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Abstract

Due to recent empirical successes, the op-
tions framework for hierarchical reinforce-
ment learning is gaining increasing popular-
ity. Rather than learning from rewards, we
consider learning an options-type hierarchical
policy from expert demonstrations. Such a
problem is referred to as hierarchical imitation
learning. Converting this problem to param-
eter inference in a latent variable model, we
develop convergence guarantees for the EM
approach proposed by Daniel et al. (2016b).
The population level algorithm is analyzed as
an intermediate step, which is nontrivial due
to the samples being correlated. If the expert
policy can be parameterized by a variant of
the options framework, then, under regular-
ity conditions, we prove that the proposed
algorithm converges with high probability to
a norm ball around the true parameter. To
our knowledge, this is the first performance
guarantee for an hierarchical imitation learn-
ing algorithm that only observes primitive
state-action pairs. 1

1 Introduction

Recent empirical studies (Kulkarni et al., 2016; Tessler
et al., 2017; Vezhnevets et al., 2017; Nachum et al.,
2018) have shown that the scalability of Reinforce-
ment Learning (RL) algorithms can be improved by
incorporating hierarchical structures. As an example,
consider the options framework (Sutton et al., 1999)
representing a two-level hierarchical policy: with a set
of multi-step low level procedures (options), the high
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level policy selects an option, which, in turn, decides
the primitive action applied at each time step until
the option terminates. Learning such a hierarchical
policy from environmental feedback effectively breaks
the overall task into sub-tasks, each easier to solve.

Researchers have investigated the hierarchical RL prob-
lem under various settings. Existing theoretical analy-
ses (Brunskill and Li, 2014; Mann and Mannor, 2014;
Fruit and Lazaric, 2017; Fruit et al., 2017) typically
assume that the options are given. As a result, only the
high-level policy needs to be learned. Recent advances
in deep hierarchical RL (e.g., Bacon et al. 2017) focus
on concurrently learning the full options framework,
but still the initialization of the options is critical. A
promising practical approach is to learn an initial hi-
erarchical policy from expert demonstrations. Then,
deep hierarchical RL algorithms can be applied for
policy improvement. The former step is named as
Hierarchical Imitation Learning (HIL).

Due to its practicality, HIL has been extensively stud-
ied within the deep learning and robotics communities.
However, existing works typically suffer from the follow-
ing limitations. First, the considered HIL formulations
often lack rigor and clarity. Second, existing works
are mostly empirical, only testing on a few specific
benchmarks. Without theoretical justification, it re-
mains unclear whether the proposed methods can be
generalized beyond their experimental settings.

In this paper, we investigate HIL from a theoretical
perspective. Our problem formulation is concise while
retaining the essential difficulty of HIL: we need to learn
a complete hierarchical policy from an unsegmented
sequence of state-action pairs. Under this setting, HIL
becomes an inference problem in a latent variable model.
Such a transformation was first proposed by Daniel
et al. (2016b), where the Expectation-Maximization
(EM) algorithm (Dempster et al., 1977) was applied
for policy learning. Empirical results for this algorithm
and its gradient variants (Fox et al., 2017; Krishnan
et al., 2017) demonstrate good performance, but the
theoretical analysis remains open. By bridging this gap,
we aim to solidify the foundation of HIL and provide
some high level guidance for its practice.

https://arxiv.org/abs/2010.03133
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1.1 Related work

Due to its intrinsic difficulty, existing works on HIL
typically consider its easier variants for practicality. If
the expert options are observed, standard imitation
learning algorithms can be applied to learn the high
and low level policies separately (Le et al., 2018). If
those are not available, a popular idea (Butterfield
et al., 2010; Niekum et al., 2012; Manschitz et al.,
2014; Niekum et al., 2015) is to first divide the expert
demonstration into segments using domain knowledge
or heuristics, learn the individual option correspond-
ing to each segment, and finally learn the high level
policy. With additional supervision, these steps can
be unified (Shiarlis et al., 2018). In this regard, the
EM approach (Daniel et al., 2016b; Fox et al., 2017;
Krishnan et al., 2017) is this particular idea pushed to
an extreme: without any other forms of supervision, we
simultaneously segment the demonstration and learn
from it, by exploiting the latent variable structure.

From the theoretical perspective, inference in paramet-
ric latent variable models is a long-standing problem
in statistics. For many years the EM algorithm has
been considered the standard approach, but perfor-
mance guarantees (McLachlan and Krishnan, 2007;
Wu, 1983) were generally weak, only characterizing
the convergence of parameter estimates to stationary
points of the finite sample likelihood function. Un-
der additional local assumptions, convergence to the
Maximum Likelihood Estimate (MLE) can be further
established. However, due to the randomness in sam-
pling, the finite sample likelihood function is usually
highly non-concave, leading to stringent requirements
on initialization. Another weakness is that converging
to the finite sample MLE does not directly character-
ize the distance to the maximizer of the population
likelihood function which is the true parameter.

Recent ideas on EM algorithms (Wang et al., 2015;
Yi and Caramanis, 2015; Balakrishnan et al., 2017;
Yang et al., 2017) focus on the convergence to the true
parameter directly, relying on an instrumental object
named as the population EM algorithm. It has the
same two-stage iterative procedure as the standard
EM algorithm, but its Q-function, the maximization
objective in the M-step, is defined as the infinite sample
limit of the finite sample Q-function. Under regularity
conditions, the population EM algorithm converges
to the true parameter. The standard EM algorithm
is then analyzed as its perturbed version, converging
with high probability to a norm ball around the true
parameter. The main advantage of this approach is
that the true parameter usually has a large basin of
attraction in the population EM algorithm. Therefore,
the requirement on initialization is less stringent. See
Figure 1 of (Yang et al., 2017) for an illustration.

The Q-function adopted in the population EM algo-
rithm is named as the population Q-function. To
properly define such a quantity, the stochastic con-
vergence of the finite sample Q-function needs to be
constructed. When the samples are i.i.d., such as in
Gaussian Mixture Models (GMMs) (Xu et al., 2016;
Daskalakis et al., 2017; Balakrishnan et al., 2017), the
required convergence follows directly from the law of
large numbers. However, this argument is less straight-
forward in time-series models such as Hidden Markov
Models (HMMs) and the model considered in HIL. For
HMMs, Yang et al. (2017) showed that the expectation
of the Q-function converges, but both the stochastic
convergence analysis and the analytical expression of
the population Q-function are not provided. The miss-
ing techniques could be borrowed from a body of work
(Cappé et al., 2006; van Handel, 2008; Le Corff and Fort,
2013; De Castro et al., 2017) analyzing the asymptotic
behavior of HMMs. Most notably, Le Corff and Fort
(2013) provided a rigorous treatment of the population
EM algorithm via sufficient statistics, assuming the
HMM is parameterized by an exponential family.

Finally, apart from the EM algorithm, a separate line of
research (Hsu et al., 2012; Anandkumar et al., 2014) ap-
plies spectral methods for tractable inference in latent
variable models. However, such methods are mainly
complementary to the EM algorithm since better per-
formance can usually be obtained by initializing the
EM algorithm with the solution of the spectral meth-
ods (Kontorovich et al., 2013).

1.2 Our contributions

In this paper, we establish the first known performance
guarantee for a HIL algorithm that only observes prim-
itive state-action pairs. Specifically, we first fix and
reformulate the original EM approach by Daniel et al.
(2016b) in a rigorous manner. The lack of mixing
is identified as a technical difficulty in learning the
standard options framework, and a novel options with
failure framework is proposed to circumvent this issue.

Inspired by Balakrishnan et al. (2017) and Yang et al.
(2017), the population version of our algorithm is an-
alyzed as an intermediate step. We prove that if the
expert policy can be parameterized by the options with
failure framework, then, under regularity conditions,
the population version algorithm converges to the true
parameter, and the finite sample version converges with
high probability to a norm ball around the true param-
eter. Our analysis directly constructs the stochastic
convergence of the finite sample Q-function, and an
analytical expression of the resulting population Q-
function is provided. Finally, we qualitatively validate
our theoretical results using a numerical example.
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2 Problem settings

Notation. Throughout this paper, we use uppercase
letters (e.g., St) for random variables and lowercase
letters (e.g., st) for values of random variables. Let
[t1 : t2] be the set of integers t such that t1 ≤ t ≤ t2.
When used in the subscript, the brackets are removed
(e.g., St1:t2 = {St}t1≤t≤t2).

2.1 Definition of the hierarchical policy

In this section, we first introduce the options framework
for hierarchical reinforcement learning (Sutton et al.,
1999; Barto and Mahadevan, 2003), captured by the
probabilistic graphical model shown in Figure 1. The
index t represents the time; (St, At, Ot, Bt) respectively
represent the state, the action, the option and the ter-
mination indicator. For all t, St, At and Ot are defined
on the finite state space S, the finite action space A
and the finite option space O; Bt is a binary random
variable. Define the parameter θ := (θhi, θlo, θb) where
θhi ∈ Θhi, θlo ∈ Θlo, and θb ∈ Θb. The parameter
space Θ := Θhi × Θlo × Θb is a convex and compact
subset of a Euclidean space.

For any (o0, s1) ∈ O × S, if we fix (O0, S1) = (o0, s1)
and consider a given θ, the joint distribution on the
rest of the graphical model is determined by the follow-
ing components: an unknown environment transition
probability P , a high level policy πhi parameterized
by θhi, a low level policy πlo parameterized by θlo and
a termination policy πb parameterized by θb. Sam-
pling a tuple (s2:T , a1:T , o1:T , b1:T ) from such a joint
distribution, or equivalently, implementing the hierar-
chical decision process, follows the following procedure.
Starting from the first time step, the decision making
agent first determines whether or not to terminate the
current option o0. The decision is encoded in a termi-
nation indicator b1 sampled from πb(·|s1, o0; θb). b1 = 1
indicates that the option o0 terminates and the next
option o1 is sampled from πhi(·|s1; θhi); b1 = 0 indi-
cates that the option o0 continues and o1 = o0. Next,
the primitive action a1 is sampled from πlo(·|s1, o1; θlo),
applying the low level policy associated with the op-
tion o1. Using the environment, the next state s2

is sampled from P (·|s1, a1). The rest of the samples
(s3:T , a2:T , o2:T , b2:T ) are generated analogously.

The options framework corresponds to the above
hierarchical policy structure and the policy triple
{πhi, πlo, πb}. However, due to a technicality identi-
fied at the end of this subsection, we consider a novel
options with failure framework for the remainder of
this paper, which adds an extra failure mechanism to
the graphical model in the case of bt = 0. Specifically,
there exists a constant 0 < ζ < 1 such that when the
termination indicator bt = 0, with probability 1 − ζ

Figure 1: A graphical model for hierarchical reinforce-
ment learning.

the next option ot is assigned to ot−1, whereas with
probability ζ the next option ot is sampled uniformly
from the set of options O. Notice that if ζ = 0, we
recover the standard options framework.

To simplify the notation, we define π̄hi as the combi-
nation of πhi and the failure mechanism. For any θhi,
with any other input arguments,

π̄hi(ot|st, ot−1, bt; θhi) :=
πhi(ot|st; θhi), if bt = 1,

1− ζ + ζ
|O| , if bt = 0, ot = ot−1,

ζ
|O| , if bt = 0, ot 6= ot−1.

Formally, the options with failure framework is de-
fined as the class of policy triples {π̄hi, πlo, πb} pa-
rameterized by ζ and θ. With (O0, S1) = (o0, s1)
and a given θ, let Pθ,o0,s1 be the joint distribution of
{S2:T , A1:T , O1:T , B1:T }. With any input arguments,

Pθ,o0,s1(S2:T = s2:T , A1:T = a1:T , O1:T = o1:T , B1:T

= b1:T ) =

[
T−1∏
t=1

P (st+1|st, at)

][
T∏
t=1

πb(bt|st, ot−1; θb)

× π̄hi(ot|st, ot−1, bt; θhi)πlo(at|st, ot; θlo)

]
.

On the policy framework. The options with fail-
ure framework is adopted to simplify the construction
of the mixing condition (Lemma D.1). It is possi-
ble that our analysis could be extended to learn the
standard options framework. In that case, instead of
constructing the usual one step mixing condition, one
could target the multi-step mixing condition similar
to (Cappé et al., 2006, Chap. 4.3).

2.2 The imitation learning problem

Suppose an expert uses an options with failure policy
with true parameters ζ and θ∗ = (θ∗hi, θ

∗
lo, θ

∗
b ); its initial

condition (o0, s1) is sampled from a distribution ν∗.
A finite length observation sequence {s1:T , a1:T } =
{st, at}Tt=1 with T ≥ 2 is observed from the expert. ζ
and the parametric structure of the expert policy are
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known, but ν∗ is unknown. Our objective is to estimate
θ∗ from {s1:T , a1:T }.

On the practicality of our setting. Two com-
ments need to made here. First, it is common in
practice to observe not one, but a set of independent
observation sequences. In that case, the problem es-
sentially becomes easier. Second, the cardinality of
the option space and the parameterization of the ex-
pert policy are usually unknown. A popular solution
is to assume an expressive parameterization (e.g., a
neural network) in the algorithm and select card(O)
through cross-validation. Theoretical analysis of EM
under this setting is challenging, even when samples
are i.i.d. (Dwivedi et al., 2018a,b). Therefore, we only
consider the domain of correct-specification.

Throughout this paper, the following assumptions are
imposed for simplicity.

Assumption 1 (Non-degeneracy). With any other
input arguments, the domain of πhi, πlo and πb as
functions of θ can be extended to an open set Θ̃ that
contains Θ. Moreover, for all θ ∈ Θ̃, πhi, πlo and πb
parameterized by θ are strictly positive.

Assumption 2 (Differentiability). With any other
input arguments, πhi, πlo and πb as functions of θ are
continuously differentiable on Θ̃.

Next, consider the stochastic process {Ot−1, St}∞t=1 in-
duced by ν∗ and the expert policy. Based on the graph-
ical model, it is a Markov chain with finite state space
O × S. Let Πθ∗ be its set of stationary distributions,
which is nonempty and convex.

Assumption 3 (Stationary initial distribution). ν∗

is an extreme point of Πθ∗ . That is, ν∗ ∈ Πθ∗ , and
it cannot be written as the convex combination of two
elements of Πθ∗ .

On the assumptions. The first two assumptions
are generally mild and therefore hold for many policy
parameterizations. The third assumption is a bit more
restrictive, but it is essential for our theoretical anal-
ysis. In Appendix A, we provide further justification
of this assumption in a particular class of environ-
ments: ∀st, st+1 ∈ S, there exists at ∈ A such that
P (st+1|st, at) > 0. In such environments, Πθ∗ contains
a unique element which is also the limiting distribu-
tion. If we start sampling the observation sequence
late enough, Assumption 3 is approximately satisfied.

3 A Baum-Welch type algorithm

Adopting the EM approach, we present Algorithm 1
for the estimation of θ∗. It reformulates the algorithm
by Daniel et al. (2016b) in a rigorous manner, and an
error in the latter is fixed: when defining the posterior

Algorithm 1 A Baum-Welch type algorithm for prov-
able hierarchical imitation learning

Require: Observation sequence {s1:T , a1:T }; a proba-
bility mass function µ(o0|s1) on o0 ∈ O; N ∈ N+;
θ(0) ∈ Θ .

1: for n = 1, . . . , N do

2: Compute the forward message {αθ(n−1)

µ,t }Tt=1 and

the backward message {βθ(n−1)

t|T }Tt=1 according to

(1), (2), (3) and (4).
3: Compute the smoothing distributions

{γθ(n−1)

µ,t|T }
T
t=1 and {γ̃θ(n−1)

µ,t|T }
T
t=2 according to

(5) and (6).
4: Update the next parameter estimate θ(n) ∈

arg maxθ∈Θ Qµ,T (θ|θ(n−1)) according to (7).
5: end for

distribution of latent variables, at any time t < T , the
original algorithm neglects the dependency of future
states St+1:T on the current option Ot. A detailed
discussion is provided in Appendix B.1.

Since our graphical model resembles an HMM, Algo-
rithm 1 is intuitively similar to the classical Baum-
Welch algorithm (Baum et al., 1970) for HMM parame-
ter inference. Analogously, it iterates between forward-
backward smoothing and parameter update. In each
iteration, the algorithm first estimates certain marginal
distributions of the latent variables (O1:T , B1:T ) condi-
tioned on the observation sequence {s1:T , a1:T }, assum-
ing the current estimate of θ is correct. Such conditional
distributions are named as smoothing distributions, and
they are used to compute the Q-function, which is a
surrogate of the likelihood function. The next estimate
of θ is assigned as one of the maximizing arguments of
the Q-function.

From the structure of our graphical model, a prior distri-
bution of (O0, S1) is required to compute the smoothing
distributions. Since the true prior distribution ν∗ is
unknown, ν̂, defined next, is used as its approximation:
∀o0 ∈ O, ν̂(o0, s1) := µ(o0|s1); ∀s′1 6= s1, ν̂(o0, s

′
1) := 0.

Theorem 2 shows that the additional estimation error
introduced by this approximation vanishes as T →∞,
regardless of the choice of µ. Let M be the set of µ
allowed by Algorithm 1.

3.1 Latent variable estimation

In the following, we define the forward message, the
backward message and the smoothing distribution for
all θ, µ and all t ∈ [1 : T ]. All of these quantities are
probability mass functions over O×S, and normalizing
constants zθα,µ,t, z

θ
β,t and zθγ,µ are adopted to enforce

this. With any input arguments ot and bt, the forward
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message is defined as

αθµ,t(ot, bt) := zθα,µ,tEO0∼µ(·|s1)[Pθ,O0,s1(S2:t = s2:t,

A1:t = a1:t, Ot = ot, Bt = bt)].

On the LHS, the dependency on {s1:T , a1:T } is omitted
for a cleaner notation. By convention, αθµ,1 is equivalent
to

αθµ,1(o1, b1) = zθα,µ,1EO0∼µ(·|s1)[Pθ,O0,s1(A1 = a1,

O1 = o1, B1 = b1)].

The backward message is defined as

βθt|T (ot, bt) := zθβ,tPθ,o0,s1(St+1:T = st+1:T , At+1:T =

at+1:T |St = st, At = at, Ot = ot, Bt = bt).

The value of o0 on the RHS is arbitrary. By convention,
the boundary condition is

βθT |T (oT , bT ) = (2 |O|)−1. (1)

The smoothing distribution is defined as

γθµ,t|T (ot, bt) := zθγ,µEO0∼µ(·|s1)[Pθ,O0,s1(S2:T = s2:T ,

A1:T = a1:T , Ot = ot, Bt = bt)].

It can be easily verified that the normalizing constant
does not depend on t.

Finally, for all θ, µ and all t ∈ [2 : T ], with any
input arguments ot−1 and bt, we define the two-step
smoothing distribution as

γ̃θµ,t|T (ot−1, bt) := zθγ,µEO0∼µ(·|s1)[Pθ,O0,s1(S2:T =

s2:T , A1:T = a1:T , Ot−1 = ot−1, Bt = bt)],

where zθγ,µ is the same normalizing constant as the one

for the smoothing distribution γθµ,t|T .

The quantities above can be computed using the
forward-backward recursion. For conciseness, we re-
place normalizing constants by the proportional symbol
∝. The proof is deferred to Appendix B.2.

Theorem 1 (Forward-backward smoothing). For all
θ ∈ Θ and µ ∈ M, with any input arguments on the
LHS,

1. (Forward recursion) ∀t ∈ [2 : T ],

αθµ,t(ot, bt) ∝
∑

ot−1,bt−1

πb(bt|st, ot−1; θb)π̄hi(ot|st,

ot−1, bt; θhi)πlo(at|st, ot; θlo)αθµ,t−1(ot−1, bt−1). (2)

When t = 1,

αθµ,1(o1, b1) ∝ EO0∼µ(·|s1)[πb(b1|s1, O0; θb)π̄hi(o1|s1,

O0, b1; θhi)πlo(a1|s1, o1; θlo)]. (3)

2. (Backward recursion) ∀t ∈ [1 : T − 1],

βθt|T (ot, bt) ∝
∑

ot+1,bt+1

π̄hi(ot+1|st+1, ot, bt+1; θhi)

× πb(bt+1|st+1, ot; θb)πlo(at+1|st+1, ot+1; θlo)

× βθt+1|T (ot+1, bt+1). (4)

3. (Smoothing) ∀t ∈ [1 : T ],

γθµ,t|T (ot, bt) ∝ αθµ,t(ot, bt)βθt|T (ot, bt). (5)

4. (Two-step smoothing) ∀t ∈ [2 : T ],

γ̃θµ,t|T (ot−1, bt) ∝

[∑
ot

π̄hi(ot|st, ot−1, bt; θhi)

× πlo(at|st, ot; θlo)βθt|T (ot, bt)

]
πb(bt|st, ot−1; θb)

×

[∑
bt−1

αθµ,t−1(ot−1, bt−1)

]
. (6)

3.2 Parameter update

For all θ, θ′ ∈ Θ and µ ∈ M, the (finite sample) Q-
function is defined as

Qµ,T (θ′|θ) :=

1

T

{
T∑
t=2

∑
ot−1,bt

γ̃θµ,t|T (ot−1, bt)[log πb(bt|st, ot−1; θ′b)]

+

T∑
t=1

∑
ot,bt

γθµ,t|T (ot, bt)[log πlo(at|st, ot; θ′lo)]

+
T∑
t=1

∑
ot

γθµ,t|T (ot, bt = 1)[log πhi(ot|st; θ′hi)]

}
. (7)

The parameter update is performed as θ(n) ∈
arg maxθ∈Θ Qµ,T (θ|θ(n−1)), which may not be unique.
Since Θ is compact and Qµ,T (θ′|θ) is continuous with
respect to θ′, the maximization is well-posed. Note that
our definition of Qµ,T (θ′|θ) is an approximation of the
standard definition of Q-function in the EM literature.
See Appendix B.3 for a detailed discussion.

3.3 Generalization to continuous spaces

Although we require finite state and action space for
our theoretical analysis, Algorithm 1 can be readily
generalized to continuous S and A: we only need to
replace πlo by a density function. However, generaliza-
tion to continuous option space requires a substantially
different algorithm. The forward-backward smoothing
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procedure in Theorem 1 involves integrals rather than
sums, and Sequential Monte Carlo (SMC) techniques
need to be applied. Fortunately, it is widely accepted
that a finite option space is reasonable in the options
framework, since the options need to be distinct and
separate (Daniel et al., 2016a).

4 Performance guarantee

Our analysis of Algorithm 1 has the following structure.
We first prove the stochastic convergence of the Q-
function Qµ,T (θ′|θ) to a population Q-function Q̄(θ′|θ),
leading to a well-posed definition of the population
version algorithm. This step is our major theoretical
contribution. With additional assumptions, the first-
order stability condition is constructed, and techniques
in (Balakrishnan et al., 2017) can be applied to show
the convergence of the population version algorithm.
The remaining step is to analyze Algorithm 1 as a per-
turbed form of its population version, which requires a
high probability bound on the distance between their
parameter updates. We can establish the strong con-
sistency of the parameter update of Algorithm 1 as an
estimator of the parameter update of the population
version algorithm. Therefore, the existence of such a
high probability bound can be proved for large enough
T . However, the analytical expression of this bound
requires knowledge of the specific parameterization
of {π̄hi, πlo, πb}, which is not available in this general
context of discussion.

Concretely, we first analyze the asymptotic behavior
of the Q-function Qµ,T (θ′|θ) as T → ∞. From As-
sumption 3, the observation sequence {s1:T , a1:T } is
generated from a stationary Markov chain {Xt}∞t=1 :=
{St, At, Ot, Bt}∞t=1. Let X = S ×A×O×{0, 1} be its
state space. Using Kolmogorov’s extension theorem,
we can extend this one-sided Markov chain to the index
set Z and define a unique probability measure Pθ∗,ν∗
over the sample space X Z. Any observation sequence
{s1:T , a1:T } can be regarded as a segment of an infinite
length sample path ω ∈ X Z. Therefore, if the observa-
tion sequence is not specified, Qµ,T (θ′|θ) is a random
variable with underlying probability measure Pθ∗,ν∗ .

One caveat is that the definition of Qµ,T (θ′|θ) from
Section 3 fails for some ω ∈ X Z. To fix this issue, define
the set of proper sample paths as

Ω =
{
ω ∈ X Z;P (st+1|st, at) > 0,∀t ∈ Z

}
. (8)

Note that Pθ∗,ν∗(Ω) = 1; therefore, working on Ω is
probabilistically equivalent to working on X Z. For all
ω ∈ Ω, Qµ,T (θ′|θ) follows the definition from Section 3;
for other sample paths, Qµ,T (θ′|θ) is defined arbitrarily.
In this way, Qµ,T (θ′|θ) becomes a well-defined random

variable. Its stochastic convergence is characterized in
the following theorem.

Theorem 2 (The stochastic convergence of the
Q-function). With Assumption 1, 2 and 3, there exists
a real-valued function Q̄(θ′|θ) defined on the domain
θ′ ∈ Θ̃ and θ ∈ Θ such that

1. For all θ ∈ Θ, Q̄(θ′|θ) is continuously differen-
tiable with respect to θ′ ∈ Θ̃. Moreover, the set
arg maxθ′∈Θ Q̄(θ′|θ) is nonempty.

2. As T →∞, Pθ∗,ν∗-almost surely,

sup
θ,θ′∈Θ

sup
µ∈M

∣∣Qµ,T (θ′|θ;ω)− Q̄(θ′|θ)
∣∣→ 0.

We name Q̄(θ′|θ) as the population Q-function. The
analytical expressions of Q̄(θ′|θ) and ∇Q̄(θ′|θ) are pro-
vided in Appendix C.2, where the complete version
of the above theorem (Theorem 7) is proved. In the
following, we provide a high level sketch of the main
idea.

Proof Sketch. The main difficulty of the proof is that,
Qµ,T (θ′|θ) defined in (7) is (roughly) the average of
T terms, with each term dependent on the entire ob-
servation sequence; as T → ∞, all the terms keep
changing such that the law of large numbers cannot be
applied directly. As a solution, we approximate γθµ,t|T
and γ̃θµ,t|T with smoothing distributions in an infinitely
extended graphical model independent of T , resulting
in an approximated Q-function (still depends on T ).
The techniques adopted in this step are analogous to
Markovian decomposition and uniform forgetting in the
HMM literature (Cappé et al., 2006; van Handel, 2008).
The limiting behavior of the approximated Q-function
is the same as that of Qµ,T (θ′|θ), since their difference
vanishes as T →∞. For the approximated Q-function,
we can apply the ergodic theorem since the smoothing
distributions no longer depend on T .

The population version of Algorithm 1 has parameter
updates θ(n) ∈ arg maxθ∈Θ Q̄(θ|θ(n−1)). To character-
ize the local convergence of Algorithm 1 and its pop-
ulation version, we impose the following assumptions
for the remainder of Section 4.

Assumption 4 (Strong concavity). There exists λ > 0
such that for all θ1, θ2 ∈ Θ,

Q̄(θ1|θ∗)− Q̄(θ2|θ∗)− 〈∇Q̄(θ2|θ∗), θ1 − θ2〉

≤ −λ
2
‖θ1 − θ2‖22 .

For any r > 0, let Θr := {θ; θ ∈ Θ , ‖θ − θ∗‖2≤ r}.
Assumption 5 (Additional local assumptions). There
exists r > 0 such that
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1. (Identifiability) For all θ ∈ Θr, arg maxθ′∈Θ Q̄(θ′|θ)
has a unique element M̄(θ). Moreover, for all ε > 0,
with the convention that supθ′∈∅ Q̄(θ′|θ) = −∞, we
have

inf
θ∈Θr

[
Q̄(M̄(θ)|θ)− sup

θ′∈Θ;‖θ′−M̄(θ)‖2≥ε
Q̄(θ′|θ)

]
> 0.

2. (Uniqueness of finite sample parameter updates) For
all θ ∈ Θr, T ≥ 2 and µ ∈M, Pθ∗,ν∗-almost surely,
the set arg maxθ′∈Θ Qµ,T (θ′|θ;ω) has a unique ele-
ment Mµ,T (θ;ω).

On the additional assumptions. In Assumption 4,
we require the strong concavity of Q̄(·|θ∗) over the
entire parameter space since the maximization step
in our algorithm is global. Such a requirement could
be avoided: if the maximization step is replaced by
a gradient update (Gradient EM), then Q̄(·|θ∗) only
needs to be strongly concave in a small region around θ∗.
The price to pay is to assume knowledge on structural
constants of Q̄(·|θ∗) (Lipschitz constant and strong
concavity constant). See (Balakrishnan et al., 2017)
for an analysis of the gradient EM algorithm.

Nonetheless, we expect the following to hold in certain
cases of tabular parameterization: for all θ ∈ Θ , the
function Q̄(·|θ) is strongly concave over Θ (see the end
of Appendix C.2). From this condition, Assumption 4
and 5.1 directly follow. Assumption 5.2 holds as well;
in fact, it is a quite mild assumption due to the sample-
based nature of Qµ,T (θ′|θ;ω).

The next step is to characterize the convergence of the
population version algorithm.

Theorem 3 (Convergence of the population version
algorithm). With all the assumptions,

1. (First-order stability) There exists γ > 0 such that
for all θ ∈ Θr,∥∥∇Q̄(M̄(θ)|θ)−∇Q̄(M̄(θ)|θ∗)

∥∥
2
≤ γ ‖θ − θ∗‖2 .

2. (Contraction) Let κ = γ/λ. For all θ ∈ Θr,∥∥M̄(θ)− θ∗
∥∥

2
≤ κ ‖θ − θ∗‖2 .

If κ < 1, the population version algorithm converges
linearly to the true parameter θ∗.

The proof is given in Appendix C.3, where we also
show an upper bound on γ. The idea mirrors that of
(Balakrishnan et al., 2017, Theorem 4) with problem-
specific modifications. Algorithm 1 can be regarded
as a perturbed form of this population version algo-
rithm, with convergence characterized in the following
theorem.

Theorem 4 (Performance guarantee for Algorithm 1).
With all the assumptions, if κ < 1 we have

1. For all ∆ ∈ (0, (1− κ)r] and q ∈ (0, 1), there exists
T (∆, q) ∈ N+ such that the following statement is
true. If the observation length T ≥ T (∆, q), then
with probability at least 1− q,

sup
θ∈Θr

sup
µ∈M

∥∥Mµ,T (θ;ω)− M̄(θ)
∥∥

2
≤ ∆.

2. If T ≥ T (∆, q), Algorithm 1 with any µ ∈ M has
the following performance guarantee. If θ(0) ∈ Θr,
then with probability at least 1− q, for all n ∈ N+,

‖θ(n) − θ∗‖2≤ κn‖θ(0) − θ∗‖2+(1− κ)−1∆.

The proof is provided in Appendix C.4. Essentially,
we use Theorem 2 to show the uniform (in θ and µ)
strong consistency of Mµ,T (θ;ω) as an estimator of
M̄(θ), following the standard analysis of M-estimators.
A direct corollary of this argument is the high proba-
bility bound on the difference between Mµ,T (θ;ω) and
M̄(θ), as shown in the first part of the theorem. Com-
bining this high probability bound with Theorem 3 and
(Balakrishnan et al., 2017, Theorem 5) yields the final
performance guarantee.

Theorem 4 has two practical implications. First, under
regularity conditions, with large enough T , Algorithm 1
can converge with arbitrarily high probability to an
arbitrarily small norm ball around the true parameter.
In other words, with enough samples, the EM approach
can recover the true parameter of the expert policy
arbitrarily well. Second, the estimation error (upper
bound) decreases exponentially in the initial phase
of the algorithm. In this regard, a practitioner can
allocate his computational budget accordingly.

One limitation of our analysis is that the condition
κ < 1 is hard to verify for a practical parameterization
of the expert policy. This is typical in the theory of
EM algorithms: even in the case of i.i.d. samples,
characterizing the contraction coefficient is intractable
except for a few simple parametric models. Nonetheless,
such a condition strengthens our intuition on when the
EM approach to HIL works: Q̄(θ′|θ) should have a
large curvature with respect to θ′, and the function
should not change much with respect to θ around θ∗.
In the next section, we present a numerical example to
qualitatively demonstrate our result.

5 Numerical example

In this section, we qualitatively demonstrate our the-
oretical result through an example. Here, we value
clarity over completeness, therefore large-scale experi-
ments are deferred to future works.
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Consider the Markov Decision Process (MDP) illus-
trated in Figure 2. There are four states, numbered
from left to right as 1 to 4. At any state st ∈ [1 : 4],
there are two allowable actions: LEFT and RIGHT. If
at = RIGHT, then the next state is sampled uniformly
from the states on the right of state st (including st
itself). Symmetrically, if at = LEFT, then the next
state is sampled uniformly from the states on the left
of state st (including st).

1 2 3 4

= RIGHT

= 1/3

Figure 2: The MDP considered in our example.

Suppose an expert applies the following options
with failure policy with parameters (θ∗hi, θ

∗
lo, θ

∗
b ) =

(0.6, 0.7, 0.8) and ζ = 0.1. The option space
has two elements: LEFTEND and RIGHTEND.
πhi(ot = LEFTEND|st; θhi) equals θhi if st =
1, 2, and 1 − θhi if st = 3, 4. For all st,
πlo(at = LEFT|st, ot = LEFTEND; θlo) = πlo(at =
RIGHT|st, ot = RIGHTEND; θlo) = θlo. πb(bt =
1|st, ot = LEFTEND; θb) equals θb if st = 1, and
1 − θb otherwise. Symmetrically, πb(bt = 1|st, ot =
RIGHTEND; θb) equals θb if st = 4, and 1 − θb oth-
erwise. Intuitively, the high level policy directs the
agent to states 1 and 4, and the option terminates with
high probability when the corresponding target state
is reached.

In our experiment, the parameter spaces Θhi, Θlo and
Θb are all equal to the interval [0.1, 0.9]. The initial pa-

rameter estimate (θ
(0)
hi , θ

(0)
lo , θ

(0)
b ) = (0.5, 0.6, 0.7). For

all s1, µ(o0 = RIGHTEND|s1) = 1.

We investigate the behavior of ‖θ(n) − θ∗‖2 as a ran-

dom variable dependent on n and T . 50 sample paths
of length T are sampled from (approximately) the sta-
tionary Markov chain induced by the expert policy,
with T ∈ {5000, 8000, 10000}. After running Algo-
rithm 1 with any sample path ω and any T , we obtain
a sequence {‖θ(n) − θ∗‖2;ω, T}n∈[0:N ]. Let err(n, T )

be the average of ‖θ(n) − θ∗‖2 for fixed n and T , over
the 50 sample paths. The result is shown in Figure 3.

Assumption 1, 2, 3 and 5.2 hold in this example, and we
speculate that Assumption 4 and 5.1 hold as well. The
condition κ < 1 cannot be verified, but the empirical
result exhibits patterns consistent with the performance
guarantee, even though rigorously Theorem 4 is not
applicable. First, err(n, T ) decreases exponentially in
the early phase of the algorithm. Second, as T increases,
Algorithm 1 achieves better performance.

An observation is worth mentioning as a separate note:
for n > 300, err(n, T ) first slightly increases, then lev-
els off. This is due to the parameter estimate on some
sample paths converging to bad stationary points of
the finite sample likelihood function, which suggests
that early stopping could be helpful in practice. Omit-
ted details and additional experiments are provided
in Appendix E, where we also investigate, for exam-
ple, the effect of µ and random initialization on the
performance of Algorithm 1.

6 Conclusion

In this paper, we investigate the EM approach to HIL
from a theoretical perspective. We prove that under
regularity conditions, the proposed algorithm converges
with high probability to a norm ball around the true
parameter. To our knowledge, this is the first per-
formance guarantee for an HIL algorithm that only
observes primitive state-action pairs. Future works
could further investigate the practical performance of
this approach, especially its scalability in complicated
environments.
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Figure 3: Plots of err(n, T ) and log err(n, T ) with varying n and T .
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