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Abstract

The Iterative Hard Thresholding (IHT) al-
gorithm is one of the most popular and
promising greedy pursuit methods for high-
dimensional statistical estimation under car-
dinality constraint. The existing analysis of
IHT mostly focuses on parameter estimation
and sparsity recovery consistency. From the
perspective of statistical learning theory, an-
other fundamental question is how well the I-
HT estimation would perform on unseen sam-
ples. The answer to this question is impor-
tant for understanding the generalization a-
bility of IHT yet has remaind elusive. In this
paper, we investigate this problem and de-
velop a novel generalization theory for IHT
from the viewpoint of algorithmic stability.
Our theory reveals that: 1) under natural
conditions on the empirical risk function over
n samples of dimension p, IHT with sparsi-
ty level k enjoys an Õ(n−1/2

√
k log(n) log(p))

rate of convergence in sparse excess risk; and
2) a fast rate of order Õ(n−1k(log3(n) +
log(p))) can be derived for strongly convex
risk function under certain strong-signal con-
ditions. The results have been substantial-
ized to sparse linear regression and logistic
regression models along with numerical evi-
dence provided to support our theory.

1 Introduction

We consider in this paper the following problem of
high-dimensional stochastic risk minimization under
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hard sparsity constraint:

min
w∈W

F (w) := Eξ∼D[`(w; ξ)] s.t. ‖w‖0 ≤ k,

where w ∈ W ⊆ Rp is the model parameter vector,
`(w; ξ) is a non-negative convex function that measures
the loss of w at a data instance ξ ∈ X , D represents
a random distribution over X . The cardinality con-
straint ‖w‖0 ≤ k is imposed for enhancing learnability
and interpretability of model. In realistic problem-
s, the mathematical formulation of D is typically un-
known and thus it is hopeless to directly optimize such
a stochastic formulation. Alternatively, given a set of
i.i.d. training samples S = {ξi}ni=1 ∈ Xn drawn from
D, the following sparsity-constrained empirical risk
minimization problem is often considered for learning
sparse models in high-dimensional settings (Donoho,
2006; Bach et al., 2012; Hastie et al., 2015):

min
w∈W

FS(w) :=
1

n

n∑
i=1

`(w; ξi) s.t. ‖w‖0 ≤ k. (1)

Here the cardinality constraint is crucial for accurate
estimation especially when p� n which is usually the
case in big data era. The above sparse M-estimation
model will be referred to as `0-ERM in this work.

Due to the presence of cardinality constraint, the `0-
ERM estimator is simultaneously non-convex and NP-
hard even when the loss function is quadratic (Natara-
jan, 1995), which makes it computationally intractable
to solve the problem exactly in general cases. There-
fore, one must seek approximate solutions instead of
carrying out combinatorial search over all possible
models. Among others, the Iterative Hard Threshold-
ing (IHT) (Blumensath and Davies, 2009) is a family
of first-order greedy selection methods popularly used
and studied for solving `0-ERM with outstanding prac-
tical efficiency and scalability witnessed in many appli-
cations (Jain et al., 2014; Yuan et al., 2018; Zhou et al.,
2018). The common theme of IHT-style algorithms is
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to iterate between gradient descent and hard thresh-
olding to decrease the objective value while maintain-
ing sparsity of solution. In the considered problem set-
ting, a plain IHT algorithm is given by the following
recursion for all t ≥ 1 with learning rate η > 0:

w
(t)
S,k := Hk

(
w

(t−1)
S,k − η∇FS(w

(t−1)
S,k )

)
, (2)

where Hk(·) is the truncation operator that preserves
the top k (in magnitude) entries of input and sets the
remaining to be zero, with ties broken arbitrarily. The
procedure is typically initialized with all-zero vector.
The IHT-style algorithms have been shown to converge
linearly towards certain nominal sparse model with op-
timal estimation accuracy under proper regularity con-
ditions (Bahmani et al., 2013; Yuan et al., 2014; Yuan
and Li, 2020).

1.1 Problem and motivation

The main motivation of our work is to answer the fol-
lowing fundamental question about the generalization

performance of the IHT estimator w
(t)
S,k:

How well the corresponding population risk F (w
(t)
S,k) =

Eξ∼D[`(w
(t)
S,k; ξ)] can approximate the optimal popula-

tion risk F (w̄) = min‖w‖0≤k̄ F (w) for k̄ ≤ k?

The value F (w
(t)
S,k) − F (w̄) is referred to as the k̄-

sparse excess risk of IHT. Our primary goal is to an-
swer this question by deriving a suitable law of large
numbers, i.e., a sample size vanishing rate γn such

that F (w
(t)
S,k)−F (w̄) ≤ γn holds with high probability.

Let w∗ = arg minw∈W F (w) be the conventional dense
minimizer. The sparse excess risk bound immediately
gives arise to an oracle inequality in terms of w∗:

F (w
(t)
S,k)− F (w∗) ≤ min

‖w‖0≤k̄
{F (w)− F (w∗)}+ γn.

Therefore, the sparse excess risk bound is also crucial
for understanding the excess risk of IHT when misspec-
ified model sparsity is allowed. The classical uniform
convergence analysis has been used for bounding ex-
cess risk (Bartlett et al., 2006; Shalev-Shwartz et al.,
2009). Although showing to be general (e.g., applica-
ble to non-convex losses) and tight in some restrict-
ed settings (Kakade et al., 2009), uniform risk bound-
s tend to suffer from the polynomial dependence on
data dimensionality and thus are less satisfactory for
high-dimensional learning algorithms. Ideally in well-
specified setting where the underlying statistical mod-
el for generating the data samples is truly sparse, i.e.,
∇F (w̄) = 0 for some k̄-sparse vector w̄, classical sparse
parameter estimation error bounds (Jain et al., 2014;
Yuan et al., 2018) can be shown to imply strong sparse

excess risk bounds for IHT (see Section 3.2 for more
detailed discussions). However, when applied to mis-
specified sparse models, the existing parameter estima-
tion error bounds will lead to sub-optimal risk bounds
having undesirable dependence on the residual term
‖∇F (w̄)‖∞ 6= 0.

Alternatively, a useful and popular proxy for ana-
lyzing the generalization performance is the stabil-
ity of learning algorithms to changes in the train-
ing dataset (Bousquet and Elisseeff, 2002). By hing-
ing the optimality of ERM, stability has been ex-
tensively demonstrated to beget strong generalization
bounds for ERM solutions with convex loss function-
s (Mukherjee et al., 2006; Shalev-Shwartz et al., 2009)
and for iterative learning algorithms (such as SGD) as
well (Hardt et al., 2016; Charles and Papailiopoulos,
2018; Kuzborskij and Lampert, 2018). Specially, the
state-of-the-art generalization results for strongly con-
vex ERM are offered by approaches based on the no-
tion of uniform stability (Feldman and Vondrak, 2018,
2019; Bousquet et al., 2020). Inspired by the remark-
able success of stability theory, we aim at deriving s-
parse excess risk bounds for IHT in view of the uniform
stability arguments, which to our knowledge has not
been systematically treated elsewhere in literature.

Yet, the traditional uniform stability arguments of reg-
ularized convex ERM do not naturally extend to I-
HT. The crux here is that the stability of IHT relies
heavily on the stability of its recovered supporting set,

supp(w
(t)
S,k), which could be highly non-trivial to guar-

antee even that the risk function is strongly convex.
In contrast, the convectional dense ERM is supported
over the entire range of feature dimension and thus its
supporting set is by nature unique and stable.

1.2 Our work and main results

The idea of our solution to address the above men-
tioned stability issue about the sparsity pattern of I-
HT is intuitive in principle: If the empirical risk FS
has restricted strong convexity and smoothness, then
based on the uniform stability of ERM restricted over
any feature index set of cardinality k, we can estab-
lish a high probability generalization bound for IHT vi-
a applying union probability arguments to all the pos-
sible k-sparse supporting sets. A main technical ob-
stacle we need to overcome for this strategy is that
in many statistical learning problems the restricted
strong convexity of the empirical risk usually holds
with high probability over data sample rather than u-
niformly. As a new element of our analysis for dealing
with such a small failure probability of strong con-
vexity, we propose to analyze IHT when applied to
a regularized variant of `0-ERM with a penalty term
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Result Risk Bound Model Sparsity
Key Condition

Empirical risk Population risk

Theorem 1 Õ
(√

k log(n) log(p/k)
n

)
Misspecified RSC/RLS —

Theorem 2 Õ
(
k(log3(n)+log(p))

n

)
Misspecified RSC/RLS RLS

Theorem 3 Õ
(
k log(p)

n

)
Well-specified RSC/RLS —

Table 1: Overview of our main results on the sparse excess risk bounds of IHT. The big Õ notation hides
the logarithmic factors on tail bound. RSC and RLS respectively stand for Restricted Strongly Convexity and
Restricted Lipschitz Smoothness (see Definition 2).

O(n−1/2‖w‖2) added to guarantee restricted unifor-
m stability, and consequently show that the stability-
induced risk bound of the regularized IHT estimator
can be inherited by the original IHT with high chance.
The corresponding main result in Theorem 1 sows that
the sparse excess risk of IHT can be upper bounded

by Õ
(
n−1/2

√
k log(n) log(ep/k)

)
with high probabil-

ity over data sample.

The Õ(n−1/2
√
k)-type rate of convergence established

in Theorem 1 is usually referred to as slow rates in sta-
tistical learning theory. For strongly convex risk min-
imization problems, we further derive in Theorem 2
a fast rate of order Õ

(
n−1k(log3(n) + log(p))

)
for I-

HT under additional strong-signal conditions. The key
observation is that when the signal strength of the tar-
get sparse optimal solution is sufficiently strong, then
the support of the target solution can be recovered as
a subset of that of the IHT estimation. Consequent-
ly, the desired fast rate of convergence can be derived
via invoking the theory of local Rademacher complex-
ities (Bartlett et al., 2005) over the supporting set of
IHT. Further, specially for well-specified sparse learn-
ing models such as sparse generalized linear models, we
show through Theorem 3 that an Õ(n−1k log(p)) fast
rate of convergence can be more directly derived based
on the existing parameter estimation error bounds of
IHT under mild conditions (Jain et al., 2014; Yuan
et al., 2018). To demonstrate the applicability of our
theory, we have substantialized these risk bounds to
the widely used sparse linear regression and logistic
regression models, along with numerical evidences pro-
vided to support the theoretical predictions.

In a nutshell, this paper establishes a set of uniform
stability induced sparse excess risk bounds for IHT
without imposing any distribution-specific assump-
tions on the data generation model. As a side contri-
bution, we have also derived a fast rate of convergence
for IHT when the data is assumed to be generated by a
well-specified sparse learning model. Our main results
and the related key model assumptions and technical
conditions are highlighted in Table 1.

1.3 Paper organization

The paper proceeds with the material organized as
follows: In Section 2 and Section 3 we respectively
present a set of slow and fast sparse excess risk bounds
of IHT via uniform stability arguments. In Section 4,
we briefly review the related literature. A comparison
of our results to some prior relevant results is provided
in Section 5. A preliminary numerical study for theory
verification is provided in Section 6. The concluding
remarks are made in Section 7. All the technical proof-
s are relegated to the appendix sections which can be
found in the supplementary document.

2 Sparse Excess Risk Bounds of IHT

In this section, we analyze the generalization perfor-
mance of IHT through the lens of algorithmic stability
theory. Particularly, we establish an excess risk bound
of IHT induced by the uniform stability of strongly
convex ERM restricted over arbitrary feature set of
cardinality k.

2.1 Preliminaries

We begin by introducing some definitions and basic
assumptions that will be used frequently in the analy-
sis to follow. The concept of uniform stability, as for-
mally defined in below, is a powerful tool for analyzing
generalization bounds of M-estimators and their learn-
ing algorithms (Bousquet and Elisseeff, 2002; Shalev-
Shwartz et al., 2009; Hardt et al., 2016).

Definition 1 (Uniform Stability). Let A : Xn 7→ W
be a learning algorithm that maps a dataset S ∈ Xn to
a model A(S) ∈ W. A is said to have uniform stability
γ with respect to a loss function ` :W ×X 7→ R if for
any pair of datasets S, S′ ∈ Xn that differ in a single
element and all x ∈ X , |`(A(S);x)− `(A(S′);x)| ≤ γ.

For an instance, conventional ERM estimators with λ-
strongly convex loss functions have uniform stability
of order O( 1

λn ) (Bousquet and Elisseeff, 2002). This
fundamental result then gives rise to the `2-norm reg-
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ularized ERM which introduces a penalty term λ
2 ‖w‖

2

to the convex loss with optimal choice λ = O(n−1/2) to
balance empirical loss and generalization gap (Shalev-
Shwartz et al., 2009).

Our analysis also relies on the conditions of Restricted
Strong Convexity/Lipschitz Smoothness (RSC/RLS)
which extend the concept of strong convexity and s-
moothness to the analysis of sparsity recovery meth-
ods (Bahmani et al., 2013; Blumensath and Davies,
2009; Jain et al., 2014; Yuan et al., 2018).

Definition 2 (Restricted Strong Convexity/Lipschitz
Smoothness). For any sparsity level 1 ≤ s ≤ p, we
say a function f is restricted µs-strongly convex and
Ls-smooth if there exist µs, Ls > 0 such that µs

2 ‖w −
w′‖2 ≤ f(w)−f(w′)−〈∇f(w′), w−w′〉 ≤ Ls

2 ‖w−w
′‖2,

∀‖w − w′‖0 ≤ s. Particularly, we say f is L-smooth
(µ-strongly convex) if f is Lp-smooth (µp-strongly con-
vex).

The ratio number Ls/µs will be referred to as restricted
strong condition number in this paper. By definition
we have Ls ≤ Ls′ and µs ≥ µs′ for all s ≤ s′. We
say that a function f is G-Lipschitz over W if for all
w,w′ ∈ W, |f(w) − f(w′)| ≤ G‖w − w′‖. We denote
[p] = {1, ..., p}. The following basic assumptions will
be made in different combinations in our analysis.

Assumption 1. The convex loss function ` is G-
Lipschitz continuous with respect to its first argument
and `(·; ξ) ≤M for all ξ ∈ X .

Assumption 2. The empirical risk FS is L4k-smooth
and µ4k-strongly convex with probability at least 1− δ′n
over sample S for some δ′n ∈ (0, 1).

Assumption 3. Consider w̄ = arg min‖w‖0≤k̄ F (w)

and set the sparsity level k ≥ 32L2
4k

µ2
4k

k̄ for IHT.

Assumption 4. The population risk F is L-smooth
and ρ-strongly convex and without loss of generality
‖w‖ ≤ 1,∀w ∈ W.

2.2 A uniform-stability induced risk bound

We now analyze the excess risk of IHT based on the
uniform stability of strongly convex ERM. In order to

make sure that the output w
(T )
S,k at the end of iteration

is uniformly stable, we propose to slightly modify it

as w̃
(T )
S,k which just minimizes FS over the support of

supp(w
(T )
S,k ), i.e.,

w̃
(T )
S,k := arg min

w∈W
FS(w) s.t. supp(w) = supp(w

(T )
S,k ).

Unless otherwise stated, in what follows we will work
on the above modified IHT algorithm and assume that

w
(0)
S,k = 0. The following result is our main result on

the sparse excess risk bound of IHT.

Theorem 1. Suppose that Assumptions 1, 2, 3 hold.
Set the step-size η = 2

3L4k
. For any δ ∈ (0, 1 − δ′n),

with probability at least 1 − δ − δ′n over the random
draw of sample set S, after sufficiently large T ≥
O
(
L4k

µ4k
log
(

nM
k log(n) log(p/k)

))
rounds of IHT iteration,

the k̄-sparse excess risk of IHT is upper bounded as

F (w̃
(T )
S,k )− F (w̄) ≤

O

G 3
2M

1
4

µ
3
4

4k

√
log(n)(log( 1

δ ) + k log( pk ))

n
+M

√
log( 1

δ )

n

 .

Proof in sketch. The basic idea is to show that a n-
early identical bound holds for ERM restricted over a
supporting set of size k and that bound can be extend-
ed to IHT in light of Lemma 2 (in Appendix A) and
union probability. More precisely, for a given feature
index set J ⊆ [p] with |J | = k, we first establish a
generalization gap bound for the restrictive estimator
over J defined by wS|J := arg minsupp(w)⊆J FS(w). S-
ince FS is only assumed to have strong convexity over
J with high probability, wS|J is not necessarily uni-
formly stable. To handle this issue, we propose to
alternatively study an `2-regularized variant of wS|J
defined by

wλ,S|J := arg min
supp(w)⊆J

{
Fλ,S(w) := FS(w) +

λ

2
‖w‖2

}
,

which can be shown to have uniform stability for any
λ > 0. Then according to the result from Bousquet
et al. (2020, Corollary 8) its generalization gap is up-

per bounded by Õ
(

log(n)
λn + 1√

n

)
. The next key step

is to bound the discrepancy between wS|J and wλ,S|J

as ‖wS|J − wλ,S|J‖ ≤ O
(

λ
µk+λ

)
in view of the (high

probability) restricted strong convexity of FS , which
consequently indicates that the generalization guaran-
tee of wλ,S|J can be handed over to wS|J with a small

overhead of O
(

λ
µk+λ

)
. Under optimal selection of λ,

applying union probability arguments over all the pos-
sible J yields a generalization gap bound for `0-ERM.
The final step is to show, according to Lemma 2, that
such a generalization gap bound of `0-ERM leads to
the desired sparse excess risk bound of IHT after suffi-
cient iteration with proper sparsity relaxation. A full
proof of this result is provided in Appendix B.1.

Remark 1. Theorem 1 shows that under proper relax-
ation of sparsity level, the k̄-sparse excess risk of IHT

converges at a rate of Õ
(
n−1/2

√
k log(n) log(p/k)

)
,

which matches those of the `0-penalized binary pre-
diction estimators (Chen and Lee, 2018, 2020) up to
logarithmic factors. Such a sparse excess risk bound
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immediately implies an oracle inequality

F (w̃
(T )
S,k )− F (w∗)

≤ min
‖w‖0≤k̄

(F (w)− F (w∗)) + Õ

(√
k log(n) log(p/k)

n

)
.

Implication for sparse logistic regression. Let
us substantialize Theorem 1 to binary logistic re-
gression model with loss function `(w; ξ) = log(1 +
exp(−2yw>x)) at a labeled data sample ξ = (x, y) ∈
Rp × {−1, 1}. Given a set of n independently drawn
data samples {(xi, yi)}ni=1, sparse logistic regression
learns the parameters so as to minimize the logistic
loss function under sparsity constraint:

min
‖w‖0≤k

FS(w) =
1

n

n∑
i=1

log(1 + exp(−2yiw
>xi)).

Let X = [x1, ..., xn] ∈ Rd×n be the design matrix and
s(z) = 1

1+exp(−z) be the sigmoid function. It can be

shown that ∇FS(w) = Xa(w)/n in which the vector
a(w) ∈ Rn is given by [a(w)]i = −2yi(1−s(2yiw>xi)),
and the Hessian∇2FS(w) = XΛ(w)X>/n where Λ(w)
is an n × n diagonal matrix whose diagonal entries
are [Λ(w)]ii = 4s(2yiw

>xi)(1 − s(2yiw
>xi)). Then

we have the following corollary as an application of
Theorem 1 to the above sparsity-constrained logistic
regression.

Corollary 1. Assume that xi are i.i.d. zero-mean
sub-Gaussian distribution with covariance matrix Σ �
0 and Σjj ≤ σ2

32 . Suppose that ‖xi‖ ≤ 1 for all i and
W ⊂ Rp is bounded by R. Then there exist universal

constants c0, c1 > 0 such that when n ≥ 4kc1 log(p)
λmin(Σ) , for

any δ ∈ (0, 1 − exp{−c0n}), with probability at least
1 − δ − exp{−c0n} the sparse excess risk of IHT is

upper bounded as F (w̃
(T )
S,k )− F (w̄) ≤

O

 exp(R)

λ
3/4
min(Σ)

√
log(n)(log( 1

δ ) + k log( pk ))

n
+R

√
log( 1

δ )

n


after sufficiently large rounds of iteration, i.e.,

T ≥ O
(

exp(R)

λmin(Σ)
log

(
nR

k log(n) log(p/k)

))
.

3 Fast Rates for Strongly Convex
Optimization

In consistency with statistical learning theo-
ry (Bartlett et al., 2005; Srebro et al., 2010; Foster
and Syrgkanis, 2019b), we regard the Õ(n−1/2) rates
of convergence established so far as slow rates in
terms of sample size. In the absence of sparsity

constraint, it is well known that convergence rates
of order Õ(n−1) are possible for finite dimensional
strongly convex function classes, for instance, via
local Rademacher complexities (Bartlett et al., 2005;
Koltchinskii, 2006). Inspired by such type of fast
rates for strongly convex dense ERM, we further show
in this section that the Õ(n−1) sparse excess risk
bounds can also be derived for IHT under additional
regularity conditions on population risk and signal
strength. Moreover, specially for well-specified sparse
learning models such as sparse generalized linear
models, we show that the Õ(n−1)-type of fast rates
can be derived much more directly in view of the
conventional parameter estimation error bounds of
IHT.

3.1 Fast rates under strong-signal conditions

In what follows, we denote wmin := mini∈supp(w) |wi|
as the smallest (in modulus) non-zero entry of a sparse
vector w.

Theorem 2. Suppose that Assumptions 1, 2, 3, 4
hold. Set the step-size η = 2

3L4k
. For any given

δ ∈ (0, 1), assume that δ′n ≤ δ
4 for large enough n

and

w̄min >
2
√

2k‖∇F (w̄)‖∞
µ4k

+
3G

µ4k

√
k log(4p/δ)

n
.

Then after T ≥ O
(
L4k

µ4k
log
(

nµ4k

kG log(n) log(p/k)

))
round-

s of IHT iteration, the following upper bound of the

k̄-sparse excess risk F (w̃
(T )
S,k )−F (w̄) holds with proba-

bility at least 1− δ over the random draw of S:

O
(
G2(log3(ρn) + log(ep/k))

ρ

(
k

n

)
+

log(1/δ)

n

)
.

Proof in sketch. For any fixed indices set J ⊆ [p] with
|J | = k, let us denote w∗J := arg minsupp(w)⊆J F (w).
A core observation here is that under the strong-
signal condition on w̄min, we can show via Lem-
ma 9 (in Appendix C.1) that supp(w̄) ⊆ J̃ :=

supp(w
(T )
S,k ) holds with high probability, and thus so

does F (w∗
J̃

) ≤ F (w̄). As another key ingredient, we
then show through Lemma 8 (in Appendix C.1) that
supJ⊆[p],|J|=k

{
F (wS|J)− F (w∗J)

}
is uniformly upper

bounded as Õ(k/n) with high probability. In view
of this supporting-set-wise uniform excess risk bound,

the desired bound follows directly by noting F (w
(T )
S,k )−

F (w̄) ≤ F (w
(T )
S,k )− F (w∗

J̃
) = F (wS|J̃)− F (w∗

J̃
). A full

proof of this result is provided in Appendix C.1.

Remark 2. Consider the well-specified setting where
∇F (w̄) = 0, i.e., the minimizer of the population risk
is truly sparse. In this case, under the signal-strength



Stability and Risk Bounds of Iterative Hard Thresholding

condition w̄min = Ω̃
(√

k/n
)

, Theorem 2 suggests that

the sparse excess risk bound of IHT decays as fast as
Õ(k/n) with high probability. A benefit of the result
in Theorem 2 is that it allows for misspecified sparse
models. More precisely, even if the risk F does not
have zero gradient at w̄, the sparse excess risk of IHT
can still converge as fast as Õ(k/n) provided that w̄min

significantly outweighes Ω̃(
√
k‖∇F (w̄)‖∞ +

√
k/n).

3.2 Fast rates for well-specified sparse
learning models

The sparse excess risk bounds derived so far are essen-
tially for misspecified sparse learning models. In this
subsection, we further study the risk bounds of IHT in
well-specified scenarios where the data is assumed to
be generated according to a truly sparse model. Such
a statistical treatment is conventional in the theoreti-
cal analysis of high-dimensional sparsity recovery ap-
proaches (Agarwal et al., 2012; Mei et al., 2018; Yuan
et al., 2018). More specifically, we assume that there
exists a k-sparse parameter vector w̄ such that, rough-
ly speaking, the population risk function is minimized
exactly at w̄ with ∇F (w̄) = 0. Formally, we impose
the following assumption on the loss function which
basically requires the gradient of loss at w̄ obeys a
light tailed distribution.

Assumption 5 (Sub-Gaussian gradient at the true
model). For each j ∈ {1, ..., p}, we assume that
∇j`(w̄; ξ) is σ2-sub-Gaussian with zero mean, namely,
Eξ[∇j`(w̄; ξ)] = 0 and there exists a constant σ > 0
such that for any real number τ ,

Eξ [exp {τ(∇j`(w̄; ξ))}] ≤ exp

{
σ2τ2

2

}
.

Remark 3. The zero-mean assumption directly im-
plies ∇F (w̄) = 0. As we will show shortly, this as-
sumption can be fulfilled by linear regression and logis-
tic regression models.

As a side contribution of this work, we present in the
following theorem a sharper excess risk bound of I-
HT for well-specified sparse learning models under less
stringent conditions. A proof of this theorem is de-
ferred to Appendix C.2.

Theorem 3. Assume that w̄ is a k̄-sparse vector satis-
fying Assumption 5. Suppose that Assumptions 2, 3, 4
hold. Then for any δ ∈ (0, 1 − δ′n) and any ε > 0,
IHT with step-size η = 2

3L4k
and sufficiently large

T ≥ O
(
L4k

µ4k
log
(

nµ4k

kσ2 log(p/δ)

))
rounds of iteration will

output w
(T )
S,k such that the following sparse excess risk

bound holds with probability at least 1− δ− δ′n over S,

F (w
(T )
S,k )− F (w̄) ≤ O

(
L

µ2
4k

(
kσ2 log(p/δ)

n

))
.

Remark 4. In comparison to the risk bound estab-
lished in Theorem 2 that allows for misspecified mod-
els, the above fast rate of convergence for well-specified
models is sharper in the sense that it is not dependence
on log(n)-factors and it is valid without needing to as-
sume Lipschitz-loss and strong-signal conditions.

Remark 5. We comment on the tightness of the ex-
cess risk bounds in Theorem 3 in the minimax sense.
It is well known (see, e.g., Rigollet, 2015; Zhang et al.,
2014) that, up to logarithmic factors, the high proba-
bility bound Õ

(
n−1k log(p)

)
is minimax optimal for

the squared estimation error ‖w(T )
S,k − w̄‖2, which im-

mediately implies that the same bound should be min-
imax optimal for excess risk provided that the popula-
tion function F is strongly convex.

We next showcase how to apply the bounds in Theo-
rem 3 to the widely used sparse linear regression and
logistic regression models.

Implication for sparse linear regression. We as-
sume the samples S = {xi, yi} obey the linear model
yi = w̄>xi+εi where w̄ is a k-sparse parameter vector,
the random feature vectors xi are drawn i.i.d. from a
zero-mean sub-Gaussian distribution with covariance
matrix Σ � 0, and εi are n i.i.d. zero-mean sub-
Gaussian random variables with parameter σ2. The
sparsity-constrained least squares regression model is
then written by

min
‖w‖0≤k

FS(w) =
1

2n

n∑
i=1

‖yi − w>xi‖2.

We present the following corollary as a consequence of
Theorem 3 to the considered linear regression model
with bounded design. See Appendix C.3 for its proof.

Corollary 2. Assume that εi are i.i.d. zero-mean
σ2-sub-Gaussian and xi are i.i.d. zero-mean sub-
Gaussian distribution with covariance matrix Σ � 0
and Σjj ≤ 1. Then there exist universal constants

c0, c1 > 0 such that when n ≥ 4kc1 log(p)
λmin(Σ) , for any

δ ∈ (0, 1 − exp{−c0n}), with probability at least 1 −
δ−exp{−c0n} the sparse excess risk of IHT with step-

size η = O
(

1
λmax(Σ)

)
is bounded as

F (w
(T )
S,k )− F (w̄) ≤ O

(
λmax(Σ)σ2 log(p/δ)

λ2
min(Σ)

(
k

n

))
after T ≥ O

(
λmax(Σ)
λmin(Σ) log

(
nλmin(Σ)
kσ2 log(p/δ)

))
rounds of it-

eration.

Implication for sparse logistic regression. Let us
further consider a well-specified binary logistic regres-
sion model in which the relation between the random
feature vector x ∈ Rp and its associated random bina-
ry label y ∈ {−1,+1} is determined by the conditional
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probability P(y|x; w̄) = exp(2yw̄>x)
1+exp(2yw̄>x)

, where w̄ is a k-

sparse parameter vector. Then we have the following
corollary as an application of Theorem 3 to this well-
specified sparse logistic regression model. A proof of
this result is provided in Appendix C.3.

Corollary 3. Assume that xi are i.i.d. zero-mean
sub-Gaussian distribution with covariance matrix Σ �
0 and Σjj ≤ σ2

32 . Suppose that ‖xi‖ ≤ 1 for all i and
W ⊂ Rp is bounded by R. Then there exist universal

constants c0, c1 > 0 such that when n ≥ 4kc1 log(p)
λmin(Σ) , for

any δ ∈ (0, 1 − exp{−c0n}), with probability at least
1− δ − exp{−c0n} the sparse excess risk of IHT with
step-size η = O(1) is upper bounded by

F (w
(t)
S,k)− F (w̄) ≤ O

(
exp(R)σ2 log(p/δ)

λ2
min(Σ)

(
k

n

))
after T ≥ O

(
exp(R)
λmin(Σ) log

(
nλmin(Σ)

k exp(R)σ2 log(p/δ)

))
rounds

of iteration.

4 Other Related Work

The problem regime considered in this paper lies at the
intersection of high-dimensional sparse M-estimation
and statistical learning theory, both of which have long
been studied with a vast body of beautiful theoretical
results established in literature. Next we will incom-
pletely connect our research to several closely relevant
lines of study in this context. We refer the interest-
ed readers to Cesa-Bianchi and Lugosi (2006); Hastie
et al. (2015); Wainwright (2019) and the references
there in for a more comprehensive coverage of the re-
lated topics.

Consistency and generalization of M-
estimation with sparsity. Statistical consistency of
learning with sparsity models is now well understood
for some popular sparse M-estimators including
`0-ERM (Foucart and Rauhut, 2017; Rigollet, 2015),
`1-penalized estimations (Lasso) (Meinshausen and
Yu, 2009; Wainwright, 2009) and folded concave
penalization (Fan and Li, 2001; Zhang and Zhang,
2012). The generalization ability of sparsity-inducing
learning models is relatively less understood but has
gained recent significant attention. The excess risk of
Lasso for generalized linear models was investigated
by Van de Geer (2008). Later with almost no assump-
tions imposed on the design matrix, the least squares
Lasso estimator was still shown to be consistent in
out-of-sample predictive risk (Chatterjee, 2013). For
a class of `1-penalized high dimensional M-estimators
with non-convex loss functions, uniform convergence
bounds with polynomial dependence on the sparsity
level of certain nominal model were established
by Mei et al. (2018). The misclassification excess

risk of sparsity-penalized binary logistic regression
has been investigated by Abramovich and Grinshtein
(2019) with near-optimal high probability bounds
established. For linear prediction models, a data
dependent generalization error bound was derived
for a class of risk minimization algorithms with
structured sparsity constraints (Maurer and Pontil,
2012). Particularly concerning the generalization of
`0-ERM, a set of uniform excess risk bounds were
derived by Chen and Lee (2018, 2020) for binary
loss functions under proper regularity conditions.
More recently, based on the arguments of localized
Rademacher complexity (Bartlett et al., 2005), tighter
risk bounds for `0-ERM have been established over
bounded liner prediction classes (Foster and Syrgka-
nis, 2019b). The existing uniform convergence implied
excess risk bounds for `0-ERM, however, rely largely
on its optimality which is NP-hard to be estimated
exactly in high-dimensional setting. It is not yet
clear if these results can be extended to approximate
sparsity recovery algorithms such as IHT considered
in this work.

Statistical guarantees on IHT-style algorithms.
The IHT-style algorithms have been popularly applied
and studied in compressed sensing and sparse learn-
ing (Blumensath and Davies, 2009; Foucart, 2011).
Recent works have demonstrated that by imposing
certain assumptions such as restricted strong convexi-
ty/smothness and restricted isometry property (RIP)
over the risk function, IHT and its variants converge
linearly towards certain nominal sparse model with
near-optimal estimation accuracy (Bahmani et al.,
2013; Yuan et al., 2014). It was later shown by Jain
et al. (2014); Shen and Li (2017b) that with proper
relaxation of sparsity level, high-dimensional estima-
tion consistency can be established for IHT without as-
suming RIP conditions. The sparsity recovery perfor-
mance of IHT-style methods was investigated by Yuan
et al. (2016); Shen and Li (2017a) to understand when
the algorithm can exactly recover the support of a s-
parse signal from its compressed measurements. The
excess risk analysis of IHT, however, still remains an
open challenge that we aim to attack in this work.

Stability and generalization of ERM. The idea of
using stability of the algorithm with respect to changes
in the training set for generalization error analysis
dates back to the seventies (Rogers and Wagner, 1978;
Devroye and Wagner, 1979). Since the seminal work
of Bousquet and Elisseeff (2002), stability has been ex-
tensively studied with a bunch of applications to estab-
lishing generalization bounds for strongly convex ER-
M estimators (Mukherjee et al., 2006; Shalev-Shwartz
et al., 2009). Recently, it was shown that the solution
obtained via (stochastic) gradient descent is expected
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to be stable and generalize well for smooth convex and
non-convex loss functions (Hardt et al., 2016). Lat-
er, a set of data-dependent generalization bounds for
SGD were derived based on the stability of algorith-
m (Kuzborskij and Lampert, 2018). More broadly,
generalization bounds for stable learning algorithms
(e.g., GD, SGD and SVRG) that converge to global
minima were established by Charles and Papailiopou-
los (2018). There is a recent renewed interest in the
use of uniform stability for deriving high probability
risk bounds of strongly convex ERM and optimization
algorithms (Feldman and Vondrak, 2018, 2019; Bous-
quet et al., 2020). We highlight that our generaliza-
tion analysis of IHT is a novel extension of the uniform
stability theory in the direction of non-convex sparse
learning under hard sparsity constraint.

5 Discussions

In this section, we discuss the connections and differ-
ences between our results established in the previous
sections and a number of existing risk bounds for the
`0-ERM and Lasso-type estimators. For each estima-
tor, we distinguish the comparison in two settings of
fast and slow convergence rates respectively.

5.1 Comparison with the risk bounds for
`0-ERM

We begin with comparing our results with existing risk
bounds for the `0-ERM.

Fast rates. Given that the `0-ERM estimator is ex-
actly solved, an essentially Õ(n−1k log(p)) sparse ex-
cess risk bound has been established for its output over
bounded liner prediction classes (Foster and Syrgkanis,
2019a, Example 2). That bound, however, is more of
pure theoretical interest than practical usage due to
the computational hardness of `0-ERM. Contrasting-
ly, Theorem 2 shows that an about the same fast rate
of convergence can also be derived for IHT which is
computationally tractable and efficient for sparsity re-
covery.

Slow rates. We comment on the difference between
the Õ

(
n−1/2

√
k log(n) log(p)

)
rate in Theorem 1 and

a comparable result established via uniform concentra-
tion bounds (Chen and Lee, 2018, Theorem 1) for spar-
sity constrained binary prediction problems. First, our
bound holds for real-valued Lipschitz continuous con-
vex loss functions while that bound was tailored for bi-
nary loss functions with linear models. Second, regard-
ing the regularization condition, the result in (Chen
and Lee, 2018, Theorem 1) requires p ∨ n & k8 which
could be fairly unrealistic even when k is moderate
in real problems. In contrast, we impose much more

natural conditions (like n
log(n) & k log(p) for logistic

regression) on data scale.

5.2 Comparison with the risk bounds for
Lasso estimators

We further compare the excess risk bounds of IHT
to those of the following `1-regularized ERM (Lasso)
estimator (Tibshirani, 1996; Wainwright, 2009):

w`1S,λ := arg min
w∈W

FS(w) + λ‖w‖1

which is popularly used as a convex surrogate of the
`0-ERM estimator.

Fast rates. For high-dimensional generalized linear
models, the oracle inequality of Van de Geer (2008,
Theorem 2.1) suggests that if the target solution w∗ =
arg minw∈W F (w) is exactly k-sparse, then it holds
with high probability that

F (w`1S,λ)− F (w∗) ≤ Õ
(
k log(p)

n

)
under λ � n−1/2

√
log(p). Specially for the well-

specified sparse linear regression models, a similar
fast rate of convergence can be implied under natural
conditions by the parameter estimation error bounds
of Negahban et al. (2012, Corollary 2). In Theorem 3,
we have shown that the Õ(n−1k log(p)) rate also ap-
plies to IHT for well-specified sparse learning with sub-
Gaussian noises. In comparison to these fast rates for
well-specified sparsity models, the fast rate established
in Theorem 2 applies to misspecified sparsity models
and the analysis allows for non-linear models.

Slow rates. For well-specified linear regression mod-
els with the `1-norm of parameter vector upper bound-
ed by K, it has been shown by Chatterjee (2013) that
the expected excess risk of a constrained Lasso esti-
mator scales as Õ(n−1/2K2

√
log(p)) under mild con-

ditions on the design matrix. To compare it with the
Õ(n−1/2

√
k log(n) log(p)) bound of IHT established in

Theorem 1, we remark that 1) these two rates are com-
parable (up to logarithmic factors) when K2 �

√
k;

2) the former holds in expectation while the latter
(ours) holds in high probability; and 3) more impor-
tantly, our bound is applicable to a broader range of
learning problems beyond well-specified sparse linear
regression, yet at the price of imposing more stringent
assumptions on the risk function.

6 Simulation Study

In this section, we carry out a set of numerical ex-
periments on synthetic sparse logistic regression tasks
to verify the IHT generalization theory presented in
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Figure 1: The impact of sample size and sparsity level
on the excess risk of sparse logistic regression. The
y-axis represents the logarithmic scale of excess risk.

Section 2 and Section 3. Throughout our numerical
study, we initialize w(0) = 0 for IHT and replicate
each individual experiment 10 times over the random
generation of training data for generalization perfor-
mance evaluation.

Experiment setup. We consider the binary logis-
tic regression model with loss function `(w;xi, yi) =
log
(
1 + exp(−yiw>xi)

)
. In this set of simulation s-

tudy, each data feature xi is sampled from standard
multivariate Gaussian distribution and its binary la-
bel yi ∈ {−1,+1} is determined by the condition-

al probability P(yi|xi; w̄) = exp(2yiw̄
>x)

1+exp(2yiw̄>xi)
with a k̄-

sparse parameter vector w̄. We test with feature di-
mension p = 1000, k̄ = 50 and aim to show the im-
pact of varying ratio n/p ∈ (0.5, 5) and sparsity level
k ∈ {50, 75, 100, 200} on the actual generalization per-
formance of IHT. Since for logistic loss the population
risk function F has no close-form expression, we ap-
proximate the population value F (w) by its empirical
version with sufficient sampling. In order to compute
the excess risk, we need to estimate the optimal pop-
ulation risk which in view of the proof of Corollary 1
is given by min‖w‖0≤k F (w) = F (w̄) for any k ≥ k̄.

Numerical results. The evolving curves of excess
risk as functions of sample size under different spar-
sity levels are illustrated in Figure 1, which is plot in
semi-log layout with y-axis representing the logarith-
mic scale of sparse excess risk. For each fixed k, it
can be observed that the sparse excess risk of IHT de-
crease as sample size n increases, while for each fixed
n, the same performance measurement increases as k
increases. These observations are consistent with the

implications of Theorem 1 (and Theorem 2 as well) to
sparse binary logistic regression.

7 Conclusions

In this paper, we established a set of novel sparse ex-
cess risk bounds for the widely applied IHT method
from the perspective of unform stability. Specifically,
we have shown that the sparse excess risk of IHT con-
verges at the rate of Õ(n−1/2

√
k log(n) log(p)) with

high probability under natural regularity conditions.
Under additional strong-signal conditions, we further
proved faster rates of order Õ(n−1k(log3(n) + log(p)))
for strongly convex risk minimization problems. These
sparse excess risk bounds immediately give rise to o-
racle excess risk inequalities of IHT over cardinali-
ty constraint. As a side contribution, we have fur-
ther shown a fast rate of order Õ(n−1k log(p)) for I-
HT for well-specified sparse learning models with sub-
Gaussian noises.

We expect that the theory developed in this paper will
fuel future investigation on the generalization bound-
s of IHT for non-convex loss functions such as those
used in the common practice of deep neural nets prun-
ing (Frankle and Carbin, 2019; Han et al., 2016), yet
rarely studied in theory. Actually, based on the s-

tandard Õ
(√

p/n
)

uniform convergence bound for

dense models (see, e.g., Shalev-Shwartz et al., 2009),
using the arguments of this paper it is more or less s-
traightforward to derive a generalization bound of or-

der Õ
(√

k log(p)/n
)

for IHT which is applicable to

the non-convex regime. Also, it is interesting to further
explore the structure information such as the deep and
wide architectures to hopefully obtain stronger gener-
alization bounds for deep learning with sparsity.
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Károly Böröczky and Gergely Wintsche. Covering the
sphere by equal spherical balls. In Discrete and
Computational Geometry, pages 235–251. Springer,
2003.

Olivier Bousquet and André Elisseeff. Stability and
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