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Structure of This Supplementary Document

This supplementary document contains the technical proofs for the theoretical results of the AISTATS-2021 paper
entitled “Stability and Risk Bounds of Iterative Hard Thresholding”. The content of this document is
organized as follows:

• In Appendix A we collect a number of auxiliary lemmas that will be used in our analysis.

• In Appendix B, we present the technical proofs of main results in Section 2.

• In Appendix C, we present the technical proofs of main results in Section 3.

A Some Auxiliary Lemmas

This section is devoted to presenting a set of preliminary results that are useful in the proof of our main results.

Generalization bounds for uniformly stable algorithms. To prove the stability implied risk bounds, we need the
following lemma from Bousquet et al. (2020, Corollary 8) which gives a near-tight high probability generalization
error bound for uniformly stable learning algorithms.

Lemma 1 (Generalization bound implied by uniform stability). Let A : Xn 7→ W be a learning algorithm
that has uniform stability γ with respect to a loss function `(·; ·) ≤ M . Then for any δ ∈ (0, 1), the following
generalization bound holds with probability at least 1− δ over S:∣∣∣∣∣Eξ [`(A(S); ξ)]− 1

n

n∑
i=1

`(A(S), ξi)

∣∣∣∣∣ ≤ O
(
γ log(n) log

(
1

δ

)
+M

√
log(1/δ)

n

)
.

RIP-condition-free convergence rate of IHT. The rate of convergence and parameter estimation error of IHT have
been extensively analyzed under RIP (or restricted strong condition number) bounding conditions (Bahmani
et al., 2013; Yuan et al., 2014). The RIP-type conditions, however, are unrealistic in many applications. To
remedy this deficiency, sparsity-level relaxation strategy was considered in Jain et al. (2014); Yuan et al. (2018)
with which the high-dimensional estimation consistency of IHT can be established under arbitrary restricted
strong condition number. In order to make our analysis more realistic for high-dimensional problems, we choose
to work on the following RIP-condition-free convergence rate bound, which is essentially from Jain et al. (2014),
for IHT invoking on the empirical risk FS .

Lemma 2 (Convergence rate of IHT). Assume that FS is L3k-smooth and µ3k-strongly convex. Consider k̄

such that k ≥ 32L2
3k

µ2
3k

k̄. Let w̄S,k = arg min‖w‖0≤k̄ FS(w). Set η = 2
3L3k

. Then for any ε > 0, IHT outputs w
(t)
S,k

satisfying FS(w
(t)
S,k) ≤ FS(w̄S,k) + ε, after

t ≥ O

(
L3k

µ3k
log

(
FS(w

(0)
S,k)

ε

))
rounds of iteration.

Localized Rademacher Complexities and data dependent risk bounds. Let us define ‖`(w; ·) − `(w′; ·)‖∞ :=
maxξ∈X |`(w; ξ)− `(w′; ξ)|. We further introduce following concept of Localized Rademacher Complexity which
plays an important role in deriving the fast rates of convergence:

RS(rn;w∗) := Eε

[
sup

‖`(w;·)−`(w∗;·)‖∞≤rn

∣∣∣∣∣ 1n
n∑
i=1

εi[`(w; ξi)− `(w∗; ξi)]

∣∣∣∣∣
]
,

where rn > 0 and w∗ are fixed and {εi} are i.i.d. Rademacher random variables, i.e., symmetric Bernoulli
random variables taking values +1 and −1 with probability 1/2 each. RS(δ;w∗) can be used as a data depen-
dent complexity measure of the target parametric class around w∗ that allows one to estimate the accuracy of
approximation of F (w) − F (w∗) by FS(w) − FS(w∗) based on the data. The following localized concentration
bound is elementary and it can implied immediately by the symmetrization and McDiarmid’s inequalities (see,
e.g., Koltchinskii, 2006).
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Lemma 3 (Data dependent local concentration bound). For any fixed w∗ and all δ ∈ (0, 1), the following bound
holds with probability at least 1− δ:

sup
‖`(w;·)−`(w∗;·)‖∞≤rn

|FS(w)− FS(w∗)− (F (w)− F (w∗))| ≤ 2RS(rn;w∗) + 3rn

√
2 log(2/δ)

n
.

The following elementary lemma (see, e.g., Yuan et al., 2018, Lemma 14) is useful in our analysis.

Lemma 4. Assume that f is µs-strongly convex. Then for any w,w′ such that ‖w−w′‖0 ≤ s and f(w) ≤ f(w′)+ε
for some ε ≥ 0, the following bound holds

‖w − w′‖ ≤ 2
√
s‖∇f(w′)‖∞

µs
+

√
2ε

µs
,

where I = supp(w) and I ′ = supp(w′).

B Proofs of the Results in Section 2

In this section, we present the technical proofs of the main results stated in Section 2.

B.1 Proof of Theorem 1

In this subsection, we present a detailed proof of Theorem 1.

A key lemma. For a given index set J ⊆ [p], let us consider the following restrictive estimator over J :

wS|J = arg min
w∈W,supp(w)⊆J

FS(w). (A.1)

We present the following lemma about the uniform generalization gap of wS|J for all J with |J | = k which is
crucial to our proof.

Lemma 5. Assume that the loss function ` is smooth and G-Lipschitz continuous with respect to its first argument
and `(·; ξ) ≤M for all ξ. Suppose that FS is µk-strongly convex with probability at least 1− δ′n over the random
draw of S. Let J = {J ⊆ [p] : |J | = k} be the set of index set of cardinality k. Then for any δ ∈ (0, 1− δ′n) and
λ > 0, it holds with probability at least 1− δ − δ′n over the random draw of S that

sup
J⊆J

∣∣F (wS|J)− FS(wS|J)
∣∣ ≤ O(G2

λn
log(n)

(
log

(
1

δ

)
+ k log

(ep
k

))
+M

√
log(1/δ) + k log(ep/k)

n
+
λG
√
M

µk
√
µk

)
.

Proof. Let us consider the following defined `2-regularized `0-ERM estimator for any given λ > 0:

wλ,S|J := arg min
w∈W,supp(w)⊆J

{
Fλ,S(w) := FS(w) +

λ

2
‖w‖2

}
.

The reason for introducing the additional `2-regularization term is to guarantee uniform stability of the hypo-
thetical estimator wλ,S|J . Based on the standard proof arguments (see, e.g., Shalev-Shwartz et al., 2009) we

can show that the optimal model wλ,S|J has uniform stability γ = 4G2

λn . Indeed, let S(i) be a sample set that is
identical to S except that one of the ξi is replaced by another random sample ξ′i. Then we can derive that

Fλ,S(wλ,S(i)|J)− Fλ,S(wλ,S|J)

=
1

n

∑
j 6=i

(
`(wλ,S(i)|J ; ξj)− `(wλ,S|J ; ξj)

)
+

1

n

(
`(wλ,S(i)|J ; ξi)− `(wλ,S|J ; ξi)

)
+
λ

2
‖wλ,S(i)|J‖2 −

λ

2
‖wλ,S|J‖2

=Fλ,S(i)(wλ,S(i)|J)− Fλ,S(i)(wλ,S|J) +
1

n

(
`(wλ,S(i)|J ; ξi)− `(wλ,S|J ; ξi)

)
− 1

n

(
`(wλ,S(i)|J ; ξ′i)− `(wλ,S|J ; ξ′i)

)
≤ 1

n

∣∣`(wλ,S(i)|J ; ξi)− `(wλ,S|J ; ξi)
∣∣+

1

n

∣∣`(wλ,S(i)|J ; ξ′i)− `(wλ,S|J ; ξ′i)
∣∣

≤2G

n
‖wλ,S(i)|J − wλ,S|J‖,
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where we have used the optimality of wλ,S(i)|J with respect to Fλ,S(i)(w) and the Lipschitz continuity of the loss
function `(w; ξ). Since Fλ,S is λ-strongly convex and wλ,S|J is optimal for Fλ,S(w) over the supporting set J , we
have

Fλ,S(wλ,S(i)|J) ≥ Fλ,S(wλ,S|J) +
λ

2
‖wλ,S(i)|J − wλ,S|J‖2.

By combing the preceding two inequalities we arrive at ‖wλ,S(i)|J − wλ,S|J‖ ≤ 4G
λn . Consequently from the

Lipschitz continuity of ` we have that for any sample ξ

|`(wλ,S(i)|J ; ξ)− `(wλ,S|J ; ξ)| ≤ G‖w(i)
λ,S|J − wλ,S|J‖ ≤

4G2

λn
.

This confirms that the optimal model wλ,S|J has uniform stability γ = 4G2

λn . By invoking Lemma 1 we obtain
that with probability at least 1− δ over random draw of S,

∣∣F (wλ,S|J)− FS(wλ,S|J)
∣∣ ≤ O(G2

λn
log(n) log

(
1

δ

)
+M

√
log(1/δ)

n

)
. (A.2)

Let J = {J ⊆ [p] : |J | = k} be the set of index set of cardinality k. It is standard to verify |J | =
(
p
k

)
≤(

ep
k

)k
(Rigollet, 2015, Lemma 2.7). Then for each J ∈ J , based on (A.2) we must have that with probability at

least 1− δ
|J | over S, the following generalization gap is valid for any λ > 0:

∣∣F (wλ,S|J)− FS(wλ,S|J)
∣∣ ≤ O(G2

λn
log(n) log

(
|J |
δ

)
+M

√
log(|J |/δ)

n

)
.

Then by union probability we obtain that the following bound holds with probability at least 1− δ,

sup
J⊆J

∣∣F (wλ,S|J)− FS(wλ,S|J)
∣∣ ≤ O(G2

λn
log(n)

(
log

(
1

δ

)
+ k log

(ep
k

))
+M

√
log(1/δ) + k log(ep/k)

n

)
.

(A.3)

Next, we show how to bound the estimator difference supJ⊆J ‖wS|J −wλ,S|J‖. The strong convexity assumption
of FS implies that the following bound holds with probability at least 1− δ′n over S for all J ⊆ J :

λ‖wS|J‖ = ‖∇JFλ,S(wS|J)−∇JFλ,S(wλ,S|J)‖ ≥ (µk + λ)‖wS|J − wλ,S|J‖,

where the notation ∇Jg denotes the restriction of gradient ∇g over J and we have used the optimality of wλ,S|J
and wS|J over J which implies that

∇JFλ,S(wλ,S|J) = 0, ∇JFλ,S(wS|J) = ∇JFS(wS|J) + λwS|J = λwS|J .

In the meanwhile, since `(0; ·) ∈ (0,M), we must have the following bound holds with probability at least 1− δ′n
over S for all J ⊆ J :

M ≥ FS(0) ≥ FS(0)− FS(wS|J) ≥ µk
2
‖wS|J‖2,

which leads to ‖wS|J‖ ≤
√

2M/µk. Then it follows readily from the previous two inequalities that

‖wS|J − wλ,S|J‖ ≤
λ

µk + λ
‖wS|J‖ ≤

λ
√

2M
√
µk(µk + λ)

≤ λ
√

2M

µk
√
µk
.

Since the loss function is G-Lipschitz continuous, the following is then valid with probability at least 1− δ′n over
the random draw of S for all J ⊆ J :∣∣F (wS|J)− FS(wS|J)

∣∣
≤
∣∣F (wλ,S|J)− FS(wλ,S|J)

∣∣+ |FS(wS|J)− FS(wλ,S|J)|+ |F (wS|J)− F (wλ,S|J)|
≤
∣∣F (wλ,S|J)− FS(wλ,S|J)

∣∣+ 2G‖wS|J − wλ,S|J‖

≤
∣∣F (wλ,S|J)− FS(wλ,S|J)

∣∣+
2λG
√

2M

µk
√
µk

.
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In view of the above bound and the bound in (A.3), with probability at least 1− δ − δ′n over S we have

sup
J⊆J

∣∣F (wS|J)− FS(wS|J)
∣∣ ≤ O(G2

λn
log(n)

(
log

(
1

δ

)
+ k log

(ep
k

))
+M

√
log(1/δ) + k log(ep/k)

n
+
λG
√
M

µk
√
µk

)
.

The proof is concluded.

Now we are in the position to prove Theorem 1.

Proof of Theorem 1. Let J = {J ⊆ [p] : |J | = k} be the set of index set of cardinality k. For any random sample

set S, by the definition of w̃
(t)
S,k we always have w̃

(t)
S,k ∈ {wS|J : J ∈ J }. Applying Lemma 5 yields that with

probability at least 1− δ − δ′n,

∣∣∣F (w̃
(t)
S,k)− FS(w̃

(t)
S,k)

∣∣∣ ≤ O(G2

λn
log(n)

(
log

(
1

δ

)
+ k log

(ep
k

))
+M

√
log(1/δ) + k log(ep/k)

n
+
λG
√
M

µk
√
µk

)
.

Setting λ =

√
Gµ1.5

k log(n)(log(1/δ)+k log(ep/k))

nM0.5 in the above and preserving leading terms yields

∣∣∣F (w̃
(t)
S,k)− FS(w̃

(t)
S,k)

∣∣∣ ≤ O(G3/2M1/4

µ
3/4
k

√
log(n)(log(1/δ) + k log(ep/k))

n

)
. (A.4)

For any ε > 0, given that t = O
(
L3k

µ3k
log

(
FS(w

(0)
S,k)

ε

))
= O

(
L3k

µ3k
log
(
M
ε

))
is sufficiently large, we can bound the

sparse excess risk F (w̃
(t)
S,k)− F (w̄) as

F (w̃
(t)
S,k)− F (w̄) =F (w̃

(t)
S,k)− FS(w̃

(t)
S,k) + FS(w̃

(t)
S,k)− FS(w̄) + FS(w̄)− F (w̄)

≤
∣∣∣F (w̃

(t)
S,k)− FS(w̃

(t)
S,k)

∣∣∣+ |FS(w̄)− F (w̄)|+ ε,

where in the last inequality we have used the bound FS(w̃
(t)
S,k) ≤ FS(w

(t)
S,k) ≤ FS(w̄) + ε which is implied by the

definition of w̃
(t)
S,k and Lemma 2. Since `(w̄; ξ) ≤ M , from Hoeffding’s inequality we know that with probability

at least 1− δ/2,

|FS(w̄)− F (w̄)| ≤ O

(
M

√
log(1/δ)

n

)
.

Based on the generalization gap bound (A.4) and by union probability we get with probability at least 1− δ

F (w̃
(t)
S,k)− F (w̄)

≤
∣∣∣F (w̃

(t)
S,k)− FS(w̃

(t)
S,k)

∣∣∣+ |FS(w̄)− F (w̄)|+ ε

≤O

(
G3/2M1/4

µ
3/4
k

√
log(n)(log(1/δ) + k log(ep/k))

n
+M

√
log(1/δ)

n
+ ε

)
.

Setting ε = O(
√
k log(n) log(ep/k)/n) yields the desired bound (keep in mind the monotonicity of restricted

smoothness and strong convexity). This completes the proof.

B.2 Proof of Corollary 1

In this subsection we prove Corollary 1 which is an application of Theorem 1 to sparse logistic regression models.
We first present the following lemma, which follows immediately from Agarwal et al. (2012, Lemma 6), to be
used for proving the main result.
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Lemma 6. Suppose xi are drawn i.i.d. from a zero-mean sub-Gaussian distribution with covariance matrix
Σ � 0. Let X = [x1, ..., xn] ∈ Rd×n. Assume that Σjj ≤ σ2. Then there exist universal positive constants c0 and
c1 such that for all w ∈ Rp

‖X>w‖2

n
≥1

2
‖Σ1/2w‖2 − c1

σ2 log(p)

n
‖w‖21

holds with probability at least 1− exp{−c0n}.

Proof of Corollary 1. Given that ‖xi‖ ≤ 1, we have `(w; ξi) is L-smooth with L ≤ 4s(2yiw
>xi)(1−s(2yiw>xi)) ≤

1. Since ‖w‖ ≤ R, we must have |yiw>xi| ≤ R and thus the logistic loss `(w; ξi) = log(1 + exp(−2yiw
>xi))

satisfies `(w; ξi) ≤ O(R) and [Λ(w)]ii = 4s(2yiw
>xi)(1− s(2yiw>xi)) ≥ 4

(1+exp(2R))2 ≥
1

exp(4R) . It follows that

∇2FS(w) =
1

n
XΛ(w)X> � 1

n exp(4R)
XX> =

1

exp(4R)
Σ.

In view of Lemma 6 and the fact ‖w‖1 ≤
√
k‖w‖ when ‖w‖0 ≤ k we can verify that with probability at least

1− exp{−c0n}, FS(w) is µ4k-strongly convex with

µ4k =
1

exp(4R)

(
1

2
λmin(Σ)− kc1 log(p)

n

)
.

Provided that n ≥ 4kc1 log(p)
λmin(Σ) , we have µ4k ≥ λmin(Σ)

4 exp(4R) holds with probability at least 1−exp{−c0n}. By invoking

Theorem 1, after sufficiently large T ≥ O
(

exp(R)
λmin(Σ) log

(
nR

k log(n) log(p/k)

))
rounds of IHT iteration, with probability

at least 1− δ − exp{−c0n} the sparse excess risk of IHT converges at the rate of

O

(
exp(R)

λ
3/4
min(Σ)

√
log(n)(log(1/δ) + k log(p/k))

n
+R

√
log(1/δ)

n

)
.

This completes the proof.

C Proofs of the Results in Section 3

In this section, we present the technical proofs of the main results stated in Section 3.

C.1 Proof of Theorem 2

In this subsection, we prove Theorem 2. For any fixed J ⊆ [p] with |J | = k, let

w∗J = arg min
supp(w)⊆J

F (w).

Before proving the main result, we first establish a key lemma which shows a uniform fast rate of wS|J (recall
the definition in (A.1)) towards w∗J for all J if the population risk is restricted strongly convex and the loss is
Lipschitz continuous. To ease notation, we define an abbreviation of loss function as `w(·) := `(w; ·). Particularly,
we write the localized Rademacher complexity restricted over J at w∗J as:

RS|J(rn;w∗J) := Eε

 sup
supp(w)⊆J,‖`w−`w∗

J
‖∞≤rn

∣∣∣∣∣ 1n
n∑
i=1

εi[`w(ξi)− `w∗J (ξi)]

∣∣∣∣∣
 ,

where {εi} are i.i.d. Rademacher random variables, i.e., symmetric Bernoulli random variables taking values +1
and −1 with probability 1/2 each. The following preliminary result is standard yet useful in our analysis. We
provide its proof for the sake of completeness.

Lemma 7. Under Assumption 4, there exists some absolute constant C > 0 such that

RS|J(Grn;w∗J) ≤ CGrn

√
k

n
log3/2

(
1

rn

√
n

k

)
.
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Proof. Let us restrict the analysis over WJ as a restriction of W over J . Since W is assumed to be a subset of
unit `2-sphere, it is standard (see, for instance, Böröczky and Wintsche, 2003) to bound the covering number of
WJ at scale ε with respect to the `2-distance as logN (ε,WJ , `2) ≤ O (k log (1/ε)). Since the loss function `(w; ξ)
is G-Lipschitz continuous with respect to w, it can be verified that the covering number of the class of functions
LJ = {ξ 7→ `w(ξ) | w ∈ WJ} with respect to `∞-distance ‖`w1

− `w2
‖∞ is given by

logN (ε,LJ , `∞) ≤ logN (ε/G,WJ , `2) ≤ O (k log(G/ε)) .

Based on the result from Srebro et al. (2010, Lemma A.3) on the connection between Rademacher complexity
and covering number we can show that

RS|J(Grn;w∗J)

≤ inf
α>0

{
4α+ 10

∫ Grn

α

√
logN (ε,LJ , `∞)

n
dε

}
≤ O

(
4Grn

√
k

n
+ 10

∫ Grn

Grn
√

k
n

√
k log(G/ε)

n
dε

)

≤O

(
4Grn

√
k

n
+ 10Grn

√
k

n

∫ Grn

Grn
√

k
n

√
log(G/ε)

ε
dε

)
ζ1
≤O

(
4Grn

√
k

n
+ 6.67Grn

√
k

n
log3/2

( √
n

rn
√
k

))

≤O

(
Grn

√
k

n
log3/2

( √
n

rn
√
k

))
,

where in “ζ1” we have used the following fact for c > b > a > 0:∫ b

a

x−1

√
log
( c
x

)
dx =

2

3

(
log3/2

( c
a

)
− log3/2

(c
b

))
≤ 2

3
log3/2

( c
a

)
.

This proves the desired bound.

The following lemma presents a uniform fast rate of wS|J for all J .

Lemma 8. Suppose that Assumptions 1, 4 are valid. Then for any δ ∈ (0, 1), it holds with probability at least
1− δ that

sup
J⊆[p],|J|=k

F (wS|J)− F (w∗J) ≤ O
(
G2k(log3(ρn) + log(ep/k)) + log(1/δ)

ρn

)
.

Proof. Fix a subset J with |J | = k. Let rn > 0 be an arbitrary scalar that satisfies

ρr2
n

2
≥ 2RS|J(Grn;w∗J) +

3Grn
√

2 log(4/δ)√
n

. (A.5)

Our first step is to show that

P
(
F (wS|J)− F (w∗J) ≤ ρr2

n

2

)
≥ 1− δ. (A.6)

To this end, suppose the event ‖wS|J − w∗J‖ > rn occurs. We can verify that the following event occurs
consequently:

sup
supp(w)⊆J,‖`w−`w∗

J
‖∞≤Grn

|FS(w)− FS(w∗J)− (F (w)− F (w∗J))| ≥ 2RS(Grn;w∗J) +
3Grn

√
2 log(4/δ)√
n

.

Indeed, let us consider
w̃J = (1− ηn)w∗J + ηnwS|J ,

where ηn = rn
‖wS|J−w∗J‖

< 1. It is direct to verify that ‖w̃J − w∗J‖ = rn. Since FS is convex, we must have

FS(w̃J) ≤ (1− ηn)FS(w∗J) + ηnFS(wS|J) ≤ FS(w∗J).
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Note that ‖`w̃J
− `w∗J‖∞ ≤ G‖w̃J − w

∗
J‖ = Grn. Therefore, we have

sup
supp(w)⊆J,‖`w−`w∗

J
‖≤Grn

|FS(w)− FS(w∗J)− (F (w)− F (w∗J))|

≥ |FS(w̃J)− FS(w∗J)− (F (w̃J)− F (w∗J))|
≥ |F (w̃J)− F (w∗J)|
ζ1
≥ ρ

2
‖w̃J − w∗J‖2 =

ρr2
n

2
≥ 2RS|J(Grn;w∗J) +

3Grn
√

2 log(4/δ)√
n

,

where in “ζ1” we have used Assumption 4 and the last inequality follows from (A.5). Then, invoking Lemma 3
over the supporting set J yields

P
(
‖wS|J − w∗J‖ > rn

)
≤P

 sup
supp(w)⊆J,‖`w−`w∗

J
‖≤Grn

|FS(w)− FS(w∗J)− (F (w)− F (w∗J))| ≥ 2RS|J(Grn;w∗J) +
3Grn

√
2 log(4/δ)√
n


≤δ

2
.

Now let us consider the following three events:

E1 :

{
F (wS|J)− F (w∗J) ≤ 2RS|J(Grn;w∗J) +

3Grn
√

2 log(4/δ)√
n

}
,

E2 :
{
‖wS|J − w∗J‖ ≤ rn

}
,

E3 :

 sup
supp(w)⊆J,‖`w−`w∗

J
‖≤Grn

|FS(w)− FS(w∗J)− (F (w)− F (w∗J))| ≤ 2RS|J(Grn;w∗J) +
3Grn

√
2 log(4/δ)√
n

 .

Note that

‖wS|J − w∗J‖ ≤ rn
⇒‖`wS|J − `w∗J‖ ≤ Grn
⇒F (wS|J)− F (w∗J) ≤ sup

supp(w)⊆J,‖`w−`w∗
J
‖≤Grn

|FS(w)− FS(w∗J)− (F (w)− F (w∗J))| .

Therefore, we must have

P (E1) ≥ P (E1 ∩ E2) ≥ P (E3 ∩ E2) ≥ 1− P
(
E2
)
− P

(
E3
)
≥ 1− δ

2
− δ

2
= 1− δ,

which together with (A.5) implies the desired bound in (A.6).

The next step is to properly choose rn so as to fulfill the key condition of (A.5). Based on the bound on
RS|J(Grn;w∗J) as summarized in Lemma 7, there exists some C > 0 such that

ρr2
n

2
≥ 2RS|J(Grn;w∗J) +

3Grn
√

2 log(4/δ)√
n

⇐ρr2
n

2
≥ 2CGrn

√
k

n
log3/2

( √
n

rn
√
k

)
+

3Grn
√

2 log(4/δ)√
n

⇐rn ≥
4CG

√
k log3/2

( √
n

rn
√
k

)
+ 6G

√
2 log(4/δ)

ρ
√
n

.

Therefore, it suffices to choose

rn = O

(
G
√
k log3/2 (ρn) +G

√
log(1/δ)

ρ
√
n

)
≤ O

G
ρ

√
k log3(ρn) + log(1/δ)

n

 .
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Substituting the above choice of rn to (A.6) yields

F (wS|J)− F (w∗J) ≤ O
(
G2k log3(ρn) + log(1/δ)

ρn

)
.

As the final step, since there are at most
(
p
k

)
≤
(
ep
k

)k
different J , by union probability we get

sup
J⊆[p],|J|=k

F (wS|J)− F (w∗J) ≤ O
(
G2k(log3(ρn) + log(ep/k)) + log(1/δ)

ρn

)
.

This completes the proof.

To prove the main result, we also need to prove the following lemma which basically provides a sufficient condition
to guarantee the support recovery performance of IHT.

Lemma 9. Suppose that FS is µ2k-strongly convex with probability at least 1−δ′n. Assume that the loss function
` is G-Lipschitz. Suppose that there exists a k̄-sparse vector w̄ such that

w̄min >
2
√

2k‖∇F (w̄)‖∞
µ2k

+
3G

µ2k

√
k log(p/δ)

n

for some δ ∈ (0, 1− δ′n). Then for sufficiently large T ≥ O
(
L2k

µ2k
log
(

nµ2k

kG log(n) log(p/k)

))
rounds of IHT iteration,

the support recovery supp(w̄) ⊆ supp(w
(T )
S,k ) holds with probability at least 1− δ − δ′n.

Proof. Let us consider a fixed w̄. Since the G-Lipschitz condition implies ‖∇`(w̄; ·)‖ ≤ G, from the Hoeffding
concentration bound we know that with probability at least 1− δ over S,

‖∇FS(w̄)−∇F (w̄)‖ ≤ G
√

log(p/δ)

2n
.

Then with probability at least 1− δ,

‖∇FS(w̄)‖∞ ≤ ‖∇F (w̄)‖∞ + ‖∇FS(w̄)−∇F (w̄)‖∞

≤‖∇F (w̄)‖∞ + ‖∇FS(w̄)−∇F (w̄)‖ ≤ ‖∇F (w̄)‖∞ +G

√
log(p/δ)

2n
.

(A.7)

Since with probability at least 1−δ′n the empirical risk FS is µ2k-strongly convex, the bound in Lemma 2 implies

that the following holds for sufficiently large T ≥ O
(
L2k

µ2k
log
(

nµ2k

kG log(n) log(p/k)

))
with probability at least 1− δ′n:

FS(w̃
(T )
S,k ) ≤ FS(w̄) +

G2k log(p/δ)

2µ2kn
.

Invoking Lemma 4 to the above with w = w̃
(T )
S,k , w

′ = w̄ and ε = kG2 log(1/δ)
2µ2kn

yields that with probability at least

1− δ′n,

‖w̃(T )
S,k − w̄‖ ≤

2
√

2k‖∇FS(w̄)‖∞
µ2k

+

√
2ε

µ2k
=

2
√

2k‖∇FS(w̄)‖∞
µ2k

+
G

µ2k

√
k log(p/δ)

n
.

Using (A.7) and union probability argument we obtain that with probability at least 1− δ − δ′n,

‖w̃(T )
S,k − w̄‖ ≤

2
√

2k‖∇F (w̄)‖∞
µ2k

+
3G

µ2k

√
k log(p/δ)

n
.

Consequently from the condition on w̄min we must have supp(w̃
(T )
S,k ) ⊇ supp(w̄) holds with probability at least

1− δ − δ′n.

We are now ready to prove the main result of Theorem 2.
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Proof of Theorem 2. In what follows, we denote J̃ = supp(w̃
(T )
S,k ) and w∗

J̃
= arg minw∈W,supp(w)⊆J̃ F (w). Let us

define the following three events associated with the sample set S:

E1 :

{
F (w̃

(T )
S,k )− F (w̄) ≤ O

(
G2k(log3(ρn) + log(ep/k)) + log(1/δ)

ρn

)}
,

E2 :

{
F (w̃

(T )
S,k )− F (w∗

J̃
) ≤ O

(
G2k(log3(ρn) + log(ep/k)) + log(1/δ)

ρn

)}
,

E3 :=
{

supp(w̄) ⊆ J̃
}
.

We claim that E1 ∩ E3 ⊇ E2 ∩ E3. Indeed, for any S ∈ E2 ∩ E3, we have

supp(w̄) ⊆ J̃

⇒F (w̃
(T )
S,k )− F (w̄) ≤ F (w̃

(T )
S,k )− F (w∗

J̃
) ≤ O

(
G2k(log3(ρn) + log(ep/k)) + log(1/δ)

ρn

)
,

which implies S ∈ E1 and thus S ∈ E1 ∩ E3.

Given the condition on w̄ and δ′n ≤ δ
4 , it follows from Lemma 9 that supp(w̄) ⊆ J̃ holds with probability at least

1− δ
2 , i.e.,

P (E3) ≥ 1− δ

2
.

In the meanwhile, noting w̃
(T )
S,k = wS|J̃ and invoking Lemma 8 yields

P (E2) ≥ 1− δ

2
.

Combining the above leads to

P(E1) ≥ P(E1 ∩ E3) ≥ P(E2 ∩ E3) ≥ 1− P(E2)− P(E3) ≥ 1− δ.

This proves the desired bound (keep in mind the monotonicity of restricted smoothness and strong convexity).

C.2 Proof of Theorem 3

We need the following lemma which can be derived based on the concentration bound of sub-Gaussian random
variables.

Lemma 10. Under Assumption 5, for any δ ∈ (0, 1) it holds with probability at least 1− δ that

‖∇FS(w̄)‖∞ ≤ σ
√

2 log(p/δ)

n
.

Proof. Consider a fixed index j ∈ [p]. Since ∇j`(w̄; ξ) are assumed to be σ2-sub-Gaussian and ∇F (w̄) =
Eξ [∇`(w̄; ξ)] = 0, we must have ∇j`(w̄; ξ) are zero-mean σ2-sub-Gaussian. Thus it is known from the Hoeffding
inequality that for any ε > 0,

P (|∇jFS(w̄)| > ε) = P

∣∣∣∣∣∣ 1n
∑
ξi∈S

∇j`(w̄; ξi)

∣∣∣∣∣∣ > ε

 ≤ exp

{
−nε

2

2σ2

}
.

By the union bound we have

P(‖∇FS(w̄)‖∞ > ε) ≤ p exp

{
−nε

2

2σ2

}
.

By choosing ε =
√

2σ2 log(p/δ)
n in the above inequality we obtain that with probability at least 1− δ,

‖∇FS(w̄)‖∞ ≤
√

2σ2 log(p/δ)

n
.

This completes the proof.
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We are now ready to prove the main result of Theorem 3.

Proof of Theorem 3. Since by assumption FS(w) is L4k-smooth and µ4k-strongly convex with probability at

least 1 − δ′n, Lemma 2 shows that FS(w
(T )
S,k ) − FS(w̄) ≤ ε with probability at least 1 − δ′n provided that t ≥

O
(
L4k

µ4k
log
(

1
ε

))
. Then by invoking Lemma 4 we obtain that with probability at least 1− δ′n,

‖w(T )
S,k − w̄‖

2 ≤ 16k‖∇FS(w̄)‖2∞
µ2

2k

+
4ε

µ2k
≤ 16k‖∇FS(w̄)‖2∞

µ2
4k

+
4ε

µ4k
.

From Lemma 10 we know that with probability at least 1− δ,

‖∇FS(w̄)‖∞ ≤ σ
√

2 log(p/δ)

n
.

Then by union probability the following holds with probability at least 1− δ − δ′n:

‖w(T )
S,k − w̄‖

2 ≤ 32

µ2
4k

(
kσ2 log(p/δ)

n

)
+

4ε

µ4k
.

Based on the Lipschitz smoothness of F we can show

F (w
(T )
S,k )− F (w̄) ≤ L

2
‖w(t)

S,k − w̄‖
2 ≤ 16L

µ2
4k

(
kσ2 log(p/δ)

n

)
+

2Lε

µ4k
.

Setting ε = 1
µ4k

(
kσ2 log(p/δ)

n

)
yields the desired high probability bound of sparse excess risk.

C.3 Proofs of Corollary 2 and Corollary 3

We first prove Corollary 2 which is an application of Theorem 3 to sparse linear regression models.

Proof of Corollary 2. Let ξ = {x, ε} in which x is zero-mean sub-Gaussian with covariance matrix Σ � 0 and
ε is zero-mean σ2-sub-Gaussian. Since x and ε are independent, it can be directly verified that ∇F (w̄) =
Eξ [∇`(w̄; ξ)] = Eε,x [−εx] = 0. Given that Σjj ≤ 1, it can be shown that ∇j`(w̄; ξi) = −εi[xi]j are zero-mean
σ2-sub-Gaussian variables, which indicates that Assumption 5 holds. Clearly, F is L-smooth with L = λmax(Σ).

Based on Lemma 6 and the fact ‖w‖1 ≤
√
k‖w‖ when ‖w‖0 ≤ k, it holds with probability at least 1−exp{−c0n}

that FS(w) is µ4k-strongly convex with

µ4k =
1

2
λmin(Σ)− kc1 log(p)

n
.

Provided that n ≥ 4kc1 log(p)
λmin(Σ) , we have µ4k ≥ 1

4λmin(Σ) holds with probability at least 1− exp{−c0n}. Similarly,

we can show that FS(w) is L4k-smooth with L4k = O(λmax(Σ)). Provided that

T ≥ O
(
λmax(Σ)

λmin(Σ)
log

(
nλmin(Σ)

kσ2 log(p/δ)

))
is sufficiently large, by applying the high probability bound in Theorem 3 we obtain that with probability at
least 1− δ − exp{−c0n},

F (w
(T )
S,k )− F (w̄) ≤ O

(
λmax(Σ)

λ2
min(Σ)

(
kσ2 log(p/δ)

n

))
.

This proves the desired bounds.

In what follows we prove Corollary 3 as an application of Theorem 3 to sparse logistic regression models.



Stability and Risk Bounds of Iterative Hard Thresholding

Proof of Corollary 3. Let ξ = {x, y} in which x is zero-mean sub-Gaussian with covariance matrix Σ � 0 and

y ∈ {−1, 1} is generated by P(y|x; w̄) = exp(2yw̄>x)
1+exp(2yw̄>x)

. The logistic loss function at ξi is given by `(w; ξi) =

log(1 + exp(−2yiw
>xi)). We first show that ∇F (w̄) = Eξ [∇`(w̄; ξ)] = 0. Indeed,

Eξ [∇`(w̄; ξ)]

=Ex,y
[
∇ log(1 + exp(−2yw̄>x))

]
= Ex

[
Ey|x

[
∇ log(1 + exp(−2yw̄>x)) | x

]]
=Ex

[
P(y = 1 | x)∇ log(1 + exp(−2w̄>x)) + P(y = −1 | x)∇ log(1 + exp(2w̄>x))

]
=Ex

[
exp(2w̄>x)

1 + exp(2w̄>x)

−2x exp(−2w̄>x)

1 + exp(−2w̄>x)
+

1

1 + exp(2w̄>x)

2x exp(2w̄>x)

1 + exp(2w̄>x)

]
= 0.

Next we show that ∇j`(w̄; ξ) =
−2y[x]j exp(−2yw̄>x)

1+exp(−2yw̄>x)
is a zero-mean sub-Gaussian random variable. Clearly,

E[∇j`(w̄; ξ)] = 0. Since y ∈ {−1, 1} and [x]j is σ2

32 -sub-Gaussian, we can show the following

P (|∇j`(w̄; ξ)| ≥ t) = P
(

2|[x]j | exp(−2yw̄>x)

1 + exp(−2yw̄>x)
≥ t
)
≤ P

(
|[x]j | ≥

t

2

)
≤ 2 exp

(
−4t2

σ2

)
.

Then based on the result of Rigollet (2015, Lemma 1.5) we know that for any λ > 0,

Eξ [exp(λ∇j`(w̄; ξ))] ≤ exp

(
λ2σ2

2

)
,

which shows that ∇j`(w̄; ξ) is σ2-sub-Gaussian. This verifies the validness of Assumption 5.

By invoking Lemma 6 we obtain that if n ≥ 4σ2kc1 log(p)
λmin(Σ) , then it holds with probability at least 1− exp{−c0n}

that FS(w) is µ4k-strongly convex with µ4k ≥ λmin(Σ)
exp(4R) . It is standard to verify that F and FS are O(1)-smooth

almost surely. Therefore, provided that

T ≥ O
(

exp(R)

λmin(Σ)
log

(
nλmin(Σ)

k exp(R)σ2 log(p/δ)

))
is sufficiently large, by applying the bound in Theorem 3 we obtain that the following bound holds with probability
at least 1− δ − exp{−c0n} :

F (w
(T )
S,k )− F (w̄) ≤ O

(
exp(R)

λ2
min(Σ)

(
kσ2 log(p/δ)

n

))
.

This concludes the proof.
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