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Abstract

The increasing availability of data has gen-
erated unprecedented prospects for network
analyses in many biological fields, such as
neuroscience (e.g., brain networks), genomics
(e.g., gene-gene interaction networks), and
ecology (e.g., species interaction networks).
A powerful statistical framework for estimat-
ing such networks is Gaussian graphical mod-
els, but standard estimators for the corre-
sponding graphs are prone to large numbers
of false discoveries. In this paper, we in-
troduce a novel graph estimator based on
knockoffs that imitate the partial correlation
structures of unconnected nodes. We then
show that this new estimator provides accu-
rate control of the false discovery rate and
yet large power.

1 Introduction

Biological processes can often be formulated as net-
works; examples include gene-gene regulation net-
works (Emmert-Streib et al., 2014; Hecker et al., 2009),
functional brain networks (Bullmore and Sporns,
2009), and microbiome networks (Kurtz et al., 2015).
A common statistical framework for such networks are
Gaussian graphical models (Lauritzen, 1996). (Undi-
rected) Gaussian graphical models describe the bio-
logical data as i.i.d. observations of a random vec-
tor x := (x1, . . . , xp)> that follows a multivariate nor-
mal distribution Np(0p,Σ), where Σ ∈ Rp×p is a sym-
metric, positive definite matrix. The graph G := (V, E)
with node set V := {1, . . . , p} and edge set E :=
{(i, j) ∈ V × V : i 6= j, Σ−1ij := (Σ−1)ij 6= 0} then cap-
tures which pairs of the sample vector’s coordinates
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are dependent conditionally on all other coordinates:
xi is conditionally independent of xj given all other
coordinates of x if and only if (i, j) ∈ E . For example,
in modeling functional brain networks based on func-
tional Magnetic Resonance Imaging (fMRI), p is the
number of brain regions under consideration, xi is the
activity in the ith region, and the edge set E denotes
the directly connected pairs of regions.

A number of estimators for the edge set E are known.
Besides simplistic correlational approaches, popular
estimators are neighborhood selection (Meinshausen
and Bühlmann, 2006), which combines node-wise
lasso estimates, and graphical lasso (Friedman et al.,
2008; Yuan and Lin, 2007), which maximizes an `1-
penalized log-likelihood. These two estimators have
been equipped with sharp prediction and estimation
guarantees even for high-dimensional settings, where
the number of samples is not much larger than the
number of nodes p (Ravikumar et al., 2011; Rothman
et al., 2008; Zhuang and Lederer, 2018). In contrast
to such prediction and estimation results, what is less
well understood for high-dimensional Gaussian graph-
ical models is inference.

Our objective is inference in terms of control over
the false discovery rate (FDR), which is the expected
proportion of falsely selected edges over all selected
edges. Such control can make network estimation
more reliable, which is particularly useful in biology as
many biological networks seem to be hard to unravel—
see (Zhang et al., 2018) for corresponding comments
regarding brain imaging, for example. Formally, the
FDR is defined as

FDR := E[FDP] , (1)

where

FDP :=
#
{

(i, j) : (i, j) /∈ E and (i, j) ∈ Ê
}

#
{

(i, j) : (i, j) ∈ Ê
}
∨ 1

(2)

is the false discovery proportion for an estimator that
returns the edge set Ê ⊂ V×V, and a∨b := max{a, b}.
We say that an estimator controls the FDR at level q if
FDR ≤ q. In the language of hypothesis testing, FDR
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control is the adjustment to multiple testing for the
hypotheses H(i,j) : Σ−1ij = 0 for i 6= j.

We establish an estimator based on knock-offs. In
a regression-type setting, knock-offs are “fake predic-
tors” that allow one to approximately count the num-
ber of falsely included variables (Barber and Candès,
2015; Candès et al., 2018; Dai and Barber, 2016). The
knock-offs are supposed to maintain the original fea-
tures’ correlation structure but to be only weakly cor-
related with the original features. Since the relevant
predictors tend to have stronger association with the
response than their knock-off counterparts, the num-
ber of falsely included variables can be approximated
by comparing the estimated signals of the original pre-
dictors and their knock-off counterparts. In a graph-
ical model setting, we introduce knock-offs as “fake
edges.” Rather than maintaining correlation struc-
tures among the original nodes, they mimic partial cor-
relations between separate, conditionally independent
pairs of nodes. We then compare the signals of the
sample partial correlations and their knock-off coun-
terparts.

Our contributions can be summarized as follows.

1. We introduce a method for FDR control in graphi-
cal modeling, where inferential methods have been
scarce: we compare the existing popular graph es-
timation methods and show their limitations on
the FDR control.

2. We further support our method both mathemat-
ically and numerically: we establish theoretical
guarantee for both approximate and exact FDR
control in Theorems 3.1 and 3.2; and in Sec-
tion 3.3, we demonstrate the proposed method
achieves the FDR control and yields higher power
than other popular graph estimation methods.

3. We apply the proposed method to three biological
network data sets, and show in Section 4 that our
method provides new insights into biological data.

We provide a free implementation that can be ap-
plied to networks within and beyond the exempli-
fied domains on https://github.com/LedererLab/

GGM-FDR.

Related literature Drton and Perlman (2004) pro-
vides conservative simultaneous confidence intervals
for the elements of the precision matrix Σ−1 in Gaus-
sian graphical models. van der Laan et al. (2004) stud-
ies the tail probability of the proportion of false pos-
itives via the family-wise error rate to obtain asymp-
totic FDR control in n → ∞. Drton and Perlman
(2007) uses van der Laan et al. (2004)’s approach in a

multiple testing framework about conditional indepen-
dence to obtain asymptotic FDR control in n → ∞.
Liu (2013) uses a multiple testing framework about
conditional independence to obtain asymptotic FDR
control in n, p→∞. Jankova and van de Geer (2015)
establishes element-wise confidence intervals for Σ−1.

Outline of the paper The rest of this paper is or-
ganized as follows. In Section 2, we demonstrate that
new methodology is indeed needed for FDR control in
Gaussian graphical models. In Section 3, we introduce
our approach and prove its effectiveness both mathe-
matically and numerically. In Section 4, we apply our
pipeline to three biological network data sets. In Sec-
tion 5, we conclude with a discussion. All the proofs
are deferred to the supplement.

2 Motivation
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Figure 1: FDR and power for GLASSO, MB(and),
MB(or), CT, and PT as functions of the tuning pa-
rameters. None of the five methods provides a tuning
parameter that leads to both small FDR and large
power, and in any case, it is not clear how to calibrate
the tuning parameters accordingly in practice.

We now illustrate numerically why standard meth-
ods for estimating Gaussian graphical models do
not provide satisfactory FDR control for edge selec-
tion. Five methods are considered: graphical lasso
(GLASSO), neighborhood selection with the “and-
rule” (MB(and)) and the “or-rule” (MB(or)), thresh-
olding the correlation matrix (CT), and thresholding
the partial correlation matrix (PT). The number of
nodes is set to p = 400. The huge package in R (Zhao
et al., 2012) is used to generate a covariance matrix Σ
that commensurates with an undirected band graph
model; in fMRI studies, for example, band graphs re-
flect that connectivities are expected to decrease with
increasing spatial distance between the regions (Bu
and Lederer, 2017). The condition number of the co-
variance matrix Σ is set to 200, and the sparsity level is
set to 1/25; these settings yield graphs that are diverse

https://github.com/LedererLab/GGM-FDR
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and moderately dense. Finally, 20 independent data
sets with each one consisting of n = 800 independent
samples from Np(0,Σ) are generated.

Using again the huge package, the estimators are com-
puted along a fine grid of tuning parameters. The
estimators’ accuracy is evaluated in terms of FDR—
see (1)—and in terms of power

Power :=
#
{

(i, j) : (i, j) ∈ E and (i, j) ∈ Ê
}

#
{

(i, j) : (i, j) ∈ E
}
∨ 1

,

which is the proportion of the number of correctly es-
timated edges to the total number of edges.

Both FDR and power are averaged over the 20 data
sets.

Figure 1 contains the FDR/power-curves along the
tuning parameter paths. There is not necessarily a
tuning parameter that leads to small FDR and large
power simultaneously. And more importantly, FDR
and power can be measured in simulations but not in
practice; this means that even if there was a tuning
parameter that leads to small FDR and large power,
it would be unclear how to find it in practice. In
particular, known calibration schemes such as cross-
validation (Arlot and Celisse, 2010), AIC (Akaike,
1974), BIC (Schwartz, 1978), permutation (Sabourin
et al., 2015), and AV (Chichignoud et al., 2016) are de-
signed for different objectives and are, therefore, not
suitable for this task. Taken together, standard es-
timators for Gaussian graphical models do not imply
sensible FDR control.

3 Method

In this section, we introduce our strategy to FDR con-
trol and establish both mathematical and numerical
support for its accuracy. A main ingredient of our
strategy are knockoffs that imitate additional partial
correlations. Accordingly, we refer to our method as
“KO.”

3.1 The KO Strategy

The KO strategy consists of three steps: First, we
equip the sample partial correlations with knock-off
counterparts. Second, we compare the sample par-
tial correlations and their counterparts through corre-
sponding test statistics. Third, we produce estimates
based on these test statistics by defining a data-driven
threshold.

The three mentioned steps now read in detail:

Step 1: Constructing knock-offs.

The starting points of our statistical analysis are the
partial correlations. The partial correlations give us
direct access to the hypotheses H(i,j) : Σ−1ij = 0 via
the Hammersley-Clifford theorem (Grimmett, 1973):
for any Gaussian random vector x = (x1, . . . , xp)> ∼
Np(0p,Σ), it holds—see also (Lauritzen, 1996, Pages
129–130)—that

xi ⊥ xj |xV\{i,j} ⇐⇒ Σ−1ij = 0 ⇐⇒ ρij·V\{i,j} = 0 ,

where ρij·V\{i,j} denotes the partial correlation be-
tween the variables xi and xj given the remaining p−2-
dimensional vector xV\{i,j}.

We now use classical properties of sample correla-
tions and sample partial correlations derived by Fisher
(1915, 1921, 1924). Consider the data matrix X =
(x1, . . . ,xn)> ∈ Rn×p, where x1, . . . ,xn ∈ Rp are in-
dependent and identically distributed samples from
Np(0p,Σ) and assume that n > p. (The latter con-
dition does not exclude high-dimensional settings in
general: n ≈ p cannot be approached with classical
inferential methods, and the number of parameters in
graphical models is p(p − 1)/2, which can be much
larger than n even for p < n.). Fisher (1915) derives
the distribution of the sample correlation

Cij :=

∑n
l=1(xl)i(x

l)j√∑n
l=1((xl)i)2

√∑n
l=1((xl)j)2

of the coordinates i and j; in particular, that paper
yields that if the population correlation is zero, the
statistic

Cij√(
1− (Cij)2)/(n− 2)

follows a Student’s t-distribution with n − 2 degrees
of freedom. Fisher (1924) then shows that the corre-
sponding sample partial correlation, which we write as
an entry

Rij := − (Σ̂−1)ij√
(Σ̂−1)ii(Σ̂−1)jj

,

of a matrix R ∈ Rp×p with Σ̂ := X>X the sample
covariance matrix of the data matrix X, has the same
distribution as Cij but with an effective sample size of
n− (p− 2), where p− 2 is the number of elements in
V \ {i, j}. We can, therefore, conclude that assuming
the null-hypothesis H(i,j) : Σ−1ij = 0, then the random
variable

Z :=
Rij√

(1−R2
ij)/(n− p)

(3)

follows a Student’s t-distribution with n−2−(p−2) =
n− p degrees of freedom.
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Motivated by the above observations, we define the
entries of R◦ through

R◦ij := R◦ji :=

{
1 if i = j

Zij√
n−p+Z2

ij

if i 6= j
, (4)

where the Zij ’s (i, j ∈ {1, . . . , p}) are sampled inde-
pendently from the Student’s t-distribution with n−p
degrees of freedom. These are our knockoff versions of
the sample partial correlations: each element of this
matrix mimics sample partial correlations between two
conditionally independent nodes. The diagonal ele-
ments of R◦ are set to 1 to equal the diagonal elements
of R; the off-diagonal elements of R◦ are in (−1, 1).

Step 2: Establishing the Test Statistics. We now con-
struct the test statistics for the entries of the sam-
ple partial correlation matrix R and its knock-off
counterpart R◦. We first apply elementwise hard-
thresholding, which can be written as penalized em-
pirical risk minimization

R̂(t) ∈ arg min
A∈S

{
||R−A||22 + t2||A||0

}
, (5)

where t > 0 is the thresholding parameter and S is
the set of symmetric and invertible matrices in Rp×p.
(Our pipeline also applies to soft-thresholding, which
corresponds to the `0-term swapped with an `1-term,
and other estimators, but to avoid digression, we omit
the details.) The knock-off version of that estimator
is

R̂◦(t) ∈ arg min
A∈S

{
||R◦ −A||22 + t2||A||0

}
. (6)

We now use those estimators to quantify the signal
strengths. We define the test statistics matrix T̂ via

T̂ij := sup
{
t :
(
R̂(t)

)
ij
6= 0
}
, (7)

which is the point on the tuning parameter path (rang-
ing from +∞ to 0) at which the sample partial correla-
tion between xi and xj controlling for other variables

first enters the model. The test statistic T̂ij indeed
tends to be large if Rij (and, therefore, its underlying
population versions ρij·V\{i,j}) are large. Similarly, we
can evaluate the signal strength of R◦ij via

T̂ ◦ij := sup
{
t :
(
R̂◦(t)

)
ij
6= 0
}
. (8)

Large values of T̂ij provide evidence against H(i,j) :

Σ−1ij = 0, while large values of T̂ ◦ij provide evidence for

H(i,j) : Σ−1ij = 0; thus, the larger T̂ij in comparison to

T̂ ◦ij , the more confidently we can reject H(i,j) : Σ−1ij =
0.

For a detailed assessment of the signal strengths, we
construct the matrix-valued test statistics Ŵ ∈ Rp×p

via

Ŵij := Ŵji :=

{
(T̂ij ∨ T̂ ◦ij ) · sign(T̂ij − T̂ ◦ij ) if i 6= j

0 if i = j
.

(9)

The test matrix Ŵ depends on R and R◦ through T̂ij
and T̂ ◦ij . A positive Ŵij states that the edge (i, j)
enters the model before its knock-off counterpart; more
generally, the larger Ŵij , the more evidence we have
against the hypothesis H(i,j) : Σ−1ij = 0.

Step 3: Defining a Data-dependent Threshold.

According to the previous step, large Ŵij provide evi-
dence against H(i,j) : Σ−1ij = 0. In this step, we quan-

tify this by defining a data-driven threshold t̂ and se-
lecting the edges (i, j) with Ŵij ≥ t̂, which yields the

estimated edge set Ê = {(i, j) ∈ V × V : Ŵij ≥ t̂ }.
Given a target FDR level q, the threshold is defined as

t̂ := min

{
t ∈ Ŵ :

#{(i, j) : Ŵij ≤ −t}
#{(i, j) : Ŵij ≥ t} ∨ 1

≤ q

}
,

(10)

where Ŵ := {|Ŵij | : i, j ∈ {1, . . . , p}} \ {0}. We set
t̂ := ∞ if the minimum is taken over the empty set.
The minimum is always attained as Ŵ is finite.

Generally, our thresholding scheme aims at bounding
the FDR by bounding an “empirical version” of it.
According to Lemma B.3 in the supplement, it holds
for the statistics matrix Ŵ defined in (9), any edge
set E that satisfies E = E ′ := {(i, j) ∈ V × V : i 6=
j, xi 6⊥ xj}, and any threshold t ≥ 0 that

#{(i, j) : (i, j) /∈ E ′, Ŵij ≤ −t}

=d#{(i, j) : (i, j) /∈ E ′, Ŵij ≥ t} ,

where =d means equivalence in distribution. Using
this equivalence and that an edge (i, j) is selected if

and only if Ŵij ≥ t, we can approximately bound
FDP(t), which we define as the FDP for our pipeline
with threshold t as

FDP(t) =
#
{

(i, j) : (i, j) /∈ E , Ŵij ≥ t
}

#{(i, j) : Ŵij ≥ t} ∨ 1

=
#
{

(i, j) : (i, j) /∈ E ′, Ŵij ≥ t
}

#{(i, j) : Ŵij ≥ t} ∨ 1

≈
#
{

(i, j) : (i, j) /∈ E ′, Ŵij ≤ −t
}

#{(i, j) : Ŵij ≥ t} ∨ 1

≤ #{(i, j) : Ŵij ≤ −t}
#{(i, j) : Ŵij ≥ t} ∨ 1

=: F̂DP(t) .
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We interpret F̂DP(t) as an estimate of the FDR. One
can check readily that

t̂ = min
{
t ∈ Ŵ : F̂DP(t) ≤ q

}
(and set t̂ := ∞ if no such t exists), which means
that our data-driven threshold t̂ controls an empirical
version of the FDR.

We show in the next section that the above scheme
provides approximate FDR control. If exact FDR con-
trol is required, one can modify the scheme similarly
as in mimic Barber and Candès (2015) by thresholding
more conservatively. Our corresponding threshold is

t̂+ := min

{
t ∈ Ŵ :

#{(i, j) : Ŵij ≤ −t}+ 1

#{(i, j) : Ŵij ≥ t} ∨ 1
≤ q

}
,

(11)

where again Ŵ = {|Ŵij | : i, j = 1, . . . , p} \ {0} and
t̂+ := ∞ if no minimum exists. The difference to the
original threshold t̂ is the additional +1 in the nu-
merator, which can make the threshold slightly larger
(see Section A in the supplement for some intuition).
We call the pipeline of Section 3.1 with t̂ replaced by
t̂+ the KO+ scheme. In practice, however, we would
typically recommend the KO scheme, as it has higher
statistical power.

3.2 Mathematical Support

We now support our method mathematically. We first
state the following (all proofs are deferred to the sup-
plementary materials):

Theorem 3.1 (Approximate FDR control). For any
target level q ∈ [0, 1], the KO scheme established in
Section 3.1 satisfies

E

[
#
{

(i, j) : (i, j) /∈ E ′ and (i, j) ∈ Ê
}

#
{

(i, j) : (i, j) ∈ Ê
}

+ q−1

]
≤ q .

This bound establishes an FDR-type guarantee. The
left-hand side differs from the FDR in (1) and (2)
in two aspects, though: First, it contains an addi-
tional q−1 in the denominator. But this difference
is negligible unless the number of selected edges is
very small, and it can even be removed by applying
a more conservative threshold (see supplementary ma-
terials). Second, it contains E ′ rather than E , that is, it
concerns correlations rather than partial correlations.
Since E ′ can be considerably larger than E , this means
that the theorem cannot guarantee FDR control in
general. But still, it can serve as a first mathematical
witness for the potency of our approach.

And this potency is confirmed in simulations indeed.
The simulation setup is the one of Section 2. In ad-
dition, the number of samples n and the number of
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Figure 2: Actual FDR versus target FDR for KO. The
curves are basically always on or below the diagonal,
meaning that KO provides valid FDR control across
all the settings.

parameters p is varied, and our KO method is evalu-
ated on a fine grid of target FDR levels. Recall that
the setup involves a band graph, where E ′ � E . Hence,
in view of the above theory (which does not apply to
such cases), good results in this setup would give a
particularly strong argument for our method.

In addition, we can also guarantee exact FDR control
for the KO+ scheme:

Theorem 3.2 (Exact FDR Control). For any target
level q ∈ [0, 1], and E = E ′, the KO+ scheme satisfies

FDR = E

[
#
{

(i, j) : (i, j) /∈ E and (i, j) ∈ Ê
}

#
{

(i, j) : (i, j) ∈ Ê
}
∨ 1

]
≤ q .

3.3 Numerical Support

We now demonstrate the KO’s accuracy numerically.
We show in particular that it achieves the target FDR
levels and has favorable power curves

Note first that KO is easy to implement and fast to
compute: in particular, it does not require any descent
algorithm—similarly as CT and PT but in contrast to
GLASSO and MB.

The results are displayed in Figures 2 and 3. In the
first figure, the observations are essentially always on
or below the diagonal, which demonstrates that KO
provides valid FDR control. For GLASSO, MB(or),
MB(and), CT, and PT, in contrast, it is unclear how
to calibrate the tuning parameters for such a control.
In the second figure, the KO-curves are essentially al-
ways on or above the curves of the competing methods,
which demonstrates that KO provides comparable or
more power than the other methods for given FDR
level. Overall, KO has an attractive FDR-power de-
pendence and achieves the nominal FDR level.
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Figure 3: FDR and power for KO, GLASSO,
MB(and), MB(or), CT, and PT as functions of the
tuning parameters. Across all settings, KO out-
matches the other methods in terms of power for given
FDR.

4 Real Data Analyses

We now demonstrate the utility of our proposed knock-
off method in uncovering biological networks. We give
three examples: brain connectivity networks, microbi-
ological networks in the human gut, and abundance
networks of amphibians. The target FDR level is set
to 0.2 across all analyses.

4.1 Brain Connectivity Analysis

Functional Magnetic Resonance Imaging (fMRI) is a
powerful tool to unveil the brain’s functional interde-
pendence structures. The data at hand, described and
analyzed in Bu and Lederer (2017), consists of resting-
state fMRI acquired at the Department of Neurology
at Beijing Hospital from April 2012 through December
2013. The data set comprises n = 210 samples of the
average voxel intensities in p = 116 anatomical vol-
umes in nNC = 10 individuals with normal cognition.
In line with earlier work (Horwitz et al., 1987; Huang
et al., 2010), we restrict our focus to 42 anatomical vol-
umes, further referred to as regions of interest (ROI).
The 42 ROIs are located in the frontal lobe, parietal
lobe, occipital lobe, and temporal lobe.

Since we have the data of nNC = 10 subjects,
we can complement our pipeline with the multi-
ple FDR scheme introduced in (Xie and Lederer,
2019) with target FDR level 0.2 × 0.5k for the k-
th individual, k ∈ {1, . . . , 10}. We then obtain

the continuous graph estimates R̂ij(t̂) for each in-

dividual k, which is denoted by R̂k
ij(t̂). Then, we

calculate the scaled cumulative signal strengths as∑
k∈group |R̂k

ij(t̂)|/maxl,m

{∑
k∈group |R̂k

lm(t̂)|
}

.

The scaled cumulative signal strengths are displayed
in Figure 6. The plot demonstrates that strong con-
nections are predominately between the left and right
counterparts of a given region, which is in line with
earlier work on the functional network architecture of
the brain (Honey et al., 2009).

4.2 Human Microbiome Analysis

We now apply the knock-off method to the human mi-
crobiome data set of the American Gut Project (http:
//humanfoodproject.com/americangut/). Our spe-
cific goal is to learn how the microbiome is as-
sociated with smoking. We use the processed
data that were collected before December, 2018.
We classify the individuals with smoking fre-
quencies Daily, Occasionally(1-2 times/week),
Regularly(3-5 times/week), and Rarely(a few

times/month) as smokers and the ones with smok-
ing frequency Never as non-smokers. This yields
nsmoker = 1234 smokers and nnon-smoker = 15 640 non-
smokers. We incorporate the centered log-ratio trans-
formed (Aitchison, 1982) abundances of the p = 32
phyla that appear in at least 5% of the individuals.

To reduce the influence of the imbalanced samples
sizes, we again add the multiple FDR scheme of (Xie
and Lederer, 2019) to our method. Specifically, we
uniformly subsample nsample = 1234 individuals from
the non-smoker group 10 times. At each time k ∈
{1, . . . , 10}, we apply the knock-off method to the cor-
responding nsample×p-dimensional data set with target
FDR level 0.2× 0.5k. Finally, we calculate the scaled
cumulative signal strengths, as showed in Figure 7.
The smoker group’s data is treated with the vanilla
version of our scheme from Section 3.1.

We find strong evidence that the graphs of the smok-
ers and non-smokers differ in their connectivities: the
p-value of a corresponding Wilcoxon signed-rank test
is � 10−10. In fact—see also the visualization in Fig-
ure 5 —we find that there are much more interactions
in the non-smokers’ guts, which is in agreement with
findings in the literature (Biedermann et al., 2013;
Savin et al., 2018; Stewart et al., 2018).

4.3 Atlantic Amphibians Abundance
Analysis

We finally analyze abundance data from the Atlantic
Forest Biome in South America (Vancine et al., 2018).
We specifically consider the p = 30 most abundant

http://humanfoodproject.com/americangut/
http://humanfoodproject.com/americangut/
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endemic (occurring uniquely in Atlantic Forest) and
p = 30 most abundant non-endemic species of the or-
der Anura. This ensures that the species appear in at
least 0.9% of the observations.

The corresponding number of study sites for which
species abundances are fully documented is n = 346.
Again, we apply the centered log-ratio transformation
to the data. We find strong evidence for differences
in the connectivities of the graphs of the two groups:
the p-value of a corresponding Wilcoxon signed-rank
test is � 10−5. There are more interactions between
the endemic species than between the non-endemic
species, that is, abundances of endemic species are
more interconnected among the different species. See
also Figure 4, which visualizes the scaled connec-
tivity estimates |R̂ij(t̂)|/maxl,m

{
|R̂lm(t̂)|

}
from our

pipeline. Since the total number of endemic and non-
endemic species is comparable, we hypothesize that
this difference is due to a higher level of adaptation
of endemic species. This is in line with with Gorman
et al. (2014), which indicates that endemic plants have
an increased level of adaptation. However, to the best
of our knowledge, our result is the first rigorous quan-
titative formulation of such a difference between en-
demic and non-endemic species.

5 Discussion

We have shown that our KO pipeline provides effective
FDR control and that it can provide new insights into
biological networks.

A topic for further research is the theory: We provide
first theoretical insights in Section 3.3, but current the-
orems do yet not establish exact FDR control in gen-
eral. However, our numerical results suggest that our
theory can be sharpened accordingly. (In a paper that
appeared after ours, Li and Maathuis (2019) were able
to establish a general theory, but their method is dif-
ferent and computationally much more demanding.)

Another topic for further research are extensions to
p > n along the lines of Candès et al. (2018). Our
methodology applies very generally otherwise; in par-
ticular, it applies to arbitrary covariance matrices Σ
and asymptotically even to non-Gaussian data.

In summary, its simplicity and convincing performance
make our pipeline useful for a wide range of applica-
tions.
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Figure 5: Signal strengths for endemic species and non-endemic species in the Atlantic Forest Biome. The
difference between the two plots in their numbers of gray cells indicates that there are more connections among
endemic species than among non-endemic species.
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Figure 6: Cumulative signal strengths for smoker group and cumulative signal strengths for non-smoker group.
The graphs show there are more connections among the gut microbiome for non-smokers than for smokers.
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Figure 7: Cumulative signal strength across nNC = 10 individuals for connections among the 42 ROIs. The four
red squares highlight the intra-lobe connections. The graph shows that strong connections are most common
between regional counterparts in the left and right hemisphere.
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