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A Upper Bounds on GOT

This section provides proofs of the upper bounds on the GOT provided in Section 3. For the convenience of the
reader we repeat some of the necessary definitions. Recall that the feature map ψx : Rd → [0,∞) is defined by

ψx(z) :=

√
ωd

2
d+p
2

‖z‖
d−1+2p

2√
f(‖z‖)

φ

(
z√
2
− x

σ

)
, (S.1)

where ωd = 2πd/2/Γ(d/2) is the volume of the unit sphere in Rd, φ(u) = (2π)−d/2 exp(− 1
2‖u‖

2) is the standard
Gaussian density on Rd, and f is a probability density function on [0,∞) that satisfies

f(x) ≥ axd+2p−1 exp(−bx2), (S.2)

for some a > 0 and b ∈ (0, 1/2).

Lemma S.1. The feature map in (S.1) defines a positive semidefinite kernel k : Rn × Rn → [0,∞) according to

k(x, y) :=

∫
Rd
ψx(z)ψy(z) dz. (S.3)

Furthermore, this kernel can also be expressed as

k(x, y) = exp

(
−‖x− y‖

2

4σ2

)
If

(
‖x+ y‖√

2σ

)
, (S.4)

where

If (u) :=
ωd

2d+p(2π)
d
2

∫ ∞
0

xd−1+2p

f(x)
gd,u(x) dx, (S.5)

and gd,u(x) is the density of ‖Z‖ when Z ∼ N (µ, Id) with ‖µ‖ = u.

Proof. First we establish that ψx is square integrable. By the assumed lower bound in (S.2) and the fact that
φ2(y/

√
2) = (2π)d/2φ(y), we can write∫

Rd
|ψx(z)|2 dz ≤ Cd,p

a

∫
Rd

exp
(
−b‖z‖2

)
φ
(
z −
√

2x

σ

)
dz. (S.6)

This integral is the moment generating function of the non-central chi-square distribution with d degrees of
freedom and non-centrality parameter 2‖x‖2/σ2 evaluated at b. Under the assumption b < 1/2, this integral is
finite.

To establish the form given in (S.4) we can expand the squares to obtain:

φ

(
z√
2
− x

σ

)
φ

(
z√
2
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σ

)
= (2π)−

d
2 exp

(
−‖x− y‖

2

4σ2

)
φ

(
z − x+ y√

2σ

)
.

Since the first factor does not depend on z, it follows that

k(x, y) =
ωd

2d+p(2π)
d
2

exp

(
−‖x− y‖

2

4σ2

)∫
Rd

‖z‖d−1+2p

f(‖z‖)
φ

(
z − x+ y√

2σ

)
dz.

In this case, we recognize the integral as the expectation of ‖ · ‖d−1+2p/f(·) under the chi-distribution with d
degrees of freedom and parameter u = ‖x+ y‖/(

√
2σ).
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A.1 Proof of Theorem 2

The following result is an immediate consequence of (Villani, 2008, Theorem 6.13) adapted to the notation of this
paper.

Lemma S.2 ((Villani, 2008, Theorem 6.13)). For any P,Q ∈ Pp(Rd),

Tp(P,Q) ≤ 2max(p−1,0)

∫
‖x‖p d|P −Q|(x), (S.7)

where |P −Q| denotes the absolute variation the signed measure P −Q.

To proceed, let pσ(z) =
∫
Rd φσ(z − x) dP (x) and qσ(z) =

∫
Rd φσ(z − x) dQ(x) denote the probability density

functions of P ∗ Nσ and Q ∗ Nσ, respectively. By Lemma S.2, the OT distance between P ∗ Nσ and Q ∗ Nσ is
bounded from above by the weighted total variation distance:

T (σ)
p (P,Q) ≤ 2max(p−1,0)

∫
‖z‖p|pσ(z)− qσ(z)| dz. (S.8)

In the following we will show that 2max(p−1,0)σpγk(P,Q) provides an upper bound on the right-hand side of (S.8).
To proceed, recall that the kernel MMD can be expressed as

γ2
k(P,Q) = E[k(X,X ′)] + E[k(Y, Y ′)]− 2E[k(X,Y )], (S.9)

where X,X ′ are iid P and Y, Y ′ are iid Q. The assumptions
∫ √

k(x, x)P (x) < ∞ and
∫ √

k(x, x)Q(x) < ∞
ensure that these expectations are finite, and so, by Fubini’s theorem, we can interchange the order of integration:

E[k(X,Y )] =

∫
k(x, y) dP (x) dQ(y) =

∫ (∫
ψx(z) dP (x)

)(∫
ψx(z) dQ(x)

)
dz.

For each z ∈ Rd, it follows that∫
ψx(z) dP (x) =

√
ωd

2
d+p
2

‖z‖
d−1+2p

2√
f(‖z‖)

∫
Rd
φ

(
z√
2
− x

σ

)
dP (x)

=
σd
√
ωd

2
d+p
2

‖z‖
d−1+2p

2√
f(‖z‖)

pσ

(
σz√

2

)
,

and this leads to

E[k(X,Y )] =
σ2dωd
2d+p

∫
‖z‖d−1+2p

f(‖z‖)
pσ

(
σz√

2

)
qσ

(
σz√

2

)
dz

= σ−2p

∫
‖z‖2p

rσ(‖z‖)
pσ(z)qσ(z) dz,

where rσ(x) :=
√

2
σ f(

√
2
σ x)/(ωd‖z‖d−1). Combining this expression with (S.9) leads to

γ2
k(P,Q) = σ−2p

∫
‖z‖2p

rσ(‖z‖)
(pσ(z)− qσ(z))

2
dz.

Finally, we note that z 7→ rσ(‖z‖) is a probability density function on Rd (it is non-negative and integrates to
one) and so by Jensen’s inequality and the convexity of the square,

γ2
k(P,Q) ≥ σ−2p

(∫
‖z‖p|pσ(z)− qσ(z)| dz

)2

.

In view of (S.8), this establishes the desired result.
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A.2 Proof of Theorem 3

The fact that the kernel MMD provides an upper bound on T (σ)
p (P,Q) follows directly from Theorem 2. All the

remains to be shown is that
√
k(x, x) is integrable for any probability measure with finite s-th moment, where

s = (d+ 2p+ ε)/2. To this end, we note that by the triangle inequality,

Md,u(r) ≤ 2min(1,r)(Md(r) + ‖u‖r),

for all r ≥ 0. Under the assumptions on ε, we have 0 ≤ d+ 2p− ε < d+ 2p+ ε ≤ 2s and so there exists a constant
Cd,p,ε,λ such that

k(x, y) ≤ Cd,p,ε,λ
(
1 + ‖x‖2s + ‖y‖2s

)
.

Thus, the existence of finite s-th moment is sufficient to ensure that
√
k(x, x) is integrable.

B Convergence Rate

This section provides proofs for the results in Section 4 of the main text as well as Theorem 1. To simplify the
notation, we define r = d+ 2p and let Y = (

√
2/σ)X + Z where Z ∼ N (0, Id).

Let us first consider some properties of E[k(X,X)]. Since the two moment kernel satisfies k(x, x) =
αd,p J((

√
2/σ)‖x‖), it follows from the definition of J(·) that

E[k(X,X)] =
αd,p
2ε

(
λε E

[
‖Y ‖r−ε

]
+ λ−ε E

[
‖Y ‖r+ε

])
. (S.10)

Suppose that there exists numbers M− and M+ such that

E
[
‖Y ‖r−ε

]
≤M−, E

[
‖Y ‖r+ε

]
≤M+. (S.11)

Choosing

λ = (M+/M−)1/(2ε), (S.12)

leads to

E[k(X,X)] ≤ αd,p
ε

√
M−M+. (S.13)

In other words, optimizing the choice of λ results in an upper bound on E[k(X,X)] that depends on only the
geometric mean of the upper bounds on E[‖Y ‖r±ε].
Lemma S.3. Let X ∈ Rd be a random vector satisfying

(E[‖X‖s])
1
s ≤ m(s), (S.14)

for some function m(s) for s ≥ 1. Then, if r − ε ≥ 1, (S.11) holds with

M± =

((
Md(r ± ε)

) 1
r±ε +

√
2

σ
m(r ± ε)

)r±ε
, (S.15)

where Md(s) = (d+ s)(d+s−1)/2d−(d−1)/2e−s/2.

Proof. This result follows from Minkowski’s inequality, which gives

(E[‖Y ‖s])
1
s ≤ (E[‖Z‖s])

1
s +

√
2

σ
(E[‖X‖s])

1
s

for all s ≥ 1 and the upper bound on Md(s) = E[‖Z‖s] in Theorem 5.
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B.1 Proof of Theorem 1

The result follows immediately by combining Theorem 4 and Equation (11) in the main text.

B.2 Proof of Theorem 4

By Lyapunov’s inequality and Minkowski’s inequality, it follows that for t ∈ {r ± ε},(
E
[
‖Y ‖t

]) 1
t ≤

(
E
[
‖Y ‖r+ε

]) 1
r+ε

≤
(
E
[
‖Z‖r+ε

]) 1
r+ε +

√
2

σ

(
E
[
‖X‖r+ε

]) 1
r+ε

≤
√
d+ r + ε+

√
2m

σ
,

where the last step holds because Md(q) ≤ (d + q)q/2 and the assumption (E[‖X‖s])
1
s ≤ m. Thus, for λ =√

r + ε+m, the bound in (S.13) becomes

E[k(X,X)] ≤ αd,p
ε

(
√
d+ r + ε+

√
2m

σ

)r
.

Recalling that r = d+ 2p gives the stated result.

B.3 Proof of Theorem 5

Lemma S.4. Let X ∈ Rd be a sub-gamma random vector with parameters (v, b). For all s ∈ [0,∞) and
λ ∈ (0, 1/b),

E[‖X‖s] ≤ 2
√
π

2
s
2 Γ( s+1

2 )

( s
λe

)s
exp

(
λ2v

2(1− λb)

)
Md(s), (S.16)

where Md(s) := 2
s
2 Γ(d+s

2 )/Γ(d2 ). In particular, if λ = (
√

(sb)2 + 4vp− sb)/(2v), then

E[‖X‖s] ≤

√v +

(√
sb

2

)2

+

√
sb

2

s

2
√
π

2
s
2 Γ( s+1

2 )

(s
e

) s
2

Md(s). (S.17)

Proof. Let Y = Z>X where Z = (Z1, . . . , Zd) is independent of X and distributed uniformly on the unit sphere
in Rd. Since Z is orthogonally invariant, it may be assumed that X = (‖X‖, 0, . . . , 0) and thus Y is equal in
distribution to Z1‖X‖. Therefore,

E[|Y |s] = E[|Z1|s]E[‖X‖s].

The variable Z1 has density function

f(z) =
Γ(d2 )

√
πΓ(d−1

2 )
(1− z2)(d−3)/2, z ∈ [−1, 1],

and so the moments are given by

E[|Z1|s] =
2Γ(d2 )
√
πΓ(d−1

2 )

∫ 1

0

zs(1− z2)(d−3)/2 dz =
Γ(d2 )Γ( s+1

2 )
√
πΓ(d+s

2 )
.

To bound the absolute moments of Y we use the basic inequality u ≤ exp(u− 1) with u = λ|y|/s, which leads to

|y|s ≤
( s
λe

)s
exp(λ|y|) ≤

( s
λe

)s
(eλy + e−λy),
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for all s, λ ∈ (0,∞). Noting that Y is equal in distribution to −Y and then using the sub-gamma assumption
along with the fact that Z is a unit vector yields

E[|Y |s] ≤ 2
( s
λe

)s
E[exp(λY )]

= 2
( s
λe

)s
E
[
exp(λZ>X)

]
≤ 2
( s
λe

)s
exp

(
λ2v

2(1− λb)

)
.

Combining the above displays yields (S.16).

Finally, under the specified value of λ it follows that

λ2v

1− λb
= p,

√
s

λ
=

√
v +

(√
sv

2

)2

+

√
sb

2

and plugging this expression back into the bound gives (S.17).

Theorem 5 now follows as a corollary of Lemma S.4. Starting with (S.17) and using the basic inequality√
a2 + b2 ≤ a+ b leads to

E[‖X‖s] ≤
(√
v +
√
sb
)s 2

√
π

2
s
2 Γ( s+1

2 )

(s
e

) s
2

Md(s).

To simplify the expressions involving the Gamma functions we use the lower bound log Γ(z) ≥ (z − 1
2 ) log z − z +

1
2 log(2π) for z > 0, which leads to

2
√
π

2
s
2 Γ( s+1

2 )

(s
e

) s
2 ≤
√

2e

(
s

s+ 1

) s
2

.

Combining this bound with the expression above yields

E[‖X‖s] ≤
√

2e
(√
v +
√
sb
)s( s

s+ 1

) s
2

Md(s)

≤
√

2e
(√
v +
√
sb
)s
Md(s).

This completes the proof of Theorem 5.

B.4 Proof of Theorem 6

Since Z ∼ N (0, Id) is sub-gamma with parameters (1, 0) it follows that Y = (
√

2/σ)X + Z is sub-gamma with
parameters (1 + 2v/σ2,

√
2b/σ). For t > −r we can apply Theorem 5 to obtain

E
[
‖Y ‖r+t

]
≤
√

2e
(√

1 + 2v/σ2 +
√
r + t

√
2b/σ

)r+t
Md(r + t) =

√
2e

σr+t
m(r + t).

Under the specified value of λ = (m(ε)/m(−ε))1/(2ε), it then follows from (S.13) that

E[k(X,X)] ≤
√

2eαk,p
σrε

√
m(−ε)m(ε). (S.18)

To proceed, let (v′, b′) = (σ2 + 2v,
√

2b) and consider the decomposition

log(m(−ε)m(ε)) = 2 logm(0) +A+B,

where

A := (r − ε) log
(√

v′ +
√
r − ε b′

)
+ (r + ε) log

(√
v′ +

√
r + ε b′

)
− 2r log(

√
v′ +

√
rb′)

B := logMd(r − ε) + logMd(r + ε)− 2 logMd(r).
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Using the basic inequalities
√

1 + x− 1 ≤ x/2 and log(1 + x) ≤ x, the term A can be bounded from above as
follows:

A = (r − ε) log

(
1 +

(
√
r − ε−

√
r)b′√

v′ +
√
rb′

)
+ (r + ε) log

(
1 +

(
√
r + ε−

√
r)b′√

v′ +
√
rb′

)
≤ (r − ε) log

(
1 +

(
√
r − ε−

√
r)√

r

)
+ (r + ε) log

(
1 +

(
√
r + ε−

√
r√

r

)
≤ (r − ε) log

(
1− ε

2r

)
+ (r + ε) log

(
1 +

ε

2r

)
≤ −(r − ε) ε

2r
+ (r + ε)

ε

2r

=
ε2

r
.

Similarly, one finds that

B =
d+ r − ε− 1

2
log

(
1− ε

d+ r

)
+
d+ r + ε− 1

2
log

(
1 +

ε

d+ r

)
≤ ε2

d+ r
.

Combining these bounds with the fact that r ≥ d leads to√
m(−ε)m(ε) ≤ (

√
v′ +

√
rb′)rMd(r) exp

(
3ε2

4d

)
.

Plugging this inequality back into (S.18) yields

E[k(X,X)] ≤
√

2eαk,p
ε

(
√

1 + 2v/σ2 +
√

2rb)rMd(r) exp

(
3ε2

4d

)
. (S.19)

Finally, by the lower bound log Γ(z) ≥ (z − 1
2 ) log z − z + 1

2 log(2π) and the basic inequality (1 + p/d)d ≤ ep for
p, d,≥ 0 we can write

αd,pMd(r) ≤
√
π(d+ p)d+p

epdd
d√
d+ p

≤
√
π(d+ p)p

√
d.

Hence,

E[k(X,X)] ≤
√

2πe(d+ p)p
√
d
(√

1 + 2v/σ +
√

2rb/σ
)r exp

(
3ε2

4d

)
ε

.

This bound holds for all ε ∈ [0, r]. Evaluating with ε =
√
d and recalling that r = d+ 2p gives the stated result.

B.5 Proof of Lemma 7

Note that Qij is absolutely continuous with respect to P ⊗ P and let λij = dQij/d(P ⊗ P ) denote the Radon-
Nikodym derivative. Then

rij =

∫
k(λij − 1)d(P ⊗ P )

=

∫
k(
√
λij + 1)(

√
λij − 1)d(P ⊗ P )

≤
√

2

(√∫
k2dQij +

√∫
k2d(P ⊗ P )

)
dH(Qij , P ⊗ P ),

where the last step is by the Cauchy-Scharz inequality and we have used that fact that d2
H(Qij , P ⊗ P ) =

1
2

∫
(
√
λ− 1)2d(P ⊗ P ).

Next, since k2(x, y) ≤ k(x, x)k(y, y) for any positive semidefinite kernel, it follows that∫
k2(x, y)dQij(x, y) ≤

∫
k(x, x)k(y, y)dQij(x, y) =

∫
k2(x, x)dP (x),

and thus the stated result follows from the assumption EP
[
k2(X,X)

]
≤ C2

k,P .
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C Experimental Details and Additional Results

In this section, we provide details of the experiments in Section 5 of the main text and additional numerical
results. Our experiments are based on the two-moment kernel given in Definition 1.

C.1 Numerical Computation of the Two-Moment Kernel

To evaluate the two-moment kernel given in Definition 1 we need to numerically compute the function Md,u(s),
which is the s-th moment of the non-central chi-distribution with d degrees of freedom and parameter u. For all
s ≥ 0, this function can be written as a Poisson mixture of the (central) moments according to

Md,u(s) =

∞∑
k=0

u2k exp(− 1
2u

2)

2kk!
Md+2k,0(s). (S.20)

This series can be approximated efficiently by retaining only the terms with k ≈ u2/2.

Alternatively, if s = 2` where ` is an integer, then Md,u(2`) is the `-th moment of the chi-square distribution with
d degrees of freedom and non-centrality parameter u2. The integer moments of this distribution can be obtained
by differentiating the moment generating function. An explicit formula is given by Johnson et al. (1995, pg. 448)

Md,u(2`) = 2`Γ(`+ d/2)
∑̀
j=0

(
k

j

)
(u2/2)j

Γ(j + d/2)
. (S.21)

Here we see that Md,u(2`) is a degree ` polynomial in u2.

Accordingly, for any tuple (d, p, σ, λ, ε) such that d+ 2p± ε are even integers, the two-moment kernel defined in
(11) can be expressed as

k(x, y) = exp

(
−‖x− y‖

2

4σ2

) L∑
`=0

c`

(
‖x+ y‖√

2σ

)2`

, (S.22)

where L = (d+ 2p+ ε)/2 and the coefficients c0, . . . , cL are given by

c` :=
αd,p

ε2`Γ(`+ d/2)

[
λε2L−εΓ(L− ε+ d/2)

(
L− ε
`

)
1{`≤L−ε} + λε2LΓ(L+ d/2)

(
L

`

)]
, (S.23)

with αd,p := (2π)2−(p+d)2−d/2/Γ(d/2).

C.2 Details for Example 1

We now consider Example 1, a specific example of a sub-gamma distribution which shows that the upper bound
in Theorem 6 is tight with respect to the scaling of the dimension d and the scale parameter b. Specifically, let
X =

√
UZ where Z ∼ N (0, Id) is a standard Gaussian vector and U is an independent Gamma random variable

with shape parameter 1/(2b2) and scale parameter 2b2.

Lemma S.5. For α ∈ Rd such that ‖α‖ ≤ 1/b, it holds that

E
[
exp(α>X)

]
= − 1

2b2
log
(
1− ‖α‖2b2

)
. (S.24)

In particular, this means that X is a sub-gamma random vector with parameters (1, b). Furthermore, for
s > max{−b−2,−d},

E[‖X‖s] = bsMb−2(s)Md(s). (S.25)

Proof. Observe that α>X =
√
Uα>Z where α>Z ∼ N (0, ‖α‖2). Hence

E
[
exp(α>X)

]
= E

[
exp

(
‖α‖2

2
U

)]
.
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Recognizing the right-hand side as the moment generating function of the Gamma distribution evaluated at
‖α‖2/2 yields (S.24). To see that this distribution satisfies the sub-gamma condition, we use the basic inequality
− log(1− x) ≤ x/(1− x) ≤ x/(1−

√
x) for all x ∈ (0, 1).

The expression for the moments follows immediately from the independence of U and Z and the fact that U2/b2

has Gamma distribution with shape parameter b−2/2 and scale parameter 2, which implies that U/b has a chi
distribution with b−2 degrees of freedom.

Since X satisfies the sub-gamma condition with parameters (1, b) the upper bound in Theorem 6 applies.
Alternatively, for each pair (ε, λ) we can consider the exact expression for E[k(X,X)] given in (S.10) where
r = d+ 2p and

Y =

(
2

σ2
U + 1

)1/2

Z.

Minimizing this expression with respect to λ yields

E[k(X,X)] ≥ αd,p
ε

(
E
[
‖Y ‖r−ε

]
E
[
‖Y ‖r+ε

])1/2
. (S.26)

To get a lower bound on the moments, we use

E[‖Y ‖s] ≥

(√
2

σ

)s
E[‖X‖s]. (S.27)

Combining the above displays leads to (22). Using Stirling’s approximation log Γ(z) = (z− 1
2 ) log z−z+ 1

2 log(2π)+
o(1) as z →∞ it can be verified that the minimum of this lower bound with respect to ε satisfies the same scaling
behavior with respect to d as the upper bound in Theorem 6. Namely, the bound exponential in d if δ ≥ 1/2 and
superexponential in d if δ < 1/2.

C.3 Experiments in Section 5.1

In this experiment, p = 1, the random variable X ∈ Rd is generated according to the distribution in Example 1,
and the kernel bandwidth σ takes values 1 and 4. The parameters (λ, ε) of the two-moment kernel are specified
as in Theorem 6 with parameters (1, b), and k(x, y) can be computed as in Appendix C.1.

In the Monte-Carlo computation of the average of ∆̂2
γ (the right column of Figure 2), 2n samples of X are

partitioned into two independent datasets {Xi}ni=1 and {X ′i}ni=1, each having n samples. The kernel MMD
(squared) distance has the empirical estimator (Gretton et al., 2012)

γ2
k(Pn, P

′
n) =

1

n2

n∑
i,j=1

k(Xi, Xj) +
1

n2

n∑
i,j=1

k(X ′i, X
′
j)−

2

n2

n∑
i=1,j

k(Xi, X
′
j),

and then, by definition,

E
[
γ2
k(Pn, P

′
n)
]

= 2(
1

n
E[k(X,X)] + (1− 1

n
)E[k(X,X ′)]− 2E[k(X,X ′)]

=
2

n
(E[k(X,X)]− E[k(X,X ′)]).

Recall that

γ2
k(P, Pn) =

∫ ∫
k(x, x′)dP (x)dP (x′) +

1

n2

n∑
i,j=1

k(Xi, Xj)−
2

n

n∑
i=1

∫
k(x,Xi)dP (x),

and then

E
[
γ2
k(P, Pn)

]
= E[k(X,X ′)] +

1

n
E[k(X,X)] + (1− 1

n
)E[k(X,X ′)]− 2E[k(X,X ′)]

=
1

n
(E[k(X,X)]− E[k(X,X ′)]).
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Figure S.1: Empirical values of γ2
k(Pn, P

′
n) as a function of n for various values of N for dependent samples in

Example 2, that is, the same experiment as in Figure 3. (Left) Mean and standard deviation averaged over 100
realizations. (Middle) The log10 of the mean value in the left plot. (Right) The log-log plot of the mean value in
the left plot.

Thus, if we define

∆̂2
γ :=

n

2
γ2
k(Pn, P

′
n),

the expectation of ∆̂2
γ equals E[k(X,X)]− E[k(X,X ′)] = E

[
nγ2

k(P, Pn)
]
.

C.4 Experiments in Section 5.2

In this experiment, d = 5, p = 1, σ = 1/2 and the parameters (ε, λ) of the two-moment kernel are specified as
in Theorem 6 with parameters (1, 0). Figure 3 in the main text plots the values of γ2

k(Pn, P
′
n) as a function of

increasing N and for various values of n. Figure S.1 plots γ2
k(Pn, P

′
n) as a function of increasing n and for various

values of N . Note that in this setting, the typical correlation between samples is of magnitude 1/
√
N , and thus

the overall dependence is not negligible when N is relatively small compared to n.


