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Appendix: Provable Hierarchical Imitation Learning via EM

Organization. Appendix A presents discussions that motivate Assumption 3. In particular, we show that
Assumption 3 approximately holds in a particular class of environment. Appendix B provides details on
Algorithm 1, including the comparison with the existing algorithm from (Daniel et al., 2016b), the forward-
backward implementation and the derivation of the Q-function from (7). In Appendix C, we prove our theoretical
results from Section 4. Technical lemmas involved in the proofs are deferred to Appendix D. Finally, Appendix E
presents details of our numerical example omitted from Section 5.

Additional notation. For any two probability measures ν1 and ν2 over a finite sample space Ω, let ‖·‖TV be
their total variation distance. ‖ν1 − ν2‖TV = maxE⊆Ω |ν1(E)− ν2(E)|. Let 〈·, ·〉 be the Euclidean inner product.

A Discussion on Assumption 3

In this section we justify Assumption 3 in a particular class of environment. Consider the stochastic process
{Xt; θ}∞t=1 = {St, At, Ot, Bt; θ}∞t=1 generated by any (o0, s1) and an options with failure hierarchical policy
with parameter θ. It is a Markov chain with its transition kernel parameterized by θ, and its state space
X = S ×A×O × {0, 1} is finite. Denote its one step transition kernel as Qθ and its t step transition kernel as
Qtθ. In the following, we show that {Xt; θ}∞t=1 is uniformly ergodic when the environment meets the reachability
assumption: ∀st, st+1 ∈ S, there exists at ∈ A such that P (st+1|st, at) > 0.

Proposition 5 (Ergodicity). With Assumption 1, 2 and the reachability assumption stated above, for all θ ∈ Θ,
a Markov chain with transition kernel Qθ has a unique stationary distribution νθ. There exist constants α ∈ (0, 1)
and C > 0 such that for all θ ∈ Θ and t ∈ N+,

sup
θ∈Θ

max
x∈X

∥∥Qtθ(x, ·)− νθ∥∥TV
≤ Cαt.

Proof of Proposition 5. We start by analyzing the irreducibility of the Markov chain {Xt; θ}∞t=1 with any θ.
Denote the probability measure on the natural filtered space as PX . The dependency on θ is dropped for a cleaner
notation, since the following proof holds for all θ ∈ Θ . For any x, x̃ ∈ X , let x = (s, a, o, b) and x̃ = (s̃, ã, õ, b̃).
For any time t,

PX(Xt+2 = x̃|Xt = x) =
∑

s̄∈S,ā∈A
PX(Xt+2 = x̃|Xt = x, St+1 = s̄, At+1 = ā)PX(St+1 = s̄, At+1 = ā|Xt = x).

From Assumption 1, there exists a state s̄ such that ∀ā ∈ A, PX(St+1 = s̄, At+1 = ā|Xt = x) > 0. Consider the
first factor in the sum,

PX(Xt+2 = x̃|Xt = x, St+1 = s̄, At+1 = ā) = PX(St+2 = s̃|St+1 = s̄, At+1 = ā)

× PX(Bt+2 = b̃, Ot+2 = õ, At+2 = ã|Xt = x, St+1 = s̄, At+1 = ā, St+2 = s̃).

From Assumption 1, the second term on the RHS is positive for all s̄ ∈ S and ā ∈ A. From the reachability
assumption, for any s̄ there exists an action ā such that PX(St+2 = s̃|St+1 = s̄, At+1 = ā) > 0. As a result, for
any x, x̃ ∈ X , PX(Xt+2 = x̃|Xt = x) > 0, and the considered Markov chain is irreducible.

As shown above, for all θ ∈ Θ , minx,x̃∈X Q
2
θ(x, x̃) > 0 where Q2

θ is the two step transition kernel of the Markov
chain {Xt; θ}∞t=1. Due to Assumption 2, minx,x̃∈X Q

2
θ(x, x̃) is continuous with respect to θ. Moreover, since Θ

is compact, if we let δ = infθ∈Θ minx,x̃∈X Q
2
θ(x, x̃) we have δ > 0. The classical Doeblin-type condition can be

constructed as follows. For all θ ∈ Θ and x, x̃ ∈ X , with any probability measure ν over the finite sample space
X ,

Q2
θ(x, x̃) ≥ δν(x̃). (9)

A Markov chain convergence result is restated in the following lemma, tailored to our need.

Lemma A.1 ((Cappé et al., 2006), Theorem 4.3.16 restated). With the Doeblin-type condition in (9), the Markov
chain {Xt; θ}∞t=1 with any θ ∈ Θ has a unique stationary distribution νθ. Moreover, for all θ ∈ Θ, x ∈ X and
t ∈ N+, ∥∥Qtθ(x, ·)− νθ∥∥TV

≤ (1− δ)bt/2c.
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Letting C = (1− δ)−1 and α = (1− δ)1/2, we have

sup
θ∈Θ

max
x1∈X

∥∥Qtθ(x1, ·)− νθ
∥∥

TV
≤ (1− δ)bt/2c ≤ Cαt.

Proposition 5 shows that in {Xt; θ}∞t=1, the initial distribution (of X1) is not very important since the distribution
of Xt converges to νθ uniformly with respect to X1 and θ. As a result, {Ot−1, St}∞t=1 also converges to the unique
limiting distribution, regardless of the initial distribution. When sampling the observation sequence from the
expert, we can always start sampling late enough such that Assumption 3 is approximately satisfied. Note that
the proof of Proposition 5 does not use the failure mechanism imposed on the hierarchical policy, implying that
the result also holds for the standard options framework.

B Details of the algorithm

B.1 An error in the existing algorithm

First, we point out a technicality when comparing Algorithm 1 to the algorithm from (Daniel et al., 2016b). The
algorithm from (Daniel et al., 2016b) learns a hierarchical policy following the standard options framework, not
the options with failure framework considered in Algorithm 1. To draw direct comparison, we need to let ζ = 0 in
Algorithm 1. However, an error in the existing algorithm can be demonstrated without referring to ζ.

For simplicity, consider O0 fixed to o0 ∈ O; let 2 ≤ t ≤ T − 1. Then, according to the definitions in (Daniel et al.,
2016b), the (unnormalized) forward message is defined as

αθt (ot, bt) = Pθ,o0,s1(A1:t = a1:t, Ot = ot, Bt = bt|S2:t = s2:t).

The (unnormalized) backward message is defined as

βθt|T (ot, bt) = Pθ,o0,s1(At+1:T = at+1:T |St+1:T = st+1:T , Ot = ot, Bt = bt).

The smoothing distribution is defined as

γθt|T (ot, bt) = Pθ,o0,s1(Ot = ot, Bt = bt|S2:T = s2:T , A1:T = a1:T ).

We use the proportional symbol ∝ to represent normalizing constants independent of ot and bt. (Daniel et al.,
2016b) claims that, for any ot and bt,

γθt|T (ot, bt) ∝ αθt (ot, bt)βθt|T (ot, bt).

However, applying Bayes’ formula, it follows that

γθt|T (ot, bt) ∝ Pθ,o0,s1(A1:T = a1:T |S2:T = s2:T , Ot = ot, Bt = bt)Pθ,o0,s1(Ot = ot, Bt = bt|S2:T = s2:T ).

Using the Markov property,

Pθ,o0,s1(A1:T = a1:T |S2:T = s2:T , Ot = ot, Bt = bt) = Pθ,o0,s1(A1:t = a1:t|S2:T = s2:T , Ot = ot, Bt = bt)

× Pθ,o0,s1(At+1:T = at+1:T |S2:T = s2:T , Ot = ot, Bt = bt).

Therefore,
γθt|T (ot, bt) ∝ Pθ,o0,s1(A1:t = a1:t, Ot = ot, Bt = bt|S2:T = s2:T )βθt|T (ot, bt).

Applying Bayes’ formula again, it follows that

Pθ,o0,s1(A1:t = a1:t, Ot = ot, Bt = bt|S2:T = s2:T )

∝ Pθ,o0,s1(A1:t = a1:t, Ot = ot, Bt = bt|S2:t = s2:t)

× Pθ,o0,s1(St+1:T = st+1:T |S2:t = s2:t, A1:t = a1:t, Ot = ot, Bt = bt)

= αθt (ot, bt)Pθ,o0,s1(St+1:T = st+1:T |St = st, At = at, Ot = ot, Bt = bt).

For the claim in (Daniel et al., 2016b) to be true, Pθ,o0,s1(St+1:T = st+1:T |St = st, At = at, Ot = ot, Bt = bt)
should not depend on ot and bt. Clearly this requirement does not hold in most cases, since the likelihood of the
future observation sequence should depend on the currently applied option.
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B.2 Proof of Theorem 1

We drop the dependency on θ, since the following proof holds for all θ ∈ Θ . The proportional symbol ∝ is used
to replace a multiplier term that depends on the context.

1. (Forward recursion)

First consider any fixed o0. For a cleaner notation, we use p as an abbreviation of Pθ,o0,s1 . Let H1, H2 be any
two subsets of {St, At, Ot, Bt}Tt=1, and let h1, h2 be the sets of values generated from H1 and H2, respectively,
such that the uppercase symbols are replaced by the lowercase symbols. (H1 and H2 are two sets of random
variables; h1 and h2 are two sets of values of random variables.) Then, for all (o0, s1), p is defined as

p(h1|h2, o0, s1) := Pθ,o0,s1(H1 = h1|H2 = h2).

If the RHS does not depend on o0 and s1, we can omit it on the LHS by using p(h1|h2). ∀t ∈ [2 : T ],

p(s2:t, a1:t, ot, bt|o0, s1)

= p(s2:t, a1:t−1, ot, bt|o0, s1)πlo(at|st, ot)

=
∑
ot−1

p(s2:t, a1:t−1, ot, bt, ot−1|o0, s1)πlo(at|st, ot)

=
∑
ot−1

p(s2:t, a1:t−1, ot−1|o0, s1)πb(bt|st, ot−1)π̄hi(ot|st, ot−1, bt)πlo(at|st, ot).

Furthermore,

p(s2:t, a1:t−1, ot−1|o0, s1) = p(s2:t−1, a1:t−1, ot−1|o0, s1)P (st|st−1, at−1)

∝
∑
bt−1

p(s2:t−1, a1:t−1, ot−1, bt−1|o0, s1),

where ∝ replaces a multiplier that does not depend on ot−1. Taking expectation with respect to O0 gives the
desirable forward recursion result. For the case of t = 1, the proof is analogous.

2. (Backward recursion)

For any o0, ∀t ∈ [1 : T − 1],

βθt|T (ot, bt) ∝ p(st+1:T , at+1:T |st, at, ot, bt)
= p(st+2:T , at+1:T |st+1, ot)P (st+1|st, at)

∝
∑

ot+1,bt+1

p(st+2:T , at+1:T |st+1, ot, ot+1, bt+1)p(ot+1, bt+1|st+1, ot),

where the multipliers replaced by ∝ are independent of ot and bt. Moreover,

p(st+2:T , at+1:T |st+1, ot, ot+1, bt+1)

= p(st+2:T , at+2:T |st+1, ot, ot+1, bt+1, at+1)p(at+1|st+1, ot, ot+1, bt+1)

= βθt+1|T (ot+1, bt+1)p(at+1|st+1, ot, ot+1, bt+1).

Plugging in the structure of the policy gives the desirable result.

3. (Smoothing)

Consider any fixed o0. For any t ∈ [2 : T ],

p(s2:T , a1:T , ot, bt|o0, s1) = p(s2:t, a1:t, ot, bt|o0, s1)p(st+1:T , at+1:T |s1:t, a1:t, ot, bt, o0)

= p(s2:t, a1:t, ot, bt|o0, s1)p(st+1:T , at+1:T |st, at, ot, bt).
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Taking expectation with respect to O0 on both sides yields the desirable result. Notice that the second term on
the RHS does not depend on O0, therefore is not involved in the expectation. For the case of t = 1 the proof is
analogous.

4. (Two-step smoothing)

For any t ∈ [3 : T ], consider any fixed o0,

p(s2:T , a1:T , ot−1, bt|o0, s1)

=
∑
bt−1

p(s2:T , a1:T , ot−1, bt, bt−1|o0, s1)

=
∑
bt−1

p(s2:t−1, a1:t−1, ot−1, bt−1|o0, s1)p(st:T , at:T , bt|s1:t−1, a1:t−1, ot−1, bt−1, o0)

=
∑
bt−1

p(s2:t−1, a1:t−1, ot−1, bt−1|o0, s1)P (st|st−1, at−1)p(st+1:T , at:T , bt|st, ot−1).

Take expectation with respect to O0 on both sides. Notice that only the first term on the RHS depends on o0.
We have

γ̃µ,t|T (ot−1, bt)

∝
∑
bt−1

αµ,t−1(ot−1, bt−1)P (st|st−1, at−1)p(st+1:T , at:T , bt|st, ot−1)

∝ πb(bt|st, ot−1)p(st+1:T , at:T |st, bt, ot−1)
∑
bt−1

αµ,t−1(ot−1, bt−1)

= πb(bt|st, ot−1)

[∑
ot

p(st+1:T , at:T , ot|st, bt, ot−1)

]∑
bt−1

αµ,t−1(ot−1, bt−1)

∝ πb(bt|st, ot−1)

[∑
ot

π̄hi(ot|st, ot−1, bt)πlo(at|st, ot)βt|T (ot, bt)

]∑
bt−1

αµ,t−1(ot−1, bt−1),

where the multipliers replaced by ∝ are independent of ot−1 and bt. For the case of t = 2 the proof is analogous.

B.3 Discussion on the Q-function

In our algorithm, as motivated by Section 3, we effectively consider the following joint distribution on the
graphical model shown in Figure 1: the prior distribution of (O0, S1) is ν̂, and the distribution of the rest of the
graphical model is determined by an options with failure policy with parameters ζ and θ. From the EM literature
(Balakrishnan et al., 2017; Jain and Kar, 2017), the complete likelihood function is

L(s1:T , a1:T , o0:T , b1:T ; θ) = ν̂(o0, s1)Pθ,o0,s1(S2:T = s2:T , A1:T = a1:T , O1:T = o1:T , B1:T = b1:T ).

The marginal likelihood function is

Lm(s1:T , a1:T ; θ) =
∑

o0:T ,b1:T

ν̂(o0, s1)Pθ,o0,s1(S2:T = s2:T , A1:T = a1:T , O1:T = o1:T , B1:T = b1:T ),

where the superscript m means marginal. From the definition of smoothing distributions, we can verify that
Lm(s1:T , a1:T ; θ) = (zθγ,µ)−1.

The standard MLE approach maximizes the logarithm of the marginal likelihood function (marginal log-likelihood)
with respect to θ. However, such an optimization objective is hard to evaluate for time series models (e.g., HMMs
and our graphical model). As an alternative, the marginal log-likelihood can be lower bounded (Jain and Kar,
2017, Chap. 5.4) as

logLm(s1:T , a1:T ; θ′) ≥
∑

o0:T ,b1:T

L(s1:T , a1:T , o0:T , b1:T ; θ)

Lm(s1:T , a1:T ; θ)
logL(s1:T , a1:T , o0:T , b1:T ; θ′),
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where θ on the RHS is arbitrary. The RHS is usually called the (unnormalized) Q-function. For our graphical
model, it is denoted as Q̃µ,T (θ′|θ).

Q̃µ,T (θ′|θ) =
∑

o0:T ,b1:T

ν̂(o0, s1)Pθ,o0,s1(S2:T = s2:T , A1:T = a1:T , O1:T = o1:T , B1:T = b1:T )

× zθγ,µ log[ν̂(o0, s1)Pθ′,o0,s1(S2:T = s2:T , A1:T = a1:T , O1:T = o1:T , B1:T = b1:T )].

The RHS is well-defined from the non-degeneracy assumption. From the classical monotonicity property of EM
updates (Jain and Kar, 2017, Chap. 5.7), maximizing the (unnormalized) Q-function Q̃µ,T (θ′|θ) with respect to
θ′ guarantees non-negative improvement on the marginal log-likelihood. Therefore, improvements on parameter
inference can be achieved via iteratively maximizing the (unnormalized) Q-function.

Using the structure of the hierarchical policy, Q̃µ,T can be rewritten as

Q̃µ,T (θ′|θ) =

T∑
t=2

∑
ot−1,bt

γ̃θµ,t|T (ot−1, bt)[log πb(bt|st, ot−1; θ′b)]

+

T∑
t=1

∑
ot,bt

γθµ,t|T (ot, bt)[log πlo(at|st, ot; θ′lo)] +

T∑
t=1

∑
ot

γθµ,t|T (ot, bt = 1)[log πhi(ot|st; θ′hi)]

+ zθγ,µ
∑
o0,b1

µ(o0|s1)Pθ,o0,s1(S2:T = s2:T , A1:T = a1:T , B1 = b1)[log πb(b1|s1, o0; θ′b)] + C,

where C contains terms unrelated to θ′. Consider the first term on the last line, which partially captures the effect
of assuming ν̂ on the parameter inference. Since this term is upper bounded by maxb1,s1,o0 |log πb(b1|s1, o0; θ′b)|,
when T is large enough this term becomes negligible. The precise argument is similar to the proof of Lemma C.2.
Therefore, after dropping the last line and normalizing, we arrive at our definition of the (normalized) Q-function
in (7).

C Details of the performance guarantee

C.1 Smoothing in an extended graphical model

Before providing the proofs, we first introduce a few definitions. Consider the extended graphical model shown in
Figure 4 with a parameter k; k ∈ N+.

Figure 4: An extended graphical model for hierarchical imitation learning.

Let the joint distribution of (O−k, S1−k) be ν∗. Define the distribution of the rest of the graphical model using an
options with failure hierarchical policy with parameters ζ and θ, analogous to our settings so far. With these two
components, the joint distribution on the graphical model is determined. Let Pθ,k be such a joint distribution; ν∗

is omitted for conciseness.

We emphasize the comparison between Pθ,k and Pθ,o0,s1 . The sample space of Pθ,k is the do-
main of {S1−k:T+k, A1−k:T+k, O−k:T+k, B1−k:T+k}, whereas the sample space of Pθ,o0,s1 is the domain of
{S2:T , A1:T , O1:T , B1:T } since (O0, S1) is fixed to (o0, s1).

Consider the infinite length observation sequence {st, at}t∈Z corresponding to any ω ∈ Ω, where Ω is defined in
(8). Analogous to the non-extended model (Figure 1), we can define smoothing distributions for the extended
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model with any parameter k. For all θ ∈ Θ and t ∈ [1 : T ], with any input arguments ot and bt, the forward
message is defined as

αθk,t(ot, bt) := zθα,k,tPθ,k(S1−k:t = s1−k:t, A1−k:t = a1−k:t, Ot = ot, Bt = bt).

The backward message is defined as

βθk,t(ot, bt) := zθβ,k,tPθ,k(St+1:T+k = st+1:T+k, At+1:T+k = at+1:T+k|St = st, At = at, Ot = ot, Bt = bt).

The smoothing distribution is defined as

γθk,t(ot, bt) := zθγ,kPθ,k(S1−k:T+k = s1−k:T+k, A1−k:T+k = a1−k:T+k, Ot = ot, Bt = bt).

The two-step smoothing distribution is defined as

γ̃θk,t(ot−1, bt) := zθγ,kPθ,k(S1−k:T+k = s1−k:T+k, A1−k:T+k = a1−k:T+k, Ot−1 = ot−1, Bt = bt).

The quantities zθα,k,t, z
θ
β,k,t and zθγ,k are normalizing constants such that the LHS of the expressions above are

probability mass functions. In particular, since k > 0, we can define αθk,t for t = 0 in the same way as t ∈ [1 : T ].
The dependency on T in the smoothing distributions is dropped for a cleaner notation.

Recursive results similar to Theorem 1 can be established; the proof is analogous and therefore omitted. As
in Theorem 1, we make extensive use of the proportional symbol ∝ which stands for, the LHS equals the RHS
multiplied by a normalizing constant. Moreover, the normalizing constant does not depend on the input arguments
of the LHS.

Corollary 6 (Forward-backward smoothing for the extended model). For all θ ∈ Θ and k ∈ N+, with any input
arguments,

1. (Forward recursion) ∀t ∈ [1 : T ],

αθk,t(ot, bt) ∝
∑

ot−1,bt−1

πb(bt|st, ot−1; θb)π̄hi(ot|st, ot−1, bt; θhi)πlo(at|st, ot; θlo)αθk,t−1(ot−1, bt−1). (10)

2. (Backward recursion) ∀t ∈ [1 : T − 1],

βθk,t(ot, bt) ∝
∑

ot+1,bt+1

πb(bt+1|st+1, ot; θb)π̄hi(ot+1|st+1, ot, bt+1; θhi)

× πlo(at+1|st+1, ot+1; θlo)β
θ
k,t+1(ot+1, bt+1). (11)

3. (Smoothing) ∀t ∈ [1 : T ],
γθk,t(ot, bt) ∝ αθk,t(ot, bt)βθk,t(ot, bt). (12)

4. (Two-step smoothing) ∀t ∈ [1 : T ],

γ̃θk,t(ot−1, bt) ∝ πb(bt|st, ot−1; θb)

[∑
ot

π̄hi(ot|st, ot−1, bt; θhi)πlo(at|st, ot; θlo)βθk,t(ot, bt)
]

×
[∑
bt−1

αθk,t−1(ot−1, bt−1)

]
. (13)

The following lemma characterizes the limiting behavior of γθk,t and γ̃θk,t as k →∞.

Lemma C.1 (Limits of smoothing distributions). With Assumption 1, 2 and 3, for all T ≥ 2, θ ∈ Θ, ω ∈ Ω and
t ∈ [1 : T ], the limits of {γθk,t}k∈N+ and {γ̃θk,t}k∈N+ as k →∞ exist with respect to the total variation distance.

Let γθ∞,t := limk→∞ γθk,t and γ̃θ∞,t := limk→∞ γ̃θk,t. They have the following properties:

1. γθ∞,t and γ̃θ∞,t do not depend on T .

2. γθ∞,t and γ̃θ∞,t are entry-wise Lipschitz continuous with respect to θ ∈ Θ.

The proof is given in Appendix D.4. The dependency of γθ∞,t and γ̃θ∞,t on ω is omitted for a cleaner notation.
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C.2 The stochastic convergence of the Q-function

In this subsection, we present the proof of Theorem 2.

First, consider γθ∞,t and γ̃θ∞,t defined in Lemma C.1. Using the arguments from Section 4, they can also be

analyzed in the infinitely extended probability space (X Z,P(X Z),Pθ∗,ν∗), where P(·) denotes the power set. We
only define γθ∞,t and γ̃θ∞,t for ω ∈ Ω; for other sample paths, they are defined arbitrarily. Since Pθ∗,ν∗(Ω) = 1,

such a restriction from X Z to Ω does not change our probabilistic results.

For any sample path ω, let ω(st) and ω(at) be the values of St and At corresponding to ω. With a slight overload
of notation, let ω(t) = {ω(st), ω(at), ω(ot), ω(bt)}, which is the set of components in ω corresponding to time t.

For all θ ∈ Θ , θ′ ∈ Θ̃ , ω ∈ Ω and t ∈ N+, define

ft(θ
′|θ;ω) :=

∑
ot−1,bt

γ̃θ∞,t(ot−1, bt;ω) [log πb(bt|ω(st), ot−1; θ′b)] +
∑
ot,bt

γθ∞,t(ot, bt;ω) [log πlo(ω(at)|ω(st), ot; θ
′
lo)]

+
∑
ot

γθ∞,t(ot, bt = 1;ω) [log πhi(ot|ω(st); θ
′
hi)] ,

where the dependency of the RHS on ω is shown explicitly for clarity. |ft(θ′|θ;ω)| is upper bounded by a constant
that does not depend on θ, θ′, ω and t, due to Assumption 1 and 2. Moreover, for all θ, ω and t, ft(θ

′|θ;ω) is
continuously differentiable with respect to θ′ ∈ Θ̃ ; for all θ′, ω and t, ft(θ

′|θ;ω) is Lipschitz continuous with
respect to θ ∈ Θ , due to Lemma C.1.

Next, define
Q̄(θ′|θ) := Eθ∗,ν∗ [f1(θ′|θ;ω)]. (14)

The subscripts θ∗ and ν∗ in Eθ∗,ν∗ denote that the expectation is taken with respect to the probability measure
Pθ∗,ν∗ .

With the above definitions, we state the complete version of Theorem 2. The Q-function defined in (7) is written
as Qµ,T (θ′|θ;ω), showing its dependency on the sample path.

Theorem 7 (The complete version of Theorem 2). With Assumption 1, 2 and 3, consider Q̄(θ′|θ) defined in
(14), we have

1. For all θ ∈ Θ, Q̄(θ′|θ) is continuously differentiable with respect to θ′ ∈ Θ̃, where Θ̃ is defined in Assumption 1.
The gradient is

∇Q̄(θ′|θ) = Eθ∗,ν∗ [∇f1(θ′|θ;ω)].

Moreover, as the set of maximizing arguments, arg maxθ′∈Θ Q̄(θ′|θ) is nonempty.

2. As T →∞,
sup
θ,θ′∈Θ

sup
µ∈M

∣∣Qµ,T (θ′|θ;ω)− Q̄(θ′|θ)
∣∣→ 0, Pθ∗,ν∗-a.s.

Before proving Theorem 7, we state the following definition and an auxiliary lemma required for the proof. For
all θ, θ′ ∈ Θ , ω ∈ Ω and T ≥ 2, the sample-path-based population Q-function Qs∞,T (θ′|θ;ω) is defined as

Qs∞,T (θ′|θ;ω) :=
1

T

T∑
t=1

ft(θ
′|θ;ω). (15)

The superscript s in Qs∞,T stands for sample-path-based. If the sample path ω is not specified, Qs∞,T (θ′|θ) is a
random variable associated with probability measure Pθ∗,ν∗ . Note that due to stationarity, for any θ, θ′ and T ,
Q̄(θ′|θ) = Eθ∗,ν∗ [Qs∞,T (θ′|θ;ω)].

The difference between Qs∞,T and Qµ,T is bounded in the following lemma.

Lemma C.2 (Bounding the difference between the Q-function and the sample-path-based population Q-function).
With Assumption 1, 2 and 3, for all T ≥ 2 and ω ∈ Ω,

sup
θ,θ′∈Θ

sup
µ∈M

∣∣Qs∞,T (θ′|θ;ω)−Qµ,T (θ′|θ;ω)
∣∣ ≤ const · T−1,

where const is a constant independent of T and ω.
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The proof is provided in Appendix D.5. Now we are ready to present the proof of Theorem 7 step-by-step. The
structure of this proof is similar to the standard analysis of HMM maximum likelihood estimators (Cappé et al.,
2006, Chap. 12).

Proof of Theorem 7. We prove the two parts of the theorem separately.

1. For all θ′ ∈ Θ̃ , there exists δθ′ > 0 such that the set {θ̃; ‖θ̃ − θ′‖2≤ δθ′} ⊆ Θ̃ . For all θ ∈ Θ and ω ∈ Ω, due to
the differentiability of f1(θ′|θ;ω) with respect to θ′, there exists a gradient ∇f1(θ′|θ;ω) at any θ′ ∈ Θ̃ such that

lim
δ→0

sup
θ̃∈Θ̃;‖θ̃−θ′‖2≤δ

|f1(θ̃|θ;ω)− f1(θ′|θ;ω)− 〈∇f1(θ′|θ;ω), θ̃ − θ′〉|
‖θ̃ − θ′‖2

= 0.

We need to transform the above almost surely (in ω) convergence to the convergence of expectation, using
the dominated convergence theorem. As a requirement, the quantity inside the limit on the LHS needs to be
upper-bounded. For all θ ∈ Θ , θ′ ∈ Θ̃ , ω ∈ Ω and 0 < δ ≤ δθ′ ,

sup
θ̃∈Θ̃;‖θ̃−θ′‖2≤δ

|f1(θ̃|θ;ω)− f1(θ′|θ;ω)− 〈∇f1(θ′|θ;ω), θ̃ − θ′〉|
‖θ̃ − θ′‖2

≤

sup
θ̃;‖θ̃−θ′‖2≤δθ′

|f1(θ̃|θ;ω)− f1(θ′|θ;ω)|
‖θ̃ − θ′‖2

+ sup
θ̃;‖θ̃−θ′‖2≤δθ′

|〈∇f1(θ′|θ;ω), θ̃ − θ′〉|
‖θ̃ − θ′‖2

. (16)

Since continuously differentiable functions are Lipschitz continuous on convex and compact subsets, πhi, πlo and
πb as functions of θ̃ ∈ Θ̃ are Lipschitz continuous on {θ̃; ‖θ̃ − θ′‖2≤ δθ′}, with any other input arguments. From
the expression of f1, we can verify that for any fixed θ and ω, f1(θ̃|θ;ω) as a function of θ̃ is Lipschitz continuous
on {θ̃; ‖θ̃ − θ′‖2≤ δθ′}, and the Lipschitz constant only depends on θ′ and δθ′ . Consequently, the RHS of (16) can
be upper-bounded for all ω ∈ Ω. Applying the dominated convergence theorem, we have

lim
δ→0

Eθ∗,ν∗
[

sup
θ̃∈Θ̃;‖θ̃−θ′‖2≤δ

|f1(θ̃|θ;ω)− f1(θ′|θ;ω)− 〈∇f1(θ′|θ;ω), θ̃ − θ′〉|
‖θ̃ − θ′‖2

]
= 0. (17)

On the other hand, notice that for all θ ∈ Θ , θ′ ∈ Θ̃ and δ > 0,

sup
θ̃∈Θ̃;‖θ̃−θ′‖2≤δ

|Q̄(θ̃|θ)− Q̄(θ′|θ)− 〈Eθ∗,ν∗ [∇f1(θ′|θ;ω)], θ̃ − θ′〉|
‖θ̃ − θ′‖2

= sup
θ̃∈Θ̃;‖θ̃−θ′‖2≤δ

|Eθ∗,ν∗ [f1(θ̃|θ;ω)− f1(θ′|θ;ω)− 〈∇f1(θ′|θ;ω), θ̃ − θ′〉]|
‖θ̃ − θ′‖2

≤ Eθ∗,ν∗
[

sup
θ̃∈Θ̃;‖θ̃−θ′‖2≤δ

|f1(θ̃|θ;ω)− f1(θ′|θ;ω)− 〈∇f1(θ′|θ;ω), θ̃ − θ′〉|
‖θ̃ − θ′‖2

]
.

Combining with (17) proves the differentiability of Q̄(θ′|θ) with respect to θ′ ∈ Θ̃ for any fixed θ. The gradient is

∇Q̄(θ′|θ) = Eθ∗,ν∗ [∇f1(θ′|θ;ω)].

Analogously, using the dominated convergence theorem we can also show that the gradient ∇Q̄(θ′|θ) is continuous
with respect to θ′ ∈ Θ̃ . Details are omitted due to the similarity with the above procedure. It is worth noting
that we let θ′ ∈ Θ̃ instead of Θ . In this way, the gradient ∇Q̄(θ′|θ) can be naturally defined when θ′ is not an
interior point of Θ .

From differentiability and Θ ⊆ Θ̃ , Q̄(θ′|θ) is also continuous with respect to θ′ ∈ Θ . Since Θ is compact, the set
of maximizing arguments arg maxθ′∈Θ Q̄(θ′|θ) is nonempty.



Zhiyu Zhang, Ioannis Ch. Paschalidis

2. We need to prove the uniform (in θ, θ′ ∈ Θ and µ ∈M) almost sure convergence of the Q-function Qµ,T (θ′|θ;ω)
to the population Q-function Q̄(θ′|θ). The proof is separated into three steps. First, we show the almost sure
convergence of Qs∞,T (θ′|θ;ω) to Q̄(θ′|θ) for all θ, θ′ ∈ Θ using the ergodic theorem. Second, we extend this
pointwise convergence to uniform (in θ, θ′) convergence using a version of the Arzelà-Ascoli theorem (Davidson,
1994, Chap. 21). Finally, from Lemma C.2, the difference between Qµ,T (θ′|θ;ω) and Qs∞,T (θ′|θ;ω) vanishes
uniformly in µ as T →∞.

Concretely, for the pointwise (in θ, θ′) almost sure convergence of Qs∞,T (θ′|θ;ω) as T →∞, we apply Birkhoff’s

ergodic theorem. Let T : X Z → X Z be the standard shift operator. That is, for any t ∈ Z, T ω(t) = ω(t+ 1). Due
to stationarity, T is a measure-preserving map, i.e., Pθ∗,ν∗(T −1F ) = Pθ∗,ν∗(F ) for all F ∈ P(X Z). Therefore, the
quadruple {X Z,P(X Z),Pθ∗,ν∗ , T } defines a dynamical system.

Here, we need some clarification on some concepts and notations. Consider the Markov chain {Xt}∞t=1 =
{St, At, Ot, Bt}∞t=1 induced by the expert policy, let ΠX,θ∗ be its set of all stationary distributions. Comparing
ΠX,θ∗ to Πθ∗ from Assumption 3, they both depend on the true parameter θ∗; the former corresponds to the chain
{St, At, Ot, Bt}∞t=1, while the latter corresponds to the chain {Ot−1, St}∞t=1. From the structure of our graphical
model, they are equivalent by some transformation.

From Section 4, Pθ∗,ν∗ is defined from an element of ΠX,θ∗ that depends on ν∗. Denote this stationary distribution
as ψ. Since ν∗ is an extreme point of Πθ∗ (Assumption 3), ψ is also an extreme point of ΠX,θ∗ . Then, we can
apply a standard Markov chain ergodicity result. From (Hairer, 2006, Theorem 5.7), the dynamical system
{X Z,P(X Z),Pθ∗,ν∗ , T } is ergodic. For our case, Birkhoff’s ergodic theorem is restated as follows.

Lemma C.3 ((Hairer, 2006), Corollary 5.3 restated). If a dynamical system {X Z,P(X Z),Pθ∗,ν∗ , T } is ergodic
and f : X Z → R satisfies Eθ∗,ν∗ [f(ω)] <∞, then as T →∞,

1

T

T−1∑
t=0

f(T tω)→ Eθ∗,ν∗ [f(ω)], Pθ∗,ν∗-a.s.

For our purpose, observe that for any θ, θ′ ∈ Θ , ft(θ
′|θ;ω) = f1(θ′|θ; T t−1ω). Therefore, applying the ergodic

theorem to Qs∞,T (θ′|θ), as T →∞,

Qs∞,T (θ′|θ;ω)→ Q̄(θ′|θ), Pθ∗,ν∗ -a.s. (18)

To extend the pointwise convergence in (18) to uniform (in θ, θ′) convergence, the following concept is required.
The sequence {Qs∞,T (θ′|θ)} indexed by T as functions of θ and θ′ is strongly stochastically equicontinuous
(Davidson, 1994, Equation 21.43) if for any ε > 0 there exists δ > 0 such that

lim sup
T→∞

sup
θ1,θ′1,θ2,θ

′
2∈Θ;‖θ1−θ2‖2+‖θ′1−θ′2‖2≤δ

∣∣Qs∞,T (θ′1|θ1;ω)−Qs∞,T (θ′2|θ2;ω)
∣∣ < ε, Pθ∗,ν∗ -a.s. (19)

Indeed this property holds for {Qs∞,T (θ′|θ)}, as shown in Appendix D.6. The version of the Arzelà-Ascoli theorem
we use is restated as follows, tailored to our need.

Lemma C.4 ((Davidson, 1994), Theorem 21.8 restated). Given (18) and (19), as T →∞ we have

sup
θ,θ′∈Θ

∣∣Qs∞,T (θ′|θ;ω)− Q̄(θ′|θ)
∣∣→ 0, Pθ∗,ν∗-a.s.

Combining Lemma C.2 and Lemma C.4 concludes the proof of the second part.

On the concavity of Q̄(·|θ). As discussed after introducing Assumption 4, we expect the following to hold in
certain cases of tabular parameterization: for all θ ∈ Θ , the function Q̄(·|θ) is strongly concave over Θ . Details
are presented below.

Consider θ′b for example, we need to provide sufficient conditions such that the following function is strongly
concave with respect to θ′b ∈ Θb, given any θ ∈ Θ .

Q̄b(θ
′
b|θ) =

∑
o0,b1

Eθ∗,ν∗
[
γ̃θ∞,t(o0, b1;ω) log πb(b1|ω(s1), o0; θ′b)

]
.
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Let the marginal distribution of ν∗ on S1 be ν∗S1
. If ν∗S1

is strictly positive on S, then we rewrite Q̄b(θ
′
b|θ) as

Q̄b(θ
′
b|θ) =

∑
o0,b1

∑
s1∈S

ν∗S1
(s1)Eθ∗,ν∗|S1=s1

[
γ̃θ∞,t(o0, b1;ω)

]
log πb(b1|s1, o0; θ′b).

In the case of tabular parameterization, πb(b1|s1, o0; θ′b) is an entry of θ′b indexed as θ′b(b1, s1, o0); its logarithm is 1-
strongly concave on the interval [0, 1]. Q̄b(θ

′
b|θ) is strongly concave with respect to θ′b if Eθ∗,ν∗|S1=s1 [γ̃θ∞,t(o0, b1;ω)]

is strictly positive for all o0 and b1. We conjecture that this requirement is mild, but a rigorous characterization
is quite challenging.

C.3 The convergence of the population version algorithm

We first present the complete version of Theorem 3, where an upper bound on γ is also shown. Notice that we
assume all the assumptions, including Assumption 4 and 5.

Theorem 8 (The complete version of Theorem 3). With all the assumptions,

1. (First-order stability) There exists 0 < γ ≤ γ̄ such that for all θ ∈ Θr,

∥∥∇Q̄(M̄(θ)|θ)−∇Q̄(M̄(θ)|θ∗)
∥∥

2
≤ γ ‖θ − θ∗‖2 .

Specifically, the upper bound γ̄ is given by

γ̄ =
4|O|Lθ∗,r

ε2
bζ

(
sup
θ′∈Θr

zθ′,θ∗

)(
2 max
o0,s1,b1

sup
θ′b∈Θb

‖∇ log πb(b1|s1, o0; θ′b)‖2

+ max
s1,a1,o1

sup
θ′lo∈Θlo

‖∇ log πlo(a1|s1, o1; θ′lo)‖2 + max
s1,o1

sup
θ′hi∈Θhi

‖∇ log πhi(o1|s1; θ′hi)‖2

)
.

ζ is the failure parameter in the options with failure framework; εb is a mixing constant defined in Lemma D.1;
Lθ∗,r is a Lipschitz constant defined in Lemma D.2; zθ′,θ∗ is defined in Lemma D.5.

2. (Contraction) Let κ = γ/λ. For all θ ∈ Θr,

∥∥M̄(θ)− θ∗
∥∥

2
≤ κ ‖θ − θ∗‖2 .

If κ < 1, the population version algorithm converges linearly to the true parameter θ∗.

Proof of Theorem 8. We prove the two parts separately in the following.

1. For convenience of notation, let ∇Q̄(θ′|θ) = [∇bQ̄(θ′|θ),∇loQ̄(θ′|θ),∇hiQ̄(θ′|θ)] such that, for example,
∇bQ̄(θ′|θ) is the gradient of Q̄(θ′|θ) with respect to θ′b. Using the expressions of ∇Q̄(θ′|θ) from Theorem 7, we
have

∥∥∇Q̄(M̄(θ)|θ)−∇Q̄(M̄(θ)|θ∗)
∥∥

2
≤
∥∥∇bQ̄(M̄(θ)|θ)−∇bQ̄(M̄(θ)|θ∗)

∥∥
2

+
∥∥∇loQ̄(M̄(θ)|θ)−∇loQ̄(M̄(θ)|θ∗)

∥∥
2

+
∥∥∇hiQ̄(M̄(θ)|θ)−∇hiQ̄(M̄(θ)|θ∗)

∥∥
2
.
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Consider the first term,∥∥∇bQ̄(M̄(θ)|θ)−∇bQ̄(M̄(θ)|θ∗)
∥∥

2

=

∥∥∥∥∥∥Eθ∗,ν∗
{∑
o0,b1

[
γ̃θ∞,1(o0, b1;ω)− γ̃θ

∗

∞,1(o0, b1;ω)
] [
∇ log πb(b1|ω(s1), o0; M̄(θ)b)

]}∥∥∥∥∥∥
2

≤
∑
o0,b1

∥∥∥∥Eθ∗,ν∗{[γ̃θ∞,1(o0, b1;ω)− γ̃θ
∗

∞,1(o0, b1;ω)
] [
∇ log πb(b1|ω(s1), o0; M̄(θ)b)

]}∥∥∥∥
2

≤
∑
o0,b1

Eθ∗,ν∗
{ ∣∣∣γ̃θ∞,1(o0, b1;ω)− γ̃θ

∗

∞,1(o0, b1;ω)
∣∣∣ ∥∥∇ log πb(b1|ω(s1), o0; M̄(θ)b)

∥∥
2

}

≤ max
o0,s1,b1

sup
θ′b∈Θb

‖∇ log πb(b1|s1, o0; θ′b)‖2 Eθ∗,ν∗
{∑
o0,b1

∣∣∣γ̃θ∞,1(o0, b1;ω)− γ̃θ
∗

∞,1(o0, b1;ω)
∣∣∣ }

≤ 2 max
o0,s1,b1

sup
θ′b∈Θb

‖∇ log πb(b1|s1, o0; θ′b)‖2 × sup
ω∈Ω

∥∥∥γ̃θ∞,1(ω)− γ̃θ
∗

∞,1(ω)
∥∥∥

TV

≤ 8|O|Lθ∗,r
ε2
bζ

(
sup
θ′∈Θr

zθ′,θ∗

)(
max
o0,s1,b1

sup
θ′b∈Θb

‖∇ log πb(b1|s1, o0; θ′b)‖2

)
‖θ − θ∗‖2 .

We use the triangle inequality and the Jensen’s inequality in the third and the fourth line respectively. The fifth
line is finite due to θb being compact and the continuity of the gradient (Assumption 2). The last line is due to
the limit form of Lemma D.7, similar to the argument in Appendix D.4. Notice that the coefficient of ‖θ − θ∗‖2
on the last line does not depend on θ.

Analogously, we have∥∥∇loQ̄(M̄(θ)|θ)−∇loQ̄(M̄(θ)|θ∗)
∥∥

2
≤

4|O|Lθ∗,r
ε2
bζ

(
sup
θ′∈Θr

zθ′,θ∗

)(
max
s1,a1,o1

sup
θ′lo∈Θlo

‖∇ log πlo(a1|s1, o1; θ′lo)‖2

)
‖θ − θ∗‖2 ,

∥∥∇hiQ̄(M̄(θ)|θ)−∇hiQ̄(M̄(θ)|θ∗)
∥∥

2
≤

4|O|Lθ∗,r
ε2
bζ

(
sup
θ′∈Θr

zθ′,θ∗

)(
max
s1,o1

sup
θ′hi∈Θhi

‖∇ log πhi(o1|s1; θ′hi)‖2

)
‖θ − θ∗‖2 .

Combining everything, we have the upper bound on γ.

2. The proof of the second part mirrors the proof of (Balakrishnan et al., 2017, Theorem 4). The main difference
is the construction of the following self-consistency (a.k.a. fixed-point) condition.

Lemma C.5 (Self-consistency). With all the assumptions, θ∗ = M̄(θ∗).

The proof of this lemma is presented in Appendix D.7. Such a condition is used without proof in (Balakrishnan
et al., 2017) since it only considers i.i.d. samples, and the self-consistency condition for EM with i.i.d. samples
is a well-known result. However, for the case of dependent samples like our graphical model, such a condition
results from the stochastic convergence of the Q-function which is not immediate.

For the rest of the proof, we present a brief sketch here for completeness. Due to concavity, we have the first
order optimality conditions: for all θ, θ′ ∈ Θ , 〈∇Q̄(M̄(θ∗)|θ∗), θ − M̄(θ∗)〉 ≤ 0 and 〈∇Q̄(M̄(θ)|θ), θ′ − M̄(θ)〉 ≤ 0.
Using θ∗ = M̄(θ∗), we can combine the two optimality conditions together and obtain the following. For all
θ ∈ Θ ,

〈∇Q̄(M̄(θ)|θ∗)−∇Q̄(θ∗|θ∗), θ∗ − M̄(θ)〉 ≤ 〈∇Q̄(M̄(θ)|θ∗)−∇Q̄(M̄(θ)|θ), θ∗ − M̄(θ)〉.

From Assumption 4, LHS ≥ λ‖θ∗ − M̄(θ)‖22. From Cauchy-Schwarz and the first part of this theorem, RHS ≤
γ‖θ∗ − M̄(θ)‖2‖θ − θ∗‖2. Canceling ‖θ∗ − M̄(θ)‖2 on both sides completes the proof.
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C.4 Proof of Theorem 4

1. We first show the strong consistency of Mµ,T (θ;ω), the parameter update of Algorithm 1, as an estimator of
M̄(θ). This follows from standard techniques in the analysis of M-estimators. In particular, consider the set of
sample paths ω such that ω ∈ Ω and arg maxθ′∈Θ Qµ,T (θ′|θ;ω) has a unique element Mµ,T (θ;ω). Such a set of
sample paths has probability measure 1.

For all θ ∈ Θ , T ≥ 2 and µ ∈M, with one of the above sample path ω,

0 ≤ Q̄(M̄(θ)|θ)− Q̄(Mµ,T (θ;ω)|θ)
≤ Q̄(M̄(θ)|θ)−Qµ,T (M̄(θ)|θ;ω) +Qµ,T (M̄(θ)|θ;ω)−Qµ,T (Mµ,T (θ;ω)|θ;ω)

+Qµ,T (Mµ,T (θ;ω)|θ;ω)− Q̄(MT (θ;ω)|θ)
≤ 2 sup

θ′∈Θ

∣∣Q̄(θ′|θ)−Qµ,T (θ′|θ;ω)
∣∣ .

From Theorem 7, Pθ∗,ν∗ -almost surely, supθ,θ′∈Θ supµ∈M|Q̄(θ′|θ)−Qµ,T (θ′|θ;ω)|→ 0 as T →∞. Therefore,

sup
θ∈Θr

sup
µ∈M

[
Q̄(M̄(θ)|θ)− Q̄(Mµ,T (θ;ω)|θ)

]
→ 0, Pθ∗,ν∗ -a.s.

An equivalent argument is the following. Pθ∗,ν∗-almost surely, for any δ > 0 there exists Tω ∈ N+ such that for
all T ≥ Tω, supθ∈Θr supµ∈M[Q̄(M̄(θ)|θ)− Q̄(Mµ,T (θ;ω)|θ)] ≤ δ. In particular, for any ε > 0, let

δ =
1

2
inf
θ∈Θr

[
Q̄(M̄(θ)|θ)− sup

θ′∈Θ;‖θ′−M̄(θ)‖2≥ε
Q̄(θ′|θ)

]
.

From the identifiability assumption (Assumption 5), the RHS is positive. Therefore, such an assignment of δ is
valid. Consequently, for all T ≥ Tω, θ ∈ Θr and µ ∈M,

Q̄(M̄(θ)|θ)− Q̄(Mµ,T (θ;ω)|θ) < Q̄(M̄(θ)|θ)− sup
θ′∈Θ;‖θ′−M̄(θ)‖2≥ε

Q̄(θ′|θ),

which means that ‖Mµ,T (θ;ω)− M̄(θ)‖2< ε. Taking supremum over θ ∈ Θr and µ ∈ M, we summarize the
argument as the following. Pθ∗,ν∗ -almost surely, for any ε > 0 there exists Tω ∈ N+ such that for all T ≥ Tω,

sup
θ∈Θr

sup
µ∈M

∥∥Mµ,T (θ;ω)− M̄(θ)
∥∥

2
< ε.

Such a result is equivalent to the uniform (in θ and µ) strong consistency of Mµ,T (θ;ω) as an estimator of M̄(θ).
As T →∞,

sup
θ∈Θr

sup
µ∈M

∥∥Mµ,T (θ;ω)− M̄(θ)
∥∥

2
→ 0, Pθ∗,ν∗ -a.s.

This result is insufficient for Part 1, since Tω is sample path dependent. To get rid of this sample path
dependency, we use the dominated convergence theorem. Notice that Pθ∗,ν∗-almost surely, for all T ≥ 2,
supθ∈Θr supµ∈M‖Mµ,T (θ;ω)− M̄(θ)‖2 is bounded due to the compactness of Θ . Therefore we have

lim
T→∞

Eθ∗,ν∗
[

sup
θ∈Θr

sup
µ∈M

∥∥Mµ,T (θ;ω)− M̄(θ)
∥∥

2

]
= 0.

For any q > 0, there exists T (q) ∈ N+ such that for all T ≥ T (q),

Eθ∗,ν∗
[

sup
θ∈Θr

sup
µ∈M

∥∥Mµ,T (θ;ω)− M̄(θ)
∥∥

2

]
≤ q.

Applying Markov’s inequality, for any ∆ > 0,

Pθ∗,ν∗
(

sup
θ∈Θr

sup
µ∈M

∥∥Mµ,T (θ;ω)− M̄(θ)
∥∥

2
≥ ∆

)
≤ 1

∆
Eθ∗,ν∗

[
sup
θ∈Θr

sup
µ∈M

∥∥Mµ,T (θ;ω)− M̄(θ)
∥∥

2

]
≤ q

∆
.
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Scaling q yields the desirable result.

2. The proof of Part 2 is the same as (Balakrishnan et al., 2017, Theorem 5). We present a sketch
for completeness. For all T ≥ T (∆, q), condition the following proof on the high probability event that
supθ∈Θr supµ∈M

∥∥Mµ,T (θ;ω)− M̄(θ)
∥∥

2
≤ ∆.

Assume ‖θ(n−1) − θ∗‖2≤ r, which holds for n = 1. Then, using the triangle inequality, the result from Theorem 3,
the above concentration and ∆ ≤ (1− κ)r, we have the following for any µ.∥∥∥θ(n) − θ∗

∥∥∥
2
≤
∥∥∥M̄(θ(n−1))− θ∗

∥∥∥
2

+
∥∥∥Mµ,T (θ(n−1))− M̄(θ(n−1))

∥∥∥
2

≤ κ‖θ(n−1) − θ∗‖2+∆, (20)

and ‖θ(n) − θ∗‖2≤ κr + (1− κ)r = r. From induction, the one step relation (20) holds for all n ∈ N+. Unrolling
(20) and regrouping the terms completes the proof.

D Proofs of auxiliary lemmas

This section presents proofs omitted in earlier sections. Assumptions 1, 2 and 3 are assumed.

In particular, the first three subsections develop a few essential lemmas required for the proofs in later subsections.
In Appendix D.1, we show an important mixing property of the options with failure framework. In Appendix D.2,
such a mixing property is used to prove a general contraction result of our forward-backward smoothing procedure
(Theorem 1 and Corollary 6), similar to the concept of filtering stability in the HMM literature. At a high
level, considering the forward-backward recursion in the extended graphical model (Corollary 6), this result
characterizes the effect of changing θ and the boundary conditions αθk,0 and βθk,T on the smoothing distribution

γθk,t, given any observation sequence {st, at}t∈Z. Due to this high level reasoning, we name this result as the
smoothing stability lemma. Appendix D.3 provides concrete applications of this lemma to quantities defined in
earlier sections.

D.1 Mixing

Recall that ζ is the auxiliary parameter in the options with failure framework.

Lemma D.1 (Mixing). There exists a constant εb > 0 and a conditional distribution π̄o,b(ot, bt|st; θ) parameterized
by θ such that for all θ ∈ Θ, with any input arguments bt, st, ot−1 and ot,

0 < εbζπ̄o,b(ot, bt|st; θ) ≤ πb(bt|st, ot−1; θb)π̄hi(ot|st, ot−1, bt; θhi) ≤ ε−1
b |O|π̄o,b(ot, bt|st; θ).

Proof of Lemma D.1. The proof is separated into two parts.

1. We first show an intermediate result: there exists a constant εb > 0 and a conditional distribution π̄b(bt|st; θb)
parameterized by θb such that for all θb ∈ Θb, with any input arguments bt, st and ot−1,

0 < εbπ̄b(bt|st; θb) ≤ πb(bt|st, ot−1; θb) ≤ ε−1
b π̄b(bt|st; θb).

This can be proved as follows. Let cb = infθb∈Θb minbt,st,ot−1 πb(bt|st, ot−1; θb). Similar to the procedure in
Appendix A, from the non-degeneracy assumption, the differentiabiilty assumption and Θ being compact, we
have cb > 0. For any θb ∈ Θb, with any input arguments bt and st, let f(bt, st; θb) = minot−1∈O πb(bt|st, ot−1; θb).
Observe that cb ≤ f(bt, st; θb) ≤ 1. Let εb = cb/2 and

π̄b(bt|st; θb) =
f(bt, st; θb)∑

b′t∈{0,1}
f(b′t, st; θb)

.

Clearly εbπ̄b(bt|st; θb) > 0. Moreover, for any ot−1, εbπ̄b(bt|st; θb) < 2cbπ̄b(bt|st; θb) ≤ f(bt, st; θb) ≤
πb(bt|st, ot−1; θb).
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On the other hand, with any input arguments,

ε−1
b π̄b(bt|st; θb) ≥ ε−1

b cb/2 = 1 ≥ πb(bt|st, ot−1; θb),

which completes the proof of the first part.

2. Define π̄o,b(ot, bt|st; θ) as follows. With any input arguments, let

π̄o,b(ot, bt = 0|st; θ) := π̄b(bt = 0|st; θb)/|O|,
π̄o,b(ot, bt = 1|st; θ) := π̄b(bt = 1|st; θb)πhi(ot|st; θhi).

Clearly εbζπ̄o,b(ot, bt|st; θ) > 0. Omit the dependency on θ for a cleaner notation since every term is parameterized
by θ. When bt = 1, with any other input arguments,

εbπ̄b(bt = 1|st)πhi(ot|st) ≤ πb(bt = 1|st, ot−1)π̄hi(ot|st, ot−1, bt = 1) ≤ ε−1
b π̄b(bt = 1|st)πhi(ot|st).

Similarly, when bt = 0 and ot = ot−1,

εbπ̄b(bt = 0|st)ζ/|O| ≤ εbπ̄b(bt = 0|st)
(

1− |O|−1

|O|
ζ

)
≤ πb(bt = 0|st, ot−1)π̄hi(ot = ot−1|st, ot−1, bt = 0)

≤ ε−1
b π̄b(bt = 0|st).

Finally, when bt = 0 and ot 6= ot−1,

εbπ̄b(bt = 0|st)ζ/|O|≤ πb(bt = 0|st, ot−1)π̄hi(ot|st, ot−1, bt = 0) ≤ ε−1
b π̄b(bt = 0|st)ζ/|O|.

Combining the above cases and the definition of π̄o,b(ot, bt|st; θ) completes the proof.

D.2 Smoothing stability

Before stating the smoothing stability lemma, we introduce a few definitions. The quantities defined in this
subsection depend on an observation sequence {st, at}t∈Z, but such a dependency is usually omitted to simplify
the notation, unless specified otherwise. Consistent with our notations so far, in the following we make extensive
use of the proportional symbol ∝.

D.2.1 Forward and backward recursion operators

With any given observation sequence {st, at}t∈Z and any θ ∈ Θ , define the filtering operator F θt as the following.
For any probability measure ϕ over O × {0, 1}, F θt ϕ is also a probability measure such that with any input
arguments ot and bt,

F θt ϕ(ot, bt) ∝
∑

ot−1,bt−1

πb(bt|st, ot−1; θb)π̄hi(ot|st, ot−1, bt; θhi)πlo(at|st, ot; θlo)ϕ(ot−1, bt−1). (21)

The RHS has exactly the form of the forward recursion, therefore the recursion on both αθk,t in (2) and αθµ,t in

(10) can be expressed using F θt . For generality, let {ϕθt }t∈Z and {ϕ̂θ̂t }t∈Z be any two indexed sets of probability

measures such that F θt ϕ
θ
t−1 = ϕθt and F θ̂t ϕ̂

θ̂
t−1 = ϕ̂θ̂t . We restrict {ϕθt }t∈Z and {ϕ̂θ̂t }t∈Z to be strictly positive. Due

to Assumption 1, such a restriction is valid. Notice that θ and θ̂ here can be equal. We use the seemingly more

complicated notation {ϕ̂θ̂t }t∈Z because even if θ = θ̂, {ϕθt }t∈Z and {ϕ̂θ̂t }t∈Z are still different; in this case they are
just two different sets of probability measures satisfying the same recursion F θt .

Similarly, we define the backward recursion operator Bθt as follows. For any probability measure ρ over O×{0, 1},
Bθt ρ is also a probability measure such that with any input arguments ot and bt,

Bθt ρ(ot, bt) ∝
∑

ot+1,bt+1

πb(bt+1|st+1, ot; θb)π̄hi(ot+1|st+1, ot, bt+1; θhi)πlo(at+1|st+1, ot+1; θlo)ρ(ot+1, bt+1). (22)
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The recursion on both βθt|T in (4) and βθk,t in (11) can be expressed using Bθt . Let {ρθt }t∈Z and {ρ̂θ̂t }t∈Z be any two

indexed sets of probability measures such that Bθt ρ
θ
t+1 = ρθt and Bθ̂t ρ̂

θ̂
t+1 = ρ̂θ̂t . We restrict {ρθt }t∈Z and {ρ̂θ̂t }t∈Z

to be strictly positive.

The operation ⊗ is defined as follows: {(ϕθ ⊗ ρ̂θ̂)t}t∈Z is an indexed set of probability measures such that for any
input arguments ot and bt,

(ϕθ ⊗ ρ̂θ̂)t(ot, bt) ∝ ϕθt (ot, bt)ρ̂θ̂t (ot, bt). (23)

Finally, we clarify the use of ∝ in the above definitions. In (21), (22) and (23), the normalizing constants replaced
by ∝ are independent of the input arguments (ot, bt).

D.2.2 Forward and backward smoothing operators

For any θ, θ̂ ∈ Θ and any t, with any observation sequence {st, at}t∈Z and any input arguments ot and bt, observe
that

(ϕ̂θ̂ ⊗ ρθ)t(ot, bt) ∝
∑

ot−1,bt−1

πb(bt|st, ot−1; θ̂b)π̄hi(ot|st, ot−1, bt; θ̂hi)πlo(at|st, ot; θ̂lo)

× ρθt (ot, bt)
(ϕ̂θ̂ ⊗ ρθ)t−1(ot−1, bt−1)

ρθt−1(ot−1, bt−1)
,

and

ρθt−1(ot−1, bt−1) ∝
∑
o′t,b
′
t

πb(b
′
t|st, ot−1; θb)π̄hi(o

′
t|st, ot−1, b

′
t; θhi)πlo(at|st, o′t; θlo)ρθt (o′t, b′t).

To simplify notation, let

h(θ; ot−1, st, at, ot, bt) = πb(bt|st, ot−1; θb)π̄hi(ot|st, ot−1, bt; θhi)πlo(at|st, ot; θlo). (24)

Then,

(ϕ̂θ̂ ⊗ ρθ)t(ot, bt) = C θ̂,θF
∑

ot−1,bt−1

h(θ̂; ot−1, st, at, ot, bt)ρ
θ
t (ot, bt)(ϕ̂

θ̂ ⊗ ρθ)t−1(ot−1, bt−1)∑
o′t,b
′
t
h(θ; ot−1, st, at, o′t, b

′
t)ρ

θ
t (o
′
t, b
′
t)

, (25)

where C θ̂,θF is a normalizing constant such that

(
C θ̂,θF

)−1

=
∑

ot−1,bt−1

∑
ot,bt

h(θ̂; ot−1, st, at, ot, bt)ρ
θ
t (ot, bt)∑

o′t,b
′
t
h(θ; ot−1, st, at, o′t, b

′
t)ρ

θ
t (o
′
t, b
′
t)

(ϕ̂θ̂ ⊗ ρθ)t−1(ot−1, bt−1).

From (25), we define the forward smoothing operator K θ̂,θ
F,t on the probability measure (ϕ̂θ̂ ⊗ ρθ)t−1 such that as

probability measures,

(ϕ̂θ̂ ⊗ ρθ)t−1K
θ̂,θ
F,t = (ϕ̂θ̂ ⊗ ρθ)t.

The subscript F in K θ̂,θ
F,t stands for forward. K θ̂,θ

F,t depends on the the parameters θ and θ̂, the observation

{st, at}t∈Z and the specific choice of {ρθt }t∈Z. In the general case of θ 6= θ̂, K θ̂,θ
F,t is a nonlinear operator which

requires rather sophisticated analysis. However, when θ = θ̂, it is straightforward to verify that the normalizing
constant Cθ,θF = 1, and Kθ,θ

F,t becomes a linear operator.

In fact, the linear operator Kθ,θ
F,t can be regarded as the standard operation of a Markov transition kernel on

probability measures. With a slight overload of notation, define such a Markov transition kernel on O × {0, 1},
entry-wise, as the following. For any (ot, bt) and (ot−1, bt−1) in O × {0, 1},

Kθ,θ
F,t(ot, bt|ot−1, bt−1) :=

h(θ; ot−1, st, at, ot, bt)ρ
θ
t (ot, bt)∑

o′t,b
′
t
h(θ; ot−1, st, at, o′t, b

′
t)ρ

θ
t (o
′
t, b
′
t)
. (26)
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We name this Markov transition kernel as the forward smoothing kernel. Such a definition is analogous to
Markovian decomposition in the HMM literature (Cappé et al., 2006). The only caveat here is that we also allow

perturbations on the parameter. The resulting operator K θ̂,θ
F,t is nonlinear and no longer corresponds to a Markov

transition kernel.

To proceed, we characterize the difference between operators K θ̂,θ
F,t and Kθ,θ

F,t when θ̂ and θ are close. First, we
show a version of Lipschitz continuity for the options with failure framework.

Lemma D.2 (Lipschitz continuity). For all θ ∈ Θ and δ > 0, there exists a real number Lθ,δ such that with

any input arguments ot−1, st, at, ot and bt, the function h(θ̃; ot−1, st, at, ot, bt) defined in (24) is Lθ,δ-Lipschitz

with respect to θ̃ on the set {θ̃; θ̃ ∈ Θ , ‖θ̃ − θ‖2≤ δ}. Moreover, Lθ,δ is upper bounded by a constant that does not
depend on θ and δ.

Proof of Lemma D.2. Due to Assumption 2, with any input arguments ot−1, st, at, ot and bt, h(θ̃; ot−1, st, at, ot, bt)
is continuously differentiable with respect to θ̃ ∈ Θ̃ . As continuously differentiable functions are Lipschitz
continuous on convex and compact subsets, h(θ̃; ot−1, st, at, ot, bt) is Lipschitz continuous on Θ , hence also on
{θ̃; θ̃ ∈ Θ , ‖θ̃ − θ‖2≤ δ}. The Lipschitz constants depend on the choice of input arguments ot−1, st, at, ot and bt.

We can let Lθ,δ be the smallest Lipschitz constant on {θ̃; θ̃ ∈ Θ , ‖θ̃ − θ‖2≤ δ} that holds for all input arguments
ot−1, st, at, ot and bt. Clearly Lθ,δ is upper bounded by any Lipschitz constant on Θ that holds for all input
arguments, which does not depend on θ and δ.

Next, we bound the difference between operators K θ̂,θ
F,t and Kθ,θ

F,t .

Lemma D.3 (Perturbation on the forward smoothing kernel). Let ϕ be any probability measure on O × {0, 1}.
Let K θ̂,θ

F,t and Kθ,θ
F,t be defined with the same observation sequence {st, at}t∈Z and the same choice of {ρθt }t∈Z.

Their difference is only in the first entry of the superscript (θ̂ in K θ̂,θ
F,t ; θ in Kθ,θ

F,t). Then, for all t, ϕ, θ, θ̂,

{st, at}t∈Z and {ρθt }t∈Z,

∥∥∥ϕK θ̂,θ
F,t − ϕK

θ,θ
F,t

∥∥∥
TV
≤

maxot−1,ot,bt h(θ; ot−1, st, at, ot, bt)

minot−1,ot,bt h(θ; ot−1, st, at, ot, bt)

Lθ,‖θ̂−θ‖2‖θ̂ − θ‖2
minot−1,ot,bt h(θ̂; ot−1, st, at, ot, bt)

.

Proof of Lemma D.3. From the definitions, for any t, ϕ, θ, θ̂, {st, at}t∈Z and {ρθt }t∈Z,∥∥∥ϕK θ̂,θ
F,t − ϕK

θ,θ
F,t

∥∥∥
TV

=
1

2

∑
ot,bt

∣∣∣∣∣∣
∑

ot−1,bt−1

[
C θ̂,θF h(θ̂; ot−1, st, at, ot, bt)− h(θ; ot−1, st, at, ot, bt)

]
∑
o′t,b
′
t
h(θ; ot−1, st, at, o′t, b

′
t)ρ

θ
t (o
′
t, b
′
t)

ρθt (ot, bt)ϕ(ot−1, bt−1)

∣∣∣∣∣∣
≤ 1

2

∑
ot−1,bt−1

∑
ot,bt

∣∣∣C θ̂,θF h(θ̂; ot−1, st, at, ot, bt)− h(θ; ot−1, st, at, ot, bt)
∣∣∣ ρθt (ot, bt)∑

o′t,b
′
t
h(θ; ot−1, st, at, o′t, b

′
t)ρ

θ
t (o
′
t, b
′
t)

ϕ(ot−1, bt−1).

From the definition of the normalizing constant C θ̂,θF , we have

(
C θ̂,θF

)−1

=
∑

ot−1,bt−1

∑
ot,bt

h(θ̂; ot−1, st, at, ot, bt)ρ
θ
t (ot, bt)∑

o′t,b
′
t
h(θ; ot−1, st, at, o′t, b

′
t)ρ

θ
t (o
′
t, b
′
t)
ϕ(ot−1, bt−1).

Therefore,

C θ̂,θF ≤ max
ot−1

∑
ot,bt

h(θ; ot−1, st, at, ot, bt)ρ
θ
t (ot, bt)∑

ot,bt
h(θ̂; ot−1, st, at, ot, bt)ρθt (ot, bt)

,



Zhiyu Zhang, Ioannis Ch. Paschalidis

and ∣∣∣C θ̂,θF − 1
∣∣∣

=

∣∣∣∣∣∣
∑

ot−1,bt−1

∑
ot,bt

[h(θ̂; ot−1, st, at, ot, bt)− h(θ; ot−1, st, at, ot, bt)]ρ
θ
t (ot, bt)∑

ot,bt
h(θ; ot−1, st, at, ot, bt)ρθt (ot, bt)

ϕ(ot−1, bt−1)

∣∣∣∣∣∣C θ̂,θF
≤

Lθ,‖θ̂−θ‖2‖θ̂ − θ‖2C
θ̂,θ
F

minot−1

∑
ot,bt

h(θ; ot−1, st, at, ot, bt)ρθt (ot, bt)
.

As a result, for any given ot−1, ot and bt,∣∣∣C θ̂,θF h(θ̂; ot−1, st, at, ot, bt)− h(θ; ot−1, st, at, ot, bt)
∣∣∣

≤ C θ̂,θF

∣∣∣h(θ̂; ot−1, st, at, ot, bt)− h(θ; ot−1, st, at, ot, bt)
∣∣∣+
∣∣∣C θ̂,θF − 1

∣∣∣h(θ; ot−1, st, at, ot, bt)

≤

[
1 +

h(θ; ot−1, st, at, ot, bt)

mino′t−1

∑
o′t,b
′
t
h(θ; o′t−1, st, at, o

′
t, b
′
t)ρ

θ
t (o
′
t, b
′
t)

]
Lθ,‖θ̂−θ‖2

∥∥∥θ̂ − θ∥∥∥
2
C θ̂,θF .

Combining everything together,∥∥∥ϕK θ̂,θ
F,t − ϕK

θ,θ
F,t

∥∥∥
TV

≤ Lθ,‖θ̂−θ‖2

∥∥∥θ̂ − θ∥∥∥
2
C θ̂,θF ×max

ot−1

1 +
∑
ot,bt

h(θ;ot−1,st,at,ot,bt)ρ
θ
t (ot,bt)

mino′
t−1

∑
o′t,b
′
t
h(θ;o′t−1,st,at,o

′
t,b
′
t)ρ

θ
t (o′t,b

′
t)

2
∑
o′t,b
′
t
h(θ; ot−1, st, at, o′t, b

′
t)ρ

θ
t (o
′
t, b
′
t)

=
Lθ,‖θ̂−θ‖2‖θ̂ − θ‖2C

θ̂,θ
F

mino′t−1

∑
o′t,b
′
t
h(θ; o′t−1, st, at, o

′
t, b
′
t)ρ

θ
t (o
′
t, b
′
t)

≤
maxot−1,ot,bt h(θ; ot−1, st, at, ot, bt)

minot−1,ot,bt h(θ; ot−1, st, at, ot, bt)

Lθ,‖θ̂−θ‖2‖θ̂ − θ‖2
minot−1,ot,bt h(θ̂; ot−1, st, at, ot, bt)

.

On the other hand, we can formulate a backward smoothing recursion as

(ϕθ ⊗ ρ̂θ̂)t(ot, bt) = Cθ,θ̂B
∑

ot+1,bt+1

h(θ̂; ot, st+1, at+1, ot+1, bt+1)ϕθt (ot, bt)(ϕ
θ ⊗ ρ̂θ̂)t+1(ot+1, bt+1)∑

o′t,b
′
t
h(θ; o′t, st+1, at+1, ot+1, bt+1)ϕθt (o

′
t, b
′
t)

, (27)

where Cθ,θ̂B is a normalizing constant such that

(
Cθ,θ̂B

)−1

=
∑

ot+1,bt+1

∑
ot,bt

h(θ̂; ot, st+1, at+1, ot+1, bt+1)ϕθt (ot, bt)∑
o′t,b
′
t
h(θ; o′t, st+1, at+1, ot+1, bt+1)ϕθt (o

′
t, b
′
t)

(ϕθ ⊗ ρ̂θ̂)t+1(ot+1, bt+1).

The subscript B in Kθ,θ̂
B,t stands for backward. Similar to the forward smoothing operator K θ̂,θ

F,t , we can define the

backward smoothing operator Kθ,θ̂
B,t from (27) such that as probability measures,

(ϕθ ⊗ ρ̂θ̂)t+1K
θ,θ̂
B,t = (ϕθ ⊗ ρ̂θ̂)t.

Analogous to K θ̂,θ
F,t , in the general case of θ 6= θ̂, Kθ,θ̂

B,t is a nonlinear operator. However, if θ = θ̂, Kθ,θ̂
B,t becomes a

linear operator and induces a Markov transition kernel. The following lemma is similar to Lemma D.3. We state
it without proof.
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Lemma D.4 (Perturbation on the backward smoothing kernel). Let ρ be any probability measure on O × {0, 1}.
Let Kθ,θ̂

B,t and Kθ,θ
B,t be defined with the same observation sequence {st, at}t∈Z and the same choice of {ϕθt }t∈Z.

Then, for any t, ρ, θ, θ̂, {st, at}t∈Z and {ϕθt }t∈Z,

∥∥∥ρKθ,θ̂
B,t − ρK

θ,θ
B,t

∥∥∥
TV
≤

maxot,ot+1,bt+1
h(θ; ot, st+1, at+1, ot+1, bt+1)

minot,ot+1,bt+1
h(θ; ot, st+1, at+1, ot+1, bt+1)

×
Lθ̂,‖θ̂−θ‖2‖θ̂ − θ‖2

minot,ot+1,bt+1
h(θ̂; ot, st+1, at+1, ot+1, bt+1)

.

Notice that the bounds in both Lemma D.3 and Lemma D.4 depend on the observation sequence {st, at}t∈Z.

D.2.3 A perturbed contraction result for smoothing stability

For any t1, t2 ∈ Z with t1 ≤ t2, let I = [t1 : t2]. Remember the following definition from Appendix D.2.1, with

the index set restricted to I: for any θ, θ̂ ∈ Θ , {ϕθt }t∈I and {ϕ̂θ̂t }t∈I are two indexed sets of probability measures

defined on O × {0, 1} such that, for all t ∈ I, (1) if t 6= t1, F θt ϕ
θ
t−1 = ϕθt and F θ̂t ϕ̂

θ̂
t−1 = ϕ̂θ̂t ; (2) ϕθt and ϕ̂θ̂t are

strictly positive on their domains. {ρθt }t∈I and {ρ̂θ̂t }t∈I are two indexed sets of probability measures defined on

O × {0, 1} such that for all t ∈ I, (1) if t 6= t2, Bθt ρ
θ
t+1 = ρθt and Bθ̂t ρ̂

θ̂
t+1 = ρ̂θ̂t ; (2) ρθt and ρ̂θ̂t are strictly positive

on their domains. θ and θ̂ are allowed to be equal.

The smoothing stability lemma is stated as follows.

Lemma D.5 (Smoothing stability). With {ϕθt }t∈I, {ϕ̂θ̂t }t∈I, {ρθt }t∈I and {ρ̂θ̂t }t∈I defined above,

∥∥∥(ϕθ ⊗ ρθ)t2 − (ϕ̂θ̂ ⊗ ρθ)t2
∥∥∥

TV
≤
(

1− ε2
bζ

|O|

)t2−t1
+
|O|zθ,θ̂Lθ,‖θ̂−θ‖2

ε2
bζ

∥∥∥θ̂ − θ∥∥∥
2
,

∥∥∥(ϕ̂θ̂ ⊗ ρθ)t1 − (ϕ̂θ̂ ⊗ ρ̂θ̂)t1
∥∥∥

TV
≤
(

1− ε2
bζ

|O|

)t2−t1
+
|O|zθ,θ̂Lθ,‖θ̂−θ‖2

ε2
bζ

∥∥∥θ̂ − θ∥∥∥
2
,

where zθ,θ′ is a positive real number dependent only on θ and θ̂. Specifically,

zθ,θ′ = max
s′t,a

′
t

[maxot−1,ot,bt h(θ; ot−1, s
′
t, a
′
t, ot, bt)] ∨ [maxot−1,ot,bt h(θ̂; ot−1, s

′
t, a
′
t, ot, bt)]

[minot−1,ot,bt h(θ; ot−1, s′t, a
′
t, ot, bt)][minot−1,ot,bt h(θ̂; ot−1, s′t, a

′
t, ot, bt)]

.

Intuitively, if θ̂ = θ, Lemma D.5 has the form of an exact contraction, which is similar to the standard filtering
stability result for HMMs. Indeed, our proof uses the classical techniques of uniform forgetting from the HMM
literature (Cappé et al., 2006). If θ̂ is different from θ, such a contraction is perturbed. For HMMs, similar results
are provided in (De Castro et al., 2017, Proposition 2.2, Theorem 2.3).

Proof of Lemma D.5. Consider the first bound. It holds trivially when t2 = t1. Now consider only t2 > t1. Using
the forward smoothing operators, for any t1 < t ≤ t2,

(ϕθ ⊗ ρθ)t−1K
θ,θ
F,t − (ϕ̂θ̂ ⊗ ρθ)t−1K

θ̂,θ
F,t = (ϕθ ⊗ ρθ)t − (ϕ̂θ̂ ⊗ ρθ)t.

Therefore,∥∥∥(ϕθ ⊗ ρθ)t − (ϕ̂θ̂ ⊗ ρθ)t
∥∥∥

TV
≤
∥∥∥[(ϕθ ⊗ ρθ)t−1 − (ϕ̂θ̂ ⊗ ρθ)t−1

]
Kθ,θ
F,t

∥∥∥
TV

+
∥∥∥(ϕ̂θ̂ ⊗ ρθ)t−1K

θ,θ
F,t − (ϕ̂θ̂ ⊗ ρθ)t−1K

θ̂,θ
F,t

∥∥∥
TV

,

where the first term is due to Kθ,θ
F,t being a linear operator.
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From Lemma D.3, the second term on the RHS is upper bounded by zθ,θ̂Lθ,‖θ̂−θ‖2‖θ̂ − θ‖2. As for the first term,

we can construct the classical Doeblin-type minorization condition (Cappé et al., 2006, Chap. 4.3). Applying

Lemma D.1 in the definition of the Markov transition kernel Kθ,θ
F,t (26), we have

Kθ,θ
F,t(ot, bt|ot−1, bt−1) ≥ ε2

bζ

|O|
π̄o,b(ot, bt|st; θ)πlo(at|st, ot; θlo)ρθt (ot, bt)∑
o′t,b
′
t
π̄o,b(o′t, b

′
t|st; θ)πlo(at|st, o′t; θlo)ρθt (o′t, b′t)

=:
ε2
bζ

|O|
π̄θF,t(ot, bt). (28)

Observe that π̄θF,t just defined is a probability measure. Further define K̄θ,θ
F,t entry-wise as

K̄θ,θ
F,t(ot, bt|ot−1, bt−1) :=

(
1− ε2

bζ

|O|

)−1(
Kθ,θ
F,t(ot, bt|ot−1, bt−1)− ε2

bζ

|O|
π̄θF,t(ot, bt)

)
.

We can verify that K̄θ,θ
F,t is also a Markov transition kernel. Moreover,[

(ϕθ ⊗ ρθ)t−1 − (ϕ̂θ̂ ⊗ ρθ)t−1

]
Kθ,θ
F,t =

(
1− ε2

bζ

|O|

)[
(ϕθ ⊗ ρθ)t−1 − (ϕ̂θ̂ ⊗ ρθ)t−1

]
K̄θ,θ
F,t .

To proceed, the standard approach is to use the fact that the Dobrushin coefficient of K̄θ,θ
F,t is upper bounded by

one. For clarity, we avoid such definitions and take a more direct approach here, which requires the extension of
the total variation distance for two probability measures to the total variation norm for a finite signed measure.
For a finite signed measure ν over a finite set Ω, let the total variation norm of ν be

‖ν‖TV :=
1

2

∑
ω∈Ω

|ν(ω)| .

When ν is the difference between two probability measures ν1 − ν2, the total variation norm of ν coincides with
the total variation distance between ν1 and ν2. Therefore, the same notation ‖·‖TV is adopted here.

Let M̄(O × {0, 1}) be the set of finite signed measures over the finite set O × {0, 1}. From (Cappé et al., 2006,

Chap. 4.3.1), M̄(O × {0, 1}) is a Banach space. Define an operator norm ‖·‖op for K̄θ,θ
F,t as∥∥∥K̄θ,θ

F,t

∥∥∥
op

:= sup
{∥∥∥νK̄θ,θ

F,t

∥∥∥
TV

; ‖ν‖TV = 1, ν ∈ M̄(O × {0, 1})
}
.

Since K̄θ,θ
F,t is a Markov transition kernel, ‖K̄θ,θ

F,t‖op= 1 (Cappé et al., 2006, Lemma 4.3.6). Therefore,∥∥∥(ϕθ ⊗ ρθ)t2 − (ϕ̂θ̂ ⊗ ρθ)t2
∥∥∥

TV

≤
∥∥∥[(ϕθ ⊗ ρθ)t2−1 − (ϕ̂θ̂ ⊗ ρθ)t2−1

]
Kθ,θ
F,t2

∥∥∥
TV

+
∥∥∥(ϕ̂θ̂ ⊗ ρθ)t2−1

(
Kθ,θ
F,t2
−K θ̂,θ

F,t2

)∥∥∥
TV

=

(
1− ε2

bζ

|O|

)∥∥∥[(ϕθ ⊗ ρθ)t2−1 − (ϕ̂θ̂ ⊗ ρθ)t2−1

]
K̄θ,θ
F,t2

∥∥∥
TV

+ zθ,θ̂Lθ,‖θ̂−θ‖2‖θ̂ − θ‖2

≤
(

1− ε2
bζ

|O|

)∥∥∥(ϕθ ⊗ ρθ)t2−1 − (ϕ̂θ̂ ⊗ ρθ)t2−1

∥∥∥
TV

∥∥∥K̄θ,θ
F,t2

∥∥∥
op

+ zθ,θ̂Lθ,‖θ̂−θ‖2‖θ̂ − θ‖2

=

(
1− ε2

bζ

|O|

)∥∥∥(ϕθ ⊗ ρθ)t2−1 − (ϕ̂θ̂ ⊗ ρθ)t2−1

∥∥∥
TV

+ zθ,θ̂Lθ,‖θ̂−θ‖2‖θ̂ − θ‖2.

The second inequality is due to the sub-multiplicativity of the operator norm. Finally, the desirable result follows
from unrolling the summation and identifying the geometric series.

The proof of the second bound is analogous, using the backward smoothing operators instead of the forward
smoothing operators. Details are omitted.

Note that Lemma D.5 only holds when considering the options with failure framework. For the standard options
framework, the one-step Doeblin-type minorization condition (28) we construct in the proof does not hold anymore,
due to the failure of Lemma D.1. Instead, one could target the two-step minorization condition: define a two step
smoothing kernel similar to Kθ,θ

F,t and lower bound it similar to (28). Notations are much more complicated. For
simplicity, this extension is not considered in this paper.
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D.3 The approximation lemmas

This subsection applies Lemma D.5 to quantities defined in earlier sections.

First, we bound the difference of smoothing distributions in the non-extended graphical model (as in Theorem 1)
and the extended one with parameter k (as in Corollary 6). The parameter θ in the two models can be different.
The bounds use quantities defined in Appendix D.1 and Appendix D.2. Recall the definition of Ω from 8.

Lemma D.6 (Bounding the difference of smoothing distributions, Part I). For all θ, θ̂ ∈ Θ, k ∈ N+ and µ ∈M,
with the observation sequence {st, at}t∈Z corresponding to any ω ∈ Ω, we have

1. ∀t ∈ [1 : T ],

∥∥∥γθµ,t|T − γθ̂k,t∥∥∥
TV
≤
(

1− ε2
bζ

|O|

)t−1

+

(
1− ε2

bζ

|O|

)T−t
+

2|O|zθ,θ̂Lθ,‖θ̂−θ‖2
ε2
bζ

∥∥∥θ̂ − θ∥∥∥
2
.

2. ∀t ∈ [2 : T ],

∥∥∥γ̃θµ,t|T − γ̃θ̂k,t∥∥∥
TV
≤ 2

(
1− ε2

bζ

|O|

)t−2

+

(
1− ε2

bζ

|O|

)T−t
+

4|O|zθ,θ̂Lθ,‖θ̂−θ‖2
ε2
bζ

∥∥∥θ̂ − θ∥∥∥
2
.

Similarly, we can bound the difference of smoothing distributions in two extended graphical models with different
k and different parameter θ.

Lemma D.7 (Bounding the difference of smoothing distributions, Part II). For all θ, θ̂ ∈ Θ and t ∈ [1 : T ], with
any two integers k2 > k1 > 0 and the observation sequence {st, at}t∈Z corresponding to any ω ∈ Ω, we have

∥∥∥γθk1,t − γθ̂k2,t∥∥∥
TV
≤
(

1− ε2
bζ

|O|

)t+k1−1

+

(
1− ε2

bζ

|O|

)T+k1−t

+
2|O|zθ,θ̂Lθ,‖θ̂−θ‖2

ε2
bζ

∥∥∥θ̂ − θ∥∥∥
2
,

∥∥∥γ̃θk1,t − γ̃θ̂k2,t∥∥∥
TV
≤ 2

(
1− ε2

bζ

|O|

)t+k1−2

+

(
1− ε2

bζ

|O|

)T+k1−t

+
4|O|zθ,θ̂Lθ,‖θ̂−θ‖2

ε2
bζ

∥∥∥θ̂ − θ∥∥∥
2
.

It can be easily verified that in Lemma D.6 and Lemma D.7, the bounds still hold if θ and θ̂ on the LHS are
interchanged. We only present the proof of Lemma D.6. As for Lemma D.7, the proof is analogous therefore
omitted. Our proof essentially relies on the smoothing stability lemma (Lemma D.5).

Proof of Lemma D.6. Consider the first bound. For a cleaner notation, let

∆θ,θ̂ =
|O|zθ,θ̂Lθ,‖θ̂−θ‖2

ε2
bζ

∥∥∥θ̂ − θ∥∥∥
2
.

Apply Lemma D.5 as follows: ∀t ∈ [1 : T ], let ϕθt = αθµ,t and ϕ̂θ̂t = αθ̂k,t; let ρθt = βθt|T and ρ̂θ̂t = βθ̂k,t. Due to
Assumption 1, the strictly positive requirement is satisfied. Then, we have∥∥∥∥∥∥ α

θ
µ,t · βθt|T
〈αθµ,t, βθt|T 〉

−
αθ̂k,t · βθt|T
〈αθ̂k,t, βθt|T 〉

∥∥∥∥∥∥
TV

≤
(

1− ε2
bζ

|O|

)t−1

+ ∆θ,θ̂,

∥∥∥∥∥∥ α
θ̂
k,t · βθt|T
〈αθ̂k,t, βθt|T 〉

−
αθ̂k,t · βθ̂k,t
〈αθ̂k,t, βθ̂k,t〉

∥∥∥∥∥∥
TV

≤
(

1− ε2
bζ

|O|

)T−t
+ ∆θ,θ̂,
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where · denotes element-wise product and 〈·, ·〉 denotes Euclidean inner product. Therefore,

∥∥∥γθµ,t|T − γθ̂k,t∥∥∥
TV

=

∥∥∥∥∥ α
θ
µ,t · βθt|T
〈αθµ,t, βθt|T 〉

−
αθ̂k,t · βθ̂k,t
〈αθ̂k,t, βθ̂k,t〉

∥∥∥∥∥
TV

≤

∥∥∥∥∥∥ α
θ
µ,t · βθt|T
〈αθµ,t, βθt|T 〉

−
αθ̂k,t · βθt|T
〈αθ̂k,t, βθt|T 〉

∥∥∥∥∥∥
TV

+

∥∥∥∥∥∥ α
θ̂
k,t · βθt|T
〈αθ̂k,t, βθt|T 〉

−
αθ̂k,t · βθ̂k,t
〈αθ̂k,t, βθ̂k,t〉

∥∥∥∥∥∥
TV

≤
(

1− ε2
bζ

|O|

)t−1

+

(
1− ε2

bζ

|O|

)T−t
+ 2∆θ,θ̂.

Next, we bound the difference of two-step smoothing distributions ‖γ̃θµ,t|T − γ̃
θ̂
k,t‖TV. Although the idea is

straightforward, the details are tedious. For any t ∈ [2 : T ], from (6) we have

γ̃θµ,t|T (ot−1, bt)

∝ πb(bt|st, ot−1; θb)

[∑
ot

π̄hi(ot|st, ot−1, bt; θhi)πlo(at|st, ot; θlo)
γθµ,t|T (ot, bt)

αθµ,t(ot, bt)

]∑
bt−1

αθµ,t−1(ot−1, bt−1)


∝
∑
ot

π̄hi(ot|st, ot−1, bt; θhi)πlo(at|st, ot; θlo)γθµ,t|T (ot, bt)[
∑
bt−1

αθµ,t−1(ot−1, bt−1)]πb(bt|st, ot−1; θb)∑
o′t−1,bt−1

πb(bt|st, o′t−1; θb)π̄hi(ot|st, o′t−1, bt; θhi)πlo(at|st, ot; θlo)αθµ,t−1(o′t−1, bt−1)

=
∑
ot

πb(bt|st, ot−1; θb)π̄hi(ot|st, ot−1, bt; θhi)[
∑
bt−1

αθµ,t−1(ot−1, bt−1)]∑
o′t−1

πb(bt|st, o′t−1; θb)π̄hi(ot|st, o′t−1, bt; θhi)[
∑
bt−1

αθµ,t−1(o′t−1, bt−1)]
γθµ,t|T (ot, bt).

The denominators are all positive due to the non-degeneracy assumption. It can be easily verified that the
normalizing constants involved in the second and the third line cancel each other. As abbreviations, define

gθ(ot−1, st, ot, bt) := πb(bt|st, ot−1; θb)π̄hi(ot|st, ot−1, bt; θhi),

gθ̂(ot−1, st, ot, bt) := πb(bt|st, ot−1; θ̂b)π̄hi(ot|st, ot−1, bt; θ̂hi),

fθµ,t(ot−1, st, ot, bt) :=
gθ(ot−1, st, ot, bt)[

∑
bt−1

αθµ,t−1(ot−1, bt−1)]∑
o′t−1

gθ(o′t−1, st, ot, bt)[
∑
bt−1

αθµ,t−1(o′t−1, bt−1)]
,

f θ̂k,t(ot−1, st, ot, bt) :=
gθ̂(ot−1, st, ot, bt)[

∑
bt−1

αθ̂k,t−1(ot−1, bt−1)]∑
o′t−1

gθ̂(o′t−1, st, ot, bt)[
∑
bt−1

αθ̂k,t−1(o′t−1, bt−1)]
.

Then,

∥∥∥γ̃θµ,t|T − γ̃θ̂k,t∥∥∥
TV

=
1

2

∑
ot−1,bt

∣∣∣∣∑
ot

[fθµ,t(ot−1, st, ot, bt)γ
θ
µ,t|T (ot, bt)− f θ̂k,t(ot−1, st, ot, bt)γ

θ̂
k,t|T (ot, bt)]

∣∣∣∣
≤ 1

2

∑
ot−1,bt,ot

∣∣∣fθµ,t(ot−1, st, ot, bt)− f θ̂k,t(ot−1, st, ot, bt)
∣∣∣ γθµ,t|T (ot, bt)

+
1

2

∑
ot−1,bt,ot

f θ̂k,t(ot−1, st, ot, bt)
∣∣∣γθµ,t|T (ot, bt)− γθ̂k,t|T (ot, bt)

∣∣∣ . (29)
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Now, we bound the two terms on the RHS separately. Consider the first term in (29),

1

2

∑
ot−1,ot,bt

∣∣∣fθµ,t(ot−1, st, ot, bt)− f θ̂k,t(ot−1, st, ot, bt)
∣∣∣ γθµ,t|T (ot, bt)

≤ 1

2
max
ot,bt

∑
ot−1,bt−1

∣∣∣∣ gθ(ot−1, st, ot, bt)α
θ
µ,t−1(ot−1, bt−1)∑

o′t−1,b
′
t−1

gθ(o′t−1, st, ot, bt)α
θ
µ,t−1(o′t−1, b

′
t−1)

−
gθ(ot−1, st, ot, bt)α

θ̂
k,t−1(ot−1, bt−1)∑

o′t−1,b
′
t−1

gθ(o′t−1, st, ot, bt)α
θ̂
k,t−1(o′t−1, b

′
t−1)

∣∣∣∣
+

1

2
max
ot,bt

∑
ot−1,bt−1

αθ̂k,t−1(ot−1, bt−1)

∣∣∣∣ gθ(ot−1, st, ot, bt)∑
o′t−1,b

′
t−1

gθ(o′t−1, st, ot, bt)α
θ̂
k,t−1(o′t−1, b

′
t−1)

− gθ̂(ot−1, st, ot, bt)∑
o′t−1,b

′
t−1

gθ̂(o′t−1, st, ot, bt)α
θ̂
k,t−1(o′t−1, b

′
t−1)

∣∣∣∣. (30)

Denote the two terms on the RHS of (30) as ∆1 and ∆2 respectively. To bound ∆1, we can apply Lemma D.5 on

the index set [1 : t− 1] as follows, assuming t > 2. For any t′ ∈ [1 : t− 1], let ϕθt′ = αθµ,t′ and ϕ̂θ̂t′ = αθ̂k,t′ . For any

(ot, bt), let ρθt−1(ot−1, bt−1) = z−1
θ gθ(ot−1, st, ot, bt), where zθ is a normalizing constant. For 1 ≤ t′ < t − 1, let

ρθt′ = Bθt′ρ
θ
t′+1. Then,

∆1 ≤
(

1− ε2
bζ

|O|

)t−2

+ ∆θ,θ̂.

Such a bound holds trivially if t ≤ 2.

Next, we bound ∆2 as follows. Straightforward computation yields the following result.

∆2 =
1

2
max
ot,bt

∑
ot−1,bt−1

αθ̂k,t−1(ot−1, bt−1)

∣∣∣∣ h(θ; ot−1, st, at, ot, bt)∑
o′t−1,b

′
t−1

h(θ; o′t−1, st, at, ot, bt)α
θ̂
k,t−1(o′t−1, b

′
t−1)

− h(θ̂; ot−1, st, at, ot, bt)∑
o′t−1,b

′
t−1

h(θ̂; o′t−1, st, at, ot, bt)α
θ̂
k,t−1(o′t−1, b

′
t−1)

∣∣∣∣
≤ max

ot,bt

∑
ot−1,bt−1

∣∣∣h(θ; ot−1, st, at, ot, bt)− h(θ̂; ot−1, st, at, ot, bt)
∣∣∣αθ̂k,t−1(ot−1, bt−1)∑

o′t−1,b
′
t−1

h(θ; o′t−1, st, at, ot, bt)α
θ̂
k,t−1(o′t−1, b

′
t−1)

≤
maxot−1,ot,bt

∣∣∣h(θ; ot−1, st, at, ot, bt)− h(θ̂; ot−1, st, at, ot, bt)
∣∣∣

minot−1,ot,bt h(θ; ot−1, st, at, ot, bt)
≤ ∆θ,θ̂,

where we use the definition of h(θ; ot−1, st, at, ot, bt) in (24).

As for the second term in (29),

1

2

∑
ot−1,bt,ot

fθk,t(ot−1, st, ot, bt)
∣∣∣γθµ,t|T (ot, bt)− γθk,t|T (ot, bt)

∣∣∣
=
∥∥∥γθµ,t|T − γθk,t∥∥∥

TV
≤
(

1− ε2
bζ

|O|

)t−1

+

(
1− ε2

bζ

|O|

)T−t
+ 2∆θ,θ̂.

Combining the above gives the desirable result.

D.4 Proof of Lemma C.1

Based on Lemma D.7, for all T ≥ 2, θ ∈ Θ and t ∈ [1 : T ], with any observation sequence, both the sequences
{γθk,t}k∈N+ and {γ̃θk,t}k∈N+ are Cauchy sequences associated with the total variation distance. Moreover, the
set of probability measures over the finite sample space O × {0, 1} is complete. Therefore, the limits of both
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{γθk,t}k∈N+ and {γ̃θk,t}k∈N+ as k →∞ exist with respect to the total variation distance. From the definitions of

{γθk,t}k∈N+ and {γ̃θk,t}k∈N+ in Appendix C.1, it is clear that their limits as k →∞ do not depend on T .

The Lipschitz continuity of γθ∞,t also follows from Lemma D.7. Specifically, for all θ, θ̂ ∈ Θ and t ∈ [1 : T ], with
any observation sequence, ∥∥∥γθ∞,t − γθ̂∞,t∥∥∥

TV
≤

2|O|zθ,θ̂Lθ,‖θ̂−θ‖2
ε2
bζ

∥∥∥θ̂ − θ∥∥∥
2
.

The coefficient of ‖θ̂ − θ‖2 on the RHS can be upper bounded by a constant that does not depend on θ and θ̂.
The same argument holds for γ̃θ∞,t.

D.5 Proof of Lemma C.2

For a cleaner notation, we omit the dependency on ω in the following analysis. From the definitions, for all
θ, θ′ ∈ Θ and µ ∈M,

Qs∞,T (θ′|θ)−Qµ,T (θ′|θ)

=
1

T

{ T∑
t=2

∑
ot−1,bt

[
γ̃θ∞,t(ot−1, bt)− γ̃θµ,t|T (ot−1, bt)

]
[log πb(bt|st, ot−1; θ′b)]

+

T∑
t=1

∑
ot,bt

[
γθ∞,t(ot, bt)− γθµ,t|T (ot, bt)

]
[log πlo(at|st, ot; θ′lo)]

+

T∑
t=1

∑
ot

[
γθ∞,t(ot, bt = 1)− γθµ,t|T (ot, bt = 1)

]
[log πhi(ot|st; θ′hi)] + err

}
,

where the last term is a small error term associated with t = 1 such that,

|err| =
∣∣∣∣ ∑
o0,b1

γ̃θ∞,1(o0, b1) [log πb(b1|s1, o0; θ′b)]

∣∣∣∣ ≤ max
b1,s1,o0

|log πb(b1|s1, o0; θ′b)|.

The maximum on the RHS is finite due to the non-degeneracy assumption. Furthermore,∣∣Qs∞,T (θ′|θ)−Qµ,T (θ′|θ)
∣∣

≤ 1

T

{ T∑
t=2

max
bt,st,ot−1

|log πb(bt|st, ot−1; θ′b)|
∑

ot−1,bt

∣∣∣γ̃θ∞,t(ot−1, bt)− γ̃θµ,t|T (ot−1, bt)
∣∣∣

+

T∑
t=1

max
at,st,ot

|log πlo(at|st, ot; θ′lo)|
∑
ot,bt

∣∣∣γθ∞,t(ot, bt)− γθµ,t|T (ot, bt)
∣∣∣

+

T∑
t=1

max
st,ot
|log πhi(ot|st; θ′hi)|

∑
ot

∣∣∣γθ∞,t(ot, bt = 1)− γθµ,t|T (ot, bt = 1)
∣∣∣+ |err|

}
.

Since the bounds in Lemma D.6 hold for any k > 0, they also hold in the limit as k →∞. Therefore, for any θ, µ
and any t ∈ [1 : T ], ∥∥∥γθµ,t|T − γθ∞,t∥∥∥

TV
≤
(

1− ε2
bζ

|O|

)t−1

+

(
1− ε2

bζ

|O|

)T−t
.

For any θ, µ and any t ∈ [2 : T ],

∥∥∥γ̃θµ,t|T − γ̃θ∞,t∥∥∥
TV
≤ 2

(
1− ε2

bζ

|O|

)t−2

+

(
1− ε2

bζ

|O|

)T−t
.
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Combining everything above,∣∣Qs∞,T (θ′|θ)−Qµ,T (θ′|θ)
∣∣

≤ 1

T

{
max

bt,st,ot−1

|log πb(bt|st, ot−1; θ′b)|
[
1 + 2

T∑
t=2

∥∥∥γ̃θµ,t|T − γ̃θ∞,t∥∥∥
TV

]

+ 2

[
max
at,st,ot

|log πlo(at|st, ot; θ′lo)|+ max
st,ot
|log πhi(ot|st; θ′hi)|

] T∑
t=1

∥∥∥γθµ,t|T − γθ∞,t∥∥∥
TV

}
≤ 1

T

{(
1 +

6|O|
ε2
bζ

)
max

bt,st,ot−1

|log πb(bt|st, ot−1; θ′b)|

+
4|O|
ε2
bζ

[
max
at,st,ot

|log πlo(at|st, ot; θ′lo)|+ max
st,ot
|log πhi(ot|st; θ′hi)|

]}
=
C(θ′)

T
,

where C(θ′) is a positive real number that only depends on θ′ and the structural constants |O|, ζ and εb. Due to
Assumption 2, C(θ′) is continuous with respect to θ′. Since Θ is compact, supθ′∈Θ C(θ′) <∞. Therefore,∣∣Qs∞,T (θ′|θ)−Qµ,T (θ′|θ)

∣∣ ≤ 1

T
sup
θ′∈Θ

C(θ′).

Taking supremum with respect to θ, θ′ and µ completes the proof.

D.6 Proof of the strong stochastic equicontinuity condition (19)

First, for all δ > 0 and ω ∈ Ω,

lim sup
T→∞

sup
θ1,θ′1,θ2,θ

′
2∈Θ;‖θ1−θ2‖2+‖θ′1−θ′2‖2≤δ

∣∣Qs∞,T (θ′1|θ1;ω)−Qs∞,T (θ′2|θ2;ω)
∣∣

≤ lim sup
T→∞

1

T
sup

θ1,θ′1,θ2,θ
′
2∈Θ;‖θ1−θ2‖2+‖θ′1−θ′2‖2≤δ

|ft(θ′1|θ1;ω)− ft(θ′2|θ2;ω)| .

Due to the boundedness of ft(θ
′|θ;ω) from Appendix C.2, we can apply the ergodic theorem (Lemma C.3). Pθ∗,ν∗

almost surely,

lim sup
T→∞

1

T

T∑
t=1

sup
θ1,θ′1,θ2,θ

′
2∈Θ;‖θ1−θ2‖2+‖θ′1−θ′2‖2≤δ

|ft(θ′1|θ1;ω)− ft(θ′2|θ2;ω)|

= Eθ∗,ν∗
[

sup
θ1,θ′1,θ2,θ

′
2∈Θ;‖θ1−θ2‖2+‖θ′1−θ′2‖2≤δ

|f1(θ′1|θ1;ω)− f1(θ′2|θ2;ω)|
]

≤ Eθ∗,ν∗
[

sup
θ1,θ′1,θ

′
2∈Θ;‖θ′1−θ′2‖2≤δ

|f1(θ′1|θ1;ω)− f1(θ′2|θ1;ω)|
]

+ Eθ∗,ν∗
[

sup
θ1,θ2,θ′2∈Θ;‖θ1−θ2‖2≤δ

|f1(θ′2|θ1;ω)− f1(θ′2|θ2;ω)|
]
.

Notice that for all θ1, θ′1, θ′2 and ω,

|f1(θ′1|θ1;ω)− f1(θ′2|θ1;ω)| ≤ max
ot

∣∣log πhi(ot|ω(st); θ
′
1,hi)− log πhi(ot|ω(st); θ

′
2,hi)

∣∣
+ max

ot

∣∣log πlo(ω(at)|ω(st), ot; θ
′
1,lo)− log πlo(ω(at)|ω(st), ot; θ

′
2,lo)

∣∣
+ max
ot−1,bt

∣∣log πb(bt|ω(st), ot−1; θ′1,b)− log πb(bt|ω(st), ot−1; θ′2,b)
∣∣ .

The RHS does not depend on θ1. Due to Assumption 2, πhi, πlo and πb as functions of the parameter θ are
uniformly continuous on Θ , with any other input arguments. Therefore it is straightforward to verify that, for
any ω ∈ Ω,

lim
δ→0

sup
θ1,θ′1,θ

′
2∈Θ;‖θ′1−θ′2‖2≤δ

|f1(θ′1|θ1;ω)− f1(θ′2|θ1;ω)| = 0.
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Applying the dominated convergence theorem,

lim
δ→0

Eθ∗,ν∗
[

sup
θ1,θ′1,θ

′
2∈Θ;‖θ′1−θ′2‖2≤δ

|f1(θ′1|θ1;ω)− f1(θ′2|θ1;ω)|
]

= 0.

Similarly, using Lemma C.1 we can show that for any ω ∈ Ω,

lim
δ→0

sup
θ1,θ2,θ′2∈Θ;‖θ1−θ2‖2≤δ

|f1(θ′2|θ1;ω)− f1(θ′2|θ2;ω)| = 0.

Using the dominated convergence theorem gives the convergence of the expectation as well. Combining the above
gives the strong stochastic equicontinuity condition (19).

D.7 Proof of Lemma C.5

Consider the following joint distribution on the graphical model shown in Figure 1: the prior distribution of
(O0, S1) is ν∗, and the joint distribution of the rest of the graphical model is determined by an options with
failure policy with parameters ζ and θ. Notice that this is the correct graphical model for the inference of the
true parameter θ∗, since the assumed prior distribution of (O0, S1) coincides with the correct one.

For clarity, we use the same notations as in Appendix B.3 for the complete likelihood function, the marginal
likelihood function and the (unnormalized) Q-function. Specifically, such quantities used in this proof have the
same symbols as those defined in Appendix B.3, but mathematically they are not the same.

Parallel to Appendix B.3, the complete likelihood function is

L(s1:T , a1:T , o0:T , b1:T ; θ) = ν∗(o0, s1)Pθ,o0,s1(S2:T = s1:T , A1:T = a1:T , O1:T = o1:T , B1:T = b1:T ).

The marginal likelihood function is

Lm(s1:T , a1:T ; θ) =
∑
o0

ν∗(o0, s1)Pθ,o0,s1(S2:T = s1:T , A1:T = a1:T ).

Let µ∗ be the conditional distribution of O0 given s1. For any o0 ∈ O,

µ∗(o0|s1) =
ν∗(o0, s1)∑

o′0∈O
ν∗(o′0, s1)

.

Therefore, for the inference of θ∗ considered in this proof, the (unnormalized) Q-function can be expressed as

Q̃µ∗,T (θ′|θ) =
∑

o0:T ,b1:T

L(s1:T , a1:T , o0:T , b1:T ; θ)

Lm(s1:T , a1:T ; θ)
logL(s1:T , a1:T , o0:T , b1:T ; θ′)

=
∑

o0:T ,b1:T

µ∗(o0|s1)Pθ,o0,s1(S2:T = s2:T , A1:T = a1:T , O1:T = o1:T , B1:T = b1:T )

× zθγ,µ∗ log[ν∗(o0, s1)Pθ′,o′0,s1(S2:T = s1:T , A1:T = a1:T , O1:T = o1:T , B1:T = b1:T )].

We can rewrite Q̃µ∗,T (θ′|θ) using the structure of the options with failure framework, drop the terms irrelevant to
θ′ and normalize using T . The result is the following definition of the (normalized) Q-function:

Q∗T (θ′|θ) :=

∑
o0,b1

ν∗(o0|s1)Pθ,o0,s1(S2:T = s2:T , A1:T = a1:T , B1 = b1)[log πb(b1|s1, o0; θ′b)]

T
∑
o0
ν∗(o0, s1)Pθ,o0,s1(S2:T = s1:T , A1:T = a1:T )

+
1

T

T∑
t=1

∑
ot,bt

γθµ∗,t|T (ot, bt)[log πlo(at|st, ot; θ′lo)] +
1

T

T∑
t=1

∑
ot

γθµ∗,t|T (ot, bt = 1)[log πhi(ot|st; θ′hi)]

+
1

T

T∑
t=2

∑
ot−1,bt

γ̃θµ∗,t|T (ot−1, bt)[log πb(bt|st, ot−1; θ′b)].
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We draw a comparison between Q∗T (θ′|θ) and Qµ∗,T (θ′|θ) defined in (7): their difference is in the first term of
Q∗T (θ′|θ). Maximizing Q∗T (θ′|θ) with respect to θ′ is equivalent to maximizing the (unnormalized) Q-function
Q̃µ∗,T (θ′|θ). In Algorithm 1, since Q∗T (θ′|θ) is unavailable, we use Qµ∗,T (θ′|θ) as its approximation.

Q∗T (θ′|θ) depends on the observation sequence, therefore it is a function of a sample path ω ∈ Ω. In the following
we explicitly show this dependency by writing Q∗T (θ′|θ;ω). Clearly, for all θ, θ′ ∈ Θ , ω ∈ Ω and T ≥ 2,

|Q∗T (θ′|θ;ω)−Qµ∗,T (θ′|θ;ω)| ≤ 1

T
sup
θ′∈Θ

max
b1,s1,o0

|log πb(b1|s1, o0; θ′b)| .

Combining this with the stochastic convergence of Qµ∗,T as shown in Theorem 2, we have, that for any θ ∈ Θ , as
T →∞, ∣∣Q∗T (θ|θ∗;ω)− Q̄(θ|θ∗)

∣∣→ 0, Pθ∗,ν∗ -a.s.

Using the dominated convergence theorem, such a convergence holds in expectation as well. For any θ ∈ Θ ,

lim
T→∞

Eθ∗,ν∗ [Q∗T (θ|θ∗;ω)] = Q̄(θ|θ∗).

Since maximizing Q∗T (θ|θ∗) with respect to θ is equivalent to maximizing the (unnormalized) Q-function
Q̃µ∗,T (θ|θ∗), the standard monotonicity property of the EM update holds as well. For all θ ∈ Θ , ω ∈ Ω
and T ≥ 2,

logLm[ω(s1:T ), ω(a1:T ); θ]− logLm[ω(s1:T ), ω(a1:T ); θ∗] ≥ T [Q∗T (θ|θ∗;ω)−Q∗T (θ∗|θ∗;ω)] .

Taking expectation on both sides, we have

Eθ∗,ν∗ [LHS] =
∑

s1:T ,a1:T

Lm(s1:T , a1:T ; θ∗) log
Lm(s1:T , a1:T ; θ)

Lm(s1:T , a1:T ; θ∗)
≤ 0,

due to the non-negativity of the Kullback-Leibler divergence. Therefore, Eθ∗,ν∗ [Q∗T (θ|θ∗;ω)] ≤
Eθ∗,ν∗ [Q∗T (θ∗|θ∗;ω)], and in the limit we have Q̄(θ|θ∗) ≤ Q̄(θ∗|θ∗) for all θ ∈ Θ . Applying the identifiabil-
ity assumption for the uniqueness of M̄(θ∗) completes the proof.

E Additional experiments and details omitted in Section 5

E.1 Generation of the observation sequences

We first introduce the method to sample observation sequences from the stationary Markov chain induced by the
expert policy. Using the expert policy and a fixed (o0, s1) pair, we generate 50 sample paths of length 20,000.
Then, the first 10,000 time steps in each sample path are discarded, and the rest state-action pairs are saved
as the observation sequences used in the algorithm. For different T , we just take the first T time steps in each
observation sequence.

Such a procedure is motivated by Proposition 5: it can be easily verified that Assumption 1 and 2 hold in our
numerical example. Therefore, from Proposition 5, the distribution of Xt approaches the unique stationary
distribution regardless of the initial (o0, s1) pair. In this way, Assumption 3 is approximately satisfied.

E.2 Analytical expression of the parameter update

For our numerical example, the parameter update of Algorithm 1 has a unique analytical solution. For all θ ∈ Θ ,
ω ∈ Ω, T ≥ 2 and µ ∈M, we first derive the analytical expression of Mµ,T (θ;ω)hi which is the updated parameter
for πhi based on the previous parameter θ. Such a notation for parameter updates is borrowed from Assumption 5.
Using the expression of the Q-function (7), we have

Mµ,T (θ;ω)hi ∈ arg max
θ′hi∈Θhi

T∑
t=1

∑
ot

γθµ,t|T (ot, bt = 1)[log πhi(ot|st; θ′hi)],
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where st on the RHS is the state value ω(st) from the sample path ω. We omit ω on the RHS for a cleaner
notation. Let f(θ′hi) denote the sum inside the argmax. Then,

f(θ′hi) =

T∑
t=1

{
γθµ,t|T (ot = LEFTEND, bt = 1)[log πhi(ot = LEFTEND|st; θ′hi)]

+ γθµ,t|T (ot = RIGHTEND, bt = 1)[log πhi(ot = RIGHTEND|st; θ′hi)]
}

=

T∑
t=1

{
γθµ,t|T (ot = LEFTEND, bt = 1)

[
1[st = 1, 2] log θ′hi + 1[st = 3, 4] log(1− θ′hi)

]
+ γθµ,t|T (ot = RIGHTEND, bt = 1)

[
1[st = 3, 4] log θ′hi + 1[st = 1, 2] log(1− θ′hi)

]}
.

Taking the derivative of f(θ′hi), we can verify that f(θ′hi) is strongly concave. Therefore, the parameter update
for πhi is unique.

Mµ,T (θ;ω)hi =


0.1, if M̃µ,T (θ;ω)hi < 0.1,

M̃µ,T (θ;ω)hi, if 0.1 ≤ M̃µ,T (θ;ω)hi ≤ 0.9,

0.9, if M̃µ,T (θ;ω)hi > 0.9,

where M̃µ,T (θ;ω)hi is the unconstrained parameter update given as

M̃µ,T (θ;ω)hi =

∑T
t=1 γ

θ
µ,t|T (ot = LEFTEND, bt = 1)1[st = 1, 2]∑T

t=1

∑
ot
γθµ,t|T (ot, bt = 1)

+

∑T
t=1 γ

θ
µ,t|T (ot = RIGHTEND, bt = 1)1[st = 3, 4]∑T

t=1

∑
ot
γθµ,t|T (ot, bt = 1)

.

Similarly, the unconstrained parameter updates for πlo and πb are the following:

M̃µ,T (θ;ω)lo =
1

T

T∑
t=1

∑
bt

{
γθµ,t|T (ot = LEFTEND, bt)1[at = LEFT]

+ γθµ,t|T (ot = RIGHTEND, bt)1[at = RIGHT]

}
.

M̃µ,T (θ;ω)b =
1

T − 1

T∑
t=2

∑
ot−1

{
γ̃θµ,t|T (ot−1, bt = 1)1[event] + γ̃θµ,t|T (ot−1, bt = 0)1[¬event]

}
,

where the event = {(st = 1, ot−1 = LEFTEND) ∨ (st = 4, ot−1 = RIGHTEND)}. The parameter updates
Mµ,T (θ;ω)lo and Mµ,T (θ;ω)b are the projections of M̃µ,T (θ;ω)lo and M̃µ,T (θ;ω)b onto [0.1, 0.9], respectively.

E.3 Supplementary results to Figure 3

In this subsection we present supplementary results to Figure 3. In Figure 3, err(n, T ) is defined as the average of
‖θ(n) − θ∗‖2 over all the 50 sample paths. Here, we divide the set of sample paths into smaller sets and evaluate
the average of ‖θ(n) − θ∗‖2 over these smaller sets separately. The settings for the computation of parameter
estimates are the same as in Section 5. The following procedure serves as the post-processing step of the obtained
parameter estimates.

Concretely, as defined in Section 5, we obtain a sequence {‖θ(n) − θ∗‖2;ω, T}n∈[0:N ] after running Algorithm 1

with any sample path ω and any T . After fixing T and letting n = N , ‖θ(N) − θ∗‖2 is a function of ω only. With
a given threshold interval I = [I1, I2], we define a smaller set of sample paths as the set of ω with ‖θ(N) − θ∗‖2
greater than the I1-th percentile and less than the I2-th percentile. Let err(n, T, I) be the average of ‖θ(n) − θ∗‖2
over this smaller set of sample path specified by interval I. For T = 8000, the values of err(n, T, I) with specific
choices of I are plotted below. If I = [0, 100], err(n, T, I) is equivalent to err(n, T ) investigated in Section 5.
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Figure 5: Plots of err(n, T, I) with varying n and I; T is fixed as 8000.

Figure 5 suggests that with probability around 0.6, our algorithm with the particular choice of T and θ(0) achieves
decent performance, decreasing the original estimation error by at least a half. A worth-noting observation is
that, for all the choices of I (including I = [90, 100] representing the failed sample paths), err(n, T, I) roughly
follows the same exponential decay in the early stage of the algorithm (roughly the first 10 iterations). The same
behavior can be observed for T = 5000 and T = 10000 as well. It is not clear whether this behavior is general or
specific to our numerical example. Detailed investigation is required in future work.

E.4 Varying µ
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Figure 6: Plots of err(n, T ) with varying n and µ;
T is fixed to 5000.

In this subsection we investigate the effect of µ on the
performance of Algorithm 1. Intuitively, from the uniform
forgetting analysis throughout this paper, it is reasonable
to expect that at each iteration, the effect of µ on the
parameter update is negligible if T is large. However, such
a negligible error could accumulate if N is large. The effect
of µ on the final parameter estimate is not clear without
experiments.

We use the same observation sequences as in Section 5.
T is fixed as 5000. θ(0) = (0.5, 0.6, 0.7), and the pa-
rameter space for all the three parameters remains the
same as [0.1, 0.9]. For all s1, µ(o0 = RIGHTEND|s1) ∈
{0.2, 0.5, 0.8}. The performance of the algorithm is eval-
uated by err(n, T ) defined in Section 5. The result is
presented in Figure 6, which shows that indeed, the effect
of µ on the final performance of the algorithm is negligi-
ble. For n = 1000, maxµ err(n, T ) is 0.7% higher than
minµ err(n, T ).

E.5 Random initialization

Up to this point, all the empirical results use the same initial parameter estimate θ(0) = (0.5, 0.6, 0.7) on all the
50 sample paths. In this subsection, we evaluate the effect of the initial estimation error {θ(0) − θ∗}2 on the
performance of the algorithm, by applying random θ(0). Such a randomization is not considered in Section 5
since more explanations are required.

In this experiment, we use the same observation sequences as in Section 5. T is fixed to 8000. For all s1,
µ(o0 = RIGHTEND|s1) = 1. The parameter space for all the three parameters remains the same as [0.1, 0.9].
For each observation sequence, we first generate three independent samples xhi, xlo and xb uniformly from the

interval [0, 1]. Then, θ(0) is generated as follows: with a scale factor w ∈ {0.1, 0.2, 0.3}, let θ
(0)
hi = θ∗hi − wxhi,

θ
(0)
lo = θ∗lo − wxlo and θ

(0)
b = θ∗b − wxb. As a result, θ(0) dependent on w is different for different observation
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sequences. The choices of θ(0) are not symmetrical with respect to θ∗ due to the restriction of the bounded
parameter space. For the parameter estimates obtained from the computation, err(n, T ) is defined as in Section 5.
The result is shown in Figure 7.
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Figure 7: Plots of err(n, T ) with varying n and θ(0); T is fixed to 8000.

From Figure 7, the curves corresponding to w = 0.1 and w = 0.2 qualitatively match the performance guarantee
in Theorem 4. The algorithm achieves decent performance when {θ(0)− θ∗}2 is intermediate (the case of w = 0.2),
where the average estimation error err(n, T ) is reduced by at least a half. If {θ(0) − θ∗}2 is small (the case of
w = 0.1), the parameter estimates cannot improve much from θ(0). If {θ(0) − θ∗}2 is large (the case of w = 0.3),
the algorithm cannot converge to the vicinity of the true parameter, which is consistent with our local convergence
analysis.


