
Minimax Estimation of Laplacian Constrained Precision Matrices

A Proofs of Theorems

A.1 Proof of Theorem 1

Proof. Suppose x1, . . . ,xn are i.i.d. samples drawn from p-dimensional L-GMRF with the parameters (0,Ω).
Then the sample covariance matrix is computed by S = 1

n

∑n
t=1 xtx

>
t . Recall that the adjoint operator L∗ of L

is defined by [L∗Y ]k = Yi,i − Yi,j − Yj,i + Yj,j , where [L∗Y ]k denotes the k-th element of the vector L∗Y , and
i, j ∈ [p] satisfying k = i− j + j−1

2 (2p− j) and i > j. By simple calculation, one obtains, for any k ∈ [p(p− 1)/2],

[L∗S]k =
1

n

n∑
t=1

[
L∗
(
xtx

>
t

)]
k

=
1

n

n∑
t=1

([xt]i − [xt]j)
2
, (21)

where i, j satisfy k = i− j + j−1
2 (2p− j).

Define a set Aij :=
{
x ∈ V p−1|xi = xj

}
, where V p−1 = {x ∈ Rp|1>x = 0}. Obviously, Aij has measure zero in

V p−1 for any i 6= j. Therefore, for n ≥ 1, one has

P
[

min
k∈[p(p−1)/2]

[L∗S]k > 0

]
= 1. (22)

By the usage of the linear operator L, the optimization (3) can be rewritten as

min
w
− log det(Lw + J) + tr (LwS) , subject to w ≥ 0. (23)

Following from the the fact that 〈Lx,X〉 = 〈x,L∗X〉 holds for any x ∈ Rp(p−1)/2 and X ∈ Rp×p, we further
rewrite (23) as

min
w
− log det(Lw + J) + 〈L∗S,w〉, subject to w ≥ 0. (24)

By the reformulation in (24), it is equivalent to prove that the global minimizer of (24) exists and is unique
almost surely if n ≥ 1. The existence is established by the coercivity of the objective function in (24). A
function g : Ω → R ∪ {+∞} is called coercive over Ω, if every sequence xk ∈ Ω with ‖xk‖ → +∞ obeys
limk→∞ g(xk) = +∞, where Ω ⊂ Rq. Define F (w) = − log det(Lw + J) + 〈L∗S,w〉. We can bound F (w) from
the below as follows

F (w) = − log

(
p∏
i=2

λi(Lw)

)
+ 〈L∗S,w〉

≥ −(p− 1) log

(
p∑
i=1

λi(Lw)

)
+ 〈L∗S,w〉+ (p− 1) log(p− 1)

= −(p− 1) log

(
p∑
i=1

[Lw]ii

)
+ 〈L∗S,w〉+ (p− 1) log(p− 1)

= −(p− 1) log

2

p(p−1)/2∑
t=1

wt

+ 〈L∗S,w〉+ (p− 1) log(p− 1)

≥ −(p− 1) log

p(p−1)/2∑
t=1

wt

+ min
k

[L∗S]k

p(p−1)/2∑
t=1

wt + (p− 1) log
p− 1

2
,

(25)

where the first equality follows from the fact that Lw + J admits the eigenvalue decomposition that

Lw + J =
[
U u

] [ Λ 0
0 1

] [
U u

]>
, (26)

where Lw = UΛU> and J = uu>. The first inequality in (25) is established due to the inequality a1+a2+...+an
n ≥

n
√
a1 · a2 · · · an for any non-negative real numbers of a1, . . . , an, and the fact that the smallest eigenvalue of Lw is

zero. The last equality directly follows from the definition of the linear operator L.
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Let α = mink [L∗S]k. According to (22), we obtain that α > 0 holds almost surely. Let z =
∑p(p−1)/2
t=1 wt. Then

the objective function can be lower bounded by

h(z) := −(p− 1) log z + αz + (p− 1) log
p− 1

2
.

A simple calculation yields limz→+∞ h(z) = +∞ if α > 0. Note that the feasible set of the optimization (24) is

Sw = {w |w ≥ 0,w ∈ dom(F )} . (27)

For any sequence wk which is in the closure of the feasible set cl(Sw) and satisfies ‖wk‖ → +∞, one has∑p(p−1)/2
t=1 [wk]t → +∞. Then one can establish that

lim
k→∞

F (wk) ≥ lim
k→∞

h

p(p−1)/2∑
t=1

[wk]t

 = lim
z→+∞

h(z) = +∞

holds if α > 0. Therefore, F (w) is coercive over cl(Sw) almost surely. By the Extreme Value Theorem (Drábek
and Milota, 2007), if Ω ⊂ Rq is non-empty and closed, and g : Ω → R ∪ {+∞} is lower semi-continuous and
coercive, then the optimization minx∈Ω g(x) has at least one global minimizer. Therefore, by the coercivity of
F (w), the optimization (24) has at least one global minimizer in cl(Sw) almost surely.

We can rewrite Sw = ΩA∩ΩB , where ΩA := {w ∈ Rp(p−1)/2 |w ≥ 0} and ΩB := {w ∈ Rp(p−1)/2 |(Lw+J) ∈ Sp++}.
Notice that ΩA is a closed set, while ΩB is an open set. Consider the set V := cl(Sw) \ Sw, we have

V ⊆ {cl(ΩA) ∩ cl(ΩB)} \ {ΩA ∩ ΩB} = ΩA ∩ ∂ΩB , (28)

where ∂ΩB is the boundary of ΩB. Note that every matrix on the boundary of the set of positive definite
matrices is positive semi-definite and has zero determinant. Hence, one has ∂ΩB = {w ∈ Rp(p−1)/2 |(Lw + J) ∈
Sp+, det(Lw + J) = 0}. As a result, for any wk ∈ cl(Sw) \ Sw, F (wk) = +∞. Therefore, (24) has at least one
global minimizer in the set Sw almost surely.

The uniqueness of the minimizer is established by proving that the optimization (24) is strictly convex. For any
w ∈ Sw, the minimum eigenvalue of ∇2F (w) can be bounded from the below as follows

λmin

(
∇2F (w)

)
= inf
‖x‖=1

x>∇2F (w)x

= inf
‖x‖=1

(vec(Lx))
>
(

(Lw + J)
−1 ⊗ (Lw + J)

−1
)

vec(Lx)

≥ inf
‖x‖=1

(vec(Lx))
> (

(Lw + J)−1 ⊗ (Lw + J)−1
)

vec(Lx)

(vec(Lx))
>

vec(Lx)
· inf
‖x‖=1

‖Lx‖2F

≥
(
λmin(Lw + J)−1

)2 · inf
‖x‖=1

‖Lx‖2F

> 0,

where the second equality is obtained by calculating the Hessian ∇2F (w); the second inequality is based on the
property of Kronecker product that the eigenvalues of A⊗B are λiµj for i, j ∈ [p], in which λi and µj are the
eigenvalues of A and B, respectively; the last inequality is establised by the facts that λmin(Lw + J) > 0 for any
w ∈ Sw, and ‖Lx‖2F > 0 for any x 6= 0. Therefore, the optimization (24) is strictly convex, and thus (24) has at
most one global minimizer.

Combining the existence and uniqueness, we conclude that the minimizer of the optimization (24) exists and is
unique almost surely as long as n ≥ 1.

A.2 Proof of Theorem 2

Proof. Let x1, . . . ,xn be i.i.d. samples drawn from a p-dimensional L-GMRF with the parameters (0,Ω), and
the sample size n is lower bounded by

n ≥ max
(

8c−1
0 cd (‖AS‖max + ‖ASc‖min)

2
M2|S| log p, 8cd ‖ASc‖2min log p

)
, (29)
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where c0 = 1/
(

8
∥∥L∗(Ω + J)−1

∥∥2

max

)
, and cd ≥ (d+ 2) ‖ASc‖−2

min with a constant d > 0.

Recall that the parameter space of the Laplacian constrained precision matrices we consider is F(dn,p,M) defined
in (3.1.3). For any Ω ∈ F(dn,p,M), there exists an unique w such that Ω = Lw. Therefore, we can obtain an
equivalent parameter space of F(dn,p,M) with the form of w,

F ′(dn,p,M) =

 w ∈ Rp(p−1)/2|max
i

p∑
j=1

I {[Lw]ij 6= 0} ≤ dn,p,
1
M ≤ λ2(Lw) ≤ λmax(Lw) ≤M

 ,

For any given w? ∈ F ′(dn,p,M), we define a local region around w? by

B (w?;λmax (Lw?)) = {w |w ∈ B (w?;λmax (Lw?)) ∩ Sw} ,

where B(w?; r) = {w ∈ Rp(p−1)/2 | ‖Lw − Lw?‖F ≤ r} and Sw is defined in (27). It is easy to verify that
w? ∈ B(w?;λmax(Lw?)).

Next, we prove that ŵ ∈ B(w?;λmax(Lw?)), where ŵ is the proposed estimator defined in (8). We can see the
optimization problems (8) and (24) have the same feasible set. Therefore, Sw is also the feasible set of (24) and
thus ŵ ∈ Sw must hold. We construct an intermediate estimator,

wt = w? + t (ŵ −w?) , (30)

where t is taken such that ‖Lwt − Lw?‖F = λmax(Lw?) if ‖Lŵ − Lw?‖F ≥ λmax(Lw?), and t = 1 otherwise.
Hence ‖Lwt − Lw?‖F ≤ λmax(Lw?) always holds and t ∈ [0, 1]. One further has wt ∈ Sw because both
w?, ŵ ∈ Sw and Sw is a convex set as shown in the following. For any x1,x2 ∈ Sw, define xt = tx1 + (1− t)x2,
t ∈ [0, 1]. It is clear that xt ≥ 0. Since Sp++ is a convex cone, one has

Lxt + J = t(Lx1 + J) + (1− t)(Lx2 + J) ∈ Sp++, (31)

indicating that xt ∈ Sw and thus the set Sw is convex. Hence B(w?; r) is a convex set. Therefore, we conclude
that wt ∈ B(w?;λmax(Lw?)).

The following lemma characterizes the local region around w?.

Lemma 3. (Ying et al., 2020a) Let f(w) = − log det(Lw+J). Then for any w1,w2 ∈ B(w?; r) defined in (30),
we have

〈∇f(w1)−∇f(w2),w1 −w2〉 ≥ (‖Lw?‖2 + r)
−2 ‖Lw1 − Lw2‖2F .

Applying Lemma 3 with w1 = wt, w2 = w∗ and r = λmax(Lw?) yields

t〈−L∗ (Lwt + J)
−1

+ L∗ (Lw? + J)
−1
, ŵ −w∗〉 ≥ (2λmax(Lw?))

−2 ‖Lwt − Lw∗‖2F . (32)

Let q(a) = − log det
(
L
(
w? + a(ŵ −w?)

)
+ J

)
+ a〈L∗(Lw? + J)−1, ŵ −w?〉 and a ∈ [0, 1]. One has

q′(a) = 〈−L∗ (Lwa + J)
−1

+ L∗ (Lw? + J)
−1
, ŵ −w?〉, (33)

and

q′′(a) =
〈
L∗
(

(Lwa + J)
−1

(Lŵ − Lw?) (Lwa + J)
−1
)
, ŵ −w?

〉
= tr (ABAB) ,

where wa = w? + a(ŵ −w?), A = (Lwa + J)−1 and B = (Lŵ − Lw?). Note that A is symmetric and positive
definite because wt ∈ Sw and B is symmetric. Let C = AB. By Theorem 1 in Drazin and Haynsworth (1962),
we know that all the eigenvalues of a matrix X ∈ Rp×p are real if there exists a symmetric and positive definite
matrix Y ∈ Rp×p such that XY are symmetric. We can see the matrix CA is symmetric with A symmetric and
positive definite, and thus all the eigenvalues of C are real. Suppose λ1, . . . , λp are the eigenvalues of C. Then
the eigenvalues of CC are λ2

1, . . . , λ
2
p. Therefore, q′′(a) =

∑p
i=1 λ

2
i ≥ 0, implying that q′(a) is non-decreasing

with the increase of a. Then one obtains

t〈L∗ (Lw? + J)
−1 − L∗ (Lŵ + J)

−1
, ŵ −w?〉 = tq′(1) ≥ tq′(t) ≥ (2λmax(Lw?))−2 ‖Lwt − Lw∗‖2F . (34)
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where the first inequality holds because q′(a) is non-decreasing and t ≤ 1, and the second inequality follows from
(32).

The Lagrangian of the optimization (8) is

L(w,ν) = − log det(Lw + J) + tr (LwS) + λa>w − υ>w,

where υ is a KKT multiplier. Let (ŵ, υ̂) be the primal and dual optimal point. Then (ŵ, υ̂) must satisfy the
KKT conditions as below {

− L∗
(
(Lŵ + J)−1

)
+ L∗S + λa− υ̂ = 0;

υ̂>ŵ = 0, ŵ ≥ 0, υ̂ ≥ 0;
(35)

According to the first condition in (35), one has〈
−L∗ (Lŵ + J)

−1
+ L∗S, ŵ −w?

〉
= 〈υ̂ − λa, ŵ −w?〉 . (36)

Substituting (36) into (34) yields

‖Lwt − Lw?‖2F = 4tλ2
max (Lw?)

〈υ̂, ŵ −w?〉︸ ︷︷ ︸
I1

−〈λa, ŵ −w?〉︸ ︷︷ ︸
I2

+
〈
L∗
(

(Lw? + J)
−1 − S

)
, ŵ −w?

〉
︸ ︷︷ ︸

I3

 . (37)

Next we bound term I1, I2 and I3, respectively. The term I1 can be directly bounded by

〈υ̂, ŵ −w?〉 = −〈υ̂,w?〉 ≤ 0, (38)

which follows from the second condition in (35) and the fact that w? ≥ 0.

For term I2, we separate the support of a into two parts, S and its complementary set Sc, where S is the support
of w?. Let |S| = s. A simple algebra yields

〈λa, ŵ −w?〉 = 〈λaS , (ŵ −w?)S〉+ 〈λaSc , (ŵ −w?)Sc〉 ≥ −λ ‖aS‖ ‖(ŵ −w?)S‖+ λ 〈aSc , ŵSc〉 , (39)

where the inequality follows from the Cauchy–Schwarz inequality and w?
Sc = 0.

For term I3, we separate the support of L∗
(
(Lw? + J)−1 − S

)
into parts, S and Sc. Then one has〈

L∗
(

(Lw? + J)
−1 − S

)
, ŵ −w?

〉
≤
∥∥∥(L∗ ((Lw? + J)

−1 − S
))
S

∥∥∥ ‖(ŵ −w?)S‖

+
〈(
L∗
(

(Lw? + J)
−1 − S

))
Sc
, ŵSc

〉
. (40)

Substituting (38), (39) and (40) into (37) yields

‖Lwt − Lw?‖2F ≤4tλ2
max (Lw?)

(∥∥∥(L∗ ((Lw? + J)
−1 − S

))
S

∥∥∥ ‖(ŵ −w?)S‖ (41)

+
〈(
L∗
(

(Lw? + J)
−1 − S

))
Sc
− λaSc , ŵSc

〉
+ λ ‖aS?‖ ‖(ŵ −w?)S?‖

)
.

Define an event

J =
{∥∥∥L∗ ((Lw? + J)

−1 − S
)∥∥∥

max
≤ λ ‖aSc‖min

}
.

Under the event J , one obtains〈(
L∗
(

(Lw? + J)
−1 − S

))
Sc
− λaSc , ŵSc

〉
≤ 0. (42)

Combining (41) and (42) together yields

‖Lwt − Lw?‖2F ≤ 4tλ2
max(Lw?)

(
λ ‖aS‖+

∥∥∥(L∗ ((Lw? + J)
−1 − S

))
S

∥∥∥) ‖ŵ −w?‖ , (43)
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where the last inequality follows from ‖ŵ −w?‖ ≥ ‖(ŵ −w?)S?‖.

On the other hand, one has

‖Lwt − Lw?‖F = t ‖Lŵ − Lw?‖F ≥ t

∑
i 6=j

[Lŵ − Lw?]
2
ij

 1
2

=
√

2t ‖ŵ −w?‖ . (44)

Combining (43) and (44) together yields

‖Lwt − Lw?‖F ≤ 2
√

2λ2
max (Lw?)

(
λ ‖aS‖+

∥∥∥(L∗ ((Lw? + J)
−1 − S

))
S

∥∥∥) . (45)

One also has∥∥∥(L∗ ((Lw? + J)
−1 − S

))
S

∥∥∥ ≤ (|S| ∥∥∥L∗ ((Lw? + J)
−1 − S

)∥∥∥2

max

) 1
2

≤
√
sλ ‖aSc‖min . (46)

Plugging (46) and the inequality ‖aS‖ ≤
√
s ‖aS‖max into (45), one has

‖Lwt − Lw?‖F ≤ 2
√

2λ2
max (Lw?) (‖aS‖max + ‖aSc‖min)

√
sλ. (47)

Note that ‖AS‖max = ‖aS‖max and ‖AS‖min = ‖aS‖min. By taking λ =
√
c−1
0 cd log p/n and n ≥

8c−1
0 c1cd (‖AS‖max + ‖ASc‖min)

2
s log p, one has

2
√

2λmax (Lw?) (‖AS‖max + ‖ASc‖min)
√
sλ < 1. (48)

Combining (47) and (48), one has
‖Lwt − Lw?‖F < λmax (Lw?) . (49)

Thus t = 1 in (30), and wt = ŵ. Therefore, under the event J , together with the fact that s ≤ dn,pp, we conclude
that

1

p
‖Lŵ − Lw?‖2F .

dn,p log p

n
. (50)

Finally, we compute the probability that the event J holds using the following lemma.

Lemma 4. (Ying et al., 2020a) Consider a zero-mean random vector x = [x1, . . . , xp]
> ∈ Rp is a L-GMRF

with precision matrix Lw? ∈ SL. Given n i.i.d samples x(1), . . . ,x(n), the associated sample covariance matrix
S = 1

n

∑n
k=1 x

(k)
(
x(k)

)> satisfies, for t ∈ [0, t0],

P
[ ∣∣[L∗S]i −

(
L∗(Lw? + J)−1

)
i

∣∣ ≥ t] ≤ 2 exp(−c0nt2), for i ∈ [p(p− 1)/2],

where t0 =
∥∥L∗(Lw? + J)−1

∥∥
max

and c0 = 1/
(
8
∥∥L∗(Lw? + J)−1

∥∥2

max

)
are two constants.

By applying Lemma 4 with t = λ ‖ASc‖min and union sum bound, then get

P
[∥∥∥L∗ ((Lw? + J)

−1 − S
)∥∥∥

max
≥ λ ‖ASc‖min

]
≤ p2 exp

(
−c0nλ2 ‖ASc‖2min

)
,

for any λ ‖ASc‖min ≤ t0, where t0 =
∥∥L∗(Lw? + J)−1

∥∥
max

and c0 = 1/
(
8
∥∥L∗(Lw? + J)−1

∥∥2

max

)
. Take

λ =
√
c−1
0 cd log p/n, where cd ≥ (d+ 2) ‖ASc‖−2

min with a constant d > 0. To ensure λ ‖ASc‖min ≤ t0, one takes

n ≥ 8cd log p ‖ASc‖2min. By calculation, we establish

P
[∥∥∥L∗ ((Lw? + J)

−1 − S
)∥∥∥

max
≤ λ ‖ASc‖min

]
≥ 1− p2 exp

(
−c0nλ2 ‖ASc‖2min

)
≥ 1− p−d.

Note that the inequality (50) holds for any w? ∈ F ′(dn,p,M). By taking Ω = Lw? and Ω̂ = Lŵ, we obtain

inf
Ω∈F(dn,p,M)

P
{

1

p
‖Lŵ − Lw?‖2F .

dn,p log p

n

}
≥ 1− p−d,

for some constant C > 0.


