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Abstract

The Gaussian-smoothed optimal transport
(GOT) framework, recently proposed by Gold-
feld et al., scales to high dimensions in esti-
mation and provides an alternative to entropy
regularization. This paper provides conver-
gence guarantees for estimating the GOT dis-
tance under more general settings. For the
Gaussian-smoothed p-Wasserstein distance in
d dimensions, our results require only the ex-
istence of a moment greater than d+ 2p. For
the special case of sub-gamma distributions,
we quantify the dependence on the dimension
d and establish a phase transition with respect
to the scale parameter. We also prove conver-
gence for dependent samples, only requiring a
condition on the pairwise dependence of the
samples measured by the covariance of the
feature map of a kernel space.

A key step in our analysis is to show that the
GOT distance is dominated by a family of
kernel maximum mean discrepancy (MMD)
distances with a kernel that depends on the
cost function as well as the amount of Gaus-
sian smoothing. This insight provides fur-
ther interpretability for the GOT framework
and also introduces a class of kernel MMD
distances with desirable properties. The the-
oretical results are supported by numerical
experiments.

1 Introduction

There has been significant interest in optimal transport
(OT) distances for data analysis, motivated by applica-
tions in statistics and machine learning ranging from
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computer graphics and imaging processing (Li et al.,
2018; Ryu et al., 2018; Solomon et al., 2014) to deep
learning (Bhushan Damodaran et al., 2018; Courty
et al., 2016; Shen et al., 2017); see (Peyré and Cuturi,
2019). The OT cost between probability measures P
and Q with cost function c(x, y) is defined as

T (P,Q) := inf
π∈Π(P,Q)

∫
c(x, y) dπ(x, y), (1)

where Π(P,Q) is the set of all probability measures
whose marginals are P and Q. Of central importance
to applications in statistics and machine learning is
the rate at which the empirical measure Pn of and iid
sample approximates the true underlying distribution
P . In this regard, one of the main challenges for OT
distances is that rate convergence suffers from the curse
of dimensionality: the number of samples n needs to
grow exponentially with the dimension d of the data
(Fournier and Guillin, 2015).

On a closely related note, OT also suffers from com-
putational issues, particularly in the high-dimensional
settings. To address both statistical and computa-
tion limitations, recent work has focused on regular-
ized versions of OT including entropy regularization
(Cuturi, 2013) and Gaussian-smoothed optimal trans-
port (GOT) (Goldfeld et al., 2020b). The entropy-
regularized OT has attracted intensive theoretical in-
terest (Bigot et al., 2019; Feydy et al., 2019; Klatt
et al., 2020), as well as an abundance of algorithm de-
velopments (Abid and Gower, 2018; Chakrabarty and
Khanna, 2020; Gerber and Maggioni, 2017). In com-
parison, GOT is less understood both in theory and
in computation. The goal of the current paper is thus
to deepen the theoretical analysis of GOT under more
general settings, so as to lay a theoretical foundation
for computational study and potential applications.

In particular, we consider distributions that satisfy
only a bounded moment condition and general settings
involving dependent samples. For the special case of
sub-gamma distributions, we show a phase transition
depending on the dimension d and with respect to the
scale parameter of the sub-gamma distribution. Going
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beyond the case of iid samples, our convergence rate
covers dependent samples as long as a condition on the
pair-wise dependence quantified by the covariance of
the kernel-space feature map is satisfied. A key step
in our analysis is to establish a novel connection be-
tween the GOT distance and a family of kernel MMD
distances, which can be of independent interest. In
the kernel MMD upper bound, the kernel is neither
bounded nor translation invariant, and is determined
by both the cost function of OT and the amount of
Gaussian smoothing. The theoretical findings are sup-
ported by numerical experiments.

To summarize our contribution, we provide an overview
of the main theoretical results in the next subsection,
and then close the introduction with a detailed review
of related work. After introducing notations and needed
preliminaries in Section 2, we derive upper bounds of
GOT using kernel MMD of a new two-moment kernel
in Section 3, which leads to the convergence rate results
in Section 4 and numerical results in Section 5. All
proofs are in the supplementary materials.

1.1 Overview of Main Results

In this paper, we focus on the OT cost Tp(P,Q) as-
sociated with the cost function cp(x, y) = ‖x − y‖p
for p > 0 and c0(x, y) = 1{x 6=y}. The total variation
distance is given by T0(P,Q) and the p-Wasserstein dis-
tance is given by Tp(P,Q) if p ∈ (0, 1] and (Tp(P,Q))1/p

if p > 1 (Villani, 2003).

The minimax convergence rate of Tp(P, Pn) was estab-
lished by Fournier and Guillin (2015, Theorem 1) who
showed that if P has a moment strictly greater than
2p, then

E[Tp(P, Pn)] �


n−

1
2 , p > d/2

n−
1
2 log n, p = d/2

n−
p
d , p ∈ (0, d/2)

. (2)

Unfortunately, this means that the sample complexity
increases exponentially with the dimension for d > 2p.

Recently, Goldfeld et al. (2020b) showed that one way
to overcome the curse of dimensionality is to consider
the Gaussian-smoothed OT distance, defined as

T (σ)
p (P,Q) := Tp(P ∗ Nσ, Q ∗ Nσ),

where Nσ denotes the iid Gaussian measure with mean
zero and variance σ2. Under the assumption that P is
sub-Gaussian with constant v, they proved an upper
bound on the converge rate that is independent of the
dimension:

E[Tp(P, Pn)] ≤ Cd,p,σ,v√
n

, p ∈ {0, 1, 2}.

The precise the form of the constant Cd,p,σ,v is provided
for p ∈ {0, 1} but not for the case p = 2 unless P is
also assumed to have bounded support. Ensuing work
by Goldfeld et al. (2020a) established the same conver-
gence rate for p = 1 under the relaxed assumption that
P has finite moment grater than 2d+ 2.

Metric properties of GOT were studied by Goldfeld

and Greenewald (2020) who showed that T (σ)
1 (P,Q)

is a metric on the space of probability measures with
finite first moment and that the sequence of optimal
couplings converges in the σ → 0 limit to the opti-
mal coupling for the unsmoothed Wasserstein distance.
Their arguments depend only on the pointwise conver-
gence of the characteristic functions under Gaussian
smoothing, and thus also apply to the case of general
p considered in this paper.

One of the main contributions of this paper is to prove
an upper bound on the convergence rate for all or-
ders of p and under more general assumptions on P .
Specifically, we prove the following result:

Theorem 1. Let Pn be the empirical measure of n
iid samples from a probability measure P on Rd that
satisfies (

∫
‖x‖s dP (x))1/s ≤ m for some s > d + 2p.

There exists a positive constant Cd,p,s such that for all
σ > 0,

E
[
T (σ)
p (P, Pn)

]
≤ Cd,p,s

σp√
n

(
1 +

m

σ

) d
2 +p

. (3)

This result brings the GOT framework in line with the
general setting studied by Fournier and Guillin (2015,
Theorem 1), and shows that the benefits obtained by
smoothing extend beyond the special cases of small p
and well-controlled tails. To help interpret this result
it is important to keep in mind that for p > 1, the
Wasserstein distance is given by the p-th root of the
GOT. As for the tightness of the bound, there are
two regimes worth considering, namely when σ → 0
as n → ∞ and when σ is fixed. In the former case,
the dependence on σ seems to be nearly tight. In

Section 4.1, we show that if σ � n−
1

d+2p then Theorem 1
implies an upper bound on the unsmoothed convergence
rate

E[Tp(P, Pn)] ≤ Cd,p,smpn−
p

d+2p . (4)

Notice that for d � 2p and d � 2p this recovers the
minimax convergence rate given in (2).

The main technical step in our approach is to establish
a novel connection between GOT and a family of kernel
MMD distances (Theorem 2). We then show how a
particular member of this family, which we call the
‘two-moment’ kernel, defines a metric on the space
of probability measures with finite moments strictly
greater than p+ d/2 (Theorem 3).
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In addition to Theorem 1, we also provide further re-
sults that elucidate the role of the dimension as well
the tail behavior of the underlying distribution (Theo-
rem 6). Furthermore, we address the setting of depen-
dent samples and provide an example illustrating how
the connection with MMD can be used to go beyond the
usual assumptions involving mixing conditions for sta-
tionary processes. Finally, we provide some numerical
experiments that support our theory.

1.2 Comparison with Previous Work

The convergence of OT distances continues to be an
active area of research (Lei et al., 2020; Niles-Weed and
Berthet, 2019; Singh and Póczos, 2018). Building upon
the the work of work of Cuturi (2013), a recent line of
work has focused on entropy regularized OT defined by

Sε(P,Q) := inf
π∈Π(P,Q)

∫
c(x, y) dπ(x, y) + εD(π‖P ⊗Q)

where D(µ‖ν) =
∫

log dµ
dν dµ is the relative entropy

between probability measures µ and ν. The addition
of the regularization term facilitates the numerical
approximation using the Sinkhorn algorithm. The
amount of regularization interpolates between OT in
the ε→ 0 limit and the kernel MMD in ε→∞ limit;
see Feydy et al. (2019). In contrast to the Gaussian-
smoothed Wasserstein distance, entropy regularized
OT is not a metric since it does not satisfy the triangle
inequality. Convergence rates for entropy regularized
OT were obtained by Genevay et al. (2019) under the
assumption of bounded support and more recently by
Mena and Niles-Weed (2019) under the assumption
of sub-Gaussian tails. Further properties have been
studied by Luise et al. (2018) and Klatt et al. (2020).

There has also been work focusing on the sliced Wasser-
stein distance, which is obtained by averaging the one-
dimensional Wasserstein distance over the unit sphere
(Bonneel et al., 2015; Rabin et al., 2011). While the
sliced Wasserstein distance is equivalent to the Wasser-
stein distance in the sense that convergence in one
metric implies convergence in another, the rates of
convergence need not be the same. See Section 1.2 of
Goldfeld et al. (2020a) for further discussion.

Going beyond convergence rates for empirical measures,
properties of smoothed empirical measures have been
studied in a variety of contexts, including the high noise
limit (Chen and Niles-Weed, 2020) and applications to
the estimation of mutual information in deep networks
(Goldfeld et al., 2018). Finally, we note that there has
also been some work on convergence with dependent
samples by Fournier and Guillin (2015), who focus on
OT distance, and also by Young and Dunson (2019),
who consider a closely related entropy estimation prob-
lem.

2 Preliminaries

Let P(Rd) be the space of Borel probability measures on
Rd and let Ps(Rd) be the space of probability measures
with finite s-th moment, i.e,

∫
‖x‖s dP (x) < ∞. The

Gaussian measure on Rd with mean-zero and covariance
σ2Id is denoted by Nσ. The convolution of probability
measures P and Q is denoted by P ∗Q. The Gamma
function is given by Γ(z) =

∫∞
0
xz−1e−x dx for z > 0.

We use C to denote a generic positive real number, and
the value of C may change from place to place.

Kernel MMD. A symmetric function k : Rd×Rd →
R is said to be a positive-definite kernel on Rd if and
only if for every x1, . . . , xn ∈ Rd, the symmetrix ma-
trix (k(xi, xj))

n
i,j=1 is positive semidefinite. A positive

definite kernel k can be used to define a distance on
probability measure known as RKHS MMD (Anderson
et al., 1994; Gretton et al., 2005, 2012; Smola et al.,
2007). Let Pk(Rd) be the space of probability measures
such that

∫ √
k(x, x)dP (x) < ∞. For P,Q ∈ Pk(Rd)

the kernel MMD distance is defined as

γ2
k(P,Q) =

∫∫
k(x, y) d(P (x)−Q(x)) d(P (y)−Q(y)).

The distance γk(P,Q) is a pseudo-metric in general. A
kernel k is said to be characteristic to a set Q ⊆ P of
probability measures if and only if γk is a metric on Q
(Gretton et al., 2012; Sriperumbudur et al., 2010). An
alternative representation is given by

γ2
k(P,Q) = E[k(X,X ′)] + E[k(Y, Y ′)]− 2E[k(X,Y )]

(5)

where X,X ′ ∼ P iid, and Y, Y ′ ∼ Q iid. The kernel
MMD distance was shown to be equivalent to energy
distance in (Sejdinovic et al., 2013), and a variant form
used in practice is the kernel mean embedding statis-
tics (Chwialkowski et al., 2015; Jitkrittum et al., 2016;
Muandet et al., 2017). Another appealing theoretical
property of the kernel MMD distance is its represen-
tation via the spectral decomposition of the kernel
(Epps and Singleton, 1986; Fernández et al., 2008),
which gives rise to estimation consistency as well as
practical algorithms of computing (Zhao and Meng,
2015). Kernel MMD has been widely applied in data
analysis and machine learning, including independence
testing (Fukumizu et al., 2008; Zhang et al., 2012) and
generative modeling (Li et al., 2017, 2015).

Magnitude of multivariate Gaussian. Our re-
sults also depend on some properties of the noncentral
chi distribution. Let Z ∼ N (µ, Id) be a Gaussian vec-
tor with mean µ and identity covariance. The random
variable X = ‖Z‖ has chi-distribution with parameter
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u = ‖µ‖. The density is given by

gd,u(x) =
e−(x2+u2)/2xd−1

2
d
2−1

∞∑
k=0

(ux/2)2k

k!Γ
(
d+2k

2

) . (6)

The s-th moment of this distribution is denoted by
Md,u(s) =

∫
xs gd,u(x) dx. This function is an even

polynomial of degree s whenever s is an even integer
(see Supplement C.1). The special case u = 0 corre-
sponds to the (central) chi distribution and is given by
Md(s) := 2

s
2 Γ(d+s

2 )/Γ(d2 ).

3 Upper Bounds on GOT

In this section, we show that GOT is bounded from
above by a family of kernel MMD distances. It is
assumed throughout that d is a positive integer, p ∈
(0,∞), and σ ∈ (0,∞).

3.1 General Bound via Kernel MMD

Consider the feature map ψx : Rd → [0,∞) defined by

ψx(z) :=

√
ωd

2
d+p
2

‖z‖
d−1+2p

2√
f(‖z‖)

φ

(
z√
2
− x

σ

)
, (7)

where ωd = 2πd/2/Γ(d/2) is the volume of the unit
sphere in Rd, φ(u) = (2π)−d/2 exp(− 1

2‖u‖
2) is the stan-

dard Gaussian density on Rd, and f is a probability
density function on [0,∞) that satisfies

f(x) ≥ axd+2p−1 exp(−bx2), (8)

for some a > 0 and b ∈ (0, 1/2). This feature map
defines a positive semidefinite kernel k according to

k(x, y) = 〈ψx, ψy〉.

After some straightforward manipulations (see Supple-
ment A), one finds that k(x, y) is finite on Rd×Rd and
can be expressed as the product of a Gaussian kernel
and a term that depends only on ‖x+ y‖. Specifically,

k(x, y) = exp

(
−‖x− y‖

2

4σ2

)
If

(
‖x+ y‖√

2σ

)
, (9)

where

If (u) :=
ωd

2d+p(2π)
d
2

∫ ∞
0

xd−1+2p

f(x)
gd,u(x) dx, (10)

and gd,u(x) is the density of the non-central chi-
distribution given in (6). Note that this kernel is not
shift invariant because of the term If (u).

The next result shows that the MMD defined by this
kernel provides an upper bound on the GOT.

Theorem 2. Let k be defined as in (9). For
any P,Q ∈ P(Rd) such that

∫ √
k(x, x) dP (x) and∫ √

k(x, x) dQ(x) are finite, the MMD defined by k
provides and upper bound on the GOT:

T (σ)
p (P,Q) ≤ 2max(p−1,0)σpγk(P,Q).

The significance of Theorem 2 is twofold. From the
perspective of GOT, it provides a natural connection
between the role of Gaussian smoothing and normal-
ization of the kernel. From the perspective of MMD,
Theorem 2 describes a family of kernels that metrize
convergence in distribution as well as convergence in
p-th moments.

Similar to the analysis of convergence rates in previous
work (Goldfeld and Greenewald, 2020; Goldfeld et al.,
2020b), the proof of Theorem 2 builds upon the fact
that Tp(P,Q) can be upper bounded by a weighted total
variation distance (Villani, 2008, Theorem 6.13). The
novelty of Theorem 2 is that it establishes an explicit
relationship with the kernel MMD and also provides a
much broader class of upper bounds parameterized by
the density f .

3.2 A ‘Two-moment’ Kernel

One potential limitation of Theorem 2 is that for a
particular choice of density f , the requirement that√
k(x, x) is integrable might not be satisfied for prob-

ability measures of interest. For example, the conver-
gence rates in Goldfeld and Greenewald (2020) and
Goldfeld et al. (2020b) can be obtained as a corollary
of Theorem 2 by choosing f to be the density of the
generalized gamma distribution. However, the inverse
of this density grows faster than exponentially, and as
a consequence, the resulting bound can be applied only
to the case of sub-Gaussian distributions.

The main idea underlying the approach in this section
is that choosing a density with heavier tails leads to an
upper bound that holds for a larger class of probabil-
ity measures. Motivated by the functional inequalities
appearing in Reeves (2020), we consider the follow-
ing density function, which belongs to the family of
generalized beta-prime distributions:

f(x) =
ε

2πx

((x
λ

)−ε
+
(x
λ

)ε)−1

.

For this special choice, the function If (u) can be ex-
pressed as the weighted sum of two moments of the
non-central chi distribution. Starting with (9) and
simplifying terms leads to the following:

Definition 1. The two-moment kernel k : Rd ×Rd →
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R is defined as

k(x, y) = αd,p exp

(
−‖x− y‖

2

4σ2

)
J

(
‖x+ y‖√

2σ

)
(11)

for all ε ∈ (0, d+ 2p] and λ ∈ (0,∞), where

αd,p :=
(2π)2−(p+d)2−d/2

Γ(d2 )

J(u) :=
λεMd,u(d+2p−ε) + λ−εMd,u(d+2p+ε)

2ε
.

In this expression, Md,u(s) denotes the s-th moment
of the non-central chi distribution with d degrees of
freedom and parameter u.

A useful property of the two-moment kernel is that it
satisfies the upper bound

k(x, y) ≤ Cd,p,ε,λ
(
1 + ‖x‖d+2p+ε + ‖y‖d+2p+ε

)
,

where the constant depends only on (d, p, ε, λ) (see
Supplement A for details). As a consequence:

Theorem 3. Fix any s > p + d/2. For all 0 < ε <
min(d + 2p, 2s − 2p − d) and λ ∈ (0,∞) the MMD
defined by the two-moment kernel is a metric on the
space Ps(Rd) of probability measures with finite s-th
moment. Furthermore, for all P,Q ∈ Ps(Rd),

T (σ)
p (P,Q) ≤ 2max(p−1,0)σpγk(P,Q).

Remark 1. If d+ 2p± ε are even integers then J(u)
is an even polynomial of degree s = d + 2p + ε with
non-negative coefficients. For example, if d = 3, p = 1,
and (ε, λ) = (1, 1), then

J(u) = 60 +
115

2
u2 + 11u4 +

1

2
u6. (12)

Methods for efficient numerical approximation of J(u)
are provided in Supplement C.1.

4 Convergence Rate

We now turn our attention to the fundamental ques-
tion of how well the empirical measure of iid samples
approximates the true underlying distribution. Let
S1, . . . , Sn ∈ Rn be a sequence of n independent sam-
ples with common distribution P . The empirical mea-
sure Pn is the (random) probability measure on Rd
that places probability mass 1/n at each sample point:

Pn :=
1

n

n∑
i=1

δSi , (13)

where δx denotes the pointmass distribution at x.

Distributional properties of the kernel MMD between
P and Pn have been studied extensively (Gretton et al.,

2012). For the purposes of this paper, we will focus
on the expected difference between these distributions.
As a straightforward consequence of (5) one obtains
an exact expression for the expectation of the squared
MMD:

E
[
γ2
k(P, Pn)

]
=

E[k(X,X)]− E[k(X,X ′)]

n
, (14)

where X,X ′ are independent draws from P . Note that
the numerator can also be expressed as E

[
γ2

1(P, P1)
]
,

i.e., the squared MMD under n = 1 samples. By
Jensen’s inequality, the first moment satisfies

E[γk(P, Pn)] ≤
√
E[k(X,X)]√

n
. (15)

In the following, we focus on the two-moment kernel
given in (11) and study how E[k(X,X)] depends on P
and the parameters (p, σ).

We note that because γk satisfies the triangle inequal-
ity, all of the results provided here extend naturally to
the two-sample settings where one the goal is to ap-
proximate the distance γk(P,Q) based on the empirical
measures Pn and Qm.

4.1 Finite Moment Condition

We begin with an upper bound on E[k(X,X)] that
holds whenever ‖X‖ has a moment greater than d+ 2p.

Theorem 4. Let X ∈ Rd be a random vector that
satisfies (E[‖X‖s])1/s ≤ m for some s > d+ 2p. If k is
the two-moment kernel given in (11) with parameters
0 < ε ≤ min(d+ 2p, s− d− 2p) and λ =

√
d+ 2p+ ε+√

2m/σ, then

E[k(X,X)] ≤ αd,p
ε

(√
2d+ 2p+ ε+

√
2m

σ

)d+2p

.

In view of (15), Theorem 1 follows as an immediate
corollary.

Small noise limit and unsmoothed OT. It is in-
structive to consider the implications of Theorem 1
in the limit as σ converges to zero. By two appli-
cations of the triangle inequality and the fact that
Tp(Q,Q ∗ Nσ) ≤ σMd(p) for every Q ∈ P, one finds
that, for any σ ∈ [0,∞), the (unsmoothed) OT distance
can be upper bounded according to

Tp(P, Pn) ≤ Cd,p
(
T (σ)
p (P, Pn) + σp

)
. (16)

Combining (16) with Theorem 1 and then evaluating at

σ = mn−
1

d+2p leads to the (unsmoothed) convergence
rate given in (4).
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4.2 Sub-gamma Condition

Next, we provide a refined bound for distributions
satisfying a sub-gamma tail condition.

Definition 2. A random vector X ∈ Rd is said to be
sub-gamma with variance parameter v > 0 and scale
parameter b ≥ 0 if

E
[
exp(α>X)

]
≤ exp

(
v‖α‖2

2(1− b‖α‖)

)
(17)

for all α ∈ Rd such that ‖α‖ ≤ 1/b. If this condition
holds with b = 0 then X is said to be sub-Gaussian
with variance parameter v.

Properties of sub-Gaussian and sub-gamma distribu-
tions have been studied extensively; see e.g, Boucheron
et al. (2013). In particular, if X1 and X2 are inde-
pendent sub-gamma random vectors with parameters
(v1, b1) and (v2, b2), respectively, then X1 +X2 is sub-
gamma with parameters (v1 + v2,max(b1, b2)).

The next result provides an upper bound on the mo-
ments of the magnitude of a sub-gamma vector. Al-
though there is a rich literature this topic, we were
unable to find a previous statement of this result and
so it may be of independent interest.

Theorem 5. Let X ∈ Rd be a sub-gamma random
vector with parameters (v, b). For all s ∈ [0,∞)

E[‖X‖s] ≤
√

2e
(√
v +
√
s b
)s
Md(s), (18)

where Md(s) := 2
s
2 Γ(d+s

2 )/Γ(d2 ) is the s-th moment of
the chi distribution with d degrees of freedom. Further-
more, Md(s) ≤Md(s) where

Md(s) :=

(
d+ s

e

) s
2
(
d+ s

d

) d−1
2

. (19)

Theorem 6. Let X ∈ Rd be a sub-gamma random
vector with parameters (v, b). Let r = d+ 2p and for
t ∈ (0, d+ 2p] define

m(t) := (
√
σ2 + 2v +

√
r + t b)r+tMd(r + t),

where Md(s) is defined in (19). If k is the two-moment
kernel defined in (11) with parameters ε =

√
d and

λ = (m(ε)/m(−ε))1/(2ε) then

E[k(X,X)] ≤ C(d+ p)p
(√

1 +
2v

σ2
+

√
d+ 2p b

σ

)d+2p

,

(20)

where C =
√

2πe7/8 < 6.02.

In view of (15), Theorem 6 gives an upper bound
on the convergence rate of γk(P, Pn) with an explicit

dependence on the sub-gamma parameters (d, p, σ, v, b).
For the special case of a sub-Gaussian distribution
(b = 0) and p ∈ {0, 1}, this bound recovers the results
in Goldfeld and Greenewald (2020). Going beyond the
setting of sub-Gaussian distributions (i.e., b > 0) this
bound quantifies the dependence on the dimension d
and the scale parameter b.

Phase transition in scale parameter. In the high-
dimensional setting where d increases with n, Theo-
rem 6 exhibits two distinct regimes depending on the
behavior of the scale parameter. Suppose that (p, σ, v)
are fixed while b scales with d. If b = O(d−δ) for some
δ > 1/2 then E[k(X,X)] grows at most exponentially
with the dimension:

logE[k(X,X)]

d
≤ 1

2
log

(
1 +

2v

σ2

)
+ o(1). (21)

Conversely if b = Ω(d−δ) for δ < 1/2 then the upper
bound increases faster than exponentially:

logE[k(X,X)]

d
≤ 2(1− δ) log d

2
+O(1).

The following example provides a specific example of a
sub-gamma distribution which shows that the upper
bound in Theorem 6 is tight with respect to the scaling
of the dimension d and the scale parameter b. Full
details of this example are provided in Supplement C.2.

Example 1. Suppose that X =
√
UZ where Z ∼

N (0, Id) is a standard Gaussian vector and U is an
independent Gamma random variable with shape pa-
rameter 1/(2b2) and scale parameter 2b2. Then, X
satisfies the sub-gamma condition with parameters
(1, b) and so the upper bound in Theorem 6 applies.
Moreover, for every pair (ε, λ) the expectation of the
two-moment kernel satisfies the following lower bound

E[k(X,X)] ≥ αd,p
ε

(√
2b

σ

)r
(Mb−2(r − ε)Mb−2(r + ε))

1/2

× (Md(r − ε)Md(r + ε))
1/2
. (22)

The bounds on E[k(X,X)] given in (20) and (22) are
shown in Figure 1 as a function of δ = (log d)/(log b)
for various values of d. The plot demonstrates a phase
transition at the critical value of δ = 0.5. Further
computational results on this example are given in
Section 5.1.

4.3 Dependent Samples

Motivated by applications involving Markov chain
Monte Carlo there is significant interest in understand-
ing the rate of convergence when there is dependence
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Figure 1: Bounds on 1
d

logE[k(X,X)] for a distribution satisfying the sub-gamma condition with parameters (1, d−δ)
as a function of δ for various d. In all cases, p = 1, σ = 0.1, and k is the ‘two-moment’ kernel described in Theorem 6.
The upper bounds (solid line) are given by the right-hand side of (20). The lower bounds (dashed line) are given by the

right-hand side of (22) evaluated at ε =
√
d.

in the samples. Within the literature, this question
is often address by focusing on stationary sequences
satisfying certain mixing conditions (Peligrad, 1986).
The basic idea is that the dependence between Si and
Sj decays rapidly as |i− j| increases, then the effect of
the dependence is negligible.

To go beyond the usual mixing conditions, a particu-
larly useful property of the kernel MMD distance is
that the second moment of γk(P, Pn) depends only on
the pairwise correlation in the samples. This perspec-
tive is useful for settings where there may not be a
natural notion of time.

To make things precise, suppose that S1, . . . , Sn ∈ Rd
is a collection of (possibly dependent) samples with
identical distribution P . For each i 6= j let Qij denote
the law of (Si, Sj). Starting with (5), the expectation
of the squared MMD can now be decomposed as

E
[
γ2
k(P, Pn)

]
=

1

n
E
[
γ2
k(P, P1)

]
+

1

n2

∑
i 6=j

rij , (23)

where rij := EQij [k(Si, Sj)]− EP⊗P [k(Si, S
′
j)]. Notice

that the first term in this decomposition is the sec-
ond moment under independent samples. The second
term is non-negative and depends only on the pairwise
dependence, i.e., the difference between Qij and the
probability measure obtained by the product of its
marginals.

In some cases, it is natural to argue that only a small
number of the terms rij are nonzero. More generally it
is desirable to provide guarantees in terms of measures
of dependence that do not rely on the particular choice
of kernel. The next result provides such a bound in
terms of the Hellinger distance.

Lemma 7. If EP [k2(X,X)]1/2 < Ck,P , then

rij ≤
√

2Ck,P dH(Qij , P ⊗ P ),

where dH denotes the Hellinger distance.

The following example is inspired by random feature
kernel interpretation of neural networks (Rahimi and
Recht, 2008).

Example 2. Let {Z(α) : α ∈ RN} be a Rd-valued
Gaussian processes with mean zero and covariance func-
tion Cov(Z(α), Z(β)) = 〈α, β〉Id. Suppose that sam-
ples from P are generated according to Si = T (Z(αi))
where α1, . . . , αn are points on the unit sphere and
T : Rd → Rd is a function that maps a standard Gaus-
sian vector into a vector with distribution P . Because
Hellinger distance is non-increasing under the mapping
given by T , it can be verified that

dH(Qij , P ⊗ P ) ≤
√
d|〈αi, αj〉|.

Thus, by (23) and Lemma 7, there exists a constant
Ck depending only on k such that

E
[
γ2
k(P, Pn)

]
≤ Ck,P

( 1

n
+

1

n2

∑
i 6=j

|〈αi.αj〉|
)
. (24)

This inequality holds for any set of points {αi}. To
gain insight into the typical scaling behavior when
the samples are nearly orthogonal on average, let
us suppose that the {αi} are drawn independently
from the uniform distribution on the sphere. Then,
E
[
|〈ai, aj〉|2

]
= 1/N and by, standard concentration

arguments, one finds that the following upper bound
holds with high probability when N is large:

E
[
γ2
k(P, Pn)

]
≤ Ck,P

( 1

n
+

√
logN

N

)
. (25)

5 Numerical Results

In this section, we compute the upper bounds of GOT
distance provided by the the empirical kernel MMD
distance.
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Figure 2: Upper panel: (Left) The UB (solid line) and LB (dashed line) of E[k(X,X)] given by (20) and (22), plotted
as functions of d up to 500 and for various values of δ (shown in 4 colors), where X is sub-gamma random variable in Rd

as in Example 1, b = d−δ, and the kernel function k has bandwidth σ = 1. (Right) Empirical estimates of E∆̂2
γ (cross

markers), shown together with the UB and LB of E[k(X,X)] as in the left plot but over a range of d up to 30. The values
are computed with n = 400 samples of X, and are averaged over 200 Monte-Carlo replicas. Bottom panel: Same plots
where σ = 4, n = 100, and averaged over 100 Monte-Carlo replicas. In all the plots, the quantities are taken log and divide
by d for better demonstration.

5.1 Bounds under Sub-gamma Condition

The sub-gamma condition allow us to address distribu-
tions that do not satisfy the sub-Gaussian condition.
Upper bounds on the convergence rate for this class
of distributions follow from Theorem 3 combined with
Theorem 6.

For sub-gamma X as in Example 1, E[k(X,X)] has
upper bound (UB) and lower bound (LB) as in (20)
and (22) respectively. Here, in addition to the the-
oretical UB and LB as shown in Figure 1, we also
compute the estimate of E

[
nγ2

k(P, Pn)
]

approximated
by the two-sample estimator. Let Pn and P ′n be the
empirical measure defined as in (13) for independent
iid copies of the sub-gamma random vector as in Ex-
ample 1, {Xi}ni=1 and {X ′i}ni=1, respectively. Define

∆̂2
γ := n

2 γ
2
k(Pn, P

′
n), and then E[∆̂2

γ ] = E[k(X,X)] −
E[k(X,X ′)] = E

[
nγ2

k(P, Pn)
]
. Because the empirical

kernel MMD (squared) distance γ2
k(Pn, P

′
n) can be com-

puted numerically from the two samples of sub-gamma
random vectors, we can estimate the expectation of
∆̂2
γ by empirical average over Monte-Carlo replicas.

Detailed numerical techniques to compute the two-
moment kernel and experimental setup are provided in
the supplementary materials.

The results are shown in Figure 2, where we set the
parameter b controlling the shape and scale of X as

b = d−δ, δ = {0, 0.25, 0.5, 0.75}. The data dimension
d takes multiple values, and the kernel bandwidth σ
takes values 1 and 4. In both cases, the left plot shows
the same information as Figure 1 in view of increasing
d, so as to be compared to the right plot. The right
plot focuses on the case of small d, where the empirical
estimates of E[∆̂2

γ ] observe the UB. Notably, these
values also lie between the UB and LB (recall that the
LB applies to E[k(X,X)] but not E[∆̂2

γ ]) for both cases
of σ, and approach the LB when σ = 1. This shows that
our theoretical UB captures an important component
of the kernel MMD distances for this example of X.

5.2 Dependent Samples via Gaussian Process

We generate dependent samples following a Gaussian
process {Z(α)}α∈SN as in Example 2 in Section 4.3,
and numerically compute the values of γ2

k(P, Pn) by its
two-sample version γ2

k(Pn, P
′
n), using the same kernel as

in the first experiment. Theoretically, when n is large,
γ2
k(P, Pn) is expected to concentrate at its mean value

as in (24), and then since αi are uniformly sampled
on the N -sphere, we also expect concentration at the
value of (25).

We set n = {30, 50, 70, 100}, and vary N from 5 to 100.
The data are in dimension d = 5, the kernel parameters
are σ = 0.5, c = 1, p = 1, and for each value of n and
N , γ2

k(Pn, P
′
n) are computed for 100 realizations of the
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Figure 3: Empirical values of γ2
k(Pn, P

′
n) for dependent samples in Example 2 in Section 4.3. (Left) Mean and standard

deviation computed over 200 realizations of Si’s,P plotted against the increasing values of N and for different n. (Middle)
The log10 of the mean value in the left plot. (Right) Log-log plot of the estimated limiting values of the mean in the left
plot, by averaging over the range of N ∈ [80, 100], v.s. n, showing a slope close to 1.

dependent random variables Si, conditioned on one
realization of the vectors αi’s. The results are shown in
Figure 3, where for the small values of N , the computed
approximate values of E

[
γ2
k(P, Pn)

]
are decreasing be-

cause they are dominated by the contribution from the
dependence in the samples, namely the part that is
upper-bounded by the second term depending on α in
(24). As N increases, these values converge to certain
positive value which decrease as n increases.

Specifically, we take the average over the mean values
of γ2

k(Pn, P
′
n) for N ∈ [80, 100] as an estimate of the

limiting values, and Figure 3 (right) shows that these
values decay as n−1, as they correspond to the first term
in (24). These numerical results show the competing
two factors as predicted by the analysis in Section 4.3.

6 Conclusion and Discussion

The paper proves new convergence rates of GOT under
general settings. Our results require only a finite mo-
ment condition and in the special case of sub-gamma
distributions, we quantify the dependence on the di-
mension d and show a phase transition with respect
to the scale parameter. Furthermore, our results cover
the setting of dependent samples where convergence is
proved only requiring a condition on pairwise sample
dependence expressed by the kernel. Throughout our
analysis, the main theoretical technique is to establish
an upper bound using a kernel MMD where the ker-
nel is called a “two-moment” kernel due to its special
properties. The kernel depends on the cost function
of the OT as well as the Gaussian smoothing used in
GOT.

For the tightness of the kernel MMD upper bound, as
has been pointed out in the comment beneath Theorem
1, our result shows that the convergence rate of n−1/2

is tight in some regimes where σ → 0 with n → ∞
and the result matches the minimax rate in the un-
smoothed OT setting. Alternatively, if σ is bounded

away from zero then it may be possible to obtain a
better rate of convergence. For example, Proposition 6
in Goldfeld et al. (2020b) shows that if the pair (P, σ)
satisfies an additional chi-square divergence condition,

then T (σ)
2 (P, Pn) converges at rate 1/n, which is faster

than the general upper bound of 1/
√
n appearing in

our paper. In this direction, pinning down the exact
convergence rate in terms of regularity conditions on P
remains an interesting open question for future work.
In addition, it would be interesting to investigate the
relationship between the Gaussian smoothing used in
this paper and the multiscale representation of Tp in
terms of partitions of the support of P , which was used
in the analysis in Fournier and Guillin (2015) as well
as the related work Weed et al. (2019).

In practice, the tightness of the kernel MMD upper
bound also depends on the choice of kernel, which can
be optimized for the data distribution and the level of
smoothing in GOT. The question of whether the kennel
MMD provides a useful alternative to OT distance in
applications can be worthwhile of further investigation.
Finally, another important direction of future work is to
study computational methods and applications of the
GOT approach, particularly in the high dimensional
space. Currently, no specialized algorithm for GOP
from finite samples has been developed, except for
the direct method of applying any OT algorithm, e.g.,
entropy OT (Sinkhorn), to data with additive Gaussian
noise (Goldfeld and Greenewald, 2020). Progress on the
computational side will also enable various applications
of GOT, e.g., the evaluation of generative models in
machine learning.
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Garćıa. A test for the two-sample problem based
on empirical characteristic functions. Computational
statistics & data analysis, 52(7):3730–3748, 2008.

Jean Feydy, Thibault Séjourné, François-Xavier
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