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A Further Intuition

To motivate this additional “+1” in the KO+ scheme, we consider the FDP for the KO+ pipeline with threshold
t̂+ defined in (11):

FDP(t̂+) =
#
�
(i, j) : (i, j) /2 E ,cWij � t̂+

 

#{(i, j) : cWij � t̂+} _ 1

 #{(i, j) : (i, j) /2 E ,cWij � t̂+}
1 + #{(i, j) : (i, j) /2 E ,cWij  �t̂+}

· 1 + #{(i, j) : cWij  �t̂+}
#{(i, j) : cWij � t̂+} _ 1

 #{(i, j) : (i, j) /2 E ,cWij � t̂+}
1 + #{(i, j) : (i, j) /2 E ,cWij  �t̂+}

· q .

The first inequality follows from

#{(i, j) : (i, j) /2 E ,cWij � t̂+}  #{(i, j) : cWij � t̂+} ,

and the second inequality follows from the definition of t̂+. Using martingale theory, we prove in Appendix B
that

E
"

#{(i, j) : (i, j) /2 E 0,cWij � t̂+}
1 + #{(i, j) : (i, j) /2 E 0,cWij  �t̂+}

#
 1 .

B Proofs

The agenda of this section is to establish proofs for Theorems 3.1 and 3.2. For this, we define the notion of
swapping and study the matrix-valued test statistic cW 2 Rp⇥p. We write cW as cW (R,R�) to emphasize that cW
is a function of R and R�.

The basis for the proofs is the idea of swapping.

Definition B.1 (Swapping). Given an edge set S ⇢ V ⇥ V and a matrix M 2 Rp⇥p, we define the substitution
operator SubS,M : Rp⇥p ! Rp⇥p as

A 7! SubS,M (A) :=

(
Mij if (i, j) 2 S
Aij if (i, j) /2 S .

We then define the corresponding swapped test matrix as

cWS := cW
�
SubS,R�(R), SubS,R(R

�)
�
.

Given an edge set S and a matrix M , the operator SubS,M (A) substitutes the elements of A that have indexes

in S by the corresponding elements of M . Hence, as compared to the original test matrix cW , the new test
matrix cWS ⌘ cWS(R,R�) has the entries of R and R� that have indexes in S swapped. We will see that the

elements of cW and cWS that correspond to a zero-valued edge have the same distribution, while the distributions
of other elements can di↵er. This gives us leverage for assessing the number of zero-valued edges in a given set S.

The swapped test statistics still has an explicit formulation. By definition of the original test matrix in (9), we
find

(cWS)ij =

8
><

>:

( bT �
ij _ bTij) · sign( bT �

ij � bTij) if (i, j) 2 S
( bTij _ bT �

ij ) · sign( bTij � bT �
ij ) if i 6= j and (i, j) /2 S

0 if i = j .

(12)

This means that cWS is an “antisymmetric” version of cW :
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Lemma B.1 (Antisymmetry). For every edge set S ⇢ {(k, l) 2 V ⇥ V : k 6= l}, it holds that

(cWS)ij = cWij ·
(
+1 (i, j) /2 S
�1 (i, j) 2 S .

Hence, swapping two entries Rij , R�
ij e↵ects in switching signs in cWij .

Proof of Lemma B.1. This follows directly from comparing Displays (9) and (12).

Now, we show that the coordinates of cW and cWS that correspond to a zero-valued edge are equal in distribution.

Lemma B.2 (Exchangeability). For every zero-valued edge (i, j) 2 {(k, l) 2 V ⇥ V : k 6= l,⌃�1
kl = 0, xk ? xl}, it

holds that
(cWS)ij =d

cWij ,

where S ⇢ {(k, l) 2 V ⇥ V : k 6= l} is an arbitrary set of edges and =d means equality in distribution.

Proof of Lemma B.2. Our construction of the knock-o↵s in (4) ensures that the sample partial correlation of a
zero-valued edge (i, j) and the corresponding knock-o↵ version have the same distribution: R�

ij =d Rij . This
equality in distribution remains true under elementwise thresholding, so that also the corresponding elements of
bT and bT � in (7) and (8), respectively, are equal in distribution: bTij =d

bT �
ij . This implies that sign( bTij � bT �

ij ) =d

sign( bT �
ij � bTij) (and bTij _ bT �

ij = bT �
ij _ bTij anyway). Hence, in view of the definitions of the test statistics cW and

cWS in (9) and (12), respectively, we find (cWS)ij =d
cWij , as desired.

We are now ready to discuss the signs of cWij . The below result will be used in the proofs of Theorems 3.1
and 3.2.

Lemma B.3 (Sign-Flip). For every zero-valued edge (i, j) 2 {(k, l) 2 V ⇥ V : k 6= l,⌃�1
kl = 0, xk ? xl}, it holds

that
cWij =d �cWij .

This lemma justifies our previous statement that

#
n
(i, j) : (i, j) /2 E 0,cWij  �t

o
=d #

n
(i, j) : (i, j) /2 E 0,cWij � t

o
.

Proof of Lemma B.3. Define S as the set that only contains the zero-valued edge in question: S := {(i, j)}.
Lemma B.1 then yields �cWS

�
ij
= cWij · (�1) ,

while Lemma B.2 yields
(cWS)ij =d

cWij .

Combining these two identities concludes the proof.

We now prove Theorems 3.1 and 3.2. For this, we start with two sequential hypothesis testing procedures,
together with the theoretical results for FDR control. Then, we relate these two procedures to KO and KO+ to
prove Theorems 3.1 and 3.2.

We first introduce the two selective sequential hypothesis testing procedures. Consider a sequence of null hy-
potheses H1, . . . ,HN and corresponding “p-values” p1, . . . , pN . The values p1, . . . , pN are not necessarily p-values
in a traditional sense, but we will still refer them like that, because they play the same role as p-values here; in
particular, they will need to stochastically dominate a standard uniform random variable, that is, Pr(pl  u)  u
for any u 2 [0, 1], which is a typical assumption on traditional p-values—see (Ferreira and Zwinderman, 2006,
Page 1828).
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We say that a p-value pl is a null p-value if the null hypothesis Hl is true, and we say pl is a non-null p-value if
Hl is false with l 2 {1, . . . , N}.

Selective Sequential Hypothesis Testing I: For the threshold value 1/2 and any subset K ⇢ {1, . . . , N}, define

k̂ := max

(
k 2 K :

#
�
l 2 {1, . . . , k} : pl > 1/2

 

#
�
l 2 {1, . . . , k} : pl  1/2

 
_1

 q

)
. (13)

Set k̂ := 0 if the above set is empty. We reject Hk for all k  k̂ with pk  1/2. We will see that this procedure
achieves the approximate FDR control. Moreover, the KO scheme can be framed as this procedure.

Selective Sequential Hypothesis Testing II: For the threshold value 1/2 and any subset K ⇢ {1, 2, . . . , N}, define

k̂+ := max

(
k 2 K :

1 + #
�
l 2 {1, . . . , k} : pl > 1/2

 

#
�
l 2 {1, . . . , k} : pl  1/2

 
_ 1

 q

)
. (14)

Set k̂+ := 0 if the corresponding set is empty. We reject Hk for all k  k̂+ with pk  1/2. We will also see that
this procedure achieves the exact FDR control. Moreover, the KO+ scheme can be cast as this procedure.

Our next result guarantees FDR control over the Selective Sequential Hypothesis Testing I and II.

Lemma B.4 (FDR Control Over the Hypothesis Testing I and II). Consider the two selective sequential proce-
dures described above, and suppose that the null p-values are i.i.d., satisfy Pr(pl  u)  u for any u 2 [0, 1], and
are independent from the non-null p-values. Let V, V+ be the numbers of false discoveries of the two procedures,
that is,

V :=#
�
l 2 {1, . . . , k̂} : pl is null and pl  1/2

 

V+ :=#
�
l 2 {1, . . . , k̂+} : pl is null and pl  1/2

 
,

and R,R+ be the total number of discoveries of the two procedures, that is,

R :=#
�
l 2 {1, . . . , k̂} : pl  1/2

 

R+ :=#
�
l 2 {1, . . . , k̂+} : pl  1/2

 
.

Define R := V := 0 if k̂ = 0, and define R+ := V+ := 0 if k̂+ = 0. Then, it holds that

E


V

R+ q�1

�
 q and E


V+

R+ _ 1

�
 q .

This lemma ensures that the Selective Sequential Hypothesis Testing I controls a quantity close to the FDR
and that the Selective Sequential Hypothesis Testing II achieves exact FDR control. These guarantees will be
transferred to the KO and KO+ schemes later by showing that these schemes can be formulated as Selective
Sequential Hypothesis Testing I and II also.

Proof of Lemma B.4. We start with the Selective Sequential Hypothesis Testing I. The number of total discov-
eries is always at least as large as the number of false discoveries: R � V . Hence, R = 0 implies V = 0, and then
it’s easy to see that the desired inequalities hold (and are actually equalities). We can thus assume without loss
of generality that R > 0 in the following.

Using the definition of V as the number of false discoveries, the definition of R as the total number of discoveries,
and expanding the fraction, we find

E


V

R+ q�1

�

=E
"
#
�
l 2 {1, . . . , k̂} : pl is null and pl  1/2

 

1 + #
�
1  l  k̂ : pl is null and pl > 1/2

 

·
1 + #

�
l 2 {1, . . . , k̂} : pl is null and pl > 1/2

 

R+ q�1

#
.
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The number of falsly rejected hypothesis is at most as large as the total number of rejected hypotheses

#
�
l 2 {1, . . . , k̂} : pl is null and pl > 1/2}  #

�
l 2 {1, . . . , k̂} : pl > 1/2

 
.

Moreover, since R > 0, the definition of k̂ yields that

#
�
l 2 {1, . . . , k̂} : pl > 1/2

 
 q ·R .

Combining these two results gives

#
�
l 2 {1, . . . , k̂} : pl is null and pl > 1/2

 
 q ·R .

Plugging this into the previous display and some rearranging provides us with

E


V

R+ q�1

�
 E

"
#
�
l 2 {1, . . . , k̂} : pl is null and pl  1/2

 

1 + #
�
l 2 {1, . . . , k̂} : pl is null and pl > 1/2

 

#
· 1 + q ·R
R+ q�1

= E
"

#
�
l 2 {1, . . . , k̂} : pl is null and pl  1/2

 

1 + #
�
l 2 {1, . . . , k̂} : pl is null and pl > 1/2

 

#
· q .

Inequality (A.1) of Lemma 1 (martingale process) in the supplement to Barber and Candès (2015) gives (set
c = 1/2)

E
"

#
�
l 2 {1, . . . , k̂} : pl is null and pl  1/2

 

1 + #
�
l 2 {1, . . . , k̂} : pl is null and pl > 1/2

 

#
 1 .

(Here, we have used the assumptions on the p-values.) Combining this with the previous display gives

E


V

R+ q�1

�
 q ,

as desired.

We now prove the FDR control over Selective Sequential Hypothesis Testing II. By definitions of the total
discoveries V+ and false discoveries R+, it holds that V+ = R+ = 0 when k̂+ = 0. We then find that

E


V+

R+ _ 1
· 1l(0 = k̂+)

�
= 0 ,

which implies

E


V+

R+ _ 1

�
= E


V+

R+ _ 1
· 1l(0 < k̂+)

�
.

Using the definitions of V+ and R+, and expanding the fraction gives

E


V+

R+ _ 1

�

=E
"

#
�
l 2 {1, . . . , k̂+} : pl is null and pl  1/2

 

1 + #
�
l 2 {1, . . . , k̂+} : pl is null and pl > 1/2

 

⇥
1 + #

�
l 2 {1, . . . , k̂+} : pl is null and pl > 1/2

 

#
�
l 2 {1, . . . , k̂+} : pl  1/2

 
_ 1

· 1l(0 < k̂+)

#
.

The number of falsly rejected hypothesis is at most as large as the total number of rejected hypotheses

#
�
l 2 {1, . . . , k̂+} : pl is null and pl > 1/2

 
 #

�
l 2 {1, . . . , k̂+} : pl > 1/2

 
.



Lu Yu, Tobias Kaufmann, Johannes Lederer

Moreover, by definition of k̂+, it holds for 0 < k̂+ that

1 + #
�
l 2 {1, . . . , k̂+} : pl > 1/2

 

#
�
l 2 {1, . . . , k̂+} : pl  1/2

 
_ 1

 q .

Combining these two results gives

1 + #
�
l 2 {1, . . . , k̂+} : pl is null and pl > 1/2

 

#
�
l 2 {1, . . . , k̂+} : pl  1/2

 
_ 1

 q .

Plugging this into previous display and some rearranging yields

E


V+

R+ _ 1

�
 E

"
#
�
l 2 {1, . . . , k̂+} : pl is null and pl  1/2

 

1 + #
�
l 2 {1, . . . , k̂+} : pl is null and pl > 1/2

 

#
· q .

Invoking Inequality of Lemma 1 (martingale process) in the supplement to Barber and Candès (2015) again (set
c = 1/2), we find

E
"

#
�
l 2 {1, . . . , k̂+} : pl is null and pl  1/2

 

1 + #
�
l 2 {1, . . . , k̂+} : pl is null and pl > 1/2

 

#
 1 .

Combining this with the previous display gives

E


V+

R+ _ 1

�
 q

as desired.

We now show that the KO procedure is equivalent to the Selective Sequential Hypothesis Testing I, and KO+
procedure can be framed as the Selective Sequential Hypothesis Testing II. Then, the desired FDR control over
KO and KO+ schemes follows directly from Lemma B.4.

Proof of Theorem 3.1 and Theorem 3.2. The proof has two steps: First, we arrange the elements of the matrix-
valued statistics cW in decreasing absolute value and define “p-values” for each null hypothesis H(i,j) : ⌃

�1
ij = 0

based on the corresponding cWij . Second, we connect Selective Sequential Hypothesis Testing I and the KO
scheme as well as Selective Sequential Hypothesis Testing II and the KO+ scheme and then apply Lemma B.4.

Define a set of index pairs by cW :=
n
cWij : (i, j) 2 V ⇥ V,cWij 6= 0

o
and denote the cardinality of this set

by n := card(cW ). Refer to the elements in cW by cW 1, . . . ,cWn in a non-increasing order (all elements are

non-zero by definition of cW ):
|cW 1| � · · · � |cWn | > 0 .

Define the set of indices K :=
n
k 2 {1, . . . , n � 1

 
: |cW k| > |cW k+1|

oS
{n }. We notice that K is the index set

of unique non-zero values attained by |cW l|, l 2 {1, . . . , n }.

Define corresponding p-values pl, where l 2 {1, . . . , n }, based on the test statistic cW l:

pl :=

(
1
2

cW l > 0

1 cW l < 0 .

By Lemma B.3 (sign-flip), cWij is positive and negative equally likely for all zero-valued edges (i, j) 2 {(k, l) 2
V ⇥ V : k 6= l,⌃�1

kl = 0}, that is,

Pr
⇣
cWij > 0

⌘
= Pr

⇣
cWij < 0

⌘
=

1

2
.
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Combining this with the definition of the p-value pl, it holds that for any null p-value pl that

Pr

✓
pl =

1

2

◆
= Pr(pl = 1) =

1

2
,

which implies Pr(pl  u)  u for all u 2 [0, 1]. By Lemma B.3, we find the null p-values are i.i.d., satisfy
Pr(pl  u)  u for any u 2 [0, 1], and are independent from the non-null p-values. By definition of the p-value pl,
it holds for any k 2 K that

#
�
l 2 {1, . . . , k} : pl > 1/2

 
= #

n
l 2 {1, . . . , k} : cW l < 0

o
.

Due to the assumed ordering |cW 1| � · · · � |cWn | > 0, we have

�|cW 1|  · · ·  �|cWn | < 0 .

So, it holds for any cW l < 0 that

�|cW 1|  · · ·  �|cW l�1|  cW l  �|cW l+1|  · · ·  �|cWn | ,

which implies

#
n
l 2 {1, . . . , k} : cW l < 0

o
= #

n
l 2 {1, . . . , n } : cW l  �|cW k|

o
.

Combining this with the previous display yields

#
�
l 2 {1, . . . , k} : pl > 1/2

 
= #

n
l 2 {1, . . . , n } : cW l  �|cW k|

o
. (15)

By the same arguments, we obtain

#
�
l 2 {1, . . . , k} : pl  1/2

 
= #

n
l 2 {1, . . . , n } : cW l � |cW k|

o
. (16)

Plugging these two displays together, we find

#
�
l 2 {1, . . . , k} : pl > 1/2

 

#
�
l 2 {1, . . . , k} : pl  1/2

 
_ 1

=
#
n
l 2 {1, . . . , n } : cW l  �|cW k|

o

#
n
l 2 {1, . . . , n } : cW l � |cW k|

o
_ 1

.

Finding the largest k 2 K such that the ratio on the left-hand side is below q is—in view of the non-increasing
ordering of the |cW k|’s—equivalent to finding the smallest |cW k| over k 2 K such that the right-hand side is below
q. By definition of the threshold value k̂ of Selective Sequential Hypothesis Testing I in Display (13), this means
that

k̂ = max

(
k 2 K :

#
�
l 2 {1, . . . , n } : cW l  �|cW k|

 

#
�
l 2 {1, . . . , n } : cW l � |cW k|

 
_ 1

 q

)
.

Comparing to the definition of the KO threshold in Display (10), we find that cW k̂ is equal to t̂. This equality
implies that the KO scheme is equivalent to the Selective Sequential Hypothesis Testing I, which gives us the
desired FDR control.

Plugging (15) and (16) together, it also holds for k 2 K that

1 + #
�
l 2 {1, . . . , k} : pl > 1/2

 

#
�
l 2 {1, . . . , k} : pl  1/2

 
_ 1

=
1 +#

n
l 2 {1, . . . , n } : cW l  �|cW k|

o

#
n
l 2 {1, . . . , n } : cW l � |cW k|

o
_ 1

.

By the definition of the threshold value k̂+ of the Selective Sequential Hypothesis Testing II in Display (14), this
means that

k̂+ = max

(
k 2 K :

1 + #
�
l 2 {1, . . . , n } : cW l  �|cW k|

 

#
�
l 2 {1, . . . , n } : cW l � |cW k|

 
_ 1

 q

)
.
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Comparing to the definition of the KO+ threshold in Display (11), we find that cW k̂+ is equal to t̂+. This equality
implies that the KO scheme is equivalent to the Selective Sequential Hypothesis Testing II. The desired FDR
control of KO+ scheme follows from Lemma B.4.
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