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Appendix

A Proof of Section 2

A.1 Proof of Theorem 3

Before presenting the proof, let us first prove a lemma.
Lemma 3. Suppose Φ satisfies Assumptions 1 and 3. For any y1, y2 ∈ Y, define x∗(y1) and x∗(y2) as x∗(yi) =
arg minx∈X Φ(x, yi) for i = 1, 2. Similarly, for any x1, x2 ∈ X, define y∗(x1) and y∗(x2) as y∗(xi) = argmaxy∈Y Φ(xi, y),
i = 1, 2. Therefore, it holds that

‖x∗(y1) − x∗(y2)‖ ≤
Lxy

µx
|||y1 − y2 |||, |||y∗(x1) − y∗(x2)||| ≤

Lxy

µy
‖x1 − x2‖.

The proof of this lemma is presented in Appendix E.1. Now we present the proof of the Theorem 3.

Proof. For the ease of notation, let us denote the Lipschitz constant

`x(ξ) = sup
y∈Y

`x(ξ, y) and `y(ξ) = sup
x∈X

`y(ξ, x).

For ∀1 ≤ i ≤ n, denote {
x∗

(
ŷ(i)

)
= arg minx∈X Φ

(
x, ŷ(i)

)
,

y∗
(
x̂(i)

)
= argmaxy∈Y Φ

(
x̂(i), y

)
.

Similarly we can define x∗
(
ŷ
)
and y∗

(
x̂
)
. Therefore,

Φξi

(
x̂(i), y∗

(
x̂(i)

))
− Φξi

(
x∗

(
ŷ(i)

)
, ŷ(i)

)
(33)

(a)
≤ Φξi

(
x̂(i), y∗

(
x̂
))
−Φξi

(
x∗

(
ŷ
)
, ŷ(i)

)
+ `x(ξi)

x∗
(
ŷ(i)

)
− x∗

(
ŷ
)+`y(ξi)|||y∗ ( x̂(i))−y∗ ( x̂) |||

(b)
≤ Φξi

(
x̂(i), y∗

(
x̂
))
− Φξi

(
x∗

(
ŷ
)
, ŷ(i)

)
+

Lxy`x(ξi)

µx
||| ŷ(i) − ŷ ||| +

Lxy`y(ξi)

µy

x̂(i) − x̂


(c)
≤ Φξi

(
x̂,y∗

(
x̂
))
−Φξi

(
x∗

(
ŷ
)
,ŷ

)
+

(
Lxy`x(ξi)

µx
+`y(ξi)

)
||| ŷ(i)− ŷ |||+

(
Lxy`y(ξi)

µy
+`x(ξi)

)x̂(i)− x̂
︸                                                                       ︷︷                                                                       ︸

T (i)

.

The steps (a) and (c) are due to the function Lipschitz property in Assumption 2, and step (b) is due to Lemma 3. Consequently,

∆
s(x̂, ŷ)

= E
[
max
y∈Y
Φ(x̂, y) −min

x∈X
Φ(x, ŷ)

]
(34)

(a)
=

1
n

n∑
i=1

E
[
Φ

(
x̂(i), y∗

(
x̂(i)

) )
− Φ

(
x∗

(
ŷ(i)

)
, ŷ(i)

) ]
(b)
=

1
n

n∑
i=1

E
[
Φξi

(
x̂(i), y∗

(
x̂(i)

) )
− Φξi

(
x∗

(
ŷ(i)

)
, ŷ(i)

) ]
(c)
≤ E

[
1
n

n∑
i=1

(
Φξi

(
x̂,y∗

(
x̂
))
−Φξi

(
x∗

(
ŷ
)
, ŷ

))]
+

1
n

n∑
i=1

E[T(i)]

(d)
≤

1
n

n∑
i=1

E[T(i)].

The step (a) is because (x̂, ŷ) and (x̂(i), ŷ(i)) are identically distributed. And the step (b) is because the independence between
ξi and Γ(i), which indicates that

E
[
Φξi

(
x̂(i), y∗

(
x̂(i)

) ) ]
= E

[
E
[
Φξi

(
x̂(i), y∗

(
x̂(i)

) ) ��ξi] ] = E
[
Φ

(
x̂(i), y∗

(
x̂(i)

) ) ]
.



Generalization Bounds for Stochastic Saddle Point Problems

The independence here is a crucial point and need to be carefully handled. The step (c) is due to (33). And the step (d) is
because (x̂, ŷ) solves the ESP problem (2), which implies Φ̂n(x̂, y) − Φ̂n(x, ŷ) ≤ 0 for ∀x ∈ X, y ∈ Y. Consequently

E
[1
n

n∑
i=1

(
Φξi

(
x̂, y∗

(
x̂
) )
− Φξi

(
x∗

(
ŷ
)
, ŷ

) ) ]
= E

[
Φ̂n

(
x̂, y∗

(
x̂
) )
− Φ̂n

(
x∗

(
ŷ
)
, ŷ

) ]
≤ 0.

Therefore, the last step to bound ∆s(x̂, ŷ) remains as follows,

1
n

n∑
i=1

E[T(i)]

= E
[(

Lxy`x(ξi)

µx
+`y(ξi)

)
||| ŷ(i)− ŷ |||+

(
Lxy`y(ξi)

µy
+`x(ξi)

)x̂(i)− x̂
]

(a)
≤ E

[√(
Lxy`y(ξi)
√
µxµy

+
`x(ξi)
√
µx

)2
+

(
Lxy`x(ξi)

µx
√
µy
+
`y(ξi)
√
µy

)2
×

√
µx ‖ x̂ − x̂(i)‖2 + µy ||| ŷ − ŷ(i) |||

2

]
(b)
≤

√√√
E

[(
Lxy`y(ξi)
√
µxµy

+
`x(ξi)
√
µx

)2
+

(
Lxy`x(ξi)

µx
√
µy
+
`y(ξi)
√
µy

)2
]
×

√
E

[
µx ‖ x̂ − x̂(i)‖2 + µy ||| ŷ − ŷ(i) |||

2]
(c)
≤

√
2L2

xy(`
s
y)

2

µxµ
2
y

+
2(`sx)2
µx
+

2L2
xy(`

s
x)

2

µ2
xµy

+
2(`sy)2

µy
·
2
n
·

√
(`sx)2

µx
+
(`sy)2

µy

≤
2
√

2
n
·

√
L2
xy

µxµy
+ 1 ·

(
(`sx)

2

µx
+
(`sy)

2

µy

)
.

The step (a) here is due to the Cauchy-Schwartz inequality, for any two vectors a and b, a>b ≤ ‖a‖2 · ‖b‖2. The step (b) is
the expectation version of Cauchy-Shwartz inequality, for any two random variables a and b, E[ab] ≤

√
E[a2] ·

√
E[b2].

And the step (c) is due to the fact that (a + b)2 ≤ 2(a2 + b2) and the stability argument of Lemma 1.

Finally, substituting this bound into the inequality (34) proves the theorem.

A.2 Proof of Theorem 4

To prove the Theorem 4, let us first present some definition and lemmas. We define the primal function f (x) and dual
function g(y) as well as their empirical version fΓ(x) and gΓ(y):{

f (x) = maxy Φ(x, y),
f̂n(x) = maxy Φ̂n(x, y),

and

{
g(y) = minx Φ(x, y),
ĝn(y) = minx Φ̂n(x, y).

(35)

For the ease of notation, we also denote

x∗n(y) = argmin
x
Φ̂n(x, y) and y∗n(x) = argmax

y
Φ̂n(x, y). (36)

As a result the following property holds true.
Proposition 1. Under Assumption 1 and 3, the primal function f (x) and f̂n are µx-strongly convex; ∇ f (x) is L f -Lipschitz
continuous, with L f := Lx + L2

xy/µy . Similarly, g(y) and ĝn are µy-storngly concave; ∇g(y) is Lg-Lipschitz continuous,
with Lg := Ly + L2

xy/µx .

This proposition is a well known results, see e.g. Sanjabi et al. (2018).
Lemma 4. The squared distance from the emprical solution to the polulation solution is bounded as‖ x̂ − x∗‖22 ≤

4
µ2
x
‖∇xΦ̂n(x∗, y∗n(x

∗))‖22

‖ ŷ − y∗‖22 ≤
4
µ2
y
‖∇yΦ̂n(x∗n(y

∗), y∗)‖22 .
(37)

and

E
[
‖∇xΦ̂n(x∗, y∗n(x

∗))‖22
]
≤

1
n

(
8L2

xy

µ2
y

E
[
‖∇yΦξ (x∗, y∗)‖22

]
+ 2E

[
‖∇xΦξ (x∗, y∗)‖22

] )
(38)
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and

E
[
‖∇yΦ̂n(x∗n(y

∗), y∗)‖22
]
≤

1
n

(
8L2

xy

µ2
x

E
[
‖∇xΦξ (x∗, y∗)‖22

]
+ 2E

[
‖∇yΦξ (x∗, y∗)‖22

] )
. (39)

We provide the proof in Appendix E.2. As a result of Proposition 1 and Lemma 4, the proof of Theorem 4 will follow the
following argument. By the Lipschitz continuity of ∇ f (x) and ∇g(y),

max
y∈Y
Φ(x̂, y) −min

x∈X
Φ(x, ŷ)

= f (x̂) − g(ŷ)

≤ f (x∗) +
L f

2
‖ x̂ − x∗‖22 −

(
g(y∗) −

Lg

2
‖ ŷ − y∗‖22

)
=

L f

2
‖ x̂ − x∗‖22 +

Lg

2
‖ ŷ − y∗‖22 .

Taking expectation on both sides and substituting in the values of L f and Lg in Proposition 1 proves the Theorem.

B Proof of Section 3

B.1 Assumptions on fast mixing time and uniform ergodicity

Assumption 5 (Uniformly bounded ergodicity). The Markov decision process is ergodic under any stationary policy π, and
there exists τ > 1 such that

1
√
τ |S|

· 1 ≤
∑
a∈A

yπa ≤

√
τ

|S|
· 1,

where yπ is the stationary state-action distribution under the policy π.
Assumption 6 (Fast mixing time). There exists a constant tmix such that for any stationary policy π,

tmix ≥ min
t

{
t : ‖Pt

π(s, ·) −
∑
a∈A

yπa ‖TV ≤ 1/4, ∀s ∈ S
}
,

where ‖ · ‖TV is the total variation norm, Pπ(s, s′) =
∑

a∈A π(a|s)Pa(s, s′) is the transition probability matrix under policy
π and Pt

π(s, s
′) is the t-step transition probability from s to s′.

B.2 Proof of inequality (29)

To compute the upperbound of ∆w(x̄, ȳ), we will first need the following proposition on the Lipschitz constants `wx and `wy ,
whose proof is delegated to Appendix E.3.
Proposition 2. For any ξ there exist constants `x(ξ, y) and `y(ξ, x) s.t. Φξ (·, y) is `x(ξ, y)-Lipschitz under L2-norm, and
Φξ (x, ·) is `y(ξ, x)-Lipschitz under L1-norm. Moreover,{

(`wx )
2 := supy∈Y Eξ [`

2
x(ξ, y)] = O

(
τ3/|S|

)
,

(`wy )
2 := supx∈X Eξ [`

2
y(ξ, x)] = O

(
t2
mix

)
.

For the rest of the proof, it suffices to specify the following details for Lemma 2. For the Φξ ’s, µx = µy = 0. The norm ‖ · ‖
is the L2-norm ‖ · ‖2 and the norm ||| · ||| os tje L1-norm ‖ · ‖1. We set the regularizer to be

Ψ(x, y) =
αx
2
‖x‖22 − αy

∑
sa

ysa log ysa .

Ψ(·, y) is νx-strongly convex in x under the norm ‖ · ‖2 with νx = αx . Ψ(x, ·) is νy-strongly concave in y under the norm
‖ · ‖1 with νy = αy . Furthermore, for any x ∈ X and y ∈ Y, we know

R = max
x∈X

max
y∈Y
|Ψ(x, y)|

≤ max
x∈X

αx
2
‖x‖22 +max

y∈Y

��αy ∑
sa

ysa log ysa
��

= 2αx |S|t2
mix + αy log(|S||A|).
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From Proposition 2, we know (`wx )2 = O(τ3/|S|) and (`wy )2 = O(t2
mix). We get

max
y∈Y

E[Φ(x̂, y)] −min
x∈X

E[Φ(x, ŷ)] ≤ O

(
τ3

n|S|αx
+

t2
mix

nαy
+ αx |S|t2

mix + αy log(|S||A|)

)
.

To minimize the RHS, we set

αx =
τ3/2

√
n|S|tmix

and αy =
tmix√

n log(|S||A|)
.

This imediately yields

∆
w(x̂, ŷ) = max

y∈Y
E[Φ(x̂, y)] −min

x∈X
E[Φ(x, ŷ)] ≤ O

(
tmix
√

n

(
τ1.5 +

√
log(|S||A|)

))
.

B.3 Proof of Inequality (30)

To prove this result, let us first introduce the primal and dual linear programming formulations of the aMDP problem, which
are

(Primal-LP) min
v̂∈R,x∈R|S|

v̂ s.t. v̂ ·1+(I−Pa)x−ra ≥0, ∀a∈A.

and

(Dual-LP) min
y∈R|S|×|A|

〈y, r〉

s.t. y ≥ 0, ‖y‖1 = 1,
∑
a∈A

(I − P>a )ya = 0.

Then our saddle point problem (3) is the min-max formulation of this primal-dual LP pair. Let (v̂∗, x∗) be the optimal
solution to the (Primal-LP) (40) and let y∗ be the optimal soltuion to the (Dual-LP), then (x∗, y∗) forms the saddle point of
our problem (3). The following set of conditions are satisfied

v̂∗+(I−Pa)x∗−ra ≥ 0, ∀a ∈ A, (Primal feasibility)
y∗ ≥0, ‖y∗‖1 = 1,∑a∈A(I−P>a )y

∗
a=0, (Dual feasibility)

〈y∗, r〉 = v̂∗, (Complementarity slackness)
(40)

With these preliminary results, let us now provide the proof of this lemma.

Proof. Note that Φ(x, y) := 〈y, r〉 +∑
a∈A y>a (Pa − I)x, by direct computation, we have

max
y∈Y

E [Φ(x̄, y)] −min
x∈X

E [Φ(x, ȳ)]

≥ E [Φ(x̄, y∗) − Φ(x∗, ȳ)]

= E

[∑
a∈A

(y∗a)
>((Pa−I)x̄+ra)−

∑
a∈A

(ȳa)
>((Pa−I)x∗+ra)

]
(a)
= 〈y∗, r〉 − E

[∑
a∈A

(ȳa)
>((Pa − I)x∗ + ra)

]
(b)
= v̂∗ − E

[∑
a∈A

(ȳa)
>((Pa − I)x∗ + ra)

]
.

In the step (a), we apply the feasibility of y∗: ∑
a∈A(y

∗
a)
>(Pa − I) = 0. In the step (b), we applied the fact that v̂∗ = 〈y∗, r〉.

Hence we complete the proof.
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C Proof of Section 4

C.1 Proof of Inequality (32)

Proof. For the ease of notation. We denote the Lipschitz constant of the gradient of f as L. We denote the upper bound of
the diameters of X and Y as c1 . Since Aξ and bξ are uniformly upper bounded. We denote the upper bound of ‖Aξ ‖2 and
‖b‖2 as c2. Then, let us specify the constants used in Theorem 3 as follows. Let{

Φξ (x, y) := r(x) + y>(Aξ x − bξ ) − f ∗(y),
Φ(x, y) := r(x) + y>(Ax − b) − f ∗(y).

First µx = µ and µy = 1/L. For the gradient Lipschitz constant, we know Lxy = ‖A‖2 ≤ c2 since ∇xyΦ(x, y) = A. For the
function Lipschitz constant, we know for any ξ,

`x(ξ, y) = `r + ‖(Aξ )>y‖2 ≤ `r + c1c2.

By Fenchel duality, we know when f (Ax + b) = f ∗(y), then ‖∇ f ∗(y)‖ = ‖AΓx + b‖ ≤ (c1 + 1)c2. Consequently, the
Lipschitz constant of f ∗ in Y is `f ∗ = O(c1c2). Then

`y(ξ, x) = `f ∗ + ‖Aξ x − bξ ‖2 ≤ O(c1c2).

Therefore, we know that `sx = O(`r + c1c2) and `sy = O(c1c2). Substituting all the above constants into Theorem 3 yields

E
[
max
y∈Y
Φ(x̄, y) −min

x∈X
Φ(x, ȳ)

]
≤ O

©«
√

L2
xy

µxµy

(
(`sx)

2

nµx
+
(`sy)

2

nµy

)ª®¬ (41)

= O

(
c2

√
L/µ ·

( c2
2c2

1 + `
2
r

nµ
+

c2
1c2

2
n/L

))
= O

(
1

nµ1.5

)
.

Next, let A = Eξ [Aξ ] and b = Eξ [bξ ], then

max
y∈Y
Φ(x̄, y) = max

y∈Y
r(x̄) + y>(Ax̄ − b) − f ∗(y)

= r(x̄) + f (Ax̄ − b) (42)
= F(x̄),

and

−min
x∈X
Φ(x, ȳ) ≥ −min

x∈X
max
y∈Y
Φ(x, y) = min

x∈X
F(x). (43)

Combining (41), (42) and (43) proves the result.

C.2 Proof of Theorem 6

To prove this theorem, we would like to first present the following result.
Lemma 5. (Hybrid generalization bound) Under the settings of Theorem 1, if Assumption 3 is satisfied in addition, we have

E[max
y∈Y
Φ(x̂, y)] − min

x∈X
E[Φ(x, ŷ)] (44)

≤ O
©«
√√

L2
xy(`

s
y)

2

µx µ
2
y

+
(`sx)

2

µx
+
(`sy)

2

µy
·

√
E
[
µx‖ x̂−x̂(i)‖2+µy ||| ŷ− ŷ(i) |||

2
]ª®¬ .
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We provide the proof of this lemma in Appendix E.4. Based on this theorem and constants figured out in Appendix C.1, we
get √

L2
xy(`

s
y)

2

µxµ
2
y

+
(`sx)2

µx
+
(`sy)2

µy
= O

©«
√

L2

µ
+
`2
r

µ
+ Lª®¬ = O

(
µ−

1
2

√
L2 + `2

r + Lµ
)

For the other term, it is worth noting that the result of Lemma lemma:stability-reg indicates the Lipschitz constant of the
regularizer does not play a role in the stability bound. On the other hand, this result can also be interpretated as that the
Lipschitz constant of the deterministic component of the objective function does not affect the stability bound. Therefore, if
we view r(x) and f ∗(y) as the "regularizers", then Lemma 1 indicates that√

E
[
µx ‖ x̂ − x̂(i)‖2 + µy ||| ŷ − ŷ(i) |||

2] ≤ O (
1
n

√
1
µ
+

1
1/L

)
= O

(
1

n
√
µ

√
1 + Lµ

)
.

Due to our assumption that Lµ ≤ O(1), the above result indicates that

E
[

max
y∈Y
Φ(x̄, y)

]
−min

x∈X
E [Φ(x, ȳ)] ≤ O

(
L+`r

nµ

)
=O

(
1
µ · n

)
.

In this case, (42) is still true, while (43) is replaced with

−min
x∈X

E [Φ(x, ȳ)]
(a)
≥ −min

x∈X
Φ

(
x,E[ȳ]

)
≥ −min

x∈X
max
y∈Y
Φ(x, y) = min

x∈X
F(x), (45)

where step (a) is due to the Jensen’s inequality. Combinging (45), (42) and (45) proves the theorem.

D Proof of Section 5

D.1 Proof of Theorem 7

Proof. The result of this theorem is a direct corollary of Lemma 2. First, we will need to figure the corresponding algorithmic
constants. Define

Ψ(x, y) =
1√

n log N1

∑
i

xi log xi −
1√

n log N2

∑
j

yj log yj

as the regularizer. Then we know Ψ is νx-strongly convex under L1-norm and νy-strongly concave under L1-norm, with
νx =

1√
n log N1

and νy = 1√
n log N2

. Morever, the magnitude of Ψ is upper bounder by

R = max
x∈∆N1

max
y∈∆N2

|Ψ(x, y)|

=
1√

n log N1
log N1 +

1√
n log N2

log N2

=
1
√

n

(√
log N1 +

√
log N2

)
.

Denote Φξ (x, y) = x>Aξ y, then clearly, Φξ is not an SC-SC function. Hence µx = µy = 0. Let the Lipschitz constants
`x(ξ, y) and `y(ξ, x) be measured under the L1-norm, then

`x(ξ, y) = max
x∈∆N1

‖∇xΦξ (x, y)‖∞

= max
x∈∆N1

‖Aξ y‖∞

= max
i j
|Aξ (i, j)|

= 1.



Running heading author breaks the line

Consequently, we have `wx = 1. Similarly, we have `y(ξ, x) ≤ 1 and `wy ≤ 1. Consequently, by Lemma 2, we have

∆
w(x̂, ŷ) ≤

2
(
`wx

)2

n(µx + νx)
+

2
(
`wy

)2

n(µy + νy)
+ 2R

= 8
√

log N1 +
√

log N2
√

n

≤ 16
√

log(N1N2)
√

n
.

The last inequality is due to
√

log N1 +
√

log N2 ≤ 2
√

log N1 + log N2 = 2
√

log(N1N2). Due to the definition of ∆w(x̂, ŷ), we
know that for any x ∈ ∆N1 and y ∈ ∆N2 ,

E
[
x̄>Ay − x̄>Aȳ

]︸                 ︷︷                 ︸
≥0

−E
[
x>Aȳ − x̄>Aȳ

]︸                 ︷︷                 ︸
≤0

= E
[
x̄>Ay − x>Aȳ

]
≤ ∆w(x̂, ŷ)

≤ O

(√
log(N1N2)
√

n

)
.

Consequently, E
[
x̄>Ay − x̄>Aȳ

]
≤ O

(√
log(N1N2)
√
n

)
for any y. Meaning that when the player 1 plays x̄, in expectation, it does

not gain much benefit for player 2 if he switches to any other fixed strategy y. Symmetrically, we have E
[
x>Aȳ − x̄>Aȳ

]
,

meaning that when the player 2 plays the strategy ȳ, in expectation, it does not cause more lost for player 2 if player 1
switches to any other fixed strategy x.

E Other supporting lemmas

E.1 Proof of Lemma 3

Proof. First, let us prove the result for ‖x∗(y1) − x∗(y2)‖ and the rest of the results can be proved parallelly. By the optimality
condition we have {

〈∇xΦ(x∗(y1), y1), x∗(y2) − x∗(y1)〉 ≥ 0,
〈∇xΦ(x∗(y2), y2), x∗(y1) − x∗(y2)〉 ≥ 0.

Summing this up gives
〈∇xΦ(x∗(y2), y2) − ∇xΦ(x∗(y1), y1), x∗(y1) − x∗(y2)〉 ≥ 0.

By the strong convexity of Φ(·, y) and the Lxy-Lipschitz continuity of ∇xΦ(x, y) in terms of y,

0 ≤ 〈∇xΦ(x∗(y2), y2) − ∇xΦ(x∗(y1), y1), x∗(y1) − x∗(y2)〉

= 〈∇xΦ(x∗(y2), y2) − ∇xΦ(x∗(y1), y2), x∗(y1) − x∗(y2)〉 + 〈∇xΦ(x∗(y1), y2) − ∇xΦ(x∗(y1), y1), x∗(y1) − x∗(y2)〉

≤ −µx‖x∗(y1)−x∗(y2)‖
2+‖∇xΦ(x∗(y1),y2)−∇xΦ(x∗(y1),y1)‖∗‖x∗(y1)−x∗(y2)‖

≤ −µx‖x∗(y1)−x∗(y2)‖
2+Lxy |||y1−y2 ||| · ‖x∗(y1)−x∗(y2)‖.

Consequently,

‖x∗(y1) − x∗(y2)‖ ≤
Lxy

µx
|||y1 − y2 |||.

The other part of the result follows the same line of proof.

E.2 Proof of Lemma 4

Proof. Because x̂ = argminx f̂n(x), and f̂n(·) is µx-strongly convex, we have

0 ≥ f̂n(x̂) − f̂n(x∗)

≥ 〈∇ f̂n(x∗), x̂ − x∗〉 +
µx
2
‖ x̂ − x∗‖22

= 〈∇xΦ̂n(x∗, y∗n(x
∗)), x̂ − x∗〉 +

µx
2
‖ x̂ − x∗‖22,



Generalization Bounds for Stochastic Saddle Point Problems

where the last row is due to the Danskin’s theorem. By rearranging the terms, we get

µx
2
‖ x̂ − x∗‖22 ≤ −〈∇xΦ̂n(x∗, y∗n(x

∗)), x̂ − x∗〉 ≤ ‖∇xΦ̂n(x∗, y∗n(x
∗))‖2 · ‖ x̂ − x∗‖2.

Deviding both sides by ‖ x̂ − x∗‖2 and then square both sides proves the first inequality of (37). The second inequality for
(37) can be proved similarly.

Next, let us focus on the first inequality of (38).

E
[
‖∇xΦ̂n(x∗, y∗n(x

∗))‖22
]

(46)
= E

[
‖∇xΦ̂n(x∗, y∗n(x

∗)) − ∇xΦ̂n(x∗, y∗) + ∇xΦ̂n(x∗, y∗)‖22
]

≤ 2E
[
‖∇xΦ̂n(x∗, y∗n(x

∗)) − ∇xΦ̂n(x∗, y∗)‖22
]
+ 2E

[
‖∇xΦ̂n(x∗, y∗)‖22

]
≤ 2L2

xyE
[
‖y∗ − y∗n(x

∗)‖22
]
+ 2E

[
‖∇xΦ̂n(x∗, y∗)‖22

]
.

Note that E
[
∇xΦ̂n(x∗, y∗)

]
= ∇xΦ(x∗, y∗) = 0, we have

E
[
‖∇xΦ̂n(x∗, y∗)‖22

]
(47)

= E

[1
n

∑
ξ ∈Γ

∇xΦξ (x∗, y∗) − E
[
∇xΦξ (x∗, y∗)

] 2

2

]
=

1
n

Eξ

[
‖∇xΦξ (x∗, y∗)‖22

]
.

It is important that L2-norm is used here so that the above variance equation chain holds. If another norm is used, (47) may
not be true. For example if L1-norm is used, an extra multiplicative factor of dimension will come into the bound. For the
other term, note that

y∗n(x
∗) = argmax

y
Φ̂n(x∗, y) and y∗ = argmax

y
Φ(x∗, y).

As a result, we have

0 ≤ Φ̂n(x∗, y∗n(x
∗)) − Φ̂n(x∗, y∗)

≤ 〈∇yΦ̂n(x∗, y∗), y∗n(x
∗) − y∗〉 −

µy

2
‖y∗n(x

∗) − y∗‖22 .

With slight rearranging and apply Cauchy-Schwartz inequality, we have

‖y∗n(x
∗) − y∗‖2 ≤

2
µy
‖∇yΦ̂n(x∗, y∗)‖2.

Taking expectation on both sides and we get

E
[
‖y∗n(x

∗) − y∗‖22
]
≤

4
µ2
y

E
[
‖∇yΦ̂n(x∗, y∗)‖22

]
(48)

=
4
µ2
y

E
[
‖∇yΦ̂n(x∗, y∗) − ∇yΦ(x∗, y∗)‖22

]
≤

4
nµ2

y

Eξ

[
‖∇yΦξ (x∗, y∗)‖22

]
.

The argument here is parallel to that of (47). Combining (46), (47), and (48), we have

E
[
‖∇xΦ̂n(x∗, y∗n(x

∗))‖22
]

≤
1
n

(
8L2

xy

µ2
y

Eξ

[
‖∇yΦξ (x∗, y∗)‖22

]
+2Eξ

[
‖∇xΦξ (x∗, y∗)‖22

] )
.

The second inequality can be proved through a completely parallel way.
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E.3 Proof of Proposition 2

Proof. First, note that the Lipschitz continuity in x variable is measured under L2-norm, and the Lipschitz continuity in y

variable is measured under the L1-norm. Because the dual norms of ‖ · ‖2 and ‖ · ‖1 are ‖ · ‖2 and ‖ · ‖∞ repectively, we have{
`2
y(ξ, x) = supy∈Y ‖∇yΦξ (x, y)‖2∞,
`2
x(ξ, y) = supx∈X ‖∇yΦξ (x, y)‖

2
2 .

By direct calculation, we know

∇yaΦξ (x, y) = r̂a − x + ua with ua,s =
∑
s′∈S

δξ (s, a, s′)xs′,

where r̂a = [r̂1,a, r̂2a, ..., r̂ |S |a]>. Consequently,

‖∇yΦξ (x, y)‖∞ = max
a∈A
‖∇yaΦξ (x, y)‖∞

≤ max
a∈A
‖r̂a‖∞ + ‖x‖∞ + ‖ua‖∞

≤ 1 + 4tmix .

As a result we have (`wy )2 = O(t2
mix). For `x , we first compute the gradient as follows

∇xΦξ (x, y)=−
∑
a∈A

ya+w with ws′ =
∑
s,a

ysaδξ (s, a, s′).

Consequently, for any fixed y ∈ Y,

Eξ [`
2
x(ξ, y)] = ‖∇xΦξ (x, y)‖

2
2 (49)

≤ 2
∑
a∈A

ya
2

2 + 2Eξ [‖w‖
2
2 ]

= 2
∑
a∈A

ya
2

2+2‖E[w]‖22+2Eξ [‖w−Eξ [w]‖
2
2 ].

Note that ∑a∈A ya ≤
√
τ
|S |
· 1, we know ‖∑a∈A ya‖

2
2 ≤

τ
|S |

. By directly calculating the expectation, we know

Eξ [ws′] =
∑
s,a

ysaPa(s, s′).

Because for a particular s′, δξ (s1, a1, s′) is independent from δξ (s2, a2, s′), we can compute the variance term as

Eξ

[
‖w − Eξ [w]‖

2
2
]

=
∑
s′

Eξ

[
(
∑
sa

ysa(δξ (s, a, s′) − Pa(s, s′)))2
]

=
∑
s′

∑
sa

y2
saEξ

[
(δξ (s, a, s′) − Pa(s, s′)))2

]
=

∑
s′

∑
sa

y2
sa(1 − Pa(s, s′))Pa(s, s′)

≤
∑
s′

∑
sa

y2
saPa(s, s′)

≤
∑
sa

y2
sa

(a)
≤

∑
a

ya
2

2

≤ τ/|S|.

Where the step (a) is because y ≥ 0. Now we bound the last term ‖Eξ [w]‖
2
2 . For the ease of discussion, let us define

ȳ = 0.5y + 0.5 1
|S | |A |

, λ̄ = ∑
a∈A ȳa, and π̄(a|s) = ȳsa/λ̄s. Similarly, we define ŷ = 1

|S | |A |
, λ̂ = 1

|S |
, and π̂(a|s) = 1

|A |
.
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Therefore, because both π̄ and π̂ are strictly positive, the corresponding Markov chains of the state transitionsis are ergodic.
Hence,

‖Eξ [w]‖
2
2

=
∑
s′

(∑
s,a

(
ysa +

1
|S| |A|

−
1

|S| |A|

)
Pa(s, s′)

)2

≤ 2
∑
s′

(∑
s,a

(
ysa +

1
|S| |A|

)
Pa(s, s′)

)2

+2
∑
s′

(∑
s,a

(
1

|S| |A|

)
Pa(s, s′)

)2

(a)
= 8

∑
s′

(∑
s,a

ȳsaPa(s, s′)

)2

+ 2
∑
s′

(∑
s,a

ŷsaPa(s, s′)

)2

(b)
= 8

∑
s′

(∑
s

λ̄s
∑
a

π̄(a|s)Pa(s, s′)
)2

+2
∑
s′

(∑
s

λ̂s
∑
a

π̂(a|s)Pa(s, s′)
)2

(c)
= 8

∑
s′

(∑
s

λ̄sPπ̄(s, s′)
)2
+ 2

∑
s′

(∑
s

λ̂sPπ̂(s, s′)
)2

= 8‖P>π̄ λ̄‖
2
2 + 2‖P>π̂ λ̂‖

2
2

(d)
≤

10τ3

|S|
.

The step (a) and (b) follows directly from the definition of ȳ, λ̄, π̄ and ŷ, λ̂, π̂. The step (c) is we define Pπ̄ to be the
state transition probability matrix under the policy π̄, and Pπ̄(s, s′) := ∑

a π̄(a|s)Pa(s, s′); Similar argument is made for Pπ̂ .
Finally, the step (d) is due to the following argument. Let λπ̄ be the stationary state distribution under the policy π̄, then by
ergodicity property (Assumption 5) we have

0 ≤ P>π̄ 1 ≤ P>π̄ (
√
τ |S|λπ̄) =

√
τ |S|λπ̄ ≤

√
τ |S| ·

√
τ

|S|
· 1 = τ1.

As a result, 0 ≤ P>π̄ λ̄ ≤ P>π̄
√
τ
|S |

1 ≤ τ3/2

|S |
1 and consequently ‖P>π̄ λ̄‖

2
2 ≤ τ

3/|S|. Similarly, ‖P>π̂ λ̂‖
2
2 ≤ τ

3/|S|. Substituting the
following bounds 

‖
∑

a ya‖
2
2 ≤ O(τ/|S|)

Eξ

[
‖w − Eξ [w]‖

2
2
]
≤ O(τ/|S|)Eξ [w]

2
2 ≤ O(τ

3/|S|)

into (49) proves that Eξ [`
2
x(ξ, y)] ≤ O(τ

3/|S|). Consequently, (`wx )2 = supy∈Y Eξ [`
2
x(ξ, y)] ≤ O(τ

3/|S|). This completes
the proof of this proposition.

E.4 Proof of Lemma 5

Proof. We still denote `x(ξ) := supy∈Y `x(ξ, y) and `y(ξ) := supx∈X `y(ξ, x). Then, by the Lipschitz continuity assumption,
we have

Φξi

(
x̂(i), y∗

(
x̂(i)

))
− Φξi

(
x, ŷ(i)

)
(50)

≤ Φξi
(
x̂(i), y∗

(
x̂
))
−Φξi

(
x, ŷ(i)

)
+`y(ξi)|||y

∗
(
x̂(i)

)
−y∗

(
x̂
)
|||

≤ Φξi
(
x̂(i), y∗

(
x̂
))
− Φξi

(
x, ŷ(i)

)
+

Lxy`y(ξi)

µy

x̂(i) − x̂


≤ Φξi
(
x̂,y∗

(
x̂
))
−Φξi

(
x,ŷ

)
+`y(ξi)||| ŷ(i)− ŷ |||+

(
Lxy`y(ξi)

µy
+ `x(ξi)

)x̂(i)− x̂
︸                                                       ︷︷                                                       ︸

T (i)

.
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Similar to the proof of Theorem 1, we have

E
[

max
y∈Y
Φ(x̂, y)

]
−min

x∈X
E [Φ(x, ŷ)] (51)

=
1
n

n∑
i=1

E
[
Φ

(
x̂(i), y∗

(
x̂(i)

) ) ]
−min

x∈X

1
n

n∑
i=1

E
[
Φ

(
x, ŷ(i)

) ]
=max

x∈X

1
n

n∑
i=1

E
[
Φξi

(
x̂(i), y∗

(
x̂(i)

) )
− Φξi

(
x, ŷ(i)

) ]
≤max

x∈X
E

[
1
n

n∑
i=1

(
Φξi

(
x̂, y∗

(
x̂
) )
− Φξi

(
x, ŷ

) ) ]
+

1
n

n∑
i=1

E[T(i)]

≤
1
n

n∑
i=1

E[T(i)].

Then similar to the proof of Theorem 1 and Theorem 3, we prove the result by providing the follwoing bound

1
n

n∑
i=1

E[T(i)]

=E
[(

Lxy`y(ξi)

µy
+ `x(ξi)

) x̂(i) − x̂
 + `y(ξi)||| ŷ(i) − ŷ |||

]
≤E

[√(
Lxy`y(ξi)
√
µxµy

+
`x(ξi)
√
µx

)2
+

(
`y(ξi)
√
µy

)2
×

√
µx ‖ x̂ − x̂(i)‖2 + µy ||| ŷ − ŷ(i) |||

2

]

≤

√√√
E

[(
Lxy`y(ξi)
√
µxµy

+
`x(ξi)
√
µx

)2
+

(
`y(ξi)
√
µy

)2
]
×

√
E

[
µx ‖ x̂ − x̂(i)‖2 + µy ||| ŷ − ŷ(i) |||

2]
≤ O

(
1
n

√
L2
xy(`

s
y)

2

µxµ
2
y

+
(`sx)2

µx
+
(`sy)2

µy
×

√
E

[
µx ‖ x̂ − x̂(i)‖2 + µy ||| ŷ − ŷ(i) |||

2] )


