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Abstract

This paper considers the problem of
high-dimensional sparse precision matrix
estimation under Laplacian constraints. We
prove that the Laplacian constraints bring
favorable properties for estimation: the
Gaussian maximum likelihood estimator
exists and is unique almost surely on the
basis of one observation, irrespective of
the dimension. We establish the optimal
rate of convergence under Frobenius norm
by the derivation of the minimax lower
and upper bounds. The minimax lower
bound is obtained by applying Le Cam-
Assouad’s method with a novel construction
of a subparameter space of multivariate
normal distributions. The minimax upper
bound is established by designing an adaptive
`1-norm regularized maximum likelihood
estimation method and quantifying the
rate of convergence. We prove that the
proposed estimator attains the optimal rate of
convergence with an overwhelming probability.
Numerical experiments demonstrate the
effectiveness of the proposed estimator.

1 Introduction

Estimating high-dimensional precision matrices is
a crucial problem in a number of fields such as
bioinformatics, genomics, and finance. For example,
knowledge of the precision matrix is useful for clustering
and discriminant analysis. Precision matrix is closely
related to graphical models which provide a powerful
tool in modeling the relationships among a large
number of random variables, and have been widely
explored in many applications such as gene expression
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analysis, functional magnetic resonance imaging, risk
management, and portfolio allocation (Lauritzen, 1996;
Yuan and Lin, 2007; Park et al., 2017; Banerjee et al.,
2008; Agrawal et al., 2019).

To avoid the curse of dimensionality, various structural
assumptions are imposed on the models such as
sparsity, bandability, and total positivity. Accordingly,
many regularized or constrained estimators have been
proposed to estimate the precision matrices under
model assumptions. One popular assumption is
sparsity, and the sparse precision matrix estimation
has been extensively studied (d’Aspremont et al., 2008;
Friedman et al., 2008; Mazumder and Hastie, 2012;
Rothman et al., 2008; Ravikumar et al., 2011; Wang
et al., 2016; Honorio et al., 2012). Bandability model
arises from many applications such as time series data
(Bickel and Gel, 2011), and assumes that the entries
of the underlying precision matrix decay based on
their distance from the diagonal. Tapering methods
were developed to estimate bandable precision matrices
(Hu and Negahban, 2017) or precision matrices with
bandable Cholesky factor (Liu et al., 2020). Total
positivity (Fallat et al., 2017; Slawski and Hein, 2015;
Soloff et al., 2020; Wang et al., 2020; Lauritzen et al.,
2019a,b), as a special form of positive dependence
between random variables, has received wide attention
in portfolio design (Agrawal et al., 2019) and auction
theory (Milgrom and Weber, 1982), where the precision
matrix is an M -matrix under multivariate Gaussian
distribution.

Recently, there is growing interest in estimating
Laplacian constrained precision matrices in the field
of signal processing and machine learning over graphs
(Dong et al., 2019; Lake and Tenenbaum, 2010; Egilmez
et al., 2017; Kumar et al., 2019, 2020; Ying et al.,
2020a,b; Cardoso et al., 2020). In this problem, the
underlying precision matrix is a Laplacian matrix.
By imposing the Laplacian constraints, estimating a
precision matrix can be viewed as learning a graph
Laplacian, which plays an important role in graph
Fourier transform: its eigenvalues and eigenvectors
can be interpreted as spectral frequencies and Fourier
basis (Shuman et al., 2013). More recently, the
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penalized maximum likelihood estimation of Laplacian
constrained precision matrices has been explored with
the convex or nonconvex regularizer (Ortega et al.,
2018; Zhao et al., 2019; Ying et al., 2020a,b), and the
rate of convergence has been obtained in Ying et al.
(2020a). However, the rate optimality is still unknown
in the literature. This paper aims to establish the
minimax optimal rate of convergence for estimating
sparse Laplacian constrained precision matrices.

The minimax risk is one of the most commonly used
benchmark to quantify the difficulty of an estimation
problem. Minimax rates of convergence have been
established for estimating several classes of structured
covariance and precision matrices, including sparse,
banded covariance matrices (Bickel and Gel, 2011; Cai
et al., 2010; Cai and Zhou, 2012; Cai et al., 2016c;
Chen et al., 2018) or precision matrices (Cai et al.,
2016b; Ren et al., 2015; Hu and Negahban, 2017; Liu
et al., 2020). Cai et al. (2016b) established the optimal
rates of convergence for estimating sparse precision
matrices under a range of losses. Hu and Negahban
(2017) established the minimax estimation bounds
for estimating banded precision matrices under the
spectral norm. Recently, Liu et al. (2020) obtained the
optimal rates of convergence for estimating precision
matrices with bandable Cholesky factor under the
operator norm and the Frobenius norm. More recently,
Soloff et al. (2020) established the optimal rates of
convergence for estimating the precision matrices with
total positivity under the symmetrized Stein loss. See
(Cai et al., 2016c; Kim, 2020) for comprehensive reviews
on this topic. However, no such theoretical results have
been established for the sparse Laplacian constrained
precision matrix estimation. It is worth mentioning
that the optimal rate of convergence for estimating the
sparse Laplacian constrained precision matrices in this
paper cannot be derived from the work above, because
the parameter space of interest is disjoint with those
in the literature.

Our contributions: In this paper, we consider
the problem of estimating high-dimensional sparse
Laplacian constrained precision matrices. The
contributions of this paper are summarized as follows:

• It is well-known that the Gaussian maximum
likelihood estimator (MLE) of a general precision
matrix does not exist if the number of variables is
larger than the number of observations. However,
we prove that the Laplacian constraints can reduce
the necessary number of observations to make
the MLE well-defined: the Gaussian maximum
likelihood estimator under Laplacian constraints
exists and is unique almost surely with only one
observation, regardless of the dimension.

• The minimax lower bound characterizes the
fundamental difficulty of an estimation problem,
and a desired estimator is expected to achieve
the lower bound. In this paper, we obtain
the minimax lower bound under Frobenius norm
for estimating the sparse Laplacian constrained
precision matrices, which can be a benchmark in
evaluating rate optimality of the estimators.

• We propose an estimator by solving an adaptive
`1-regularized maximum likelihood estimation
problem with Laplacian constraints, and establish
its rate of convergence. The upper and lower
bounds together yield the optimal rate of
convergence, and show that the proposed estimator
attains the optimal rate of convergence with an
overwhelming probability.

• Numerical experiments demonstrate the
effectiveness of the proposed estimator, and
show that for the convex formulations, we should
use adaptive `1-norm rather than `1-norm for
edge recovery in our problem.

The remainder of the paper is organized as follows.
The background of Gaussian graphical models, and
favorable properties of Laplacian constraints are
provided in Section 2. We propose a new estimator,
and establish the optimal rate of convergence in Section
3. Experimental results are provided in Section 4, and
conclusions are drawn in Section 5. An open source R
package is available at https://github.com/mirca/
sparseGraph for the experiments in this paper.

Notation: Both Xij and [X]ij denote the (i, j)-th
entry of the matrix X. [p] denotes the set {1, . . . , p}.
‖x‖, ‖X‖F , and ‖X‖2 denote Euclidean norm,
Frobenius norm, and operator norm, respectively. Let
‖x‖max = maxi |xi| and ‖x‖min = mini |xi|. I {A}
denotes the indicator function of the event A. bxc
denotes the largest integer less than or equal to x,
and dxe denotes the least integer larger than or equal
to x. Sp+ and Sp++ denote the sets of positive semi-
definite and positive definite matrices with the size
p × p, respectively. For functions f(n) and g(n), we
use f(n) . g(n) if f(n) ≤ cg(n), and f(n) & g(n) if
f(n) ≥ Cg(n), for some constants c, C ∈ (0,+∞).

2 Laplacian Constrained Gaussian
Graphical Models

In this section, we introduce the definition and
motivations of Laplacian constrained Gaussian
graphical models, and present favorable properties of
Laplacian constraints for estimating precision matrices
in the high-dimensional regime.

https://github.com/mirca/sparseGraph
https://github.com/mirca/sparseGraph
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The Laplacian constrained precision matrix is closely
related to the Laplacian constrained Gaussian Markov
random fields (Ying et al., 2020a). Define an undirected
graph G = (V, E ,W ), where V and E denote the set of
nodes and edges, respectively, and each element Wij

of W denotes the graph weight between nodes i and
j. Then the graph Laplacian L ∈ Rp×p is defined by
L = D −W , where D is the degree matrix. We say
a graph is connected if there is a path from any node
to any other node in the graph. It is well-known that
the rank of the Laplacian matrix for a connected graph
with p nodes is p − 1. Then the set of all Laplacian
matrices that correspond to connected graphs can be
formulated as

SL =
{

Ω ∈ Rp×p | Ωij = Ωji ≤ 0, ∀ i 6= j,∑
j

Ωij = 0, ∀ i ∈ [p], rank(Ω) = p− 1
}
.

(1)

In what follows, we present Laplacian constrained
Gaussian Markov random fields, and without loss of
generality we assume the random vector x has zero
mean.
Definition 1 (Ying et al. (2020a)). A zero-mean
random vector x = [x1, . . . , xp]

> ∈ V p−1 is called a
Laplacian-structured Gaussian Markov Random Fields
(L-GMRF) with parameters (0,Ω) with Ω ∈ SL, if and
only if its density function qL : V p−1 → R follows

qL(x) = (2π)−
p−1
2 det?(Ω)

1
2 exp

(
− 1

2
x>Ωx

)
, (2)

where det? denotes the pseudo determinant defined by
the product of nonzero eigenvalues Holbrook (2018),
and V p−1 := {x ∈ Rp|1>x = 0}.

Now the Gaussian maximum likelihood estimator of
the Laplacian constrained precision matrix can be
formulated as

Ωn
O := arg min

Ω∈SL
− log det? (Ω) + tr (ΩS) , (3)

where S = 1
n

∑n
i=1 xix

>
i is the sample covariance

matrix, and x1, . . . ,xn are i.i.d. samples drawn from
L-GMRF.
Theorem 1. The maximum likelihood estimator Ωn

O

defined in (3) exists and is unique almost surely as long
as the sample size n ≥ 1.

Note that the maximum likelihood estimator in the
general Gaussian graphical models does not exist if the
number of observations is smaller than the number of
variables, i.e., n < p. Therefore, the property presented
in Theorem 1 is useful in the high-dimensional regime
where the number of observations are usually less than
the number of nodes.

We finish the section with discussions on the
motivations of the Laplacian constrained Gaussian
graphical models. Unlike the general Gaussian
graphical models, the elements of the Laplacian
constrained precision matrix can quantify the expected
distance between random variables. More specifically,
due to the Laplacian constraints, we can rewrite the
probability density function in (2) as

qL(x) = (2π)−
p−1
2 det?(Θ)

1
2 exp

(
−1

2

∑
i 6=j

Wij (xi − xj)2
)
,

where Wij = −Θij ≥ 0. We can see that there will be
a relatively high probability that (xi − xj)2 is small if
the element Wij is large. Such property is desired in
modelling smooth graphs where a large graph weight
between two nodes represents a significant similarity
between their signal values. The Laplacian constrained
Gaussian graphical models have been widely explored
in graph signal processing (Dong et al., 2016) and
semi-supervised learning (Zhu et al., 2003), where the
underlying graphs are usually assumed smooth. Some
real-world datasets such as stock data fit the Laplacian
constrained Gaussian graphical models well (Cardoso
et al., 2020; Cardoso and Palomar, 2020).

3 Rate Optimality under Frobenius
Norm

In this section, we first propose an adaptive estimator
in Section 3.1, and establish the rate of convergence
which provides an upper bound for the minimax risk.
Then we establish a matching risk lower bound in
Section 3.2 by applying testing arguments through
the Le Cam-Assouad’s method over a constructed
sub-parameter space. The upper and lower bounds
together yield the optimal rate of convergence for sparse
Laplacian constrained precision matrix estimation. At
the meantime, we show that the proposed estimator
attains the optimal rate of convergence under the
Frobenius norm with an overwhelming probability.

3.1 Adaptive estimator and Minimax Upper
Bound

To establish the minimax upper bound, we first propose
a new method of Adaptive Laplacian constrained
Precision matrix Estimation (ALPE), and develop an
efficient algorithm to obtain the estimator. Then
we establish the rate of convergence of the proposed
estimator for estimating sparse Laplacian constrained
precision matrices under the Frobenius norm.
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3.1.1 Adaptive estimator

Sparsity plays an important role in high-dimensional
statistics, which helps avoid overfitting and improve
identification of the relationships among data. The `1-
norm is a popular regularizer to impose sparsity. The
`1-norm regularized maximum likelihood estimation
of the Laplacian constrained precision matrix can be
formulated as

min
Ω∈SL

− log det? (Ω) + tr (ΩS) + λ
∑
i>j

|Ωij |, (4)

where λ > 0 is the regularization parameter. Notice
that for any Ω ∈ SL, Ω is symmetric, and thus we need
only to impose the sparsity on the lower (or upper)
triangle part of Ω. It is well-known for graphical lasso
that a larger regularization parameter will lead to a
larger threshold, and the resultant solution will be
sparser, because the elements will be shrunk if its value
is less than the threshold. However, unlike graphical
lasso, the `1-norm is not effective in the optimization
problem (4) to get a sparse solution (Ying et al.,
2020a): empirical results show that the number of
nonzero elements grows as the regularization parameter
increases, and theoretical results prove that no zero
elements will appear in the solution if the regularization
parameter is large enough.

To impose the sparsity effectively, we propose to use the
adaptive weights to penalize the different coefficients
in the `1-norm penalty. Then we propose an adaptive
`1-norm regularized maximum likelihood estimation
method, which can be formulated as

Ω̂ := arg min
Ω
− log det? (Ω) + tr (ΩS)

+ λ
∑
i>j

|AijΩij |, subject to Ω ∈ SL,
(5)

where A contains the data-dependent weights.

Now we discuss how to define the weights in A. Let
Ω? be the underlying true precision matrix. If Ω?

ij is
small or zero, a big penalty is expected on Ωij in (5),
and thus Aij should be large; Otherwise, Aij should
be small. Therefore, we can define

Aij =
1(∣∣Ω̃ij∣∣+ ε

)q , for i > j, (6)

where q > 0, ε is a small positive constant, and Ω̃ is an
initial consistent estimator, for example we can use the
maximum likelihood estimator Ωn

O defined in (3). As
the sample size grows, Ω̃ij will converge to zero if the
underlying Ω?ij = 0, and the resultant Aij will become
large. Therefore, the proposed estimator Ω̂ can find out
the true supports of the underlying precision matrix if

the sample size is large enough, which is demonstrated
by numerical simulations in Section 4.

Note that we can also use other decreasing functions in
defining Aij . To improve the estimation performance,
we can recursively estimate Ω̂ through the optimization
(5), and use the current estimation as Ω̃ to update the
weights Aij . It is worth emphasizing that (5) is a convex
optimization problem, and thus it does not suffer from
the issue of multiple local minima, which is different
from the nonconvex estimation method in (Ying et al.,
2020a) with a concave penalty.

3.1.2 Algorithm

The estimation in (5) is a constrained optimization
problem that includes the Laplacian constraints Ω ∈
SL. According to (1), we can see that for any Ω ∈ SL,
Ω is symmetric, and the sum of each row or column is
zero. Therefore, there is a linear constraint between
diagonal and off-diagonal elements, and the degrees of
freedom of Ω are p(p− 1)/2 instead of p2. To handle
this linear constraint, we introduce a linear operator.

Definition 2 (Kumar et al. (2020)). The linear
operator L : Rp(p−1)/2 → Rp×p, x 7→ Lx, is defined by

[Lx]ij =


−xk i > j,

[Lx]ji i < j,

−
∑
j 6=i[Lx]ij i = j,

(7)

where k = i− j + j−1
2 (2p− j).

The operator L defines a linear mapping from a vector
x ∈ Rp(p−1)/2 to a matrix Lx ∈ Rp×p which satisfies∑
j [Lx]ij = 0 for any i ∈ [p], and [Lx]ij = [Lx]ji for

any i 6= j. A toy example is given for x ∈ R3 as follows,

Lx =

 ∑i=1,2 xi −x1 −x2

−x1

∑
i=1,3 xi −x3

−x2 −x3

∑
i=2,3 xi

 .
With the usage of the operator L, the proposed
estimator defined in (5) can be written as Ω̂ = Lŵ,
where ŵ is obtained by

ŵ = arg min
w
− log det(Lw + J) + tr (SLw)

+ λ
∑
i

aiwi, subject to w ≥ 0,
(8)

where J is a constant matrix with each element equal
to 1/p, and ai ≥ 0 for i ∈ [p(p− 1)/2].

Note that the term det? (Ω) in (5) can be written as
det(Lw + J) in (8), because there is only one nonzero
eigenvalue of the matrix J which is equal to 1, and its
eigenvector is orthogonal to the row and column spaces
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of Lw. There is a rank constraint rank(Ω) = p−1 in (5)
since Ω ∈ SL. We can see that this rank constraint is
removed in the formulation (8). The reason is as follows:
the rank constraint can be satisfied if (Lw+J) ∈ Sp++,
which can hold directly by the two facts. One fact is
that (Lw+J) is non-singular for any w in the feasible
set of (8); the other one is that Lw+J must be positive
semi-definite for any w ≥ 0, because Lw is a diagonally
dominant matrix.

The optimization (8) is convex, and the objective
function is smooth. Therefore, we can establish a
sequence by the projected gradient descent which
converges to the global minimum ŵ. More specifically,
in the (t+ 1)-th iteration, wt+1 is updated by

wt+1 = P+

(
wt − η

(
L∗
(
S −

(
Lwt + J

)−1
)

+ λa
))

,

where P+(a) = max(a,0), and L∗ is the adjoint
operator of L, L∗ : Rp×p → Rp(p−1)/2, defined by

[L∗Y ]k = Yi,i − Yi,j − Yj,i + Yj,j , (9)

where i, j ∈ [p] satisfying k = i−j+ j−1
2 (2p−j) and i >

j. The learning rate η can be chosen by backtracking
line search. In addition, it is interesting to extend the
proposed method to estimate other structured matrices
such as Hankel matrices using Hankel linear operator
(Cai et al., 2016a; Ying et al., 2018).

3.1.3 Minimax Upper Bound

In this section, we derive the minimax upper bound
under the Frobenius norm by establishing the rate of
convergence for the proposed estimator ALPE.

We define a parameter space F(dn,p,M) of the
Laplacian constrained precision matrices as

F(dn,p,M)=

Ω ∈ Rp×p|max
i

p∑
j=1

I {Ωij 6= 0} ≤ dn,p
1
M ≤ λ2(Ω) ≤ λmax(Ω) ≤M,Ω ∈ SL

,
where M is some universal constant, the sparsity
parameter dn,p is allowed to grow as n and p grow,
and λmax(Ω) and λ2(Ω) denote the maximum and
second smallest eigenvalues of Ω, respectively. The
underlying precision matrices considered in this paper
belong to F(dn,p,M). Note that any Ω ∈ F(dn,p,M)
denotes the Laplacian matrix of a connected graph
which consists of p nodes and has at most dn,p nonzero
edges for each node. For any given precision matrix
Ω ∈ F(dn,p,M), denote

S = {(i, j) | |Ωij | > 0 for i > j} (10)

as the support set of the nonzero elements in the lower
triangle matrix of Ω. Theorem 2 provides an upper
bound under the Frobenius norm over the parameter
space F(dn,p,M).

Theorem 2. Suppose x1, . . . ,xn are i.i.d. samples
drawn from a p-dimensional L-GMRF with the
parameters (0,Ω), and the sample size n is lower
bounded by

n ≥ max
(

8c−1
0 cd (‖AS‖max + ‖ASc‖min)

2
M2|S| log p,

8cd ‖ASc‖2min log p
)
,

where c0 = 1/
(
8
∥∥L∗(Lw? + J)−1

∥∥2

max

)
is a constant,

and cd ≥ (d + 2) ‖ASc‖−2
min with a constant d > 0.

Then the ALPE estimator Ω̂, defined in (5) with λ =√
c−1
0 cd log p/n, of the precision matrix Ω obeys

inf
Ω∈F(dn,p,M)

P
{

1

p

∥∥∥Ω̂−Ω
∥∥∥2

F
.
dn,p log p

n

}
≥ 1− p−d.

Note that d is a user-defined parameter and can be
arbitrarily large. A larger d yields a larger probability
with which the claims in Theorem 2 hold, but also
leads to a more stringent requirement on the number
of samples.

Remark 1. Theorem 2 presents the upper bound of
the convergence rate of the proposed ALPE estimator
under the squared Frobenius norm. By establishing
the minimax lower bound in Theorem 3, we show that
this rate of convergence cannot be improved by any
other estimators, and thus the ALPE estimator attains
the optimal rate of convergence.

3.2 Minimax Lower Bound

To obtain the optimal rate of convergence, a key
step is to establish the minimax lower bound, and
prove that the lower bound matches the upper bound
obtained in Theorem 2. In this section, we turn
to derive the minimax lower bound for estimating
sparse Laplacian constrained precision matrices over
the parameter space F(dn,p,M) under the Frobenius
norm. The derivation of the lower bound is based on
testing arguments through Le Cam-Assouad’s method,
and a careful construction of a subset of the parameter
space F(dn,p,M).

Theorem 3. Let x1, . . . ,xn be i.i.d. samples drawn
from p-dimensional L-GMRF with the parameters
(0,Ω). Assume that there exist universal constants
c > 0 and β > 1 such that p ≥ cnβ. The minimax
risk for estimating the precision matrix Ω over the
parameter space F(dn,p,M) with dn,p = o

(√
n

log p

)
based on the random samples {x1, . . . ,xn} satisfies

inf
Ω̂

sup
Ω∈F(dn,p,M)

E
1

p

∥∥∥Ω̂−Ω
∥∥∥2

F
&
dn,p log p

n
.
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Remark 2. The upper and lower bounds, established
in Theorem 2 and Theorem 3 respectively, match
with each other, and thus yield the optimal rate of
convergence. Although the optimal rate of convergence
for estimating unconstrained sparse precision matrices
has been obtained in (Cai et al., 2016b), it is still
motivated to establish the minimax rate of convergence
for estimating the Laplacian constrained precision
matrices, because their parameter spaces are disjoint
with each other. It is also interesting to explore the
minimax rate of convergence for the case of sparse
precision matrices under MTP2 constraint (Fallat et al.,
2017; Lauritzen et al., 2019b) in the future work.

The proof of Theorem 3 consists of three main steps.
We first construct a subset F∗ of the parameter space
F(dn,p,M) satisfying that the risk of estimation over
F∗ is essentially the same as that of estimation over
F(dn,p,M). Then we apply the Le Cam-Assouad’s
method (Cai and Zhou, 2012) to the constructed F∗.
Finally, we calculate one factor, and bound the total
variation affinity between two multivariate normal
mixtures. We outline the main procedures of the proof
as follows, and the detailed proofs of the technical
lemmas can be found in the full paper.

Proof of Theorem 3. The proof contains three steps.

Step 1: Constructing the sub-parameter set F∗. It is
usually difficult to derive the minimax lower bound over
the original parameter space F(dn,p,M). However, we
can restrict our attention to a subset of the parameter
space. Suppose F∗ is a sub-parameter set of F(dn,p,M),
i.e., F∗ ⊂ F(dn,p,M). Then one has

inf
Ω̂

sup
Ω∈F(dn,p,M)

∥∥∥Ω̂−Ω
∥∥∥

F
≥ inf

Ω̂
sup
Ω∈F∗

∥∥∥Ω̂−Ω
∥∥∥

F
.

(11)
It is worth mentioning that the construction of F∗
should be careful: on one hand, F∗ should be simple
such that we can apply general minimax lower bound
techniques such as Le Cam-Assouad’s method to this
set; on the other hand, F∗ cannot be too much
restrictive, otherwise the lower bound of F∗ will be
smaller than that of F(dn,p,M), and the resultant
bound cannot match the upper bound in Theorem 2.

Now we construct the sub-parameter set F∗. Let m =
bp2c, and B be the collection of all the vectors ξ ∈
{0, 1}p satisfying ξi = 0 for 1 ≤ i ≤ p−m, and ξi = 0
or 1 for p −m + 1 ≤ i ≤ p under the constraint that
‖ξ‖0 = k. We then collect m row vectors ξ1, . . . , ξm ∈
B as an m × p matrix,

(
ξ>1 , . . . , ξ

>
m

)
∈ Bm, with the

i-th row of the matrix equal to ξ>i for i ∈ [m].

We consider a subset Ξ ⊂ Bm, satisfying that each
column sum of the matrix in Ξ is less than or equal to

2k. Note that each ξ ∈ Ξ is an m× p matrix, and we
denote ξ =

(
ξ>1 , . . . , ξ

>
m

)
. For each ξ ∈ Ξ, we define

a p× p symmetric matrix Ri(ξi) with the i-th row of
Ri(ξi) equal to ξ>i , the i-th column equal to ξi, and
the rest of entries 0. Note that for each ξ ∈ Ξ, each
row or column sum of the matrix

∑m
i=1Ri(ξi) is less

than or equal to 2k.

Let Γ = {0, 1}m. Define

Θ = Γ⊗ Ξ, (12)

where for any θ ∈ Θ, one has θ = (γ, ξ) with γ =
(γ1, . . . , γm) ∈ Γ and ξ =

(
ξ>1 , . . . , ξ

>
m

)
∈ Ξ. Now we

associate each θ with a precision matrix Ω(θ) by

Ω(θ) = Lo + εn,pLb(θ), (13)

where Lo is a constant Laplacian matrix without
respect to θ defined by

Lo =


1 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 1

 . (14)

Lb(θ) is a Laplacian matrix defined by Lb(θ) = Db(θ)−
Wb(θ), where Db(θ) is the degree matrix, and Wb(θ)
is the adjacency matrix constructed by

Wb(θ) =

m∑
i=1

γiRi(ξi), θ = (γ, ξ) ∈ Θ. (15)

We define the sub-parameter space F∗ by

F∗ =
{

Ω(θ)|Ω(θ) = Lo + εn,pLb(θ), θ = (γ, ξ) ∈ Θ,

Lb(θ) = Db(θ)−Wb(θ),Wb(θ) =

m∑
i=1

γiRi(ξi)
}
,

where εn,p = cε

√
log p
n , where cε ∈ (0, β−1

8β ) is a
constant. Finally we specify the value of k to ensure
F∗ ⊂ F(dn,p,M). We set k = ddn,p−3

2 e to make sure
the maximum degree of the graph is less than or equal
to dn,p.

The insight into the construction of F∗ is the
combination of the line graph and bipartite graph,
which correspond to Lo and Lb(θ) in (13), respectively.
Notice that the original parameter space F(dn,p,M) is
the collection of the precision matrices of the connected
graphs that consist of p nodes and have at most dn,p
nonzero edges for each node. To guarantee F∗ ⊂
F(dn,p,M), each Ω(θ) ∈ F∗ should also correspond
to a connected graph. In the meantime, the risk of
estimation over F∗ is required to be essentially the
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same as that of estimation over F(dn,p,M). To make
the construction to satisfy the two requirements, we
restrict our attention to the connected graphs that can
be divided into two sub-graphs: one is a constant line
graph that ensures the constructed graph is connected,
and the other one is a bipartite graph characterized by
Θ which can make the lower bound sharp.

Step 2: Applying the Le Cam-Assound’s method to
F∗. Let x1, . . . ,xn be i.i.d. samples drawn from L-
GMRF with the parameters (0,Ω(θ)) with θ ∈ Θ, and
denote the joint distribution by Pθ. Applying the Le
Cam-Assouad’s method (Cai and Zhou, 2012) to the
parameter space Θ, we have

inf
Ω̂

max
θ∈Θ

22Eθ
∥∥∥Ω̂−Ω(θ)

∥∥∥2

F
≥ mα

2
min

1≤i≤m

∥∥P̄0,i ∧ P̄1,i

∥∥ ,
where the factor α is defined by

α := min
{(θ,θ′):H(γ(θ),γ(θ′))≥1}

‖Ω(θ)−Ω(θ′)‖2F
H(γ(θ), γ(θ′))

, (16)

in which H (γ(θ), γ(θ′)) =
∑m
i=1 |γ(θi)− γ(θ′i)|. P̄0,i

and P̄1,i are the mixture distributions defined by

P̄a,i =
1

2m−1DΞ

∑
θ

{Pθ : γi(θ) = a} , (17)

where DΞ is the cardinality of Ξ, a ∈ {0, 1} and i ∈ [m].
We can see that P̄a,i is the mixture distribution over all
Pθ with γi(θ) fixed to be a while all other components
of θ vary over all possible values.

Step 3: Bounding the per comparison loss α defined
in (16) and the affinity min1≤i≤m

∥∥P̄0,i ∧ P̄1,i

∥∥. The
bounds for the two terms are provided in the next two
lemmas.

Lemma 1. For α defined in (16), one has

α ≥ kε2n,p. (18)

The key technical difficulty is in bounding the affinity
between the Gaussian mixtures.

Lemma 2. Let x1, . . . ,xn be i.i.d. samples drawn from
L-GMRF with the parameters (0,Ω(θ)) with θ ∈ Θ.
Then there exists a constant c > 0 such that

min
1≤i≤m

∥∥P̄0,i ∧ P̄1,i

∥∥ ≥ c. (19)

Finally, Together with (11), Lemma 1 and Lemma
2, the minimax lower bound for estimating precision
matrices over F(dn,p,M) can be obtained by

inf
Ω̂

sup
Ω∈F(dn,p,M)

E
∥∥∥Ω̂−Ω

∥∥∥2

F
≥ inf

Ω̂
sup

Ω(θ)∈F∗
Eθ
∥∥∥Ω̂−Ω(θ)

∥∥∥2

F

&
dn,pp log p

n
,

completing the proof.

4 Numerical Experiments

In this section, we conduct numerical simulations to
compare the estimation performance of the estimators
including GLE-ADMM (Zhao et al., 2019), NGL-MCP
(Ying et al., 2020a), NGL-SCAD (Ying et al., 2020a),
and the proposed ALPE. The GLE-ADMM estimates
the Laplacian constrained precision matrices by solving
the `1-norm regularized maximum likelihood estimation
using alternating direction method of multipliers
(ADMM) method, while NGL-MCP and NGL-SCAD use
the nonconvex penalties MCP and SCAD instead, and
solve the optimization problem via the majorization-
minimization method.

We randomly generate the Barabasi-Albert graphs of
degree one, also known as tree graphs, and Barabasi-
Albert graphs of degree two (Albert and Barabási,
2002) as the underlying ground-truth graphs. The
number of nodes p is equal to 100 in the generated
graphs, and the graph weights associated with edges
are uniformly sampled from U(2, 5). The underlying
Laplacian constrained precision matrix in the L-GMRF
model can be obtained by Ω = D −W , where D
and W are the degree matrix and adjacency matrix of
the generated graph, respectively. Then the samples
x1, . . . ,xn are independently drawn from L-GMRF
with the parameters (0,Ω), and the sample covariance
matrix can be computed by S = 1

n

∑n
i=1 xix

>
i .

(a) (b)

Figure 1: Illustration of the generated graphs: (a) Barabasi-
Albert graphs of degree one, and (b) Barabasi-Albert graphs
of degree two.

To compare the performance of each estimator, we
compute the relative error (RE) and F-score (FS) which
are defined as

RE =

∥∥∥Ω̂−Ω
∥∥∥

F

‖Ω‖F
, and FS =

2tp

2tp + fp + fn
, (20)

where Ω̂ and Ω are the estimated and true Laplacian
constrained precision matrices, respectively. In the
definition of F-score, the tp denotes true positive (i.e.,
the case that there is an actual edge and the algorithm
detects it), fp denotes false positive (i.e., the case that
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Figure 2: Performance comparisons under (a) Relative error, (b) F-score with different sample size ratios n/p in learning
Barabasi-Albert graphs of degree one with 100 nodes.
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Figure 3: Performance comparisons under (a) Relative error, (b) F-score with different sample size ratios n/p in learning
Barabasi-Albert graphs of degree two with 100 nodes.

there is no actual edge but algorithm detects one),
and fn denotes false negative (i.e., the case that the
algorithm failed to detect an actual edge). The F-
score takes values in [0, 1], and 1 indicates that all the
connections and disconnections between nodes in the
underlying ground-truth graphs are correctly identified.
We define the true positive rate (TPR) and false positive
rate (FPR) as

TPR =
tp

tp + fn
, and FPR =

fp

fp + tn
.

The curves in Figures 2, 3 and 4 are the results of an
average of 50 Monte Carlo realizations and the shaded
areas represent the one-standard deviation confidence
interval. The regularization parameter λ is fine-tuned
for each method.

Figure 2(a) shows that the relative errors of all the
estimators decrease as the sample size ratio n/p

increases, and the proposed ALPE can always achieve a
lower estimation error than the compared GLE-ADMM,
NGL-MCP and NGL-SCAD under different sample
size ratio. Figure 2(b) shows that the NGL-MCP,
NGL-SCAD and ALPE achieve the F-score of 1, and thus
can identify all the graph edges correctly, if the sample
size is large enough. Moreover, the ALPE requires
less samples than NGL-MCP and NGL-SCAD to obtain
perfect graph structures.

It is observed in Figure 2(b) that the GLE-ADMM
with the `1-norm cannot recover the edges correctly
even given a large number of observations, implying
that the GLE-ADMM is not subset selection consistent.
Therefore, for convex formulations, we should use
adaptive `1-norm rather than `1-norm to identify the
graph structures. Similar conclusions can also be made
through Figure 3 in learning Barabasi-Albert graphs
of degree two.
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Figure 4: ROC curves for different methods in learning
Barabasi-Albert graphs of degree two with 100 nodes and
800 observations. To generate the ROC curves, we set a
range of regularization parameters from 0 to 1 for each
method.

Figure 4 illustrates the receiver operating characteristic
(ROC) curves of different methods in learning Barabasi-
Albert graphs of degree two. The ROC curves can
evaluate the support recovery performance of the
underlying precision matrices. Figure 4 shows that
our proposed estimator ALPE can achieve higher true
positive rates than all other state-of-the-art methods
while keeping low false positive rates, and thus can
achieve a better performance in support selection.

5 Conclusions

In this paper, we have proved that the Gaussian
maximum likelihood estimator of precision matrices
under Laplacian constraints exists and is unique almost
surely as long as there is one observation. We have
established the optimal rate of convergence under the
Frobenius norm for estimating the sparse Laplacian
constrained precision matrices. We have obtained
the minimax lower bound through the application of
Le Cam-Assouad’s method to a carefully constructed
sub-parameter space. We have proposed an adaptive
estimator ALPE, and have proved that ALPE attains
the optimal rate of convergence with an overwhelming
probability. Numerical simulations have shown that for
convex formulations, we should use adaptive `1-norm
rather than `1-norm for support selection.
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