 〉, with d̃πt = P̃πt d̃

π
t−1 and P̃πt (st|st−1) =

∑
at−1

P̃t(st|st−1, at−1)π(at−1|st−1). In particular,

consider the high probability event in Lemma C.1, i.e. let Et denotes the event {nst,at ≥ nd
µ
t (st, at)/2}8, then

we define

r̃t(st, at) = r̂t(st, at)1(Et) + rt(st, at)1(Ect )

P̃t+1(·|st, at) = P̂t+1(·|st, at)1(Et) + Pt+1(·|st, at)1(Ect ).

Similarly, for the OPEMA estimator uses data D′, the fictitious estimator is set to be

r̃t(st, at) = r̂t(st, at)1(E) + rt(st, at)1(Ec)

P̃t+1(·|st, at) = P̂t+1(·|st, at)1(E) + Pt+1(·|st, at)1(Ec)

where E denote the event {N ≥ ndm/2}.

ṽπ creates a bridge between v̂π and vπ because of its unbiasedness and it is also bounded by H (see Lemma B.3
and Lemma B.5 in Yin and Wang (2020) for those preliminary results). Also, ṽπ is identical to v̂π with high
probability, as stated by the following lemma.

Lemma C.3. For any 0 < δ < 1, there exists an absolute constant c1 such that when total episode n >
c1dm · log(HSA/δ), then with probability 1− δ,

sup
π∈Π
|v̂π − ṽπ| = 0.

Proof. This Lemma is a direct corollary of Lemma C.1 by considering the event E1 := {∃t, st, at s.t. nst,at <
ndµt (st, at)/2} or {N < ndm/2} since v̂π and ṽπ are identical on Ec1.

Note v̂π and ṽπ even equal to each other uniformly over all π in Π. This is not surprising since only logging policy
µ will decide if they are equal or not. This lemma shows how close v̂π and ṽπ are. Therefore in the following it
suffices to consider the uniform convergence of supπ∈Π |ṽπ − vπ|.

Next by using a fictitious analogy of state-action expression as in equation (1), we have:

sup
π∈Π
|ṽπ − vπ| = sup

π∈Π
|
H∑
t=1

〈d̃πt , r̃t〉 −
H∑
t=1

〈dπt , rt〉|

= sup
π∈Π
|
H∑
t=1

〈d̃πt , r̃t〉 −
H∑
t=1

〈d̃πt , rt〉+

H∑
t=1

〈d̃πt , rt〉 −
H∑
t=1

〈dπt , rt〉|

≤ sup
π∈Π
|
H∑
t=1

〈d̃πt − dπt , rt〉|︸ ︷︷ ︸
(∗)

+ sup
π∈Π
|
H∑
t=1

〈d̃πt , r̃t − rt〉|︸ ︷︷ ︸
(∗∗)

(3)

8More rigorously, Et depends on the specific pair st, at and should be written as Et(st, at). However, for brevity we
just use Et and this notation should be clear in each context.
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We first deal with (∗∗) by the following lemma.

Lemma C.4. We have with probability 1− δ:

sup
π∈Π
|
H∑
t=1

〈d̃πt , r̃t − rt〉| ≤ O(

√
H2 log(HSA/δ)

n · dm
)

Proof of Lemma C.4. Since |〈d̃πt , r̃t − rt〉| ≤ ||d̃πt ||1 · ||r̃t − rt||∞, we obtain

|
H∑
t=1

〈d̃πt , r̃t − rt〉| ≤
H∑
t=1

||d̃πt ||1 · ||r̃t − rt||∞ =

H∑
t=1

||r̃t − rt||∞,

where we used d̃πt (·) is a probability distribution. Therefore above expression further indicates

supπ∈Π |
∑H
t=1〈d̃πt , r̃t − rt〉| ≤

∑H
t=1 ||r̃t − rt||∞. Now by a union bound and Hoeffding inequality (Lemma A.2),

P(sup
t
||r̃t − rt||∞ > ε) = P( sup

t,st,at

|r̃t(st, at)− rt(st, at)| > ε)

≤ HSA · P(|r̃t(st, at)− rt(st, at)| > ε)

= HSA · P(|r̂t(st, at)− rt(st, at)|1(Et) > ε)

≤ 2HSA · E[E[e−2nst,atε
2

|Et]]

≤ 2HSA · E[E[e−ndmε
2

|Et]] = 2HSA · e−ndmε
2

:=
δ

2
.

where we use P(A) = E[1A] = E[E[1A|X]]. Solving for ε, then it follows:

sup
π∈Π
|
H∑
t=1

〈d̃πt , r̃t − rt〉| ≤
H∑
t=1

||r̃t − rt||∞ ≤ O(

√
H2 log(HSA/δ)

n · dm
)

with probability 1− δ. The case for E = {N ≥ ndm/2} can be proved easily in a similar way.

Note that in order to measure the randomness in reward, sample complexity n only has dependence of order H2,
this result implies random reward will only cause error of lower order dependence in H. Therefore, in many RL
literature deterministic reward is directly assumed. Next we consider (∗) in (3) by decomposing

∑H
t=1〈d̃πt − dπt , rt〉

into a martingale type representation. This is the key for our proof since with it we can use either uniform
concentration inequalities or martingale concentration inequalities to prove efficiency.

C.2 Decomposition of
∑H
t=1〈d̃πt − dπt , rt〉

Let d̃πt ∈ RS·A denote the marginal state-action probability vector, πt ∈ R(S·A)×S is the policy matrix with
(πt)(st,at),st = πt(at|st) and (πt)(st,at),s = 0 for s 6= st. Moreover, let state-action transition matrix Tt ∈ RS×(S·A)

to be (Tt)st,(st−1,at−1) = Pt(st|st−1, at−1), then we have

d̃πt = πtT̃td̃
π
t−1 (4)

dπt = πtTtd
π
t−1. (5)

Therefore we have

d̃πt − dπt = πt(T̃t − Tt)d̃πt−1 + πtTt(d̃
π
t−1 − dπt−1) (6)

recursively apply this formula, we have

d̃πt − dπt =

t∑
h=2

Γh+1:tπh(T̃h − Th)d̃πh−1 + Γ1:t(d̃
π
1 − dπ1 ) (7)

where Γh:t =
∏t
v=h πvTv and Γt+1:t := 1. Now let X =

∑H
t=1〈rt, d̃πt − dπt 〉, then we have the following:
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Theorem C.5 (martingale decomposition of X: Restate of the fictitious version of Lemma 3.1). We have:

X =

H∑
h=2

〈V πh (s), ((T̃h − Th)d̃πh−1)(s)〉+ 〈V π1 (s), (d̃π1 − dπ1 )(s)〉,

where the inner product is taken w.r.t states.

Proof of Theorem C.5. By applying (7) and the change of summation, we have

X =

H∑
t=1

(
t∑

h=2

〈rt,Γh+1:tπh(T̃h − Th)d̃πh−1〉+ 〈rt,Γ1:t(d̃
π
1 − dπ1 )〉

)

=

H∑
t=1

(
t∑

h=2

〈rt,Γh+1:tπh(T̃h − Th)d̃πh−1〉

)
+

H∑
h=1

〈rt,Γ1:t(d̃
π
1 − dπ1 )〉

=

H∑
t=2

(
t∑

h=2

〈rt,Γh+1:tπh(T̃h − Th)d̃πh−1〉

)
+

H∑
h=1

〈rt,Γ1:t(d̃
π
1 − dπ1 )〉

=

H∑
h=2

(
H∑
t=h

〈rt,Γh+1:tπh(T̃h − Th)d̃πh−1〉

)
+

H∑
h=1

〈(πT1 ΓT1:trt)(s), (d̃
π
1 − dπ1 )(s)〉

=

H∑
h=2

〈
H∑
t=h

πTh ΓTh+1:trt︸ ︷︷ ︸
V πh (s)

, (T̃h − Th)d̃πh−1〉

+ 〈(
H∑
h=1

πT1 ΓT1:trt)(s)︸ ︷︷ ︸
V π1 (s)

, (d̃π1 − dπ1 )(s)〉

D Proof of uniform convergence in OPE with full policies using standard
uniform concentration tools: Theorem 3.3

As a reminder for the reader, the OPEMA estimator used in this section is with data subset D′. Also, by
Lemma C.4 we only need to consider supπ∈Π |

∑H
t=1〈d̃πt − dπt , rt〉|.

Theorem D.1. There exists an absolute constant c such that if n > c · 1
dm
· log(HSA/δ), then with probability

1− δ, we have:

sup
π∈Π

∣∣∣∣∣
H∑
t=1

〈d̃πt − dπt , rt〉

∣∣∣∣∣ ≤ O(

√
H4 log(HSA/δ)

ndm
) + E

[
sup
π∈Π

∣∣∣∣∣
H∑
t=1

〈d̃πt − dπt , rt〉

∣∣∣∣∣
]

Proof of Theorem D.1. Note in data D′ = {(st, at, s(i)
t+1) : i = 1, ..., N ; t = 1, ...,H; st ∈ S, at ∈ A}9, not only s

(i)
t+1

but also N are random variables.

We first conditional on N , then (st, at, s
(i)
t+1)’s are independent samples for all i, st, at since any sample will

not contain information about other samples. Therefore we can regroup D′ into N independent samples with

D′ = {X(i) : i = 1, ..., N} where X(i) = {(st, at, s(i)
t+1), t = 1, ...,H; st ∈ S, at ∈ A}. Now for any i0, change X(i0)

to X ′(i0) = {(st, at, s′(i0)
t+1 ), t = 1, ...,H; st ∈ S, at ∈ A} and keep the rest N − 1 data the same, use this data to

9Here we do not include r
(i)
t since the quantity supπ∈Π |

∑H
t=1〈d̃

π
t − dπt , rt〉| only contains the mean reward function rt.
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create new estimator with state-action transition d̃′π, then we have∣∣∣∣∣sup
π∈Π
|
H∑
t=1

〈d̃πt − dπt , rt〉| − sup
π∈Π
|
H∑
t=1

〈d̃′πt − dπt , rt〉|

∣∣∣∣∣
≤ sup
π∈Π

∣∣∣∣∣|
H∑
t=1

〈d̃πt − dπt , rt〉| − |
H∑
t=1

〈d̃′πt − dπt , rt〉|

∣∣∣∣∣
≤ sup
π∈Π

∣∣∣∣∣
H∑
t=1

〈d̃πt − dπt , rt〉 −
H∑
t=1

〈d̃′πt − dπt , rt〉

∣∣∣∣∣
= sup
π∈Π

∣∣∣∣∣
H∑
t=1

〈d̃πt − d̃′πt , rt〉

∣∣∣∣∣
= sup
π∈Π

∣∣∣∣∣
H∑
h=2

〈Ṽ ′πh , (T̃h − T̃ ′h)d̃πh−1〉+ 〈Ṽ ′π1 , d̃π1 − d̃′π1 〉

∣∣∣∣∣ ,
where the last equation comes from the trick that substitutes dπt by d̃′πt in Theorem C.5. By definition, the above
equals to

= sup
π∈Π

∣∣∣∣∣
H∑
h=2

〈V̂ ′πh , (T̂h − T̂ ′h)d̂πh−1〉+ 〈V̂ ′π1 , d̂π1 − d̂′π1 〉

∣∣∣∣∣ · 1(E)

≤ sup
π∈Π

(
H∑
h=2

||(T̂h − T̂ ′h)T V̂ ′πh ||∞||d̂πh−1||1 + |〈V̂ ′π1 , d̂π1 − d̂′π1 〉|

)
· 1(E)

≤ sup
π∈Π

(
H∑
h=2

||(T̂h − T̂ ′h)T V̂ ′πh ||∞ + |〈V̂ ′π1 , d̂π1 − d̂′π1 〉|

)
· 1(E)

Note the change of a single X(i0) will only change two entries of each row of (T̂h − T̂ ′h)T by 1/N since with data
D′, nst,at = N for all st, at. Or in other words, given E,

T̂Th − T̂ ′Th =


0 ... 0 1

N 0 ... − 1
N ... 0

0 1
N 0 ... − 1

N ... ... ... 0
........
− 1
N 0 ... 0 ... ... 0 ... 1

N

 ,
where the locations of 1/N,−1/N in each row are random as it depends on how different is X ′(i0) from X(i0).
However, based on this fact, it is enough for us to guarantee

||(T̂h − T̂ ′h)T V̂ ′πh ||∞ ≤
2

N
||V̂ ′πh ||∞ ≤

2

N
(H − h+ 1) ≤ 2

N
H

and same result holds for |〈V̂ ′π1 , d̂π1 − d̂′π1 〉| ≤ 2H/N given N .

Combine all the results above, for a single change of X(i0) we have∣∣∣∣∣sup
π∈Π
|
H∑
t=1

〈d̃πt − dπt , rt〉| − sup
π∈Π
|
H∑
t=1

〈d̃′πt − dπt , rt〉|

∣∣∣∣∣ ≤ 2
H2

N
1(E) ≤ 2

H2

N

for any fixed N . If we let Z = S(X(1), ..., X(N)) = supπ∈Π |
∑H
t=1〈d̃πt −dπt , rt〉|, then for a given N by independence

and above bounded difference condition we can apply Mcdiarmid inequality Lemma A.4 (where ξi = 2H2/N) to
obtain

P(|Z − E[Z]| ≥ ε|N) ≤ 2e−
Nε2

2H4 :=
δ

2
(8)
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Now note when n > O( 1
dm
· log(HSA/δ)), by Lemma C.1 we can obtain N > ndm/2 with probability 1− δ/2,

combining this result and solving ε in (8), we have

sup
π∈Π

∣∣∣∣∣
H∑
t=1

〈d̃πt − dπt , rt〉

∣∣∣∣∣ ≤ O(

√
H4 log(HSA/δ)

n · dm
) + E

[
sup
π∈Π

∣∣∣∣∣
H∑
t=1

〈d̃πt − dπt , rt〉

∣∣∣∣∣
]

with probability 1− δ.

Next before bounding E
[
supπ∈Π

∣∣∣∑H
t=1〈d̃πt − dπt , rt〉

∣∣∣], we first give a useful lemma.

Let γ ∈ (0, 1) to be any threshold parameter. Then we first have the following lemma:

Lemma D.2. Recall by definition Ph(sh, |sh−1, ah−1) = Th(sh, |sh−1, ah−1). It holds that with probability 1− δ,
for all t, st, at ∈ [H],S,A: if Ph(sh|sh−1, ah−1) ≤ γ, then

∣∣∣T̃h(sh|sh−1, ah−1)− Th(sh|sh−1, ah−1)
∣∣∣ ≤

√
γ log(HSA/δ)

2ndm
+

2 log(HSA/δ)

3ndm
;

if Ph(sh, |sh−1, ah−1) > γ, then∣∣∣∣∣ T̃h(sh|sh−1, ah−1)− Th(sh|sh−1, ah−1)

Th(sh|sh−1, ah−1)

∣∣∣∣∣ ≤
√

log(HSA/δ)

2ndmγ
+

2 log(HSA/δ)

3ndmγ
;

Proof. First consider the case where Ph(sh|sh−1, ah−1) ≤ γ.

T̃h(sh|sh−1, ah−1)− Th(sh|sh−1, ah−1) =
1

nsh−1,ah−1

nsh−1,ah−1∑
i=1

(
1[s

(i)
h ]− Th(sh|sh−1, ah−1)

)
1(Eh),

since Var[1[s
(i)
h ]|sh−1, ah−1] = Ph(sh|sh−1, ah−1)(1 − Ph(sh|sh−1, ah−1)) ≤ Ph(sh|sh−1, ah−1) ≤ γ, therefore by

Lemma A.3,

∣∣∣T̃h(sh|sh−1, ah−1)− Th(sh|sh−1, ah−1)
∣∣∣ ≤ 1(Eh)

(√
γ log(1/δ)

nsh−1,ah−1

+
2 log(1/δ)

nsh−1,ah−1

)
≤

√
γ log(1/δ)

2ndm
+

2 log(1/δ)

3ndm
;

Second, when Ph(sh|sh−1, ah−1) > γ.

T̃h(sh|sh−1, ah−1)− Th(sh|sh−1, ah−1)

Th(sh|sh−1, ah−1)
=

1

nsh−1,ah−1

nsh−1,ah−1∑
i=1

(
1[s

(i)
h ]

Th(sh|sh−1, ah−1)
− 1

)
1(Eh),

since

Var

[
1[s

(i)
h ]

Th(sh|sh−1, ah−1)

∣∣∣∣∣sh−1, ah−1

]
≤ 1

Th(sh|sh−1, ah−1)2
Var

[
1[s

(i)
h ]
∣∣∣sh−1, ah−1

]
≤ 1

Th(sh|sh−1, ah−1)
≤ 1

γ
,

and since
1[s

(i)
h ]

Th(sh|sh−1,ah−1) ≤ 1/γ, again be Bernstein inequality we have

∣∣∣∣∣ T̃h(sh|sh−1, ah−1)− Th(sh|sh−1, ah−1)

Th(sh|sh−1, ah−1)

∣∣∣∣∣ ≤
√

log(1/δ)

2ndmγ
+

2 log(1/δ)

3ndmγ
;

apply the union bound over t, st, at we obtain the stated result.
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Bounding E
[
supπ∈Π

∣∣∣∑H
t=1〈d̃πt − dπt , rt〉

∣∣∣]. First note by Theorem C.5:

E

[
sup
π∈Π

∣∣∣∣∣
H∑
t=1

〈d̃πt − dπt , rt〉

∣∣∣∣∣
]
≤

H∑
h=2

E
[

sup
π∈Π

∣∣∣〈vπh(s), ((T̃h − Th)d̃πh−1)(s)〉
∣∣∣]+ E

[
sup
π∈Π

∣∣∣〈V π1 (s), (d̃π1 − dπ1 )(s)〉
∣∣∣] ,

so it suffices to bound each E
[
supπ∈Π

∣∣∣〈V πh (s), ((T̃h − Th)d̃πh−1)(s)〉
∣∣∣]. First of all,

E
[

sup
π∈Π

∣∣∣〈V πh (s), ((T̃h − Th)d̃πh−1)(s)〉
∣∣∣]

=E

sup
π∈Π

∣∣∣∣∣∣
∑

sh,sh−1,ah−1

V πh (sh)(T̃h − Th)(sh|sh−1, ah−1)d̃πh−1(sh−1, ah−1)

∣∣∣∣∣∣


≤E

sup
π∈Π

∣∣∣∣∣∣
∑

sh,sh−1,ah−1

V πh (sh)(T̃h − Th)(sh|sh−1, ah−1)d̃πh−1(sh−1, ah−1)

∣∣∣∣∣∣ · 1[Th(sh|sh−1, ah−1) > γ]


+E

sup
π∈Π

∣∣∣∣∣∣
∑

sh,sh−1,ah−1

V πh (sh)(T̃h − Th)(sh|sh−1, ah−1)d̃πh−1(sh−1, ah−1)

∣∣∣∣∣∣ · 1[Th(sh|sh−1, ah−1) ≤ γ]


=E

sup
π∈Π

∣∣∣∣∣∣
∑

sh,sh−1,ah−1

V πh (sh)Th(sh|sh−1, ah−1)d̃πh−1(sh−1, ah−1)
T̃h − Th
Th

(sh|sh−1, ah−1)

∣∣∣∣∣∣ · 1[Th > γ]


︸ ︷︷ ︸

(a)

+E

sup
π∈Π

∣∣∣∣∣∣
∑

sh,sh−1,ah−1

V πh (sh)d̃πh−1(sh−1, ah−1)(T̃h − Th)(sh|sh−1, ah−1)

∣∣∣∣∣∣ · 1[Th(sh|sh−1, ah−1) ≤ γ]


︸ ︷︷ ︸

(b)

,

Apply Lemma D.2 with δ′/2 where δ′ = δ/H, then

(a) ≤ sup
π∈Π

∣∣∣∣∣∣
∑

sh,sh−1,ah−1

V πh (sh)Th(sh|sh−1, ah−1)d̃πh−1(sh−1, ah−1)

(√
log(2HSA/δ′)

2ndmγ
+

2 log(2HSA/δ′)

3ndmγ

)∣∣∣∣∣∣ (1− δ′

2
)

+Hδ′/2

≤ sup
π∈Π

∣∣∣∣∣∣
∑

sh,sh−1,ah−1

V πh (sh)Th(sh|sh−1, ah−1)d̃πh−1(sh−1, ah−1)

(√
log(2H2SA/δ)

2ndmγ
+

2 log(2H2SA/δ)

3ndmγ

)∣∣∣∣∣∣
+δ/2

≤ sup
π∈Π

∣∣∣∣∣H
(√

2 log(H2SA/δ)

2ndmγ
+

2 log(2H2SA/δ)

3ndmγ

)∣∣∣∣∣+ δ/2 = H

(√
log(2H2SA/δ)

2ndmγ
+

2 log(2H2SA/δ)

3ndmγ

)
+ δ/2,

(b) ≤ sup
π∈Π

∣∣∣∣∣∣
∑

sh,sh−1,ah−1

V πh (sh)d̃πh−1(sh−1, ah−1)

(√
γ log(2HSA/δ)

2ndm
+

2 log(2HSA/δ)

3ndm

)∣∣∣∣∣∣ (1− δ′

2
) +H

δ′

2

≤ sup
π∈Π

∣∣∣∣∣HS
(√

γ log(2H2SA/δ)

2ndm
+

2 log(2H2SA/δ)

3ndm

)∣∣∣∣∣+
δ

2
= HS

(√
γ log(2H2SA/δ)

2ndm
+

2 log(2H2SA/δ)

3ndm

)
+
δ

2
,
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Hence we have for any γ,

E
[

sup
π∈Π

∣∣∣〈V πh (s), ((T̃h − Th)d̃πh−1)(s)〉
∣∣∣]

≤H

(√
log(2H2SA/δ)

2ndmγ
+

2 log(2H2SA/δ)

3ndmγ

)
+HS

√γ log(2H2SA/δ)

2ndm
+

2 log(2H2SA/δ)

3ndm

+ δ

In particular, choose γ = 1/S < 1, then above becomes

E
[

sup
π∈Π

∣∣∣〈V πh (s), ((T̃h − Th)d̃πh−1)(s)〉
∣∣∣] ≤

√
2H2S log(2H2SA/δ)

ndm
+

4HS log(2H2SA/δ)

3ndm
+ δ

Critically, above holds for any ∀1 > δ > 0. Based on theorem condition n > c · 1/dm log(HSA/θ) > c · 1/dm10,
choose δ = c

ndm
, then above is further less equal to√

2H2S log(2nH2SA)

ndm
+

4HS log(2nH2SA)

3ndm
+

c

ndm
≤

√
2H2S log(2nH2SA)

ndm
+ C · HS log(2nH2SA)

3ndm

where C is a new constant absorbs 1/ndm. If we further reducing it to

Finally, summing over all H, and again using new constant C ′ to absorb higher order term, we obtain

E

[
sup
π∈Π

∣∣∣∣∣
H∑
t=1

〈d̃πt − dπt , rt〉

∣∣∣∣∣
]
≤ C ′

√
H4S log(nHSA)

ndm

Combing this with Theorem D.1 and Lemma C.4, we have proved Theorem 3.3.

Remark D.3. The key for proving this uniform convergence bound is that applying concentration inequality only
to terms that are independent of the policies, i.e. T̃h(sh|sh−1, ah−1)− Th(sh|sh−1, ah−1). Therefore when taking
supremum over policies, high probability event holds with same probability without decay.

E Proof of uniform convergence in OPE with deterministic policies using
martingale concentration inequalities: Theorem 3.5

A reminder that all results in this section use data D for OPEMA estimator v̂π.

E.1 Martingale concentration result on
∑H
t=1〈d̃πt − dπt , rt〉.

Let X =
∑H
t=1〈d̃πt − dπt , rt〉 and Dh := {s(i)

t , a
(i)
t : t = 1, ..., h}ni=1. Since Dh forms a filtration, then by law of total

expectation we have Xt = E[X|Dt] is martingale. Moreover, we have

Lemma E.1.

Xt := E[X|Dt] =

t∑
h=2

〈V πh , (T̃h − Th)d̃πh−1〉+ 〈V π1 , d̃π1 − dπ1 〉.

Proof of Lemma E.1. By martingale decomposition Theorem C.5 and note T̃i, d̃
π
i are measurable w.r.t. Dt for

i = 1, ..., t, so we have

E[X|Dt] =

H∑
h=t+1

E
[
〈V πh , (T̃h − Th)d̃πh−1〉

∣∣∣Dt]+

t∑
h=2

〈V πh , (T̃h − Th)d̃πh−1〉+ 〈V π1 , (d̃π1 − dπ1 )〉.

10Note the θ in log(HSA/θ) is identical to the failure probability in Theorem D.1
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Note for h ≥ t+ 1, Dt ⊂ Dh−1, so by total law of expectation (tower property) we have

E
[
〈V πh , (T̃h − Th)d̃πh−1〉

∣∣∣Dt]
=E

[
E
[
〈V πh , (T̃h − Th)d̃πh−1〉

∣∣∣Dh−1

]∣∣∣Dt]
=E

[
〈V πh ,E

[
(T̃h − Th)

∣∣∣Dh−1

]
d̃πh−1〉

∣∣∣Dt] = 0

where the last equality uses T̃h is unbiased of Th given Dh−1. This gives the desired result.

Next we show martingale difference |Xt −Xt−1| is bounded with high probability.

Lemma E.2. With probability 1− δ,

sup
t
|Xt −Xt−1| ≤ O(

√
H2 log(HSA/δ)

n · dm
).

Proof.
|Xt −Xt−1| = 〈V πt , (T̃t − Tt)d̃πt−1〉 ≤ ||(T̃t − Tt)TV πt ||∞||d̃πt−1||1 = ||(T̃t − Tt)TV πt ||∞.

For any fixed pair (st, at), we have

((T̃t − Tt)TV πt )(st−1, at−1)

=1(Et−1) · ((T̂t − Tt)TV πt )(st−1, at−1)

=1(Et−1) ·
∑
st

V πt (st)(T̂t − Tt)(st|st−1, at−1)

=1(Et−1) ·

(∑
st

V πt (st)T̂t(st|st−1, at−1)− E[V πt |st−1, at−1]

)

=1(Et−1) ·

(∑
st

V πt (st)
1

nst−1,at−1

n∑
i=1

1(s
(i)
t = st, s

(i)
t−1 = st−1, a

(i)
t−1 = at−1)− E[V πt |st−1, at−1]

)

=1(Et−1)

(
1

nst−1,at−1

n∑
i=1

V πt (s
(i)
t )1(s

(i)
t = st, s

(i)
t−1 = st−1, a

(i)
t−1 = at−1)− E[V πt |st−1, at−1]

)

=1(Et−1)

 1

nst−1,at−1

∑
i:s

(i)
t−1=st−1,a

(i)
t−1=at−1

V πt (s
(i)
t )− E[V πt |st−1, at−1]

 ,

where the fourth line uses the definition of T̂t and the fifth line uses the fact
∑
st
V πt (st)1(s

(i)
t = st, s

(i)
t−1 =

st−1, a
(i)
t−1 = at−1) = V πt (s

(i)
t )1(s

(i)
t = st, s

(i)
t−1 = st−1, a

(i)
t−1 = at−1).

Note ||V πt (·)||∞ ≤ H and also conditional on Et, nst,at ≥ nd
µ
t (st, at)/2, therefore by Hoeffding’s inequality and a

Union bound we obtain with probability 1− δ

sup
t
|Xt −Xt−1| ≤ O(

√
H2 log(HSA/δ)

n ·mint,st,at d
µ
t (st, at)

) = O(

√
H2 log(HSA/δ)

n · dm
).

Next we calculate the conditional variance of Var[Xt+1|Dt].
Lemma E.3. We have the following decomposition of conditional variance:

Var[Xt+1|Dt] =
∑
st,at

d̃πt (st, at)
2 · 1(Et)

nst,at
·Var[V πt+1(s

(1)
t+1)|s(1)

t = st, a
(1)
t = at]
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Proof. Indeed,

Var[Xt+1|Dt] = Var

∑
st,at

∑
st+1

V πt+1(st+1)(T̃ − T )(st+1|st, at)d̃πt (st, at)

∣∣∣∣∣∣Dt


=
∑
st,at

Var

∑
st+1

V πt+1(st+1)(T̃ − T )(st+1|st, at)

∣∣∣∣∣∣Dt
 d̃πt (st, at)

2

=
∑
st,at

1(Et) ·Var

∑
st+1

V πt+1(st+1)T̂ (st+1|st, at)

∣∣∣∣∣∣Dt
 d̃πt (st, at)

2

=
∑
st,at

1(Et) ·Var

∑
st+1

V πt+1(st+1)
1

nst,at

n∑
i=1

1(s
(i)
t+1 = st+1, s

(i)
t = st, a

(i)
t = at)

∣∣∣∣∣∣Dt
 d̃πt (st, at)

2

=
∑
st,at

1(Et)

n2
st,at

·Var

 ∑
i:s

(i)
t =st,a

(i)
t =at

V πt+1(s
(i)
t+1)

∣∣∣∣∣∣∣Dt
 d̃πt (st, at)

2

=
∑
st,at

d̃πt (st, at)
2 · 1(Et)

nst,at
·Var[V πt+1(s

(1)
t+1)|s(1)

t = st, a
(1)
t = at]

(9)
where the second equal sign comes from the fact that when conditional on Dt, we can separate n episodes into
SA groups and episodes from different groups are independent of each other. The third uses 1(Et) is measurable
w.r.t Dt. Similarly, the last equal sign again uses nst,at episodes are independent given Dt.

Lemma E.4 (Yin and Wang (2020) Lemma 3.4). For any policy π and any MDP.

Varπ

[
H∑
t=1

r
(1)
t

]
=

H∑
t=1

(
Eπ
[
Var

[
r

(1)
t + V πt+1(s

(1)
t+1)

∣∣∣s(1)
t , a

(1)
t

]]
+ Eπ

[
Var

[
E[r

(1)
t + V πt+1(s

(1)
t+1)|s(1)

t , a
(1)
t ]
∣∣∣s(1)
t

]] )
.

This Lemma suggests if we can bound d̃πt by O(dπt ) with high probability, then by Lemma E.3 we have w.h.p

H∑
t=1

Var[Xt+1|Dt] ≤ O(
1

ndm
·
H∑
t=1

E[Var[V πt+1(s
(1)
t+1)|s(1)

t , a
(1)
t ]]) ≤ O(

H2

ndm
)

Note this gives only H2 dependence for
∑H
t=1 Var[Xt+1|Dt] instead of a naive bound with H3 and helps us to

save a H factor.

Next we show how to bound d̃πt .

E.2 Bounding d̃πt (st, at)− dπt (st, at)

Our analysis is based on using martingale structure to derive bound on d̃πt (st, at)− dπt (st, at) for fixed t, st, at
with probability 1− δ/HSA, then use a union bound to get a bound for all d̃πt (st, at)− dπt (st, at) with probability
1− δ.

Concretely, in (7) if we only extract the specific (st, at), then we have

d̃πt (st, at)− dπt (st, at) =

t∑
h=2

(Γh+1:tπh(T̃h − Th)d̃πh−1)(st, at) + (Γ1:t(d̃
π
1 − dπ1 ))(st, at),

here d̃πt (st, at)−dπt (st, at) already forms a martingale with filtration Ft = σ(Dt) and (Γh+1:tπh(T̃h−Th)d̃πh−1)(st, at)
is the corresponding martingale difference since

E[(Γh+1:tπh(T̃h − Th)d̃πh−1)(st, at)|Fh−1] = (Γh+1:tπhE[(T̃h − Th)|Fh−1]d̃πh−1)(st, at) = 0.
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Now we fix specific (st, at). Then denote (Γh+1:tπh)(st, at) := Γ′h:t ∈ R1×S , then we have

|(Γh+1:tπh(T̃h − Th)d̃πh−1)(st, at)| = |Γ′h:t(T̃h − Th)d̃πh−1| = |〈(T̃h − Th)TΓ′Th:t, d̃
π
h−1〉| ≤ ||Γ′h:t(T̃h − Th)||∞ · 1.

Note here Γ′h:t(T̃h − Th) is a row vector with dimension SA.

Bounding ||Γ′h:t(T̃h − Th)||∞ .

In fact, for any given (sh−1, ah−1), we have

Γ′h:t(T̃h − Th)(sh−1, sh−1) = 1(Et) · Γ′h:t(T̂h − Th)(sh−1, ah−1)

=1(Et) · Γ′h:t

 1

nst−1,at−1

∑
i:s

(i)
h−1=sh−1,a

(i)
h−1=ah−1

e
s
(i)
h

− E[e
s
(1)
h

|s(1)
h−1 = sh−1, a

(1)
h−1 = ah−1]


=1(Et)

 1

nst−1,at−1

∑
i:s

(i)
h−1=sh−1,a

(i)
h−1=ah−1

Γ′h:t(s
(i)
h )− E[Γ′h:t(s

(1)
h )|s(1)

h−1 = sh−1, a
(1)
h−1 = ah−1]


Note by definition Γ′h:t(s

(i)
h ) ≤ 1, since (Γh+1:tπh)(st, at) := Γ′h:t ∈ R1×S and Γh+1:t, πh are just probability

transitions. Therefore by Hoeffding’s inequality and law of total expectation, we have

P
(
|Γ′h:t(T̃h − Th)(sh−1, ah−1)| > ε

)
= P

(
|Γ′h:t(T̂h − Th)(sh−1, ah−1)| > ε

∣∣∣Et)
≤ E

[
exp(−

2nsh−1,ah−1
· ε2

1
)

∣∣∣∣Et] ≤ exp(−
ndµh−1(sh−1, ah−1) · ε2

1
)

and apply a union bound to get

P (sup
h
||Γ′h:t(T̃h − Th)||∞ > ε) ≤ H · sup

h
P (||Γ′h:t(T̃h − Th)||∞ > ε)

≤HSA · sup
h,sh−1,ah−1

P
(
|Γ′h:t(T̃h − Th)(sh−1, ah−1)| > ε

)
≤HSA · exp(−

nmin dµh−1(sh−1, ah−1) · ε2

1
) :=

δ

HSA

(10)

Let the right hand side of (10) to be δ/HSA, then we have w.p. 1− δ/HSA,

sup
h
||Γ′h:t(T̃h − Th)||∞ ≤ O(

√
1

n · dm
log

H2S2A2

δ
). (11)

Go back to bounding d̃πt (st, at)− dπt (st, at). By Azuma-Hoeffding’s inequality (Lemma A.5), we have11

P(|d̃πt (st, at)− dπt (st, at)| > ε) ≤ exp(− ε2∑t
i=1(suph ||Γ′h:t(T̃h − Th)||∞)2

) := δ/HSA,

where
∑t
i=1(suph ||Γ′h:t(T̃h − Th)||∞)2 is the sum of bounded square differences in Azuma-Hoeffding’s inequality.

Therefore we have w.p. 1− δ/HSA,

|d̃πt (st, at)− dπt (st, at)| ≤ O(

√
t · (sup

h
||Γ′h:t(T̃h − Th)||∞)2 log

HSA

δ
), (12)

11To be more precise here we actually use a weaker version of Azuma-Hoeffding’s inequality, see Remark E.7.
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combining (11) with above we further have that w.p. 1− 2δ/HSA,

|d̃πt (st, at)− dπt (st, at)| ≤ O(

√
t

ndm
log

H2S2A2

δ
log

HSA

δ
)

Lastly, by a union bound and simple scaling (from 2δ to δ) we have w.p. 1− δ

sup
t
||d̃πt − dπt ||∞ ≤ O(

√
H

ndm
log

H2S2A2

δ
log

HSA

δ
).

This implies that w.p. 1− δ, ∀t, st, at,

d̃πt (st, at)
2 ≤ 2dπt (st, at)

2 +O(
H

ndm
log

H2S2A2

δ
log

HSA

δ
). (13)

Combining (13) with Lemma E.4 and Lemma E.3, we obtain:

Lemma E.5. With probability 1− δ,

H∑
t=1

Var[Xt+1|Dt] ≤ O(
H2

ndm
) +O(

H4SA

n2d2
m

· log
H2S2A2

δ
log

HSA

δ
) (14)

Proof of Lemma E.5. By (13) and Lemma E.3, we have ∀t, with probability ay least 1− δ,

Var[Xt+1|Dt] ≤
∑
st,at

O(
d̃πt (st, at)

2·
ndm

) ·Var[V πt+1(s
(1)
t+1)|s(1)

t = st, a
(1)
t = at]

≤
∑
st,at

O(
1

ndm
)

(
2dπt (st, at)

2 +O(
H

ndm
log

H2S2A2

δ
log

HSA

δ
)

)
·Var[V πt+1(s

(1)
t+1)|s(1)

t = st, a
(1)
t = at]

≤
∑
st,at

O(
1

ndm
)

(
2dπt (st, at) +O(

H

ndm
log

H2S2A2

δ
log

HSA

δ
)

)
·Var[V πt+1(s

(1)
t+1)|s(1)

t = st, a
(1)
t = at]

≤ O(
1

ndm
)E
[
Var[V πt+1(s

(1)
t+1)|s(1)

t , a
(1)
t ]
]

+O(
1

ndm
· H

ndm
log

H2S2A2

δ
log

HSA

δ
·H2SA)

= O(
1

ndm
)E
[
Var[V πt+1(s

(1)
t+1)|s(1)

t , a
(1)
t ]
]

+O(
H3SA

n2d2
m

· log
H2S2A2

δ
log

HSA

δ
)

then sum over t and apply Lemma E.4 gives the stated result.

Combining all the results, we are able to prove:

Theorem E.6. With probability 1− δ, we have∣∣∣∣∣
H∑
t=1

〈d̃πt − dπt , rt〉

∣∣∣∣∣ ≤ O(

√
H2 log(HSA/δ)

ndm
+

√
H4SA · log(H2S2A2/δ) log(HSA/δ)

n2d2
m

)

where O(·) absorbs only the absolute constants.

Proof of Theorem E.6. Recall X =
∑H
t=1〈d̃πt −dπt , rt〉 and by law of total expectation it is easy to show E[X] = 0.

Next denote σ2 = O( H2

ndm
) +O(H

4SA
n2d2m

· log H2S2A2

δ log HSA
δ ) as in Lemma E.5 and also let M = supt |Xt −Xt−1|.

Then by Freedman inequality (Lemma A.6), we have with probability 1− δ/3,

|X − E[X]| ≤
√

8σ2 · log(3/δ) +
2M

3
· log(3/δ), Or W ≥ σ2.
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where W =
∑H
t=1 Var[Xt+1|Dt]. Next by Lemma E.5, we have P(W ≥ σ2) ≤ 1/3δ, this implies with probability

1− 2δ/3,

|X − E[X]| ≤
√

8σ2 · log(3/δ) +
2M

3
· log(3/δ).

Finally, by Lemma E.2, we have P(M ≥ O(
√

H2 log(HSA/δ)
ndm

)) ≤ δ/3. Also use E[X] = 0, we have with probability

1− δ,

|X| ≤
√

8σ2 · log(3/δ) +O(

√
H2 · log(HSA/δ)

ndm
log(3/δ)).

Plugging back the expression of σ2 = O( H2

ndm
) +O(H

4SA
n2d2m

· log H2S2A2

δ log HSA
δ ) and assimilating the same order

terms give the desired result.

Remark E.7. Rigorously, standard Azuma-Hoeffding’s inequality Lemma A.5 does not apply to (12) since

suph ||Γ′h:t(T̃h− Th)||∞ is not a deterministic upper bound, we only have the difference bound with high probability
sense, see (11). Therefore, strictly speaking, we need to apply Theorem 32 in Chung and Lu (2006) which is a
weaker Azuma-Hoeffding’s inequality allowing bounded difference with high probability. The same logic applies
for a weaker freedman’s inequality consisting of Theorem 34 and Theorem 37 in Chung and Lu (2006) since our
martingale difference M = supt |Xt −Xt−1| in the proof of Theorem E.6 is bounded with high probability. We
avoid explicitly using them in order to make our proofs more readable for our readers.

We end this section by giving the proofs of Theorem 3.4 and Theorem 3.5.

Proof of Lemma 3.4 and Theorem 3.5. The proof of Lemma 3.4 comes from Lemma C.3, Lemma C.4 and The-
orem E.6. The proof of Theorem 3.5 relies on applying a union bound over Π in Theorem 3.4 (recall all
non-stationary deterministic policies have |Π| = AHS), then extra dependence of

√
log(|Π|) =

√
HS log(A) pops

out. Note that the higher order term has two trailing log terms (see the right hand side of (14)), so when replacing
δ by δ/|Π| with a union bound, both terms will give extra

√
HS dependence so in higher order term we have

extra HS dependence but not just
√
HS.

F Proof of uniform convergence problem with local policy class.

In this section, we consider using OPEMA estimator with data D′. Also, WLOG we only consider deterministic
reward (as implied by Lemma C.4 random reward only causes lower order dependence). Also, we fix N > 0 for
the moment. First recall for all t = 1, ...,H

V πt (st) = Eπ

[
H∑
t′=t

rt′(s
(1)
t′ , a

(1)
t )

∣∣∣∣∣s(1)
t = st

]

Qπt (st, at) = Eπ

[
H∑
t′=t

rt′(s
(1)
t′ , a

(1)
t )

∣∣∣∣∣s(1)
t = st, a

(1)
t = at

]

where rt(s, a) are deterministic rewards and s
(1)
t , a

(1)
t are random variables. Consider V πt , Q

π
t as vectors, then by

standard Bellman equations we have for all t = 1, ...,H (define VH+1 = QH+1 = 0)

Qπt = rt + Pπt+1Q
π
t+1 = rt + Pt+1V

π
t+1, (15)

where Pπt ∈ R(SA)×(SA) is the state-action transition and Pt(·|·, ·) ∈ R(SA)×S is the transition probabilities defined
in Section 2. Also, we have bellman optimality equations:

Q?t = rt + Pt+1V
?
t+1, V ?t (st) := max

at
Q?t (st, at), π?t (st) := argmax

at

Q?t (st, at) ∀st (16)
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where π? is one optimal deterministic policy. The corresponding Bellman equations and Bellman optimality
equations for empirical MDP M̂ are defined similarly. Since we consider deterministic rewards, by Bellman
equations we have

Q̂πt −Qπt = P̂πt+1Q̂
π
t+1 − Pπt+1Q

π
t+1 = (P̂πt+1 − Pπt+1)Q̂πt+1 + Pπt+1(Q̂πt+1 −Qπt+1)

for t = 1, ...,H. By writing it recursively, we have ∀t = 1, ...,H − 1

Q̂πt −Qπt =

H∑
h=t+1

Γπt+1:h−1(P̂πh − Pπh )Q̂πh

=

H∑
h=t+1

Γπt+1:h−1(P̂h − Ph)V̂ πh

where Γπt:h =
∏h
i=t P

π
i is the multi-step state-action transition and Γπt+1:t := I.

Note π̂∗ to be the empirical optimal policy over M̂ , we are interested in how to obtain uniform convergence for
any policy π that is close to π̂∗. More precisely, in this section we consider the policy class Π1 to be:

Π1 := {π : s.t. ||V̂ πt − V̂ π̂
?

t ||∞ ≤ εopt, ∀t = 1, ...,H}

where εopt ≥ 0 is a parameter decides how large the policy class is. We now assume π̂ to be any policy within Π1

throughout this section. Also, π̂ may be a policy learned from a learning algorithm using the data D.
In this case, π̂ may not be independent of P̂ .

We start with the following simple calculation:12

∣∣∣Q̂π̂t −Qπ̂t ∣∣∣ ≤ H∑
h=t+1

Γπt+1:h−1

∣∣∣(P̂h − Ph)V̂ π̂h

∣∣∣
≤

H∑
h=t+1

Γπt+1:h−1

∣∣∣(P̂h − Ph)V̂ π̂
?

h

∣∣∣︸ ︷︷ ︸
(∗∗∗)

+

H∑
h=t+1

Γπt+1:h−1

∣∣∣(P̂h − Ph)(V̂ π̂
?

h − V̂ π̂h )
∣∣∣︸ ︷︷ ︸

(∗∗∗∗)

(17)

We now analyze (∗ ∗ ∗) and (∗ ∗ ∗∗).

F.1 Analyzing
∑H
h=t+1 Γπt+1:h−1

∣∣∣(P̂h − Ph)(V̂ π̂
?

h − V̂ π̂h )
∣∣∣

First, by vector induced matrix norm13 we have∥∥∥∥∥
H∑

h=t+1

Γπ̂t+1:h−1 ·
∣∣∣(P̂h − Ph)(V̂ π̂

?

h − V̂ π̂h )
∣∣∣∥∥∥∥∥
∞

≤ H · sup
h

∥∥∥Γπ̂t+1:h−1

∥∥∥
∞

∥∥∥|(P̂h − Ph)(V̂ π̂
?

h − V̂ π̂h )|
∥∥∥
∞

≤ H · sup
h

∥∥∥|(P̂h − Ph)(V̂ π̂
?

h − V̂ π̂h )|
∥∥∥
∞

where the last equal sign uses multi-step transition Γπt+1:h−1 is row-stochastic. Note given N , P̂t(·|·, ·) all have N
in the denominator. Therefore, by Hoeffding inequality and a union bound we have with probability 1− δ,

sup
t,st,st−1,at−1

|P̂t(st|st−1, at−1)− Pt(st|st−1, at−1)| ≤ O(

√
log(HSA/δ)

N
),

this indicates

sup
h

∥∥∥|(P̂h − Ph)(V̂ π̂
?

h − V̂ π̂h )|
∥∥∥
∞
≤ εopt · sup

h

∥∥∥|P̂h − Ph| · 1∥∥∥
∞
≤ εopt ·O(S

√
log(HSA/δ)

N
),

where 1 ∈ RS is all-one vector. To sum up, we have

12Since all quantities in the calculation are vectors, so the absolute value | · | used is point-wise operator.
13For A a matrix and x a vector we have ‖Ax‖∞ ≤ ‖A‖∞ ‖x‖∞.
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Lemma F.1. Fix N > 0, we have with probability 1− δ, for all t = 1, ...,H − 1

H∑
h=t+1

Γπ̂t+1:h−1

∣∣∣(P̂h − Ph)(V̂ π̂
?

h − V̂ π̂h )
∣∣∣ ≤ εopt ·O

(√
H2S2 log(HSA/δ)

N
· 1

)

Now we consider (∗ ∗ ∗).

F.2 Analyzing
∑H
h=t+1 Γπ̂t+1:h−1

∣∣∣(P̂h − Ph)V̂ π̂
?

h

∣∣∣.
Lemma F.2. Given N , we have with probability 1− δ, ∀t = 1, ...,H − 1

H∑
h=t+1

Γπ̂t+1:h−1

∣∣∣(P̂h − Ph)V̂ π̂
?

h

∣∣∣ ≤ H∑
h=t+1

Γπ̂t+1:h−1

(
4

√
log(HSA/δ)

N

√
Var(V̂ π̂

?

h ) +
4(H − t)

3N
log(

HSA

δ
) · 1

)

where Var(vπt ) ∈ RSA and Var(V πt )(st−1, at−1) = Varst [V
π
t (·)|st−1, at−1] and | · |,

√
· are point-wise operator.

Proof of Lemma F.2. The key point is to guarantee P̂h is independent of V̂ π̂
?

h so that we can apply Bernstein

inequality w.r.t the randomness in P̂h. In fact, note given N all data pairs in D′ are independent of each other,
and P̂h only uses data from h− 1 to h. Moreover, V̂ π̂

?

h only uses data from time h to H since V̂ πh uses data from
h to H by bellman equation (15) for any π and optimal policy π̂?h:H also only uses data from h to H by bellman
optimality equation (16).

Then by Bernstein inequality (Lemma A.3), with probability 1− δ

∣∣∣(P̂h − Ph)V̂ π̂
?

h

∣∣∣ (st−1, at−1) ≤ 4

√
log(1/δ)

N

√
Var(V̂ π̂

?

h )(st−1, at−1) +
4(H − t)

3N
log(

1

δ
)

apply a union bound and take the sum we get the stated result.

Now combine Lemma F.1 and Lemma F.2 we obtain with probability 1− δ, for all t = 1, ...,H − 1

∣∣∣Q̂π̂t −Qπ̂t ∣∣∣ ≤ H∑
h=t+1

Γπ̂t+1:h−1

(
4

√
log(HSA/δ)

N

√
Var(V̂ π̂

?

h ) +
4(H − t)

3N
log(

HSA

δ
) · 1

)

+ c1εopt ·
√
H2S2 log(HSA/δ)

N
· 1

≤ 4

√
log(HSA/δ)

N

H∑
h=t+1

Γπ̂t+1:h−1

√
Var(V̂ π̂

?

h ) +
4H2

3N
log(

HSA

δ
) · 1

+ c1εopt ·
√
H2S2 log(HSA/δ)

N
· 1,

(18)

Next note
√

Var(·) is a norm, therefore by norm triangle inequality we have√
Var(V̂ π̂

?

h ) ≤
√

Var(V̂ π̂
?

h − V̂ π̂h ) +

√
Var(V̂ π̂h − V π̂h ) +

√
Var(V π̂h )

≤
∥∥∥V̂ π̂?h − V̂ π̂h

∥∥∥
∞
· 1 +

∥∥∥V̂ π̂h − V π̂h ∥∥∥∞ · 1 +
√

Var(V π̂h )

≤ εopt · 1 +
∥∥∥Q̂π̂h −Qπ̂h∥∥∥∞ · 1 +

√
Var(V π̂h )
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Plug this into (18) to obtain∣∣∣Q̂π̂t −Qπ̂t ∣∣∣ ≤ 4

√
log(HSA/δ)

N

H∑
h=t+1

(
Γπ̂t+1:h−1

√
Var(V π̂h ) +

∥∥∥Q̂π̂h −Qπ̂h∥∥∥∞ · 1
)

+
4H2

3N
log(

HSA

δ
) · 1

+ c2εopt ·
√
H2S2 log(HSA/δ)

N
· 1.

(19)

Next lemma helps us to bound
∑H
h=t+1 Γπ̂t+1:h−1

√
Var(V π̂h ).

Lemma F.3. A conditional version of Lemma E.4 holds:

Varπ

[
H∑
t=h

r
(1)
t

∣∣∣∣∣s(1)
h = sh, a

(1)
h = ah

]
=

H∑
t=h

(
Eπ
[
Var

[
r

(1)
t + V πt+1(s

(1)
t+1)

∣∣∣s(1)
t , a

(1)
t

]∣∣∣s(1)
h = sh, a

(1)
h = ah

]
+ Eπ

[
Var

[
E[r

(1)
t + V πt+1(s

(1)
t+1)|s(1)

t , a
(1)
t ]
∣∣∣s(1)
t

]∣∣∣s(1)
h = sh, a

(1)
h = ah

] )
.

(20)

and by using (20) we can show

H∑
h=t+1

Γπ̂t+1:h−1

√
Var(V π̂h ) ≤

√
(H − t)3 · 1.

Proof. The proof of (20) uses the identical trick as Lemma E.4 except the total law of variance is replaced by the
total law of conditional variance.

Moreover, recall Γπ̂t+1:h−1 =
∏h−1
i=t+1 P

π̂
i is the multi-step transition, so for any pair (st, at),

H∑
h=t+1

(
Γπ̂t+1:h−1

√
Var(V π̂h )

)
(st, at)

=

H∑
h=t+1

∑
sh−1,ah−1

√
Var[V π̂h |sh−1, ah−1]dπ̂t (sh−1, ah−1|st, at)

=

H∑
h=t+1

∑
sh−1,ah−1

√
Var[V π̂h |sh−1, ah−1]dπ̂t (sh−1, ah−1|st, at) ·

√
dπ̂t (sh−1, ah−1|st, at)

≤
H∑

h=t+1

√ ∑
sh−1,ah−1

Var[V π̂h |sh−1, ah−1]dπ̂t (sh−1, ah−1|st, at) ·
∑

sh−1,ah−1

dπ̂t (sh−1, ah−1|st, at)

=

H∑
h=t+1

√ ∑
sh−1,ah−1

Var[V π̂h |sh−1, ah−1]dπ̂t (sh−1, ah−1|st, at)

=

H∑
h=t+1

√
Eπ̂
[
Var[V π̂h |s

(1)
h−1, a

(1)
h−1]

∣∣∣∣st, at]

=

H∑
h=t+1

√
1 ·

√
Eπ̂
[
Var[V π̂h |s

(1)
h−1, a

(1)
h−1]

∣∣∣∣st, at]

≤

√√√√(H − t)
H∑

h=t+1

Eπ̂
[
Var[V π̂h |s

(1)
h−1, a

(1)
h−1]

∣∣∣∣st, at]

≤

√√√√(H − t) ·Varπ̂

[
H∑

h=t+1

r
(1)
h

∣∣∣∣∣s(1)
t = st, a

(1)
t = at

]
≤
√

(H − t)3

where all the inequalities are Cauchy-Schwarz inequalities.
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Apply Lemma F.3 to bound (19), and use ∞ norm on both sides, we obtain

Theorem F.4. Conditional on N > 0, then with probability 1− δ, we have for all t = 1, ...,H − 1∥∥∥Q̂π̂t −Qπ̂t ∥∥∥∞ ≤ 4

√
H3 log(HSA/δ)

N
+ 4

√
log(HSA/δ)

N

H∑
h=t+1

∥∥∥Q̂π̂h −Qπ̂h∥∥∥∞ +
4H2

3N
log(

HSA

δ
)

+ c2εopt ·
√
H2S2 log(HSA/δ)

N
.

Then by using backward induction and Theorem F.4, we have the following:

Theorem F.5. Suppose N ≥ 64H2 · log(HSA/δ) and εopt ≤
√
H/S, then we have with probability 1− δ,∥∥∥Q̂π̂1 −Qπ̂1∥∥∥∞ ≤ 2(9 + c2)

√
H3 log(HSA/δ)

N

where c2 is the same constant in Theorem F.4.

Proof. Under the condition, by Theorem F.4 it is easy to check for all t = 1, ...,H − 1 with probability 1− δ,∥∥∥Q̂π̂t −Qπ̂t ∥∥∥∞ ≤ (5 + c2)

√
H3 log(HSA/δ)

N
+ 4

√
log(HSA/δ)

N

H∑
h=t+1

∥∥∥Q̂π̂h −Qπ̂h∥∥∥∞ ,

which we conditional on.

For t = H − 1, we have∥∥∥Q̂π̂H−1 −Qπ̂H−1

∥∥∥
∞
≤(5 + c2)

√
H3 log(HSA/δ)

N
+ 4

√
log(HSA/δ)

N

∥∥∥Q̂π̂H −Qπ̂H∥∥∥∞
≤(5 + c2)

√
H3 log(HSA/δ)

N
+ 4

√
H2 log(HSA/δ)

N

≤(9 + c2)

√
H3 log(HSA/δ)

N

Suppose
∥∥∥Q̂π̂h −Qπ̂h∥∥∥∞ ≤ 2(9 + c2)

√
H3 log(HSA/δ)

N holds for all h = t+ 1, ...,H, then for h = t, we have

∥∥∥Q̂π̂t −Qπ̂t ∥∥∥∞ ≤ (5 + c2)

√
H3 log(HSA/δ)

N
+ 4

√
log(HSA/δ)

N

H∑
h=t+1

∥∥∥Q̂π̂h −Qπ̂h∥∥∥∞
≤ (9 + c2)

√
H3 log(HSA/δ)

N
+ 4

√
(H − 1)2 log(HSA/δ)

N
· 2(9 + c2)

√
H3 log(HSA/δ)

N

≤ 2(9 + c2)

√
H3 log(HSA/δ)

N

where the last line uses the condition N ≥ 64H2 · log(HSA/δ). By induction, we have the result.

Proof of Theorem 3.7. By Theorem F.5 we have for N ≥ c ·H2 · log(HSA/δ),

P

(∥∥∥Q̂π̂1 −Qπ̂1∥∥∥∞ ≥ 2(9 + c2)

√
H3 log(HSA/δ)

N

∣∣∣∣∣N
)
≤ δ

The only thing left is to use Lemma C.1 to bound the event that {N < ndm/2} has small probability.

Last but not least, the condition n > c1H
2 log(HSA/δ)/dm is sufficient for applying Lemma C.1 and it also

implies N ≥ c ·H2 · log(HSA/δ) (the condition of Theorem F.5) when N ≥ ndm/2 since:

n > c1H
2 log(HSA/δ)/dm ⇒ ndm/2 ≥ c2H2 log(HSA/δ)

which implies N ≥ c2 ·H2 · log(HSA/δ) when N ≥ ndm/2.



Near-Optimal Provable Uniform OPE for Reinforcement Learning

G Proof of uniform convergence lower bound.

In this section we prove a uniform convergence OPE lower bound of Ω(H3/dmε
2). Conceptually, uniform

convergence lower bound can be derived by a reduction to the lower bound of identifying the ε-optimal policy.
There are quite a few literature that provide information theoretical lower bounds in different setting, e.g. Dann
and Brunskill (2015); Jiang et al. (2017); Krishnamurthy et al. (2016); Jin et al. (2018); Sidford et al. (2018).
However, to the best of our knowledge, there is no result proven for the non-stationary transition finite horizon
episodic setting with bounded rewards. For example, Sidford et al. (2018) prove the result sample complexity
lower bound of Ω(H3SA/ε2) with stationary MDP and their proof cannot be directly applied to non-stationary
setting as they reduce the problem to infinite horizon discounted setting which always has stationary transitions.
Dann and Brunskill (2015) prove the episode complexity of Ω̃(H2SA/ε2) for the stationary transition setting. Jin

et al. (2018) prove the Ω(
√
H2SAT ) regret lower bound for non-stationary finite horizon online setting but it is

not clear how to translate the regret to PAC-learning setting by keeping the same sample complexity optimality.
Jiang et al. (2017) prove the Ω(HSA/ε2) lower bound for the non-stationary finite horizon offline episodic setting

where they assume
∑H
i=1 ri ≤ 1 and this is also different from our setting since we have 0 ≤ rt ≤ 1 for each time

step.

Our proof consists of three steps. 1. We will first show a minimax lower bound (over all MDP instances)
for learning ε-optimal policy is Ω(H3SA/ε2); 2. Based on 1, we can further show a minimax lower bound (over
problem class Mdm) for learning ε-optimal policy is Ω(H3/dmε

2); 3. prove the uniform convergence OPE lower
bound of the same rate.

G.1 Information theoretical lower sample complexity bound over all MDP instances for
identifying ε-optimal policy.

In fact, a modified construction of Theorem 5 in Jiang et al. (2017) is our tool for obtaining Ω(H3SA/ε2) lower

bound. We can get the additional H2 factor by using
∑H
i=1 ri can be of order O(H).

Theorem G.1. Given H ≥ 2, A ≥ 2, 0 < ε < 1
48
√

8
and S ≥ c1 where c1 is a universal constant. Then

there exists another universal constant c such that for any algorithm and any n ≤ cH3SA/ε2, there exists a
non-stationary H horizon MDP with probability at least 1/12, the algorithm outputs a policy π̂ with v? − vπ̂ ≥ ε.

Like in Jiang et al. (2017), the proof relies on embedding Θ(HS) independent multi-arm bandit problems into a
hard-to-learn MDP so that any algorithm that wants to output a near-optimal policy needs to identify the best
action in Ω(HS) problems. However, in our construction we make a further modification of Jiang et al. (2017) so
that there is no waiting states, which is crucial for the reduction from offline family. We also double the length of
the hard-to-learn MDP instance so that the latter half uses a “naive” copy construction which is uninformative.
The uninformative extension will help to produce the additional H2 factor.

Proof of Theorem G.2. We construct a non-stationary MDP with S states per level, A actions per state and has
horizon 2H. At each time step, states are categorized into four types with two special states gh, bh and the
remaining S − 2 “bandit” states denoted by sh,i, i ∈ [S − 2]. Each bandit state has an unknown best action a?h,i
that provides the highest expected reward comparing to other actions.



Yin, Bai, Wang

!'

!(

+ − 2
bandit 
states

w.p. 1

w.p. 1

w.p. 1− #
)

w.p. (#*+ /)
#
) if 

choose #⋆

w.p. (#*− /)
#
) if 

choose #⋆

w.p. 1− #
)

Figure 2: An illustration of the state-space transition diagram from our lower bound construction in Theorem G.2.
The new construction eliminates the waiting states, thus making it possible to obtain a lower bound that explicitly
depends on parameter dm in Theorem G.2.

The transition dynamics are defined as follows:

• for h = 1, ...,H − 1,

– For bandit states bh,i, there is probability 1− 1
H to transition to bh+1,i regardless of the action chosen.

For the rest of 1
H probability, optimal action a?h,i will have probability 1

2 + τ or 1
2 − τ transition to

gh+1 or bh+1 and all other actions a will have equal probability 1
2 for either gh+1 or bh+1, where τ is a

parameter will be decided later. Or equivalently,

P(·|sh,i, a?h,i) =


1− 1

H if · = sh+1,i

( 1
2 + τ) · 1

H if · = gh+1

( 1
2 − τ) · 1

H if · = bh+1

P(·|sh,i, a) =


1− 1

H if · = sh+1,i

1
2 ·

1
H if · = gh+1

1
2 ·

1
H if · = bh+1

– gh always transitions to gh+1 and bh always transitions to bh+1, i.e. for all a ∈ A, we have

P(gh+1|gh, a) = 1, P(bh+1|bh, a) = 1.

We will determine parameter τ at the end of the proof.

• for h = H, ..., 2H−1, all states will always transition to the same type of states for the next step, i.e. ∀a ∈ A,

P(gh+1|gh, a) = P(bh+1|bh, a) = P(sh+1,i|sh,i, a) = 1, ∀i ∈ [S − 2]. (21)

• The initial distribution is decided by:

P(s1,i) =
1

S
, ∀i ∈ [S − 2], P(g1) =

1

S
, P(b1) =

1

S
(22)

• State s will receives reward 1 if and only if s = gh and h ≥ H. The reward at all other states is zero.

By this construction the optimal policy must take a?h,i for each bandit state sh,i for at least the first half of the
MDP, i.e. need to take a?h,i for h ≤ H. In other words, this construction embeds at least H(S − 2) independent
best arm identification problems that are identical to the stochastic multi-arm bandit problem in Lemma A.7
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into the MDP. Note the key innovation here is that we can remove the waiting states used in Jiang
et al. (2017) but still keep the multi-arm bandit problem independent!14

Notice in our construction, for any bandit state sh,i with h ≤ H, the difference of the expected reward between
optimal action a?h,i and other actions is:

(
1

2
+ τ) · 1

H
· E[r(h+1):2H |gh+1] + (

1

2
− τ) · 1

H
· E[r(h+1):2H |bh+1] + (1− 1

H
) · E[r(h+1):2H |sh+1,i]

− 1

2H
· E[r(h+1):2H |gh+1]− 1

2H
· E[r(h+1):2H |bh+1]− (1− 1

H
) · E[r(h+1):2H |sh+1,i]

=(
1

2
+ τ) · 1

H
· E[r(h+1):2H |gh+1] + (

1

2
− τ) · 1

H
· E[r(h+1):2H |bh+1]

− 1

2H
· E[r(h+1):2H |gh+1]− 1

2H
· E[r(h+1):2H |bh+1]

=(
1

2
+ τ)

1

H
·H + (

1

2
− τ)

1

H
· 0− 1

2H
·H +

1

2H
· 0 = τ

(23)

so it seems by Lemma A.7 one suffices to use the least possible A
72(τ)2 samples to identify the best action a?h,i.

However, note the construction of the latter half of the MDP (21) uses mindless reproduction of previous steps
and therefore provides no additional information about the best action once the state at time H is known. In
other words, observing

∑2H
t=1 rt = H is equivalent as observing

∑H
t=1 rt = 1. Therefore, for the bandit states in

the first half the samples that provide information for identifying the best arm is up to time H. As a result, the
difference of the expected reward between optimal action a?h,i and other action for identifying the best arm should
be corrected as:

(
1

2
+ τ) · 1

H
· E[r(h+1):H |gh+1] + (

1

2
− τ) · 1

H
· E[r(h+1):H |bh+1] + (1− 1

H
) · E[r(h+1):H |sh+1,i]

− 1

2H
· E[r(h+1):H |gh+1]− 1

2H
· E[r(h+1):H |bh+1]− (1− 1

H
) · E[r(h+1):H |sh+1,i]

=(
1

2
+ τ) · 1

H
· E[r(h+1):H |gh+1] + (

1

2
− τ) · 1

H
· E[r(h+1):H |bh+1]

− 1

2H
· E[r(h+1):H |gh+1]− 1

2H
· E[r(h+1):H |bh+1]

=(
1

2
+ τ)

1

H
· 1 + (

1

2
− τ)

1

H
· 0− 1

2H
· 1 +

1

2H
· 0 =

τ

H

Now by Lemma A.7, for each bandit state sh,i satisfying h ≤ H, unless A
72(τ/H)2 samples are collected from that

state, the learning algorithm fails to identify the optimal action a?h,i with probability at least 1/3.

After running any algorithm, let C be the set of (h, s) pairs for which the algorithm identifies the correct action.
Let D be the set of (h, s) pairs for which the algorithm collects fewer than A

72(τ/H)2 samples. Then by Lemma A.7

we have

E[|C|] = E

∑
(h,s)

1[ah,s = a?h,s]

 ≤ ((S − 2)H − |D|) + E

 ∑
(h,s)∈D

1[ah,s = a?h,s]


≤ ((S − 2)H − |D|) +

2

3
|D| = (S − 2)H − 1

3
|D|.

If we have n ≤ H(S−2)
2 × A

72(τ/H)2 , by pigeonhole principle the algorithm can collect A
72(τ/H)2 samples for at most

half of the bandit problems, i.e. |D| ≥ H(S − 2)/2. Therefore we have

E[|C|] ≤ (S − 2)H − 1

3
|D| ≤ 5

6
(S − 2)H.

Then by Markov inequality

P
[
|C| ≥ 11

12
H(S − 2)

]
≤ 5/6

11/12
=

10

11

14Here independence means solving one bandit problem provides no information on other bandit problems.
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so the algorithm failed to identify the optimal action on 1/12 fraction of the bandit problems with probability
at least 1/11. Note for each failure in identification, the reward is differ by τ (see (23)), therefore under the
event {|C ′| ≥ 1

12H(S − 2)}, following the similar calculation of Jiang et al. (2017) the suboptimality of the policy
produced by the algorithm is

ε := v? − vπ̂ = P[visit C ′]× τ + P[visit C]× 0 = P[
⋃

(h,i)∈C′
visit(h, i)]× τ

=
∑

(h,i)∈C′
P[visit(h, i)]× τ =

∑
(h,i)∈C′

1

HS
(1− 1/H)h−1τ

≥
∑

(h,i)∈C′

1

HS
(1− 1/H)Hτ ≥

∑
(h,i)∈C′

1

HS

1

4
τ

≥ H(S − 2)

12

1

HS

1

4
τ = c1

τ

48
.

where the third equal sign uses all best arm identification problems are independent. Now we set τ =
min(

√
1/8, 48ε/c1) and under condition n ≤ cH3SA/ε2, we have

n ≤ cH3SA/ε2 ≤ c482H3SA/τ2 = c482 · 72HS · A

72(τ/H)2
:= c′HS · A

72τ2
≤ H(S − 2)

2
· A

72τ2
,

the last inequality holds as long as S ≥ 2/(1− 2c′). Therefore in this situation, with probability at least 1/11,
v? − vπ̂ ≥ ε. Finally, we can use scaling to reduce the horizon from 2H to H.

G.2 Information theoretical lower sample complexity bound over problems in Mdm for
identifying ε-optimal policy.

For all 0 < dm ≤ 1
SA , let the class of problems be

Mdm :=
{

(µ,M)
∣∣ min
t,st,at

dµt (st, at) ≥ dm
}
,

now we consider deriving minimax lower bound over this class.

Theorem G.2. Under the same condition of Theorem G.1. In addition assume 0 < dm ≤ 1
SA . There exists

another universal constant c such that when n ≤ cH3/dmε
2, we always have

inf
vπalg

sup
(µ,M)∈Mdm

Pµ,M (v∗ − vπalg ≥ ε) ≥ p.

Proof. The hard instance (µ,M) we used is based on Theorem G.1, which is described as follows.

• for the MDP M = (S,A, r, P, d1, 2H + 2),

– Initial distribution d1 will always enter state s0, and there are two actions with action a1 always
transitions to syes and action a2 always transitions to sno. The reward at the first time r1(s, a) = 0 for
any s, a.

– For state sno, it will always transition back to itself regardless of the action and receive reward 0, i.e.

Pt(sno|sno, a) = 1, rt(sno, a) = 0, ∀t, ∀a.

– For state syes, it will transition to the MDP construction in Theorem G.1 with horizon 2H and syes

always receives reward zero.

– For t = 1, choose µ(a1|s0) = 1
2dmSA and µ(a2|s0) = 1 − 1

2dmSA. For t ≥ 2, choose µ to be uniform
policy, i.e. µ(at|st) = 1/A.
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Based on this construction, the optimal policy has the form π? = (a1, . . .) and therefore the MDP branch that
enters sno is uninformative. Hence, data collected by that part is uninformed about the optimal policy and there
is only 1

2dmSA proportion of data from syes are useful. Moreover, by Theorem G.1 the rest of Markov chain
succeeded from syes requires Ω(H3SA/ε2) episodes (regardless of the exploration strategy/logging policy), so the

actual data complexity needed for the whole construction (µ,M) is Ω(H3SA/ε2)
dmSA

= Ω(H3/dmε
2).

It remains to check this construction µ,M stays within Mdm .

• For t = 1, we have d1(s0, a1) = 1
2dmSA ≥ dm (since S ≥ 2) and d1(s0, a2) = 1− 1

2dmSA ≥ dm (this is since
dm ≤ 1

SA ≤
2

2+SA );

• For t = 2, d2(syes, a) = 1
2dmSA ·

1
A = 1

2dmS ≥ dm (since S ≥ 2) and similar for sno;

• For t ≥ 3, for gh and bh in the sub-chain inherited from syes, note dh(gh) ≤ dh+1(gh+1) (since gh and bh are
absorbing states regardless of actions), therefore dh(gh) ≥ d1(g1) = d1(syes) ·P(g1|syes) = 1

2dmSA ·
1
S = 1

2dmA,
since µ is uniform so dh(gh, a) ≥ Ω(dmA) · 1

A = Ω(dm) forall a. Similar result can be derived for bh in
identical way.

For bandit state, we have for all i ∈ [S − 2],

dµt+1(st+1,i) ≥ Pµ(st+1,i, st,i, st−1,i, . . . , s2,i, s1,i, syes, s0)

=

t∏
u=1

Pµ(su+1,i|su)Pµ(s1,i|syes)Pµ(syes|s0)

= (1− 1

H
)t
(

1

S

)(
1

2
dmSA

)
≥ cdmA,

now by µ is uniform we have dµt+1(st+1,i, a) ≥ Ω(dmA) · 1
A = Ω(dm) for all a. This concludes the proof.

Remark G.3. A directly corollary is that the sample complexity in Theorem 4.1 part 3. is optimal. In-
deed, for the case εopt = 0, Theorem 4.1 implies π̂ is the ε-optimal policy learned with sample complexity
O(H3 log(HSA/δ)/dmε

2). Theorem G.2 implies this sample complexity cannot be further reduced up to the
logarithmic factor.

G.3 Information theoretical lower sample complexity bound for uniform convergence in OPE.

By applying Theorem G.2, we can now prove Theorem 3.8.

Proof of Theorem 3.8. We prove it by contradiction. Suppose there is one off-policy evaluation method v̂π such
that

sup
π∈Π
|v̂π − vπ| ≤ o

√ H3

dmn

 ,

where o(·) represents the standard small o-notation. Then by

0 ≤ vπ
?

− vπ̂
?

= vπ
?

− v̂π̂
?

+ v̂π̂
?

− vπ̂
?

≤ |vπ
?

− v̂π
?

|+ |v̂π̂
?

− vπ̂
?

| ≤ 2 sup
π
|vπ − v̂π|.

this OPE method implies a ε-optimal policy learning algorithm with sample complexity o(H3/dmε
2) which is

smaller than the information theoretical lower bound obtained in Theorem G.2. Contradiction!
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H Proofs of Theorem 4.1

Proof of Theorem 4.1. Part 1. and Part 2. are just direct corollaries. We only prove Part 3. here. Indeed, by
definition of empirical optimal policy we have Q̂π

? ≤ Q̂π̂? , so we have the following:

Qπ
?

1 −Qπ̂1 = Qπ
?

1 − Q̂π̂
?

1 + Q̂π̂
?

1 − Q̂π̂1 + Q̂π̂1 −Qπ̂1
≤ Qπ

?

1 − Q̂π
?

1 + Q̂π̂
?

1 − Q̂π̂1 + Q̂π̂1 −Qπ̂1
≤ Qπ

?

1 − Q̂π
?

1 + εopt · 1 + Q̂π̂1 −Qπ̂1

and Q̂π̂1 −Qπ̂1 can be bounded by Theorem 3.7 using local uniform convergence. Qπ
?

1 − Q̂π
?

1 can be bounded by

O(
√

H3 log(HSA/δ)
ndm

) using the similar technique in Section F even without introducing εopt since π? is a fixed

policy. All these implies:

Qπ
?

1 −Qπ̂1 ≤

O(

√
H3 log(HSA/δ)

ndm
) + εopt

 · 1.
Especially when εopt = 0 then this is slightly stronger than the stated result since:

vπ
?

1 − vπ̂
?

1 = Qπ
?

1 (·, π?(·))−Qπ̂
?

1 (·, π̂?(·)) ≤ Qπ
?

1 (·, π?(·))−Qπ̂
?

1 (·, π?(·)) ≤
∥∥∥Qπ?1 −Qπ̂

?

1

∥∥∥
∞
≤ O(

√
H3 log(HSA/δ)

ndm
) · 1

I Simulation details

The non-stationary MDP with used for the experiments have 2 states s0, s1 and 2 actions a1, a2 where action a1

has probability 1 always going back the current state and for action a2, there is one state s.t. after choosing a2

the dynamic transitions to both states with equal probability 1
2 and the other one has asymmetric probability

assignment (1
4 and 3

4 ). The transition after choosing a2 is changing over different time steps therefore the MDP is
non-stationary and the change is decided by a sequence of pseudo-random numbers. More formally, Pt can be
either

P(s0|s0, a1) = 1;P(s1|s1, a1) = 1;P(·|s0, a2) =

{
1
2 , if · = s1

1
2 , if · = s0

; P(·|s1, a2) =

{
3
4 , if · = s1

1
4 , if · = s0

or

P(s0|s0, a1) = 1;P(s1|s1, a1) = 1;P(·|s0, a2) =

{
1
4 , if · = s1

3
4 , if · = s0

; P(·|s1, a2) =

{
1
2 , if · = s1

1
2 , if · = s0

Moreover, to make the learning problem non-trivial we use non-stationary rewards with 4 categories, i.e.
rt(s, a) ∈ { 1

4 ,
2
4 ,

3
4 , 1} and assignment of rt(s, a) for each value is changing over time. That means, one possible

assignment can be

rt(s0, a1) = 1/4, rt(s0, a2) = 2/4, rt(s1, a1) = 3/4, rt(s1, a2) = 1/4.

Moreover, the logging policy in Figure 1(a) is uniform with µt(a1|s) = µt(a2|s) = 1
2 for both states. We implement

the non-stationary MDP in the Python environment and pseudo-random numbers pt, rt’s are generated by keeping
numpy.random.seed(100).
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We fix episodes n = 2048 and run each algorithm under K = 100 macro-replications with data D(k) ={
(s

(i)
t , a

(i)
t , r

(i)
t )
}i∈[n],t∈[H]

(k)
, and use each D(k) (k = 1, ...,K) to construct a estimator v̂π[k], then the (empirical)

RMSE for fixed policy is computed as:

RMSE FIX =

√∑K
k=1(v̂π[k] − v

π
true)2

K
,

and RMSE for suboptimality gap is computed as

RMSE SUB =

√∑K
k=1(v

π̂?
[k] − vπ?true)2

K
,

and RMSE for empirical optimal policy gap is computed as

RMSE EMPIRICAL =

√∑K
k=1(v̂π̂

?

[k] − v
π̂?
true)2

K
,

where vπtrue is obtained by calculating Pπt+1,t(s
′|s) =

∑
a Pt+1,t(s

′|s, a)πt(a|s), the marginal state distribution

dπt = Pπt,t−1d
π
t−1, rπt (st) =

∑
at
rt(st, at)πt(at|st) and vπtrue =

∑H
t=1

∑
st
dπt (st)r

π
t (st). v

π?

true is obtained by running
Value Iteration exhaustively until the error converges to 0. The average relative error for suboptimality (average

of |vπ̂
?
[k] − vπ?true|/vπ

?

true) at H = 1000 is 0.0011. Lastly, we also show the scaling of |v̂π̂? − vπ̂? | in Figure 3, which
shares a similar pattern as the suboptimality plot as a whole. 15

101 102 103

Horizon H

10−3

10−2

10−1

100

101

Ro
ot 

M
SE

 

fixed policy OPEMA/TMIS
| ̂vπ̂ ⋆ − vπ̂ ⋆ |

O(√H3/dm ) Scaling

Figure 3: Log-log plot showing the dependence on horizon of uniform OPE and pointwise OPE via learning
(|v̂π̂? − vπ̂? |) over a non-stationary MDP example.

J On improvement over vanilla simulation lemma for fixed policy evaluation

Vanilla simulation lemma, Lemma 1 of Jiang (2018). Without loss of generality, assuming reward is
determinsitic function over state-action. By definition of Bellman equation, we have the following:

V̂ πt = r + P̂πt+1V̂
π
t+1, V πt = r + Pπt+1V

π
t+1,

15Here we do point out the empirical dependence on H for |v̂π̂
?

− vπ̂
?

| in the Figure 3 is actually less than H1.5, this

comes from that the MDP example we choose is not the “hardest” example for quantity |v̂π̂
?

− vπ̂
?

|, as opposed to quantity

|v? − vπ̂
?

| in Figure 1.
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define εP = supt,st,at ||P̂t(·|st, at)−Pt(·|st, at)||1, then by Hoeffding’s inequality and union bound, with probability
1− δ,

εP ≤ S · sup
t,st,at

||P̂t(·|st, at)− Pt(·|st, at)||∞ ≤ S · sup
t,st,at

O

(√
log(HSA/δ)

nst,at
1(Et)

)
= O

√S2 log(HSA/δ)

n · dm


then

V̂ πt − V πt =P̂πt+1V̂
π
t+1 − Pπt+1V

π
t+1

≤
(∥∥∥P̂πt+1 − Pπt+1

∥∥∥
1

∥∥∥V̂ πt+1

∥∥∥
∞

+
∥∥Pπt+1

∥∥
1

∥∥∥V̂ πt+1 − V πt+1

∥∥∥
∞

)
· 1

≤
(
HεP +

∥∥∥V̂ πt+1 − V πt+1

∥∥∥
∞

)
· 1,

solving recursively, we have

∥∥∥V̂ π1 − V π1 ∥∥∥∞ ≤ H2εP ≤ O

√H4S2 log(HSA/δ)

n · dm

 .

This verifies SL has complexity Õ(H4S2/dmε
2). We do point out above standard analysis can be improved (e.g.

Jiang (2018) Section 2.2) to Õ(H4S/dmε
2), then in this case our analysis (Lemma 3.4) has an improvement of

H2S with respect to the modified result.

K Algorithms

Algorithm 1 OPEMA

Input: Logging data D = {{s(i)
t , a

(i)
t , r

(i)
t }Ht=1}ni=1 from the behavior policy µ. A target policy π which we want

to evaluate its cumulative reward.

1: Calculate the on-policy estimation of initial distribution d1(·) by d̂1(s) := 1
n

∑n
i=1 1(s

(i)
1 = s), and set

d̂µ1 (·) := d̂1(·), d̂π1 (s) := d̂1(·).
2: for t = 2, 3, . . . ,H do

3: Choose all transition data at time step t, {s(i)
t , a

(i)
t , r

(i)
t }ni=1.

4: Calculate the on-policy estimation of dµt (·) by d̂µt (s) := 1
n

∑n
i=1 1(s

(i)
t = s).

5: Set the off-policy estimation of P̂t(st|st−1, at−1):

P̂t(st|st−1, at−1) :=

∑n
i=1 1[(s

(i)
t , a

(i)
t−1, s

(i)
t−1) = (st, st−1, at−1)]

nst−1,at−1

when nst−1,at−1
> 0. Otherwise set it to be zero.

6: Estimate the reward function

r̂t(st, at) :=

∑n
i=1 r

(i)
t 1(s

(i)
t = st, a

(i)
t = at)∑n

i=1 1(s
(i)
t = st, a

(i)
t = at)

.

when nst,at > 0. Otherwise set it to be zero.

7: Set d̂πt (·, ·) according to d̂πt = P̂πt d̂
π
t−1, where d̂πt (·, ·) is the estimated state-action distribution.

8: end for
9: Substitute the all estimated values above into v̂π =

∑H
t=1〈d̂πt , r̂t〉 to obtain v̂π, the estimated value of π.

Remark K.1. In short, we can see Algorithm 2 requires the splitting data size M which is undecided by Yin and
Wang (2020) and that makes the hyper-parameter requiring additional concrete specifications to make the data
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Algorithm 2 Data Splitting TMIS in Yin and Wang (2020)

Input: Logging data D = {{s(i)
t , a

(i)
t , r

(i)
t }Ht=1}ni=1 from the behavior policy µ. A target policy π which we want to

evaluate its cumulative reward. Requiring splitting data size M .

1: Randomly splitting the data D evenly into N folds, with each fold |D(i)| = M , i.e. n = M ·N .
2: for i = 1, 2, . . . , N do
3: Use Algorithm 1 to estimate v̂π(i) with data D(i).
4: end for
5: Use the mean of v̂π(1), v̂

π
(2), ..., v̂

π
(N) as the final estimation of vπ.

splitting estimator sample efficient. In contrast, OPEMA in Algorithm 1 is defined without ambiguity and can be
implemented without extra work.

Their results require number of episodes in each splitted data M to satisfy Õ(
√
nSA) > M > O(HSA). To

achieve data efficiency, they need n ≈ Θ(H2SA/ε2) and by that condition M has to satisfy M ≈ C ·HSA. In
this case, data-splitting version needs to create N = n/M empirical transition dynamics and each dynamics use
H3/N ≈ C ·H2SA/ε2 episodes which is less than the lower bound (O(H3)) required for learning. Most critically,
due to data-splitting it has N empirical transitions hence it is not clear which transition to plan over. Therefore
in this sense their result does not enables efficient offline learning. Our Analysis for unsplitted version (OPEMA)
addresses all these issues.


