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Abstract

This paper studies the generalization bounds for
the empirical saddle point (ESP) solution to
stochastic saddle point (SSP) problems. For SSP
with Lipschitz continuous and strongly convex-
strongly concave objective functions, we estab-
lish an O (1/n) generalization bound by using a
probabilistic stability argument. We also provide
generalization bounds under a variety of assump-
tions, including the cases without strong convexity
and without bounded domains. We illustrate our
results in three examples: batch policy learning
in Markov decision process, stochastic composite
optimization problem, and mixed strategy Nash
equilibrium estimation for stochastic games. In
each of these examples, we show that a regular-
ized ESP solution enjoys a near-optimal sample
complexity. To the best of our knowledge, this is
the first set of results on the generalization theory
of ESP.

1 Introduction

Consider the stochastic saddle point (SSP) problem

(SSP) min
x∈X

max
y∈Y
Φ(x, y) := E

[
Φξ (x, y)

]
, (1)

where X and Y are compact and convex sets, and ξ is a
random variable. We denote the optimal solution to (1) as
(x∗, y∗). SSP problem finds a wide range of applications
in machine learning, reinforcement learning, operations
research and game theory. Many stochastic approximation
(SA) algorithms have been proposed for approximating the
SSP solution based on samples of ξ, see e.g. Natole et al.
(2018); Nemirovski et al. (2009); Shalev-Shwartz and Zhang
(2013); Xiao et al. (2019); Yan et al. (2019); Zhang and
Xiao (2017); Zhao (2019). Most of the algorithms make
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primal-dual updates and enjoy convergence guarantees with
appropriately chosen stepsizes.

In this paper, we provide understanding of (1) from a finite
sample perspective. Consider the empirical counterpart of
the SSP, which we refer to as the empirical saddle point
(ESP) problem

(ESP) min
x∈X

max
y∈Y
Φ̂n(x, y) :=

1
n

n∑
i=1
Φξi (x, y) , (2)

where Γ := {ξ1, ..., ξn} is a collection of n i.i.d. samples
of ξ’s. A natural way of estimating the optimal solution
(x∗, y∗) to (1) is to solve instead its empirical approximation
given by (2). This approach is also known as sample average
approximation (SAA), see Shapiro et al. (2014). We denote
by (x̂, ŷ) the empirical saddle point (ESP) solution to problem
(2). Based on a given set of samples, one can compute the
ESP solution using any convergent algorithm for minimax
optimization. In parallel to the generalization theory for
empirical risk minimization Vapnik (1992, 2006, 2013),
we aim to analyze the empirical saddle point and establish
finite-sample generalization bounds.

1.1 Motivating Examples

Stochastic saddle points (1) are very common in machine
learning, game theory, and operations research. A gener-
alization theory for ESP would be useful for establishing
generalization bounds for a number of machine learning
tasks that are beyond empirical risk minimization. We will
study three examples in this paper.

One example is batch policy learning for Markov Decision
Process (MDP). For the infinite-horizon average-reward
MDP, the policy optimization problem is equivalent to an
SSP, known as the Bellman saddle point Puterman (2014);
Wang (2017), given by

min
x∈X

max
y∈Y
Φ(x, y) := 〈y, r〉 +

∑
a∈A

y>a (Pa − I)x, (3)

where x is the value function, y = {ya}a∈A is the state-action
occupancy measure, a and A denote the action and action
space respectively, Pa denotes the transition probability
matrix under a, r is the reward function (see Section 3 for
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details). In the batch policy learning problem, we want
to solve the MDP without knowledge of r, Pa, instead we
only have sample state transitions. This motivates us to
study the empirical optimal policy that is equivalent to the
ESP solution of the Bellman saddle point (3). Another
example is the stochastic composite optimization, which
finds applications in off-policy policy evaluation and risk-
averse optimization, of the form

min
x∈X

r(x) + f
(
E
[
Aξ x − bξ

] )
, (4)

where Aξ is a random matrix, bξ is a random vector, f is
a convex loss, r is some regularizer; see Nesterov (2007);
Wang et al. (2017); Zhang and Xiao (2019) and references
therein. By using the convex conjugate f ∗ of f , we can
reformulate the problem as an SSP:

min
x∈X

max
y∈Y

r(x) + E
[ (

Aξ x − bξ
)>
y
]
− f ∗(y).

Thus a generalization theory for this SSP would lead to gen-
eralization bounds for the original composite optimization
problem. The third example is the two-person stochastic
matrix game

min
x∈∆N1

max
y∈∆N2

x>E[Aξ ]y (5)

where the constraint sets are defined as ∆Ni := {z ∈ RNi :
z ≥ 0, 1>z = 1}, x, y are the mixed strategies of the two
players, and Aξ ∈ RN1×N2 is a stochastic payoff matrix.
Based on sample payoffs from past plays, we can estimate
the mixed strategy Nash equilibrium by solving a regularized
version of the empirical matrix game. Our generalization
bound will be used to evaluate the quality of the empirical
Nash equilibrium learned from data.

1.2 Weak and Strong Generalization Measures

We will study the generalization properties of the empirical
saddle point (ESP) solution (x̂, ŷ) via two metrics. The first
metric, referred to as the weak generalization measure 1

(WGM), is defined as

∆
w(x̂, ŷ) := max

y∈Y
E
[
Φ(x̂, y)

]
−min

x∈X
E
[
Φ(x, ŷ)

]
, (6)

where the expectations are taken over the sample set
{ξ1, . . . , ξn}. In some applications, one desires a stronger
metric of optimality, which we refer to as the strong gener-
alization measure (SGM), given by

∆
s(x̂, ŷ) := E

[
max
y∈Y
Φ(x̂, y) −min

x∈X
Φ(x, ŷ)

]
. (7)

The SGM is often referred to as the expected duality gap in
the optimization literature. A third commonly used metric

1We decide not to use “weak (strong) duality gap measure”
to avoid confusion with the well known terminologies of weak
(strong) duality.

is d2(x̂, ŷ) := ‖ x̂ − x∗‖2 + ||| ŷ − y∗ |||2, which is the squared
distance between the ESP solution to the true saddle point
solution. Note that here we allow the use of two different
norms ‖ · ‖ and ||| · ||| to measure the distances in X and Y,
respectively. Suppose that Φ(·, ·) is µx-strongly convex and
µy-strongly concave. Then

∆
w(x̂, ŷ) = max

y∈Y
E [Φ(x̂, y)] −min

x∈X
E [Φ(x, ŷ)] (8)

≥ E [Φ(x̂, y∗) − Φ(x∗, ŷ)]
= E [Φ(x̂, y∗) − Φ(x∗, y∗) + Φ(x∗, y∗) − Φ(x∗, ŷ)]

≥ E
[ µx

2
‖ x̂ − x∗‖2 +

µy

2
||| ŷ − y∗ |||2

]
≥

min{µx, µy}
2

· E
[
d2(x̂, ŷ)

]
.

That is, we have ∆w(x̂, ŷ) ≥ Ω
(
E[d2(x̂, ŷ)]

)
. Due to the

Jensen’s inequality, we also have∆w(x̂, ŷ) ≤ ∆s(x̂, ŷ). There-
fore the SGM is strongest among the three, WGM is the
second and d2(x̂, ŷ) is the weakest, i.e.,

Ω

(
E[d2(x̂, ŷ)]

)
≤ ∆w(x̂, ŷ) ≤ ∆s(x̂, ŷ).

1.3 Main Results

In this paper, we establish the generalization bounds for
solving SSP using the empirical saddle point solution under
various assumptions. See Table 1 for an overview of our
technical results. Contributions of the paper are three-folded:

• We establish a uniform stability argument for the ESP
solution by extending the technique of Shalev-Shwartz et al.
(2009). For SSP over compact domains that are Lipschitz
continuous and strongly convex-strongly concave (SC-SC),
we provide an O(1/n) bound for the WGM metric. With
an additional assumption on gradient Lipschitz continuity,
we also establish an O(1/n) bound for the SGM metric.
Especially, the WGM bound has matched the state-of-the-art
result in Yan et al. (2020), though with slightly different
measures and assumptions2. Especially, when µx � µy and
`wx � `wy , our result provides a tighter bound.
• Further, we extend the generalization theory to SSP prob-
lems with unbounded domains or without the SC-SC prop-
erty. By using a different analysis, we establish an O(1/n)
generalization bound for the ESP solution even if the feasible
regions are unbounded. We also provide a generalization
bound for the regularized ESP problem.
•We illustrate the applications of our theory in three impor-
tant learning tasks: the batch policy learning in MDP, the
stochastic composite optimization, and the Nash equilibrium
estimation. In each of these tasks, the empirical saddle
point provides a conceptually simple estimator. Further, we
use the generalization theory to show these estimators have

2Yan et al. (2020) proved result under a slightly stronger mea-
sure, yet it also requires a stronger assumption on the tails of the
distribution.
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Table 1: Generalization bounds for stochastic saddle points (results from this paper)
Assumption 1 & 2 Assumption 1, 2 & 3 Assumption 1, 3 & 4

E
[
d2(x̂, ŷ)

]
O

(
1

nµmin
·

(
(`wx )

2

µx
+
(`wy )

2

µy

))
Same as left O

(
κ2 ·E[‖∇Φξ (x∗,y∗) ‖2]

n ·min{µ2
x,µ

2
y }

)
∆w (x̂, ŷ) O

(
(`wx )

2

nµx
+
(`wy )

2

nµy

)
Same as left O

(
κ4 ·E[‖∇Φξ (x∗,y∗) ‖2]

n ·min{µx,µy }

)
∆s (x̂, ŷ) NA O

(√
1 + L2

xy

µxµy
·

(
(`sx )

2

nµx
+
(`sy )

2

nµy

))
O

(
κ4 ·E[‖∇Φξ (x∗,y∗) ‖2]

n ·min{µx,µy }

)

provable sample complexities of Õ
(
|S | |A |

ε2

)
, O

(
1
µε

)
and

Õ(N1N2ε
−2) for the three learning tasks.3. These sample

complexities have tight dependencies on the parameters
|S| |A|, µ, N1N2 and ε , and they have not been studied
before.

1.4 Related works

Let us review the stochastic approximation (SA) approaches
for the SSP problem (1). WhenΦ(·, ·) is only convex and con-
cave, the seminal paper Nemirovski et al. (2009) established
an O(1/

√
n) convergence in SGM for a stochastic mirror

descent ascent algorithm. Similar O(1/
√

n) convergence
in SGM are also obtained by Bach and Levy (2019), Zhao
(2019) and Chen et al. (2014) under various assumptions.
Specifically, such O(1/

√
n) convergence is also obtained for

the class of general stochastic variational inequalities, which
include the SSP problem as a special case, see Juditsky et al.
(2011) and Chen et al. (2017). The interested readers are also
referred to the Chapter 4 of the Lan (2020). When the SC-SC
property is further assumed, a fasterO(1/n) convergence can
be derived. For example, Natole et al. (2018) obtained an
O(1/n) convergence in terms of the squared distance metric.
Yan et al. (2019) designed a stochastic gradient method with
O(1/n) convergence in SGMwhen the coupling between the
primal and dual variable is linear. Yan et al. (2020) derived
an epoch-wise stochastic gradient method that guarantees
O(1/n) in SGM. This result of Yan et al. (2020) does not
rely on the linear coupling structure, but instead requires
additional conditions on the tail distribution of sampling
noise. There also exist research results for SSP with special
structures such as finite-sum and bilinear coupling, etc, see
e.g. Du and Hu (2018); Shalev-Shwartz and Zhang (2013);
Xiao et al. (2019); Zhang and Xiao (2017).

There exist a rich body of literatures on the generalization
theory for solving stochastic convex optimization (SCO) by
empirical risk minimization (ERM), namely,{

minx∈X Φ(x) := Eξ

[
Φξ (x)

]
(SCO)

minx∈X Φ̂n(x) := 1
|Γ |

∑
ξ ∈Γ Φξ (x) (ERM)

In the seminal paper Shalev-Shwartz et al. (2009), Shalev
3The definition of these parameters can be found in the corre-

sponding sections.

et al. established an O(1/n) ERM generalization bound
for strongly convex problems and an O(1/

√
n) risk bound

for general convex problems. Similar rates are also ob-
tained in related works Sridharan et al. (2009); Gonen and
Shalev-Shwartz (2017). The main technique used by Shalev-
Shwartz et al. (2009) and our paper is the uniform stability
argument, which was originally introduced by Bousquet
and Elisseeff (2002), and later on studied in many papers,
see e.g. Kearns and Ron (1999); Mukherjee et al. (2006);
Shalev-Shwartz et al. (2009); Shalev-Shwartz and Zhang
(2013); Hardt et al. (2015); Chen et al. (2018b), etc. With
the tool of the Rademacher complexity Rn, Srebro et al.
(2010) demonstrated an O(Rn/

√
n) risk bound for ERM, and

many papers strengthened the theory further Bartlett and
Mendelson (2002); Bartlett et al. (2005). For nonconvex
but exp-concave objectives, Koren and Levy (2015) and
Mehta (2016) derived a risk bound of O(1/n). Under certain
stronger conditions, a tighter O(1/n2) risk bound has been
shown Zhang et al. (2017).

In a weakly related work Dikkala et al. (2020), the authors
introduce a min-max approach for estimating models with
conditional moment restrictions. Under a different setting,
Dikkala et al. (2020) studies the statistical properties of
the ESP solutions in terms of some distance between the
emprical and true solutions in the minimization side, which
is analogous to E[‖ x̂ − x∗‖] in our setting. To the authors’
best knowledge, there is no existing generalization bound
for stochastic saddle point problems.

2 Generalization Bounds for Empirical
Saddle Points

2.1 Assumptions

In most of our analysis, we require that Φ is strongly convex
and strongly concave (SC-SC).

Assumption 1 (SC-SC objective function). ∃µx, µy ≥ 0,
s.t. for almost every ξ, Φξ (·, y) is µx-strongly convex un-
der norm ‖ · ‖ and Φξ (x, ·) is µy-strongly concave under
the norm ||| · |||. Namely, denote ∂xΦξ (·, y) and ∂yΦξ (x, ·)
the subgradients and supergradients respecitively, then for
∀x, x ′ ∈ X, ∀y, y′ ∈ Y, u ∈ ∂xΦξ (x, y) and v ∈ ∂yΦξ (x, y),
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it holds that{
Φξ (x ′, y)≥Φξ (x, y) + 〈u, x ′−x〉+ µx2 ‖x

′ − x‖2,
Φξ (x, y′)≤Φξ (x, y) + 〈v, y′−y〉−

µy
2 |||y

′ − y |||2.
(9)

For convex analysis of strongly convex function under non-
Euclidean norms, see Shalev-Shwartz and Singer (2007);
Kakade et al. (2012) and references therein. We further
assume that the feasible regions X,Y are bounded and the
objective function is Lipschitz continuous.
Assumption 2 (Function Lipschitz continuity). The feasible
regions X andY are compact convex sets. For almost every
ξ, there exist constants `x(ξ, y) and `y(ξ, x) s.t.{

|Φξ (x ′, y) − Φξ (x, y)| ≤ `x(ξ, y)‖x ′ − x‖,
|Φξ (x, y′) − Φξ (x, y)| ≤ `y(ξ, x)|||y′ − y |||,

(10)

for ∀x, x ′ ∈ X and ∀y, y′ ∈ Y. To bound the WGM, we need
to assume{

(`wx )
2 := supy∈Y Eξ

[
`2
x(ξ, y)

]
< +∞,

(`wy )
2 := supx∈X Eξ

[
`2
y(ξ, x)

]
< +∞.

(11)

To bound the SGM, we assume{
(`sx)

2 := Eξ

[
supy∈Y `2

x(ξ, y)
]
< +∞,

(`sy)
2 := Eξ

[
supx∈X `

2
y(ξ, x)

]
< +∞.

(12)

Due to Jensen’s inequality, `wx ≤ `sx and `wy ≤ `sy always
hold.

In our analysis, Assumptions 1 and 2 only guarantee the
O(1/n) bound for the WGM metric. In order to prove an
O(1/n) bound for the stronger metric SGM, we will require
additional smoothness of Φ.
Assumption 3 (Gradient Lipschitz continuity). There exist
constants Lx , Ly and Lxy s.t. for ∀x, x ′ ∈ X, ∀y, y′ ∈ Y, it
holds that
‖∇xΦ(x, y) − ∇xΦ(x ′, y)‖∗ ≤ Lx ‖x − x ′‖
|||∇yΦ(x, y) − ∇yΦ(x, y′)|||∗ ≤ Ly |||y − y′ |||

‖∇xΦ(x, y) − ∇xΦ(x, y′)‖∗ ≤ Lxy |||y − y′ |||

|||∇yΦ(x, y) − ∇yΦ(x ′, y)|||∗ ≤ Lxy ‖x − x ′‖

where ‖ · ‖∗ and ||| · |||∗ stand for the dual norms of ‖ · ‖ and
||| · ||| respectively.

Finally, we also study the casewhereX andY are unbounded.
Such unboundedness would invalidate Assumption 2 as well
as the stability argument. To remedy this issue, we would
replace Assumption 2 with the following assumption about
the true optimal solution (x∗, y∗).

Assumption 4. ∃C > 0 s.t. Eξ

[
‖∇Φξ (x∗, y∗)‖22

]
≤ C.

2.2 Main Results

We use the leave-one-out technique in Shalev-Shwartz et al.
(2009) to analyze the stability of the ESP solutions. Let
Γ := {ξ1, ..., ξn} be a set of n i.i.d. samples, and let ξ ′i be
another independent sample. We then define the perturbed
sample set Γ(i) = Γ ∪ {ξ ′i }\{ξi}. That is, Γ(i) is constructed
by replacing just the i-th sample Γ with another i.i.d. sample
ξ ′i . For the sake of generality, instead of the ESP solution,
we will establish the stability property of the regularized
ESP (R-ESP) solutions:

(R-ESP) min
x∈X

max
y∈Y
ΦΓ(x, y) + Ψ(x, y), (13)

where Ψ is a regularization function that is SC-SC and can
be specified by the user. In particular, if we set Ψ ≡ 0,
the R-ESP problem (13) is reduced to the ESP problem (2)
where no regularization is applied.

Lemma 1 (Stability property for R-ESP solution). Suppose
the regularization function Ψ(·, y) is νx-strongly convex
under norm ‖ · ‖ and Ψ(x, ·) is νy-strongly concave under
norm ||| · |||, and there exists R > 0 s.t. |Ψ(x, y)| ≤ R,
∀(x, y) ∈ X × Y. Under the Assumptions 1, 2, let (x̂, ŷ) and
(x̂(i), ŷ(i)) be the solution to the R-ESP problem (13) with
sample set Γ and Γ(i) respectively, and suppose µx + νx > 0,
µy + νy > 0, then√

(µx+νx)‖ x̂− x̂(i)‖2 + (µy+νy)||| ŷ− ŷ(i) |||2

≤
1
n

√
(`x(ξi,ŷ(i))+`x(ξ

′
i ,ŷ))

2

µx + νx
+
(`y(ξi,x̂(i))+`y(ξ ′i ,x̂))

2

µy + νy
.

Proof. First, in parallel to Φ̂n, we define

Φ̂n,i(x, y) =
1
n

∑
ξ ∈Γ(i)

Φξ (x, y).

Then we have

Φ̂n
(
x̂(i), ŷ

)
+ Ψ

(
x̂(i), ŷ

)
− Φ̂n

(
x̂, ŷ(i)

)
− Ψ

(
x̂, ŷ(i)

)
(14)

=
1
n

n∑
j=1

(
Φξj

(
x̂(i), ŷ

)
− Φξj

(
x̂, ŷ(i)

) )
+ Ψ

(
x̂(i), ŷ

)
− Ψ

(
x̂, ŷ(i)

)
=

1
n

(
Φξ′i

(
x̂(i),ŷ

)
−Φξ′i

(
x̂,ŷ(i)

)
+

n∑
j=1, j,i

(
Φξj

(
x̂(i),ŷ

)
− Φξj

(
x̂, ŷ(i)

)))
+

1
n

(
Φξi

(
x̂(i),ŷ

)
−Φξi

(
x̂(i),ŷ(i)

)
+Φξi

(
x̂(i),ŷ(i)

)
−Φξi

(
x̂,ŷ(i)

))
−

1
n

(
Φξ′i

(
x̂(i), ŷ

)
− Φξ′i

(
x̂, ŷ

)
+ Φξ′i

(
x̂, ŷ

)
− Φξ′i

(
x̂, ŷ(i)

) )
+Ψ

(
x̂(i), ŷ

)
− Ψ

(
x̂, ŷ(i)

)
(a)
≤

(
Φ̂n,i

(
x̂(i), ŷ

)
+ Ψ

(
x̂(i), ŷ

)
− Φ̂n,i

(
x̂, ŷ(i)

)
− Ψ

(
x̂, ŷ(i)

) )
+
`x(ξi,ŷ(i))+`x(ξ

′
i ,ŷ)

n

x̂− x̂(i)
+ `y(ξi,x̂(i))+`y(ξ ′i ,x̂)

n
||| ŷ− ŷ(i) |||
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=
(
Φ̂n,i

(
x̂(i), ŷ

)
+ Ψ(x̂(i), ŷ) − Φ̂n,i

(
x̂(i), ŷ(i)

)
− Ψ

(
x̂(i), ŷ(i)

) )
+
(
Φ̂n,i

(
x̂(i),ŷ(i)

)
+Ψ

(
x̂(i),ŷ(i)

)
−Φ̂n,i

(
x̂, ŷ(i)

)
+Ψ

(
x̂, ŷ(i)

))
+
`x(ξi,ŷ(i))+`x(ξ

′
i ,ŷ)

n

x̂− x̂(i)
+ `y(ξi,x̂(i))+`y(ξ ′i ,x̂)

n
||| ŷ− ŷ(i) |||

(b)
≤ −

µx + νx
2
‖ x̂ − x̂(i)‖

2 −
µy + νy

2
||| ŷ − ŷ(i) |||

2

+
`x(ξi,ŷ(i))+`x(ξ

′
i ,ŷ)

n

x̂− x̂(i)
+ `y(ξi,x̂(i))+`y(ξ ′i ,x̂)

n
||| ŷ− ŷ(i) |||.

The step (a) is due to Lipschitz continuity of Φξi ,Φξ′i . The
step (b) is due the (µy+νy)-strong concavity of Φ̂n,i

(
x̂(i), ·

)
+

Ψ
(
x̂(i), ·

)
and the fact that

ŷ(i) = argmax
y∈Y

Φ̂n,i

(
x̂(i), y

)
+ Ψ

(
x̂(i), y

)
.

Hence

Φ̂n,i
(
x̂(i), ŷ

)
+ Ψ

(
x̂(i), ŷ

)
− Φ̂n,i

(
x̂(i), ŷ(i)

)
− Ψ

(
x̂(i), ŷ(i)

)
≤ −

µy + νy

2
||| ŷ − ŷ(i) |||

2.

The other part of argument on −µx+νx2 ‖ x̂ − x̂(i)‖2 is similar.
On the other hand, similar to the argument of step (b) above,
because x̂, ŷ and solves the strongly convex and strongly
concave R-ESP problem (13), we also have

Φ̂n
(
x̂(i), ŷ

)
+ Ψ

(
x̂(i), ŷ

)
− Φ̂n

(
x̂, ŷ(i)

)
− Ψ

(
x̂, ŷ(i)

)
≥

µx + νx
2
‖ x̂ − x̂(i)‖

2 +
µy + νy

2
||| ŷ − ŷ(i) |||

2. (15)

Combining the (14) and (15) yields

(µx + νx)‖ x̂ − x̂(i)‖
2 + (µy + νy)||| ŷ − ŷ(i) |||

2

≤
`x(ξi,ŷ(i))+`x(ξ

′
i ,ŷ)

n

x̂− x̂(i)
+ `y(ξi,x̂(i))+`y(ξ ′i ,x̂)

n
||| ŷ− ŷ(i) |||

≤
1
n

√√(
`x

(
ξi,ŷ(i)

)
+ `x

(
ξ ′
i
,ŷ

))2

µx + νx
+

(
`y

(
ξi,x̂(i)

)
+`y

(
ξ ′
i
,x̂

))2

µy + νy

×

√
(µx+νx)‖ x̂− x̂(i)‖2+(µy+νy)||| ŷ− ŷ(i) |||

2

where the last row uses theCaucy-Schwartz inequality. Divid-
ing both sides by

√
(µx + νx)‖ x̂ − x̂(i)‖2 + (µy + νy)||| ŷ − ŷ(i) |||

2

proves this lemma.

For the important special case where µx, µy > 0 and the
regularization term Ψ ≡ 0, we have the following corollary.
Corollary 1 (Stability property). Let the Assumptions 1 and
2 hold, and µx, µy > 0. Denote (x̂, ŷ) and (x̂(i), ŷ(i)) as the
solutions to the ESP problem (2) with sample sets Γ and Γ(i)
respectively. Then√

µx ‖ x̂ − x̂(i)‖2 + µy
������ŷ − ŷ(i)

������2
≤

1
n

√
(`x(ξi,ŷ(i))+`x(ξ

′
i ,ŷ))

2

µx
+
(`y(ξi,x̂(i))+`y(ξ ′i ,x̂))

2

µy
.

For the ESP problem, it is worth noting that by the Mcdi-
armid’s inequality McDiarmid (1989, 1998), the stability
argument of Corollary 1 immediately results in an Õ(1/

√
n)

generalization bound for SC-SC problems, which, however,
is not tight. In Theorem 1, we establish a tighter O(1/n)
bound for SC-SC problems by using a more careful analysis.

Lemma 2 (Generalization bound for R-ESP). Under the
settings of Lemma 1, the R-ESP solution (x̂, ŷ) satisfies

∆
w(x̂, ŷ) ≤

2
√

2
n
·

(
(`wx )

2

µx + νx
+
(`wy )

2

µy + νy

)
+ 2R,

where the WGM ∆w(·, ·) is defined for the original unregu-
larized SSP problem.

Proof. By the function Lipschitz continuity of Assumption
2, for any 1 ≤ i ≤ n, and for any x ∈ X and y ∈ Y,

Φξi

(
x̂(i), y

)
−Φξi

(
x, ŷ(i)

)
≤ Φξi

(
x̂, y

)
−Φξi

(
x, ŷ

)
(16)

+`x
(
ξi, y

)
‖ x̂− x̂(i)‖+`y

(
ξi, x

)
||| ŷ− ŷ(i) |||︸                                           ︷︷                                           ︸

T (i)

.

As a result, we have

1
n

n∑
i=1

E
[
Φ

(
x̂(i), y

)
− Φ

(
x, ŷ(i)

) ]
+ Ψ

(
x̂, y

)
− Ψ

(
x, ŷ

)
(17)

(a)
=

1
n

n∑
i=1

E
[
Φξi

(
x̂(i), y

)
− Φξi

(
x, ŷ(i)

) ]
+ Ψ

(
x̂, y

)
− Ψ

(
x, ŷ

)
(b)
≤ E

[
1
n

n∑
i=1

(
Φξi

(
x̂,y

)
−Φξi

(
x,ŷ

))]
+Ψ

(
x̂,y

)
−Ψ

(
x,ŷ

)
+

1
n

n∑
i=1

E[T(i)].

The step (a) is due to the fact that (x̂(i), ŷ(i)) is independent
from ξi , and hence one can take the expectation over the
ξi’s first. And the step (b) is due to (16). Then, because the
distribution of

(
x̂(i), ŷ(i)

)
are the same as that of

(
x̂, ŷ

)
for

any 1 ≤ i ≤ n. Therefore, the expectation term on the LHS
of (17) can be simplified to

1
n

n∑
i=1

E
[
Φ

(
x̂(i), y

)
− Φ

(
x, ŷ(i)

) ]
= E

[
Φ

(
x̂, y

)
− Φ

(
x, ŷ

) ]
.

(18)
Second, the first term on the RHS of (17) is actually

E

[
1
n

n∑
i=1
(Φξi (x̂, y) − Φξi (x, ŷ))

]
+ Ψ(x̂, y) − Ψ(x, ŷ)

= E
[
Φ̂n(x̂, y) − Φ̂n(x, ŷ) + Ψ(x̂, y) − Ψ(x, ŷ)

]
(19)

≤ 0,

for ∀(x, y) ∈ X and y ∈ Y, which is because (x̂, ŷ) solves
the R-ESP problem (13). Third, because the distributions of
T(i)’s are the same, for the second term on the RHS of (17),
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we have

1
n

n∑
i=1

E[T(i)] (20)

= E
[
`x(ξi, y)‖ x̂ − x̂(i)‖ + `y(ξi, x)||| ŷ − ŷ(i) |||

]
(a)
≤ E

[√
`2
x(ξi, y)

µx + νx
+
`2
y(ξi, x)

µy + νy

×

√
(µx + νx)‖ x̂ − x̂(i)‖2 + (µy + νy)||| ŷ − ŷ(i) |||

2
]

(b)
≤

√√√
E

[
`2
x(ξi, y)

µx + νx
+
`2
y(ξi, x)

µy + νy

]
×

√
E

[
(µx + νx)‖ x̂ − x̂(i)‖2 + (µy + νy)||| ŷ − ŷ(i) |||

2
]

(c)
≤

√√√
E

[
`2
x(ξi, y)

µx + νx
+
`2
y(ξi, x)

µy + νy

]

×
1
n

√√√
E

[
(`x(ξi,ŷ(i))+`x(ξ

′
i
,ŷ))2

µx + νx
+
(`y(ξi,x̂(i)) + `y(ξ ′i ,x̂))

2

µy + νy

]
(d)
≤

√
2(`wx )2
µx+νx

+
2(`wy )2

µy+νy
·
1
n

√
2(`wx )2+2(`wx )2

µx+νx
+

2(`wy )2+2(`wy )2

µy+νy

=
2
√

2
n
·

(
(`wx )

2

µx + νx
+
(`wy )

2

µy + νy

)
.

The step (a) uses the vector Cauchy-Schwartz inequality
a>b ≤ ‖a‖2 · ‖b‖2 for some vectors a and b. The step (b)
uses the expectation version of Cauchy-Schwartz inequality
E[ab] ≤

√
E[a2] ·

√
E[b2] for some random variables a

and b. The step (c) is due to Lemma 1. And the step
(d) is due to Assumption 2, and the fact that

(
x̂(i), ŷ(i)

)
is independent from ξi and

(
x̂, ŷ

)
is independent from ξ ′i .

Finally, substituting (18), (19), and (20) into (17) provides
the following result:

E
[
Φ

(
x̂, y

) ]
− E

[
Φ

(
x, ŷ

) ]
+ Ψ

(
x̂, y

)
− Ψ

(
x, ŷ

)
≤

2
√

2
n
·

(
(`wx )

2

µx + νx
+
(`wy )

2

µy + νy

)
, for ∀x, y.

Due to the bound the regularizer, we know |Ψ(x̂, y) −
Ψ(x, ŷ)| ≤ 2R. Note that the above inequality is true for any
x and y. Therefore, we prove the overal result that

max
y∈Y

E
[
Φ

(
x̂, y

) ]
−min

x∈X
E
[
Φ

(
x, ŷ

) ]
≤

2
√

2
n
·

(
(`wx )

2

µx + νx
+
(`wy )

2

µy + νy

)
+ 2R.

This completes the proof.

Given the above lemma, let us present our first theorem
about the generalization of the ESP solution for an SC-SC
stochstic saddle point problem.

Theorem 1. (Upper bound on WGM) For the SSP problem
(1), let (x̂, ŷ) be the solution to the ESP problem (2). And
let n = |Γ | be sample size. Under Assumptions 1, 2, and
suppose µx, µy > 0, we have

E
[
d2(x̂, ŷ)

]
≤

2∆w (x̂,ŷ)
min{µx,µy } ,

∆w(x̂, ŷ) ≤ 2
√

2
n

(
(`wx )

2

µx
+
(`wy )

2

µy

)
.

(21)

The first inequality of (21) is directly due to (8). The second
inequality of (21) can be derived from Lemma 2 by setting
the regularizer Ψ to be 0. Namely, R = νx = νy = 0.

The generalization bounds given in Theorem 1 have tight
dependence on the sample size n, as well as the problem’s
parameters `wx , `wy and µx, µy . To see this, we can simply
consider the special case of SCO. When Φξ (x, ·) ≡ fξ (x),
i.e., the objective function is constant in y, the SSP and ESP
reduce to the classical SCO and ERM respectively. In this
case, the difference between `wx and `sx vanishes, and we
denote them as `x := `wx = `sx . The WGM also reduces to

∆
w(x̂, ŷ) = max

y∈Y
E[ f (x̂)] −min

x∈X
E[ f (x)]

= E
[

f (x̂) −min
x∈X

f (x)
]
.

The generalization bound (21) becomes O
(
`2
x

nµx

)
and

matches the generalization bound for ERM Shalev-Shwartz
et al. (2009).

Note that Theorem 1 requires µx, µy > 0, i.e., the problem
is strongly convex and strongly concave. When the problem
is general convex and concave with µx = µy = 0, we will
need to choose the regularizer optimally and establish a
generalization bound that depends only on the diameters of
X,Y and constants of Lipschitz continuity of Φ.
Theorem 2. Suppose the Φξ ’s are convex concave but not
SC-SC. Namely, µx = µy = 0. Suppose the Φξ ’s satisfy
Assumption 2 under the L2 norm. Then we can set the
regularizer to beΨ(x, y) = αx

2 ‖x‖
2
2−

αy

2 ‖y‖
2
2 . Consequently,

R = αx

2 D2
x +

αy

2 D2
y , where Dx and Dy denote the diameters

ofX andY under L2-norm respectively. If we setαx =
`wx√
nDx

and αy =
`wy
√
nDy

, Lemma 2 implies

∆
w(x̂, ŷ) ≤ O

(
`wx Dx + `

w
y Dy

√
n

)
.

Similar to Theorem 1, Theorem 2 is also tight for the special
case of general convex stochastic optimization problem.

The above two theorems characterize the generalization
bounds under the measure of weak generalization measure.
By utilizing additional smoothness of the objective function,
we provide an O(1/n) bound on SGM, for the SC-SC case
where µx, µy > 0. We provide the proof in Appendix A.1.
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Theorem 3. (Upper bound on SGM) Under the settings of
Theorem 1, if Assumption 3 holds in addition, we have

∆
s(x̂, ŷ) ≤

2
√

2
n
·

√
L2
xy

µxµy
+ 1 ·

(
(`sx)

2

µx
+
(`sy)

2

µy

)
. (22)

We remark that the bound (22) has an additional multi-
plicative O

(
Lxy/
√
µxµy

)
factor compared to bound (21). It

remains open whether this dependence can be improved, as
a question for future work. It is worth noting that for SA
type method, Yan et al. (2020) has derived a similar bound
for SGM of O

( max{`sx,`sy }2

nmin{µx,µy }

)
, yet with stronger requirements

on tails of the stochastic gradients. When the parameters
are unbalanced, i.e. µx � µy and `sx � `sy , our result can
be better.

Note that Theorem 1, 2 and 3 are all based on the stability
argument in Lemma 1, which relies heavily on the Lipschitz
continuity of the objective function. Next we study SSP
problem over unbounded domains. In this case, the SC-SC
property and function Lipschitz continuity are mutually
exclusive. In the next theorem, we provide a generalization
bound for this class of problem.

Theorem 4 (Generalization error for unbounded problems).
Let Assumptions 1, 3 and 4 hold, and let the SSP be uncon-
strained. Let ‖ · ‖ = ||| · ||| = ‖ · ‖2. Then

E
[
d2 (x̂, ŷ)

]
≤ O

(
Cκ2

nµ2

)
,

∆s(x̂, ŷ) ≤ O
(
Cκ4

nµ

)
,

(23)

where µ = min{µx, µy} and κ =
max{Lx,Ly,Lxy }

min{µx,µy } is the
condition number.

3 Application to Batch Policy Learning for
MDP

3.1 Saddle Point Formulation of MDP

Consider the policy learning problem for an infinite-horizon
average-reward Markov Decision Process (MDP). The MDP
instance is specified by M = (S,A, P, r) where S is a finite
state space. A is a finite action space, P = {Pa} are state
transition matrices with Pa(s, s′) = Prob(st+1 = s′ | st =
s, at = a), for ∀s, s′ ∈ S and a ∈ A. r is the reward
function with rsa ∈ [0, 1] being the reward received after
taking action a at state s. A policy π : S 7→ ∆A maps a
state s to a distribution over the action space A, where we
denote the probability of taking action a at state s as π(a|s).
The objective is to maximize the long-term average reward,
defined as

v̂∗ := max
π

lim
T→∞

E

[
1
T

T−1∑
t=0

rst at

���� π, s0 = s

]
. (24)

The optimal Bellman equation has an equivalent saddle point
formulation (3) Puterman (2014); Chen and Wang (2016)

min
x∈X

max
y∈Y
Φ(x, y) := 〈y, r〉 +

∑
a∈A

y>a (Pa − I)x,

where x ∈ R |S | is the difference-of-value vector, y ∈
R |S |×|A | stands for the stationary state-action distribution
under certain policy π. ya = [y1,a, ..., y |S |,a]

′ is the a-th
column of y. Under the assumption of fast mixing time and
uniform ergodicity (Assumptions 2,3 of Chen et al. (2018a)),
there exists constant tmix and τ such that one can set the
feasible regions X and Y as

X := {x ∈R |S| : ‖x‖∞ ≤ 2tmix}, (25)

and

Y :=
{
y ∈R |S|×|A| : y≥0, ‖y‖1=1,

1
√
τ |S|
≤

∑
a∈A

ya ≤

√
τ · 1
|S|

}
,

(26)
(see Appendix B.1 for details). In the policy learning setting,
we do not know either P or r . Instead, we want to estimate
the optimal policy π∗ based on sample transitions.

We construct an unbiased sample of P = {Pa} by gen-
erating one sample transition from every (s, a), i.e., ξ :={
(s, a, s′, r̂sa) :∀s ∈ S, a ∈A, s′ ∼ Pa(s, ·)

}
. In other words,

each ξ consists of |S| |A| sample transitions. Thus we obtain
a sample transition matrix Pξ = {Pa} where Pξ,a(s, s′) = 1
if s′ is sampled and Pξ,a(s, s′) = 0 otherwise. Thus, we can
define a stochastic sample of the objective function of (3) as

Φξ (x, y) =
∑
s∈S

∑
a∈A

ysar̂sa −
∑
a∈A

yTa (Pξ,a − I)x. (27)

It is easy to see that Φ(x, y) = Eξ

[
Φξ (x, y)

]
.

3.2 Efficiency of the Empirical Optimal Policy

To handle the bilinear objective function, we consider the
regularized empirical saddle point (R-ESP) problem, given
by

min
x∈X

max
y∈Y

αx
2
‖x‖22 + ΦΓ(x, y) − αy

∑
s,a

ysa log(ysa), (28)

where ΦΓ(x, y) := 1
|Γ |

∑
ξ ∈Γ Φξ (x, y) is the empirical objec-

tive, αx, αy are to be chosen later. Let (x̄, ȳ) be the solution
to the R-ESP problem (28). Then we obtain the empirical
optimal policy π̄ given by

π̄(a|s) := ȳsa/
( ∑
a′∈A

ȳsa′
)
, ∀s ∈ S, a ∈ A.

The entropy regularizer∑s,a ysa log(ysa) plays an important
role in the analysis. It is 1-strongly convex in L1-norm due
to the Pinsker’s inequality. To analyze the efficiency of π̄,
we will apply the generalization theory for SSP problem
by choosing the norms as ‖ · ‖ := ‖ · ‖2 and ||| · ||| := ‖ · ‖1,
respectively.
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Theorem5 (Sample Efficiency of Empirical Optimal Policy).
Let αx = τ3/2

√
n |S |tmix

, αy = tmix√
n log( |S | |A |)

. Then the empirical

optimal policy π̄ satisfies

E
[
v̂∗ − v π̄

]
≤ O

(
tmixτ
√

n
·

(
τ1.5 +

√
log(|S||A|)

))
.

Consequently, to guarantee that E
[
v̂∗ − v π̄

]
≤ ε , we need

n = Ω
(
t2
mix

ε2

(
τ5 + τ3 log(|S||A|)

) )
. Since each ξ consists

of |S| |A| samples of state transitions, the total sample
complexity will be |S| |A| · n = Õ

(
t2
mixτ

5 |S | |A |

ε2

)
. The

|S| |A|/ε2 dependence in this bound is optimal.

Theorem 5 has several implications:
• The regularized empirical optimal policy π̄ achieves a
near-optimal sample complexity, which matches known
upper/lower bounds in their dependences on |S|, |A|, ε Chen
and Wang (2017). This result is somewhat surprising: It
means that one can simply compute an empirical MDP and
solve it for estimating the optimal policy. This approach is
conceptually simple, yet has satisfying error bound.
• Also note that the transition matrix P contains |S|2 |A|
unknown variables, but the policy error of π̄ scales with
|S| |A| which is significantly smaller. Namely, one does not
need to estimate the full matrix P but can still get a good
policy estimator by solving the R-ESP.
• The proof of Theorem 5 is nontrivial because we want
to evaluate v π̄ , which is the average reward of the state-
transition process if π̄ is implemented. The first step of the
proof is to apply the result of Lemma 2 to the R-ESP (28),
so that we obtain a WGM upper bound as

∆
w(x̄, ȳ) ≤ O

(
tmix ·

(
τ1.5 +

√
log(|S||A|)

)
· n−

1
2

)
(29)

Then, we exploit the stationarity condition of the MDP (3)
and prove that

v̂∗−E

[ ∑
a∈A

ȳ>a ((Pa − I)x∗ + ra)

]
= E

[
Φ(x̄, y∗) − Φ(x∗, ȳ)

]
(30)

≤ ∆
w(x̄, ȳ).

Finally, we use the uniform ergodicity property of the MDP
to show that E

[
v̂∗ − v π̄

]
≤ τE

[
v̂∗ −

∑
a∈A ȳ>a ((Pa − I)x∗ +

ra)
]
(Chen et al. (2018a)), which further leads to our theorem.

Proofs of (29), (30) are given in Appdices B.2,B.3.

4 Application to Stochastic Composite
Optimization

Another example is stochastic composite optimization of the
general form

min
x∈X

F(x) := f
(
Eξ [gξ (x)]

)
+ r(x).

Such problems have been studied in many literatures, see
Nesterov (2007); Wang et al. (2017); Zhang and Xiao (2019)
and references therein. Let us consider the case where
f is convex and has Lipschitz continuous gradient and
gξ (x) = Aξ x − bξ is linear, where Aξ is a random matrix
and bξ is a random vector. This case applies to inverse
problems and policy evaluation with function approximation
Wang et al. (2017).This problem is equivalent to an SSP
problem

min
x∈X

max
y∈Y

Φ(x, y) = r(x)+Eξ

[
y>(Aξ x−bξ )

]
− f ∗(y), (31)

where f ∗(y) = supx∈X y>x − f (x) is the convex conjugate
of f . Suppose X is a convex compact set and both f and
r are convex functions. To guarantee the SC-SC property
of Φ, we assume the function r is µ-strongly convex and
`r -Lipschtiz continuous and f is smooth and has L-Lipschitz
continuous gradient. we also assume that the L2 norms of
the sample Aξ and bξ are almost surely bounded.

Note that in general, we should choose Y to be the whole
space. However, However, in (31), because we assume f
is convex and L-smooth in the whole space, f ∗ is strongly
convex. Since X, Aξ, bξ are all required to be bounded,
argmaxy y>E[Aξ x − bξ ] − f ∗(y) is bounded for all x ∈ X.
Consequently, we assume the domain Y is convex and
compact without hurting the optimality.

Due to the compactness of Y, we also assume that f ∗ is
`f ∗-Lipschitz continuous in Y. Since µ is often very small,
for simplify the result, we assume that Lµ = O(1) .

Let (x̄, ȳ) solve the ESP version of (31). Under these
conditions, if directly applying Theorem 3, we would be
able to prove

E [F(x̄)] −min
x∈X

F(x) ≤ O
(
n−1µ−1.5

)
, (32)

which corresponds to an O
(

1
µ1.5ε

)
sample complexity (see

its proof in Appendix C.1). In the next theorem, we show
that the ESP solution is actually more sample efficient and
has smaller error. The proof is given in Appendix C.2.
Theorem 6. Let (x̄, ȳ) be the ESP solution to (31) based on
n i.i.d. samples. Then

E [F(x̄)]−min
x∈X

F(x) ≤ ∆̃(x̄, ȳ) ≤ O
(

L`f ∗ + `r
µ · n

)
= O

(
1
µ · n

)
,

where ∆̃(x̄, ȳ) = E
[

maxy∈Y Φ(x̄, y)
]
−minx∈X E

[
Φ(x, ȳ)

]
is a hybrid duality gap measure between WGM and SGM.

In other words, the ESP solution leads to an ε-optimal
solution to the original composite problem, when the sample
size satisfies n ≥ O( 1

µε ). In terms of the dependence on n
and µ, this result matches the best known sample complexity
for this problem given by Zhao (2019). However, we should
also point out that the dependence on L and σA is not tight
yet. How the dependence on these constants can be improved
remains a future task.
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5 Application to Stochastic Games

Consider the two-player stochastic matrix game problem
(5):

min
x∈∆N1

max
y∈∆N2

x>Eξ [Aξ ]y,

with ∆Ni := {z ∈ RNi : z ≥ 0, 1>z = 1}, i = 1, 2, and x, y
denote the mixed strategies of players 1 and 2, respectively.
Based on n i.i.d. samples of the payoff matrix (with nN1N2
individual sample payoffs), we estimate the Nash equilibrium
(x∗, y∗) by constructing the following R-ESP

min
x∈∆N1

max
y∈∆N2

∑
i xi log xi√
n log N1

+ x>
(1

n

n∑
i=1

Aξi
)
y −

∑
j yj log yj√
n log N2

.

Let (x̄, ȳ) be the solution to the preceding R-ESP, which is
referred to as the empirical Nash equilibrium. Then the
following theorem holds.
Theorem 7. Assume maxi, j |Aξ (i, j)| ≤ 1 almost surely.
Therefore,

E[x>Aȳ] − O
(√

log(N1N2)/n
)
≤ E[x̄>Aȳ]

≤E[x̄>Ay] + O
(√

log(N1N2)/n
)
,

for ∀x ∈ ∆N1, y ∈ ∆N2 .

The theorem means that the empirical strategy (x̄, ȳ) is an
ε-Nash equilibrium with high probability, as long as the
total number of sample payoffs is greater than Õ(N1N2ε

−2).
This sample complexity is statistically optimal.
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