Minimax Estimation of Laplacian Constrained Precision Matrices

A Proofs of Theorems

A.1 Proof of Theorem 1

Proof. Suppose x1,...,x, are i.i.d. samples drawn from p-dimensional L-GMRF with the parameters (0, £2).
Then the sample covariance matrix is computed by S = % Sy x;z; . Recall that the adjoint operator L* of £
is defined by [L*Y |x = Y;; — Yi; — Y + Y} ;, where [L*Y];, denotes the k-th element of the vector L*Y', and

i,7 € [p] satisfying k =i —j 351 (2p — j) and @ > j. By simple calculation, one obtains, for any k € [p(p — 1)/2],

n n

278, = = S0 16 @] = - 3 (e — i)y, (21)

t=1 t=1
.. . . . i1 .
where 4, j satisfy k =i —j + 15-(2p — j).
Define a set A;; := {@& € VP |z; = x;}, where VP~! = {& € R?| 1T = 0}. Obviously, A;; has measure zero in

VP~! for any i # j. Therefore, for n > 1, one has

P min L*S], >0 =1. 22
[ke[mp—l)/m[ b } (22)

By the usage of the linear operator £, the optimization (3) can be rewritten as

min — logdet(Lw + J) + tr (LwS), subject to w > 0. (23)
Following from the the fact that (£x, X) = (x, £*X) holds for any = € RP(P~1/2 and X € RP*P, we further
rewrite (23) as

min —logdet(Lw + J) + (£*S,w), subject to w > 0. (24)
w

By the reformulation in (24), it is equivalent to prove that the global minimizer of (24) exists and is unique
almost surely if n > 1. The existence is established by the coercivity of the objective function in (24). A
function g : @ — R U {+o0o} is called coercive over Q, if every sequence xj € Q with ||zx| — +o0o obeys
limy 00 g(x) = +00, where Q@ C R?. Define F'(w) = —logdet(Lw + J) + (L*S,w). We can bound F(w) from
the below as follows

F(w) = —log (H )\i(ﬁw)> + (LS, w)

/\i(ﬁw)> + (LS, w) + (p—1)log(p — 1)

=—(p—1)log (Z[ﬁwn) + (LTS, w) + (p —1)log(p — 1) (25)

p(p—1)/2
=—(p—1)log (2 Z wy | +(L*S,w) + (p—1)log(p — 1)

t=1
p(p—1)/2 p(p—1)/2 p—1
> —(p—1)log ; wy | +min [£*S], ; wy + (p— 1) log =~

where the first equality follows from the fact that Lw + J admits the eigenvalue decomposition that

mu;[uﬂ[ﬁ?][uuﬂ (26)

where Lw = UAU " and J = uu . The first inequality in (25) is established due to the inequality w >

v/aj - az - - - a, for any non-negative real numbers of aq, ..., a,, and the fact that the smallest eigenvalue of Lw is
zero. The last equality directly follows from the definition of the linear operator L.
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Let a = miny [£*S],. According to (22), we obtain that a > 0 holds almost surely. Let z = fipfl)/z w;. Then

the objective function can be lower bounded by
p—1
7

h(z):=—=(p—-1)logz+az+ (p—1)log
A simple calculation yields lim,_, » h(z) = 400 if @ > 0. Note that the feasible set of the optimization (24) is

Sw ={w|w >0,w € dom(F)}. (27)

For any sequence wy which is in the closure of the feasible set cl(S,,) and satisfies ||wg| — +oo0, one has
p(p—1)/2

) [wg]: — +o00. Then one can establish that
p(p—1)/2
i, Flwn) 2 Jim bl D fwdl | =l h(z) =400

t=1

holds if o > 0. Therefore, F'(w) is coercive over cl(S,,) almost surely. By the Extreme Value Theorem (Drabek
and Milota, 2007), if Q C R? is non-empty and closed, and g : Q@ — R U {400} is lower semi-continuous and
coercive, then the optimization mingcq g(x) has at least one global minimizer. Therefore, by the coercivity of
F(w), the optimization (24) has at least one global minimizer in cl(S,,) almost surely.

We can rewrite S, = Q4NQp, where Q4 := {w € RPP=D/2 |y > 0} and Qp := {w € RPP-D/2|(Lw+J) € St}
Notice that Q4 is a closed set, while Qp is an open set. Consider the set V := cl(Sy) \ Sw, we have

Vg{Cl(QA)ﬂCI(QB)}\{QAﬁQB}:QAﬂagB, (28)

where 0€Q)p is the boundary of Q5. Note that every matrix on the boundary of the set of positive definite
matrices is positive semi-definite and has zero determinant. Hence, one has Q5 = {w € RPP=D/2|(Lw 4 J) €
S%, det(Lw + J) = 0}. As a result, for any wy, € cl(Sw) \ Sw, F(wy) = +00. Therefore, (24) has at least one
global minimizer in the set S,, almost surely.

The uniqueness of the minimizer is established by proving that the optimization (24) is strictly convex. For any
w € Sy, the minimum eigenvalue of V2F(w) can be bounded from the below as follows

Amin (V?F(w)) = inf x V2 (w)x

llzll=1

— inf (vec(Lx))T ((Lw I @ (Lw + J)_l) vee(Lz)

=1
T — —
. HiI”1£ (vec(Lx)) ((Lw + J) 1T® (Lw + J)~1) vec(Lx) i TP
||=1 (vec(Lx)) vec(Lx) lzl=1

> (Amin(Lw +J)—1)2.

inf ||Lz|?
int £zl

>0,

where the second equality is obtained by calculating the Hessian V2 F(w); the second inequality is based on the
property of Kronecker product that the eigenvalues of A ® B are \;u; for 4,j € [p], in which \; and u; are the
eigenvalues of A and B, respectively; the last inequality is establised by the facts that Ay, (Lw + J) > 0 for any
w € Sy, and ||£:c||% > 0 for any @ # 0. Therefore, the optimization (24) is strictly convex, and thus (24) has at
most one global minimizer.

Combining the existence and uniqueness, we conclude that the minimizer of the optimization (24) exists and is
unique almost surely as long as n > 1. O

A.2 Proof of Theorem 2

Proof. Let x1,...,x, be i.i.d. samples drawn from a p-dimensional L-GMRF with the parameters (0, €2), and
the sample size n is lower bounded by

max + ||14$c ||min)

n > max (SCalcd (1As|| 2 M2\8| log p, 8¢y ||A3c||f]rlin logp) , (29)
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where ¢g =1/ (8 | (92 + J)’1||fnax), and ¢q > (d+2) || Ase |2 with a constant d > 0.

min
Recall that the parameter space of the Laplacian constrained precision matrices we consider is F(dy, p,, M) defined

in (3.1.3). For any Q € F(d, ,, M), there exists an unique w such that Q = Lw. Therefore, we can obtain an
equivalent parameter space of F(d,, ,, M) with the form of w,

p
Rr(p—1)/2 I{ILwl.: = 0Y < d
Flldup M) =4 5 max 32 I{[£wly # 0} < du |

L < A (Lw) < Aax(Lw) < M

For any given w* € F'(d,, ,, M), we define a local region around w* by
B (w*; Apax (Lw™)) = {w |w € B (w*; Apax (Lw™)) NS},

where B(w*;r) = {w € RPP=V/2|||Lw — Lw*||y < r} and S, is defined in (27). It is easy to verify that
w* € B(w*; Apax(Lw™)).

Next, we prove that @ € B(w™*; Apax(Lw*)), where w is the proposed estimator defined in (8). We can see the
optimization problems (8) and (24) have the same feasible set. Therefore, Sy, is also the feasible set of (24) and
thus @ € S, must hold. We construct an intermediate estimator,

wy =w* +t (b —w"), (30)

where t is taken such that ||Lw; — Lw*||p = Amax(Lw™) if [|[LW — Lw* ||z > Anax(Lw*), and ¢ = 1 otherwise.

Hence ||[Lw; — Lw*||p < Amax(Lw™) always holds and ¢ € [0,1]. One further has w; € S, because both
w*, W € Sy and Sy, is a convex set as shown in the following. For any @1, @2 € Sy, define ¢, =ty + (1 — t)xa,
t € [0,1]. It is clear that x; > 0. Since S}, is a convex cone, one has

Lx;+J=t(Lxy+JT)+(1—t)(Lxa+JT) SV, (31)

indicating that @; € S,, and thus the set S, is convex. Hence B(w*;r) is a convex set. Therefore, we conclude
that w; € B(w*; Apax(Lw™)).

The following lemma characterizes the local region around w*.

Lemma 3. (Ying et al., 2020a) Let f(w) = —logdet(Lw + J). Then for any wi, ws € B(w*;r) defined in (30),
we have

(Vf(w) = Vf(wa),wy —wa) > (||Lw* ||, +7) 7 || Lwr — Lawslfp .

Applying Lemma 3 with w; = wy, we = w* and r = Apax (Lw™) yields
H=L* (Lw, + )+ L (Lw* + )" —w*) > (2Amax (Lw*)) 2 || Lw, — Lw* || (32)
Let q(a) = —logdet (£(w* + a(® — w*)) + J) + a(L*(Lw* + J)~ !, — w*) and a € [0,1]. One has
¢ (a) = (—L" (Lw, +J) "+ L* (Lw* +J)7", b — w*), (33)
and
¢"(a) = <c* ((Ewa +J) N (L — Lw*) (Lw, + J)’l) b — w*> — tr (ABAB),

where w, = w* + a(w — w*), A = (Lw, +J)" ! and B = (Lw — Lw*). Note that A is symmetric and positive
definite because w; € S,, and B is symmetric. Let C = AB. By Theorem 1 in Drazin and Haynsworth (1962),
we know that all the eigenvalues of a matrix X € RP*P are real if there exists a symmetric and positive definite
matrix Y € RP*P such that XY are symmetric. We can see the matrix C' A is symmetric with A symmetric and
positive definite, and thus all the eigenvalues of C' are real. Suppose Ay, ..., A, are the eigenvalues of C. Then
the eigenvalues of CC are A7,...,\2. Therefore, ¢"(a) = >_7_; A} > 0, implying that ¢’(a) is non-decreasing
with the increase of a. Then one obtains

HL* (Lw* +J) = L (L + ) — w*) = tq' (1) > tq' () > (2hmax (Lw*)) "2 || Lw; — Lw* |5 (34)
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where the first inequality holds because ¢'(a) is non-decreasing and ¢ < 1, and the second inequality follows from
(32).

The Lagrangian of the optimization (8) is
L(w,v) = —logdet(Lw + J) + tr (LwS) + Xa'w — v w,

where v is a KKT multiplier. Let (@, ®) be the primal and dual optimal point. Then (@, ©) must satisfy the
KKT conditions as below

— L (Lw+J) )+ LS+ a—D=0;
} (35)
O w=0,w=>0,D>0;
According to the first condition in (35), one has
(—L (L + )7+ L7, @~ w”) = (0~ A, — w). (36)

Substituting (36) into (34) yields

1Lw; — Lw*|2 = 4N2,, (Cw*) | (0,1 — w*) — (a1 — w*) + <c* ((Lw* vJ) o s) b — w*> . (37)

11 12

max

I3
Next we bound term I, I and I3, respectively. The term I; can be directly bounded by
(O, — w*) = — (0, w”) <0, (38)

which follows from the second condition in (35) and the fact that w* > 0.

For term Iy, we separate the support of a into two parts, S and its complementary set S¢, where S is the support
of w*. Let |S| = s. A simple algebra yields

(MA@, — w*) = (Aas, (W —w*)g) + (Aase, (W —w*)g.) > —Aas| [[(W — w*)g| + A {ase, Wse), (39)
where the inequality follows from the Cauchy—-Schwarz inequality and ws. = 0.

For term I3, we separate the support of £*((Lw* +J)~! — §) into parts, S and S°. Then one has
(£ (cw + )7 = 8) o —w) < || (£ ((w +0)7" = 5)) H (@ — w*) ]|
+(( (cw + 71 =8)) s ). (40)
Substituting (38), (39) and (40) into (37) yields
ew; — cw*|[} <4t (cw”) ( |[(£° ((cw + 7" = 5)) | I (41)
(e (wt + ) = 8)) - AaSC,w3c> + Mfase (b~ w)s. ] ).
Define an event
={|le* ((cw + 7 =5)| < Maselun}-
Under the event 7, one obtains
<(.c* ((,Cw* rJ) o s))sa ~ s, w3> <0. (42)
Combining (41) and (42) together yields

Iaw, — Loo* [ < 4tX o (Lw') (Mlas] + || (£ (2w +0)71 = 8)) [} b — ] (43)
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where the last inequality follows from [|w — w*|| > |[(w — w*)s+||.

On the other hand, one has

I£w; — Lw*||p = ¢ L — Lw*|lg >t [ Y [Lab— Lw*]; | = V2 |l — w?]. (44)
Combining (43) and (44) together yields -
lew, = Lwllp < 2V2A2, (Cw”) (Alas] + | (£* ((cw™ + 07" = 5)) [))- (45)
One also has
(e (o v =) | < (1 e (ew - -9 ) < or oo 0

Plugging (46) and the inequality ||as|| < /s]|las]| into (45), one has

1w, — Lol < 2DV (£00°) ([ + 05 ) VEA (a7)
las]pex and [Aslyy = llasly,- By taking A = /¢y calogp/n and n >
+ || Ase|l,..)? slogp, one has

22 (£007) (| A e + [Ase ) VA < L. (48)
Combining (47) and (48), one has

Note that ||As]|
8¢ terca (|| As||

max

max min

|Lws — Lw*|g < Amax (Lw™). (49)

Thus ¢t = 1 in (30), and w, = w. Therefore, under the event 7, together with the fact that s < d,, ,p, we conclude
that

Lo 2  dnplogp
— || L — Lw*||p S L8, 50
e — o 5 S (50)
Finally, we compute the probability that the event J holds using the following lemma.
Lemma 4. (Ying et al., 2020a) Consider a zero-mean random vector * = [x1,...,2,]" € R? is a L-GMRF
with precision matriz Lw* € Sg.. Given n i.i.d samples *D, ..., &™) the associated sample covariance matriz
=150 w(k)( k))T satisfies, for t € [0, 1],
P[|[£*S); — (L (Lw* + T)7).| > t] < 2exp(—cont®), fori € [p(p—1)/2],
where tg = ||L*(Lw* + J)*leax and co = 1/(8 ||£* (Lw* + J)71||r2nax) are two constants.
By applying Lemma, 4 with ¢t = X ||Ase||,,;, and union sum bound, then get
Pller (w + 0™ =8)| =N Asellin] < 0 exp (—eonh? |45 ]2 )
max
for any )\HASCHmin < tO’ where to = Hﬁ* £w*+J)_1Hmax and o = 1/(8H£* £’UJ +J 1Hmax)' Take

A= 1/cytea logp/n where ¢g > (d + 2) ||A5c||mm with a constant d > 0. To ensure X ||Ase||,;, < to, one takes
n > 8cqlogp||Ase|?

min- By calculation, we establish

P [Hc ((cw +0)7" = s)‘

<M Asellugn] = 1= 0% exp (—eonA? [ Asel3,) = 1 =97

max

Note that the inequality (50) holds for any w* € F'(d, p, M). By taking Q = Lw* and Q= Lab, we obtain

1 dy 1
inf P{Lm—ﬁw*||§5”’°gp}zl—pd
QeF(dn,p,M) P n

)

for some constant C > 0.



