
Provably Efficient Actor-Critic for Risk-Sensitive and Robust Adversarial RL: A Linear-Quadratic Case

A Pseudocode of NENAC for Zero-Sum Games in General

In this section, we present the detailed description of NENAC for RSRL and RARL in general, which is introduced
in §3. Note that the computation of the natural policy gradients requires taking expectation with respect to e⇢K,L,

Algorithm 2 NENAC for Zero-Sum Games in General
Input: Initial parameters K0 and L0. Stepsize ◆ of the outer loop. Stepsize � of the inner loop. Number of

iterations T of the inner loop. Number of iterations N of the outer loop. Feasible parameter set L.
1: Initialization: K  K0, L L0.
2: for n = 0, 1, ...,N do

3: Initialization: K  K0(L).
4: for t = 0, 1, ..., T do

5: Inner Critic Step: Estimate QK,L by bQ� via policy evaluation (e.g. GTD).
6: Inner Actor Step: K  K � � · I(K;L)�1E(x.u.v)⇠e⇢K,L

[rK log ⇡K,L(u, v |x) · bQ�(x, u, v)].
7: end for

8: Outer Critic Step: Estimate QK,L by bQ� via policy evaluation (e.g. GTD).
9: Outer Actor Step: L ⇧L{L+ ◆ · I(L;K)�1E(x,u,v)⇠e⇢K,L

E[rL⇡K,L(u, v |x) · bQ�(x, u, v)]}.
10: end for

Output: (K,L) that estimates (K⇤, L⇤), where K is the optimal policy for RSRL and RARL.

which is the stationary distribution induced by ⇡K,L. For RSRL and RARL in general, such an expectation can
be obtained by sampling from e⇢K,L. For RSRL and RARL in the LQ setting, we develop a more efficient method
to obtain the natural policy gradient, which is introduced in §4.

B Proof of the Main Results

In this section, we present the proof of Theorem 5.3. To this end, we first restate Theorem 5.3 with detailed
dependency as follows.
Theorem B.1 (Theorem 5.3 restated). Suppose that Assumptions 4.1, 4.3 and 5.1 hold. Let {(Kn

t , L
n)}t,n�0

be generated by Algorithm 1. Then, the following properties hold.

(i) For a fixed n, let Kt = Kn
t and L = Ln. We set the number of GTD iterations at the inner critic step

T in
TD = ⌦(✏�5), the stepsize of the inner loop

� 
⇥
kRk+ �min( �) · kBk2 · (J(K0, L) + �)

⇤�1
,

and the number of inner loop iterations T = ⌦(log(1/✏)). Then, with probability at least 1� ✏10, it holds
that

J(KT , L)� J(K(L), L)  ✏.

(ii) We set the number of GTD iterations at the outer critic step T out
TD = ⌦("�10), the stepsize ◆  ◆̄ for some

◆̄ > 0, and the number of outer loop iteration N = O("�2). Then, it holds with probability at least 1� "10

that

N�1 ·
NX

n=1

k eFLnk  ".

Proof. Our analysis consists of two parts. In the first part, we show the global convergence of the inner loop.
Then, in the second part, we show the global convergence of the outer loop, which corresponds to the global
convergence of Algorithm 1. In what follows, for notational simplicity, we denote ⇣K(L),L by ⇣⇤L for any notation ⇣.

Global Convergence of the Inner Loop. The proof of the global convergence of the inner loop is based on
Yang et al. (2019); Fazel et al. (2018). For notational simplicity, let Kt = Kn

t and L = Ln for a fixed n. In the
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inner loop, we solve the following optimization problem

min
K0

J(K 0, L),

for a fixed L 2 L, where L is defined in (4.10). For a fixed L, we have that vt = �Lxt+�2⌘2t . Thus, the transition
takes the following form of

xt+1 = Axt +But + C(�Lxt + �2⌘
2
t ) + et = ALxt +But + eC,t, (B.1)

where we write

AL = A� CL, eC,t = et + �2 · C⌘2t . (B.2)

The cost function takes the form of

c(x, u) = E⌘2

⇥
x>Qx+ u>Ru� (�Lx+ �2⌘

2)>S(�Lx+ �2⌘
2)
⇤

= x>QLx+ u>Ru+ E⌘2

⇥
(�2⌘

2)>S(�2⌘
2)
⇤
, (B.3)

where we write

QL = Q� L>SL. (B.4)

Note that E⌘2 [(�2⌘2)>S(�2⌘2)] is independent of K and L. Thus, the cost function in (B.3) is equivalent to the
following cost function

cL(x, u) = x>QLx+ u>Ru. (B.5)

Thus, the inner loop is equivalent to a single agent LQ control problem with transition dynamics(B.1) and cost
function (B.5). For a fixed L 2 L, we update K via

bEt = b⇤22
Kt,L ·Kt + b⇤23L� b⇤21

Kt,L, Kt+1 = Kt � � · bEt,

where b⇤K,L is the output of Algorithm 3 that estimates ⇤K,L. Ideally, Kt converges to K(L), which is the optimal
solution of the inner minimization problem.

We then establish the following lemma that characterizes the difference between PK,L and PK0,L0 , which serves as
a fundamental lemma though the proof.
Lemma B.2 (Cost Difference). Let (K,L) and (K 0, L0) be stable policy pairs. Let {x0

t}t�0 be the sequence
generated by x0

0 = x, x0
t+1 = (A�BK 0 � CL0)x0

t for t � 0. Then, it holds that

x>PK0,L0x� x>PK,Lx =
X

t�0

AK,L,K0,L0(x0
t),

where

AK,L,K0,L0(x) = 2x>(K 0 �K)>EK,Lx+ x>(K 0 �K)>(R+B>PK,LB)(K 0 �K)x

+ 2x>(L0 � L)FK,Lx+ x>(L0 � L)>(�S + C>PK,LC)(L0 � L)x

+ 2x>(L0 � L)>C>PK,LB(K 0 �K)x.

Proof. See a detailed proof in §E.4.

Applying Lemma B.2, we establish the following lemma, which characterizes the gradient dominance of J(K,L)
with respect to K.
Lemma B.3 (Gradient Dominance of J(K,L)). For any stable policy (K,L), under Assumption 4.1, we have
that

�min( ) · kR+B>PK,LBk�1 · Tr(E>
K,LEK,L) (B.6)

 J(K,L)� J(K(L), L)  1/�min(R) · k⌃⇤
Lk · Tr(E>

K,LEK,L).
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Proof. See §E.5 for details.

By Polyak (1963), Lemma B.3 is sufficient to show the linear convergence in objective function of natural policy
gradient if we have the exact EKt,L. Since we only have the estimation bEKt,L of EKt,L, we need to aggregate
the error of estimating EKt,L by bEKt,L. Note that we assume (K0, L) is a stable policy pair by Assumption 5.1,
which implies that J(K0, L) is finite. We use mathematical induction to prove that {J(Kt, L)}t�0 is a monotone
decreasing sequence. Suppose that J(Kt, L)  JL(K0, L) <1. We define K 0

t+1 as the parameter obtained by a
single step of natural policy gradient with EKt,L as follows

K 0
t+1 = Kt � �EKt,L.

We use K 0
t+1 as the interpolating term of Kt and Kt+1. The following lemma that characterizes the decrease of

J(K 0
t+1, L).

Lemma B.4. We set � to satisfy that

� 
⇣
kRk+ �min( �) · kBk2 ·

�
J(K0, L) + �

�⌘�1
.

Then, we have that

J(K 0
t+1, L)� J(Kt, L)  �� · �min( �) · �min(R) · k⌃⇤

Lk�1 ·
�
J(Kt, L)� J(K(L), L

�
.

Proof. See a detailed proof in §E.6.

In the sequel, we set � to satisfy

� 
⇣
kRk+ �min( �) · kBk2 ·

�
J(K0, L) + �

�⌘�1
.

We establish the following lemma that characterizes the difference |J(Kt+1, L)� J(K 0
t+1, L)|.

Lemma B.5. At the the t-th inner iteration, we set the number of GTD iterations T in
TD at the inner critic step

in Algorithm 1) to satisfy that

T in
TD �

 
Poly

�
J(Kt, L), kKtkF, kLkF,�1

�

�min(TKt,L) ·
�
1� ⇢(A�BKt � CL)

�
·
�
J(Kt, L)� J(K(L), L)

�
!5

. (B.7)

Then, we have that
��J(K 0

t+1, L)� J(Kt+1, L)
��

 1/2 · � · �min( �) · �min(R) · k⌃⇤
Lk�1 ·

�
J(Kt, L)� J(K(L), L)

�
,

with probability at least 1� (T in
TD)

�4.

Proof. See a detailed proof in §E.7.

We set T in
TD to satisfy (B.7) of Lemma B.5. By Lemma B.4 and B.5, we have with probability at least 1� (T in

TD)
�4

that

J(Kt+1, L)� J(Kt, L)  |J(K 0
t+1, L)� J(Kt+1, L)|+ J(K 0

t+1, L)� J(Kt, L)

 �1/2 · � · �min( ) · �min(R) · k⌃⇤
Lk�1 ·

�
J(Kt, L)� J(K(L), L)

�
 0, (B.8)

which shows that the sequence {J(Kt, L)}t�0 decreases monotonously. By rearranging the inequality (B.8), we
have with probability at least 1� (T in

TD)
�4 that

J(Kt+1, L)� J(K(L), L) 
⇥
1� �/2 · �min( �) · �min(R) · k⌃⇤

Lk�1
⇤
·
�
J(Kt, L)� J(K(L), L)

�
,
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which shows the linear convergence of the inner loop of Algorithm 1. Specifically, to ensure that J(Kt, L) �
J(K(L), L)  ✏, we set the number of iterations T of the inner loop of Algorithm 1 to be

T � ��1 · �min( �)
�1 · �min(R)�1 · k⌃⇤

Lk · log
 
2
⇥
J(K0, L)� J(K(L), L)

⇤

✏

!
, (B.9)

where we use that fact that � log�1(1� x)  x�1 for 0  x < 1. Recall that we set TTD = ⌦(✏�5) to ensure the
condition (B.7), which implies that the failure probability of each inner critic step is (T in

TD)
�4 = O(✏20). Thus,

by noting that the total number of iterations is T = ⌦(log(1/✏)), we have that the failure probability of the
inner loop in Algorithm 1 is bounded by O(✏20 · log(1/✏))  ✏10. Thus, we show that when we set the number
of inner loop iteration to be T = ⌦(log(1/✏)) and the number of GTD iterations at the inner critic step to be
T in
TD = ⌦(✏�5), it hold that J(KT , L)� J(K(L), L)  ✏ with probability at least 1� ✏�10. Thus, we complete the

proof of part (i) of Theorem 5.3.

Global Convergence of the Outer Loop. The proof of the global convergence of the outer loop is based on
Zhang et al. (2019b), which is based on the population version of the policy gradient and the exact K(L). In
contrast to their model-based analysis, our analysis is based on the actor-critic scheme, which requires us to
propagate the errors due to the estimation of K(L) and the policy gradient. In the outer loop, we update L via

Ln+1 = ⇧L{Ln + ◆ · bFn}, bFn = b⇤32
Kn,LnKn + b⇤33

Kn,LnLn � b⇤31
Kn,Ln ,

where Kn = Kn
T . By part (i) of Theorem 5.3, we have that Kn approximates K(Ln) in the sense that

J(Kn, Ln)� J(K(Ln), L)  ✏. We define

L̄n+1 = ⇧n
L
�
Ln + ◆ · F ⇤

Ln

 
, (B.10)

where L is defined in (4.10) and ⇧n
L = ⇧Ln

L is defined in (4.13). We use L̄n+1 to connect Ln+1 and Ln. We obtain
the following lemma from Zhang et al. (2019b) for the projection operator ⇧L

L.
Lemma B.6 (Lemma 6.3 in Zhang et al. (2019b)). The set L is convex and compact, and the projection operator
⇧L is convex. For and L1, L2 2 Rd⇥m2 , it holds that

Tr
�
⌃⇤

L⇧
L
L{L1 � L2}>(L1 � L2)

�
� Tr

�
⌃⇤

L⇧
L
L{L1 � L2}>⇧L

L{L1 � L2}
�
.

By Lemma B.2, we establish the following lemma, which lower bounds the value difference x>P ⇤
L0x� x>P ⇤

Lx.
Lemma B.7. Suppose that

�
K 0, L0�,

�
K(L), L

�
are two stable policy pairs. Further, let x0

0 = x, x0
t+1 =

(A�BK 0 � CL0)x0
t. Then we have

x>PK0,L0x� x>P ⇤
Lx �

X

t�0

2x0
t
>
(L0 � L)>F ⇤

Lx
0
t �

X

t�0

x0
t
>
(L0 � L)>WL(L

0 � L)x0
t

where WL takes the form of

WL = S � C>P ⇤
LC + C>P ⇤

LB(R+B>P ⇤
LB)�1B>P ⇤

LC

= S � C>�(P ⇤
L)

�1 +BS�1B>��1
C.

Proof. See §E.8 for a detailed proof.

Recall that J⇤(L) = minK J(K,L) is the inner minimum value for a fixed L. We show that {J⇤(Ln)}n�0 is
monotonously decreasing by induction. We assume that J⇤(Ln)  J⇤(L0). We define

eFLn = ◆�1 ·
�
⇧Ln

L {Ln + ◆ · F ⇤
Ln}� Ln

�
. (B.11)

It then holds that L̄n+1 = Ln + ◆ · eFLn . We establish the following lemma to demonstrate the increase from
J⇤(Ln) to J⇤(L̄n+1).
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Lemma B.8. There exist some positive constant ◆̄ > 0 such that for any stepsize ◆ 2 (0, ◆̄],

J⇤(L̄n+1)� J⇤(Ln) � ◆/2 · �min( �)
�1 · k eFLnk2.

Proof. See §E.9 for a detailed proof.

We now bound the difference J⇤(Ln+1)� J⇤(L̄n+1). We obtain the following lemma from Zhang et al. (2019b)
that demonstrates the Lipschitz continuous of J⇤(L).
Lemma B.9 (Proposition B.1 in Zhang et al. (2019b)). For any L,L0 2 L, there exists a constant BL

L > 0 such
that it holds when kL� L0k  BL

L that

kP ⇤
L � P ⇤

L0k  BP
L · kL� L0k,

for a constant BP
L .

By Lemma B.9 and (C.7) of Proposition C.1, we have that

|J⇤(L̄n+1)� J⇤(Ln+1)|  BP
L · k �k · kLn+1 � L̄n+1k, (B.12)

for kLn+1 � L̄n+1k  BL
L. By the definition of L̄n in (B.10) and the convexity of ⇧L in Lemma B.6, we have that

kLn+1 � L̄n+1k  ◆ · k bFn � F ⇤
Lnk. (B.13)

Thus, we proceed to bound the difference between bFn and F ⇤
Ln . By the triangle inequality, we have

k bFn � F ⇤
Lnk  k bFn � FKn,Lnk+ kFKn,Ln � F ⇤

Lnk. (B.14)

By (B.12), (B.13), and (B.14), we have that
��J⇤(L̄n+1)� J⇤(Ln+1)

��  ◆ · BP
L · k �k ·

�
k bFn � FKn,Lnk+ kFKn,Ln � F ⇤

Lnk
�
. (B.15)

For the first term on the right-hand side of (B.15), we have that

k bFn � FKn,Lnk  kb⇤Kn,Ln � ⇤Kn,Lnk · (kKnk+ kLnk+ 1). (B.16)

Thus, by Theorem 5.2, the difference k bFn � FKn,Lnk is sufficiently small when we set the number of GTD
iterations T out

TD at the outer critic step to be sufficiently large. For the second term on the right-hand side of
(B.15), we establish the following lemma. The following lemma bounds the difference kFKn,Ln � F ⇤

Lnk on the
right of (B.15).
Lemma B.10. For stable policy pair (K,L), it holds that that

kFK,L � F ⇤
Lk  C ·

⇣
J(K,L)� J

�
K(L), L

�⌘
,

where C > 0 is a constant.

Proof. See §E.10 for a detailed proof.

Thus, by plugging (B.16) and Lemma B.10 into (B.15), we have that

|J⇤(L̄n+1)� J⇤(Ln+1)|

 ◆ · BP
L · k �k ·

⇣
kb⇤Kn,Ln � ⇤Kn,Lnk ·

�
kKnk+ kLnk+ 1

�
+ C ·

�
J(Kn, Ln)� J⇤(Ln)

�⌘
. (B.17)

By Lemma B.8, to establish the increase from J⇤(Ln) to J⇤(Ln+1), it suffices to show that

|J⇤(L̄n+1)� J⇤(Ln+1)|  ◆/4 · �min( �)
�1 · k eFLnk2. (B.18)
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By comparing (B.17) and (B.18), we note that (B.18) holds if the following two inequalities holds simultaneously

kb⇤Kn,Ln � ⇤Kn,Lnk  1/8 · �min( �)�1 · k eFLnk2

BP
L · k �k · (kKnk+ kLnk+ 1)

, (B.19)

J(Kn, Ln)� J⇤(Ln)  1/8 · �min( �)�1 · k eFLnk2

C · BP
L · k �k

. (B.20)

We now fix a " > 0 and consider k eFLnk � ✏. By Theorem 5.2, if we set the number of GTD iterations at the outer
critic step T out

TD = ⌦("�10), we have that the condition (B.19) holds with failure probability O("40). Meanwhile,
following from (B.9) by setting the number of inner loop iterations T = ⌦(log(1/")) and the number of GTD
iterations at the inner critic step T in

TD = ⌦("�10), we have that the condition (B.20) holds with failure probability
O("20). Note that when (B.19) and (B.20) hold, by (B.18) and Lemma B.8, we have that

k eFLnk2 
4
�
J⇤(Ln+1)� J⇤(Ln))

�min( �)
. (B.21)

Upon telescoping (B.21), we have that

1

N

N�1X

n=0

k eFLnkF 

vuut 1

N

N�1X

n=0

k eFLnk2F  2

s
�min( �)

⇥
J⇤ � J⇤(L0)

⇤

◆ · N .

By setting N = ⌦("�2), we have that N�1 ·
PN�1

n=0 k eFLnk  ". By the union bound, the failure probability is
N · (O("20) +O("40))  "10. Thus, we complete the proof of Theorem 5.3.

C Policy Gradient Theorem in the LQ setting

We first give a detailed version of Proposition 4.2. The proof is a modification of that of Proposition 3.1 in Yang
et al. (2019), which establishes the policy gradient theorem for the single-agent linear quadratic regulator under
the ergodic setting. Compared with Yang et al. (2019), we need to consider the system determined by the two
competing players. Note that Proposition C.1 recovers Proposition 3.1 in Yang et al. (2019) when L = 0.
Proposition C.1. We assume that the policy ⇡K,Lis stable in the sense that ⇢(A � BK � CL) < 1. Let
PK,L,⌃K,L be the unique positive definite solutions to the following Lyapunov equations

PK,L = (Q+K>RK � L>SL) + (A�BK � CL)>PK,L(A�BK � CL), (C.1)

⌃K,L =  � + (A�BK � CL)⌃K,L(A�BK � CL)>. (C.2)

Then, the Markov chain xt+1 = (A � BK � CL)xt + ✏t has a stationary distribution ⇢K,L = N(0,⌃K,L). We
denote the second tensor power of state-action pair (x, u, v) by �(x, u, v) = (x, u, v)⌦2. We define the parameter
matrix ⇤K,L for the function QK,L as follows,

⇤K,L =

0

@
⇤11
K,L ⇤12

K,L ⇤13
K,L

⇤21
K,L ⇤22

K,L ⇤23
K,L

⇤31
K,L ⇤32

K,L ⇤33
K,L

1

A =

0

@
Q+A>PK,LA A>PK,LB A>PK,LC
B>PK,LA R+B>PK,LB B>PK,LC
C>PK,LA C>PK,LB �S + C>PK,LC

1

A . (C.3)

Then, the state and state-action value functions are quadratic functions, taking the form

VK,L(x) = x>PK,Lx� Tr(PK,L⌃K,L), (C.4)
QK,L(x, u, v) = Tr

�
⇤K,L�(x, u, v)

�
+ qK,L, (C.5)

where qK,L = ��2
1 ·Tr(R+PK,LBBT )��2

2 ·Tr(�S+PK,LCC>) is independent of (x, u, v). We have the following
Bellman equation,

Tr
�
⇤K,L�(x, u, v)

�
= c(x, u, v)� J(K,L) + E⇡K,L

h
Tr
�
⇤K,L�(x

0, u0, v0)
� ���x, u, v

i
, (C.6)
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where (x0, u0, v0) denotes the subsequent state-action pair following policy ⇡K,L. Further, for the ergodic cost
J(K,L), it holds that

J(K,L) = Tr
�
(Q+K>RK � L>SL)⌃K,L

�
+ �2

1Tr(R)� �2
2Tr(S),

= Tr(PK,L �) + �2
1Tr(R)� �2

2Tr(S), (C.7)

rKJ(K,L) = 2
�
(R+B>PK,LB)K �B>PK,L(A� CL)

�
⌃K,L = 2EK,L⌃K,L, (C.8)

rLJ(K,L) = 2
�
(�S + C>PK,LC)L� C>PK,L(A�BK)

�
⌃K,L = 2FK,L⌃K,L. (C.9)

Here EK,L and FK,L are given by

EK,L = (R+B>PK,LB)K �B>PK,L(A� CL) = ⇤22
K,LK + ⇤23

K,LL� ⇤21
K,L, (C.10)

FK,L = (�S + C>PK,LC)L� C>PK,L(A�BK) = ⇤33
K,LL+ ⇤32

K,LK � ⇤31
K,L. (C.11)

where ⇤K,L is defined in (C.3). Further, 2EK,L and 2FK,L corresponds to the natural gradient of J(K,L).

Proof. By direct computation, the Markov chain defined in (4.2) has a stationary distribution N(0,⌃K,L), where
⌃K,L is the positive definite solution to the Lyapunov equation (C.2). By the definition of J(K,L) in (3.1), the
ergodic cost J(K,L) is the the cost evaluated on the stationary distribution ⇢K,L, which implies that

J(K,L) = Ex⇠⇢K,L,u⇠⇡K,L(· | x)
⇥
c(x, u, v)

⇤

= Tr
�
(Q+K>RK � L>SL)⌃K,L

�
+ �2

1Tr(R)� �2
2Tr(S). (C.12)

This establishes the first equality of (C.7).

For notational simplicity, we define the following operators for the stable policy pair (K,L)

TK,L(⌦) =
X

t�0

(A�BK � CL)t⌦
�
(A�BK � CL)t

�>
, (C.13)

T >
K,L(⌦) =

X

t�0

�
(A�BK � CL)t

�>
⌦(A�BK � CL)t, (C.14)

which satisfy the following Lyapunov equations

TK,L(⌦) = ⌦+ (A�BK � CL)TK,L(⌦)(A�BK � CL)>, (C.15)

T >
K,L(⌦) = ⌦+ (A�BK � CL)>TK,L(⌦)(A�BK � CL). (C.16)

For any positive definite matrices ⌦1 and ⌦2, since ⇢(A�BK � CL) < 1, it holds that

Tr
�
⌦1TK,L(⌦2)

�
=
X

t�0

Tr
⇣
⌦1(A�BK � CL)t⌦2

�
(A�BK � CL)t

�>⌘

=
X

t�0

Tr
⇣�

(A�BK � CL)t
�>
⌦1(A�BK � CL)t⌦2

⌘

= Tr
�
T >
K,L(⌦1)⌦2

�
. (C.17)

Combining (C.1), (C.2), (C.15), and (C.16), we have PK,L = T >
K,L(Q+K>RK � L>SL) and ⌃K,L = TK,L( �).

Thus, by (C.17), it holds that

Tr
�
(Q+K>RK � L>SL)⌃K,L

�
= Tr

�
(Q+K>RK � L>SL)TK,L( �)

�

= Tr
�
T >
K,L(Q+K>RK � L>SL) �

�
= Tr(PK,L �).

Combining with (C.12), we establish the second equality of (C.7). Second, we proceed to establish the state value
function VK,L(x) in (C.4) and state-action value function QK,L in (C.5). By the definition of VK,L(x) in (3.2), it
holds that

VK,L(x) =
X

t�0

E⇡K,L
⇥
c(xt, ut, vt) |x0 = x, ut = �Kxt + �1⌘

1
t , vt = �Lxt + �2⌘

2
t

⇤

=
X

t�0

⇣
E⇡K,L

⇥
x>
t (Q+K>RK � L>SL)xt

��x0 = x
⇤
� J(K) + �2

1Tr(R)� �2
2Tr(S)

⌘
.
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Combining with the linear transition (4.2), VK,L(x) is quadratic in x. We write VK,L(x) = x>VK,Lx+ vK,L for
matrix VK,L and constant vK,L, which are determined in the sequel. Note that VK,L(x) satisfies the following
Bellman equation,

VK,L(x) = E(u,v)⇠⇡K,L

⇥
c(x, u, v)

⇤
� J(K,L) + EK,L

⇥
V (x0)

��x
⇤
,

where x0 is the subsequent state of x following the policy ⇡K,L. Therefore, the matrix VK,L satisfies the following
equation.

x>VK,Lx = x>(Q+K>RK � L>SL)x+ x>(A�BK � CL)>VK,L(A�BK � CL)x,

which implies that VK,L satisfies the same Lyapunov equation as PK,L. By the uniqueness of PK,L, we deduce
that VK,L = PK,L. Combining with the fact that Ex⇠⇢K,L [VK,L(x)] = 0, we complete the proof of (C.4).

Furthermore, by the definition of QK,L(x, u, v) in (3.3), we have the following equation.

QK,L(x, u, v) = c(x, u, v)� J(K) + EK,L

⇥
VK,L(x

0) |x, u, v
⇤
. (C.18)

Combining (C.4) and (C.18), by direct computation, we obtain (C.5), and then the Bellman equation (C.6) of
QK,L follows.

In the following, we proceed to characterize the expressions of policy gradient (C.8) and (C.9). By (C.7), it holds
that

rKJ(K,L) = 2RK⌃K,L +rKTr(Q0⌃K,L), (C.19)
rLJ(K,L) = �2SL⌃K,L +rLTr(Q0⌃K,L), (C.20)

where Q0 = Q+K>RK �L>L. We first compute the expression (C.8). Note that TK,L( �) = ⌃K,L and (C.15),
for the second term on the right of (C.19), we have that

rKTr(Q0⌃K,L) = rKTr
⇥
(A�BK � CL)>Q0(A�BK � CL)⌃K,L

⇤

= �2B>Q0(A�BK � CL)⌃K,L +rKTr(Q1⌃K,L),

where Q1 = (A � BK � CL)>Q0(A � BK � CL). Moreover, we denote by Qt := (A�BK � CL)t
>
Q0(A �

BK � CL)t. Note that
P1

t=0 Qt = PK,L and that Qt ! 0 when t goes to infinity, we have that

rKTr(Q0⌃K,L) = �2B>⇥
nX

t=0

Qt

⇤
(A�BK � CL)⌃K,L +rKTr

�
Qt⌃K,L

�

= �2B>PK,L(A�BK � CL)⌃K,L.

Combining with (C.19), we establish (C.8). Similarly, we establish (C.9).

Finally, we establish the fact that EK,L and FK,L relate with the natural policy gradients. For the Gaussian policy
⇡K,L defined in (4.1), the corresponding Fisher information, denoted by I(K,L), has the following structure

⇥
I(K;L)

⇤
KijKi0j0

= Ex⇠⇢K,L,(u,v)⇠⇡K,L

⇥
rKij log ⇡K,L(u, v |x)rKi0j0 log ⇡K,L(u, v |x)

⇤

= ��2
1 · Ex⇠⇢K,L,(u,v)⇠⇡K,L

⇥
⌘1i xj · ⌘1i0xj0

⇤
= ��2

1 · 1i=i0 · (⌃K,L)jj0 .

Similarly, we have that
⇥
I(L;K)

⇤
LijLi0j0

= ��2
2 · 1i=i0 · (⌃K,L)jj0 .

Thus, the natural policy gradients take the form of
⇥
I(K;L)

⇤�1rKJ(K,L) = rKJ(K,L)⌃�1
K,L = 2EK,L,

⇥
I(L;K)

⇤�1rLJ(K,L) = rLJ(K,L)⌃�1
K,L = 2FK,L.

Therefore, we conclude the proof of Proposition (C).
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D Gradient Temporal-Difference

In this section, we present the GTD algorithm that estimate ⇤K,L defined in (C.3) at the critic steps. Our GTD
is based on Yang et al. (2019), which develop GTD for the single-agent LQR problem. We extend this approach
to the two-agent zero-sum LQ game. For notational simplicity, we denote by z = (x, u, v) the state-action pair,
and by Z = X ⇥ U ⇥ V the state-action space.

To solve the RSRL and RARL, we need to sample from the MDP M for the two-player zero-sum game introduced
in §2.3, while we only have access to the original MDP M̄ = (X ,U , P̄ , c̄,D0) in §2.1 for the single-agent RSRL and
RARL. To sample from M in the sequel, we first sample the initial state x0 ⇠ D0. At state xt (t � 0), the agent
takes action ut and receives a cost c̄t. Then, the system transits to the next state x̄t+1. Letting ct = c̄t � v>t Svt
and xt+1 = x̄t+1 + Cvt, we have that {(xt, ct)}t�0 is a trajectory from the MDP M by following {ut} and {vt}.

We define the following feature vector

�(z) = svec
⇥
(z)⌦2

⇤
, (D.1)

for any z 2 Z. We denote the vectorization of ⇤K,L by �⇤ = svec(⇤K,L). Note that we omit the dependence of
�⇤ on (K,L) for notational simplicity. Then, we write the Bellman equation in (4.7) of state-action function as
follows,

h�(z),�⇤i = c(z)� J(K,L) +
⌦
Ez0⇠ eP (· | z;⇡K,L)

⇥
�(z0)

⇤
,�⇤↵.

Here z0 = (x0, u0, v0), and the expectation Ez0⇠ eP (· | z) is with respect to the conditional distribution eP (· | z;⇡K,L)
that takes the form of

eP (z0 | z;⇡K,L) = P (x0 | z) · ⇡K,L(u
0, v0 |x0).

We define

�⇤ =

✓
(�⇤)1

(�⇤)2

◆
=

✓
J(K,L)

�⇤

◆
. (D.2)

Along the formulation of Liu et al. (2015); Yang et al. (2019), we define the following notations,

TK,L = Ez⇠e⇢K,L,z0⇠ eP (· | z;⇡K,L)

h
�(z)

⇥
�(z)� �(z0)

⇤>i
,

bK,L = Ez⇠e⇢K,L,z0⇠ eP (· | z;⇡K,L)

⇥
c(z)�(z)

⇤
. (D.3)

Here e⇢K,L is the stationary distribution induced by ⇡K,L over Z, which takes the form of

e⇢K,L(z) = ⇢K,L(x) · ⇡K,L(u, v |x), 8z = (x, u, v) 2 X ⇥ U ⇥ V .

Then, by direct computation, we have the following linear equation
✓

1 0
E(z)⇠e⇢K,L

⇥
�(z)

⇤
TK,L

◆
�⇤ =

✓
J(K,L)
bK,L

◆
. (D.4)

The solution of (D.4) is unique if the matrix TK,L is invertible, which is verified by the following lemma.

Lemma D.1. For any policy ⇡K,L that is stable in the sense that ⇢(A�BK�CL) < 1, the matrix TK,L defined
in (D.3) is invertible, and it holds that

kTK,Lk  2
�
�2
1 + �2

2 + (1 + kKk2 + kLk2) · k⌃K,Lk
�2
.

It then holds that �⇤
K,L is the unique solution of (D.4).

Proof. See a detailed proof in §D.2.
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The linear equation defined in (D.4) is equivalent to the following minimization problem,

min
�

|�1 � J(K,L)|2 +
��Ez⇠e⇢K,L

⇥
�(z)

⇤
�1 + TK,L�

2 � bK,L

��2,

where the expectation is with respect to By Fenchel duality, solving the above linear equation is equivalent to the
following minimax problem,

min
�2X�

max
w2Xw

G(�, w) = Ez⇠e⇢K,L,z0⇠ eP (· | z;⇡K,L)

⇥
g(�, w; z, z0)

⇤
, (D.5)

where g is defined as follows,

g(�, w; z, z0) =
⇥
�1 � c(z)

⇤
· w1 � 1

2
· kwk22 +

⌦
�(z) ·

�
�1 +

⇥
�(z)� �(z0)

⇤>
�2 � c(z)

 
, w2

↵
. (D.6)

By the property of Fenchel duality and (D.4), the optimal solution of (D.5) is (�⇤, 0). We note that g(�, w; z, z0)
is convex with respect to � and concave with respect to w. To solve minimax problem defined in (D.5), we apply
stochastic primal-dual update to (�, w) as follows,

�t+1 = ⇧XB

n
�t � ↵t ·r�g(�t, wt; zt, zt+1)

o
,

wt+1 = ⇧XW

n
wt � ↵t ·rwg(�t, wt; zt, zt+1)

o
,

where
�
zt
 
t�0

is drawn from z0 ⇠ D, zt+1 ⇠ eP (· | zt;⇡K,L). Here for the stability of the algorithm, we project �
and w to some compact sets XB and XW , which are defined as follows,

XB =
n
� : 0  �1  J(K,L), k�2k  R̄B

o
, (D.7)

XW =
n
w : |w1|  J(K,L), kw2k2  R̄W

o
. (D.8)

Here R̄B and R̄W are defined by

R̄B = C ·
�
J(K,L)/�min( �)

�
+ C0, (D.9)

R̄W = C · R̄B · �min(Q� L>SL)�2 ·
�
d+ kKk2F + kLk2F

�2 · J(K,L)2 + C0, (D.10)

for absolute constants C > 0 and C0. We conclude the above discussion in Algorithm 3.

We establish Theorem 5.2 that characterizes the sublinear convergence of Algorithm 3. For the completeness, we
restate the theorem as follows.

Theorem D.2 (Convergence of GTD (Algorithm 3)). Let b⇤ be the output of Algorithm 3 after T iterations.
We set the stepsize ↵t = 1/

p
t. Then, For the sufficiently large T , it holds with probability at least 1� T�4 that

kb⇤� ⇤K,Lk2F 
Poly

⇣
J(K,L), kKkF, kLkF,�min(Q� L>SL)�1

⌘

�min(TK,L) ·
�
1� ⇢(A�BK � CL)

� · log
4 Tp
T

,

where Poly is a polynomial.

Proof. See §D.1 for a detailed proof.



Provably Efficient Actor-Critic for Risk-Sensitive and Robust Adversarial RL: A Linear-Quadratic Case

Algorithm 3 GTD for Estimating ⇤K,L.
Input: Policy ⇡K,L, number of GTD iterations TTD, and step sizes {↵t}Tt=0.

Initialize the primal and dual variables �0 2 X� and w0 2 Xw.
Sample x0 ⇠ D. Take action (u0, v0) ⇠ ⇡(· |x0), and observe the cost c0 and next state x1. Let z0 = (x0, u0, v0)
for t = 1, 2, ..., T do

Take action (ut, vt) ⇠ ⇡K,L(· |xt), and observe the cost ct and next state xt+1. Let zt = (xt, ut, vt) and
�(z) = svec(zz>).
�1
t = �1

t�1 � ↵t ·
h
w1

t�1 + h�(zt�1), w2
t�1i

i
,

�2
t = �2

t�1 � ↵t ·
h�
�(zt�1)� �(zt)

�
�(zt�1)>w2

t�1

i
,

w1
t = (1� ↵t) · w1

t�1 + ↵t · [�1
t�1 � ct�1],

w2
t = (1� ↵t) · w2

t�1 + ↵t · �(zt�1)
h
�1
t�1 +

⇥
�(zt�1)� �(zt)

⇤>
�2
t�1 � ct�1

i
.

Project �t and wt to the space XB and XW specified in (D.7) and (D.8).
end for

b� =
PT

t=1 ↵t�tPT
t=1 ↵t

, bw =
PT

t=1 ↵twtPT
t=1 ↵t

.

Output: b⇤ = smat(b�2) that estimates ⇤K,L.

D.1 Proof of Theorem 5.2

Proof. The proof of Theorem 5.2 is based on Yang et al. (2019). In comparison, we establish the global convergence
of GTD for the two-agent zero sum LQ game, whereas they do it for the single-agent LQR. The proof of Theorem
5.2 takes three steps. First, we prove that the optimal solution of (D.5) is contained in the parameter domain
XB ⇥ XW . Second, we define the optimality gap of the minimax problem in (D.5), and relate the gap to the
difference between current iterates and the optimal solution. At last, we prove that the optimality gap converges
to zero sublinearly.

We first establish the following lemma that shows the saddle point of the objective function defined in (D.5) is
contained in the parameter domain XB ⇥ XW .

Lemma D.3. For any � 2 XB , we define

w(�) = argmax
w

G(�, w).

Then, it holds that w(�) 2 XW . Moreover, the optimal solution (�⇤, 0) of (D.5) is contained in XW ⇥ XB .

Proof. See a detailed proof in §E.1.

To analyze the convergence of Algorithm 3, we define the optimality gap for (D.5) as

Gap(b�, bw) = max
w2XW

G(b�, w)� min
�2XB

G(�, bw), (D.11)

for any (b�, bw) 2 XB ⇥ XW . We establish the following lemma relating the primal-dual gap defined in (D.11) to
the gap between (b�, bw) and the saddle point (�⇤, 0).

Lemma D.4 (Bound Parameter Difference via Objective Difference). For any (b�, bw) 2 XB⇥XW , let b⇤ = smat(�2).
Then we have

��b�1 � J(K,L)
��2 + kb⇤� ⇤K,Lk2F 

Gap(b�, bw)
�min(TK,L)2

,

where TK,L is defined in (D.3).

Proof. See §E.2 for a detailed proof.
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Note that Algorithm 3 is a stochastic gradient based method. We have

G(�, w) = Ez⇠⇢K,L,z0⇠ eP (· | z)
⇥
g(�, w; z, z0)

⇤

where g is defined in (D.6). The expectation is taken with respect to x ⇠ ⇢K,L, where e⇢K,L is the stationary
distribution induced by policy ⇡K,L. But the trajectory {zt}t�0 is generated from z0 ⇠ D, zt+1 ⇠ eP (· | z), which
implies that {zt} is not drawn from the stationary distribution e⇢K,L. Such a case has been studied in Wang
et al. (2017). However, different from the setting in Wang et al. (2017), our function g(�, w; z, z0) is not Lipschitz
continuous in (�, w), which makes the analysis of Wang et al. (2017) not applicable for our setting. To bypass
such an issue, we prove that the function g is Lipschitz continuous in (�, w) with high probability, which allows
us to apply Theorem 1 in Wang et al. (2017) to establish the following lemma.
Lemma D.5. It holds for the output (b�, bw) of Algorithm 3 after T iterations that

Gap(�̄, w̄)  Poly
�
J(K,L), R̄B , R̄W ,�min(Q� L>SL)�1

�
· (log T )4

(1� ⇢)
p
T
,

with probability at least 1� T�4.

Proof. See a detailed proof in §E.3.

Combining Lemma D.3, Lemma D.4 and Lemma D.5, we complete the proof of Theorem 5.2.

D.2 Proof of Lemma D.1

Recall that we denote by z = (x, u, v) the state action pair. and by z0 = (x0, u0, v0) the subsequent state action
pair following ⇡K,L. Then, by (2.5), we have that,

z0 = Uz + ⇣, (D.12)

where U and ⇣ are defined as follows.

U :=

0

@
Id
�K
�L

1

A�
A B C

�
, ⇣t :=

0

@
et

�Ket + �1⌘1

�Let + �2⌘2

1

A . (D.13)

Here ⌘1 ⇠ N(0, Im1), ⌘2 ⇠ N(0, Im2) are Gaussian noises. By the fact that ⇢(MN) = ⇢(NM) for any matrices
M,N and that ⇢(A � BK � CL) < 1, we have that ⇢(U) < 1. We denote the covariance matrix of ⇣t by e �,
which takes the form of

e � =

0

@
Id
�K
�L

1

A 

0

@
Id
�K
�L

1

A
>

+

0

@
0 0 0
0 �2

1Im1 0
0 0 �2

2Im2

1

A .

Recall that we denote by e⇢K,L the stationary distribution of (x, u, v) induced by ⇡K,L. We denote the covariance
matrix of e⇢K,L by e⇢K,L, which takes the form of

e⌃K,L =

0

@
Id
�K
�L

1

A⌃K,L

0

@
Id
�K
�L

1

A
>

+

0

@
0 0 0
0 �2

1Im1 0
0 0 �2

2Im2

1

A . (D.14)

By (D.14), we upper bound the norms of e⌃K,L as follows,

ke⌃K,LkF  �2
1m1 + �2

2m2 +
�
d+ kKk2F + kLk2F

�
· k⌃K,Lk, (D.15)

ke⌃K,Lk  �2
1 + �2

2 +
�
1 + kKk2 + kLk2

�
· k⌃K,Lk. (D.16)

By the fact that ⇢(U) < 1 and the definition of ⌃K,L in (C.2) of Proposition C.1, we conclude that e⌃K,L is the
unique positive definite solution of the Lyapunov equation,

e⌃K,L = e � + U e⌃K,LU
>. (D.17)

We prove a stronger lemma to establish Lemma D.1,
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Lemma D.6. For any policy ⇡K,L that is stable in the sense that ⇢(A�BK � CL) < 1, it holds for the matrix
TK,L defined in (D.3) that

TK,L = (e⌃K,L ⌦ e⌃K,L)� (e⌃K,LU
>)⌦ (e⌃K,LU

>) = (e⌃K,L ⌦ e⌃K,L)(I � U> ⌦ U>). (D.18)

Moreover, TK,L is invertible and it holds that

kTK,Lk  2
�
�2
1 + �2

2 + (1 + kKk2 + kLk2) · k⌃K,Lk
�2
. (D.19)

Proof. We first prove (D.18) of Lemma D.6. We denote the right-hand side of (D.18) by

T̄ = (e⌃K,L ⌦ e⌃K,L)� (e⌃K,LU
>)⌦ (e⌃K,LU

>) = (e⌃K,L ⌦ e⌃K,L)(I � U> ⌦ U>).

In what follows, we show that for any matrices M,N , it holds that svec(M)TK,Lsvec(N) = svec(M)T̄svec(N).
By (D.12) and the fact that �(z) = svec(zz>) in (D.1), we have that

�(z)� �(z0) = svec
⇥
zz> � (Uz + ⇣)(Uz + ⇣)>

⇤
.

By the fact that z and ⇣ are independent and the definition of TK,L in (D.3), we have that

TK,L = Ez⇠e⇢K,L

⇥
svec(zz>)svec(zz> � Uzz>U> � e �)

>⇤.

Let M and N be two matrices. Then, we have that

svec(M)TK,Lsvec(N) = Ez⇠e⇢K,L

⇥
hzz>,Mi · hzz> � Uzz>U> � e �, Ni

⇤

= Ez⇠e⇢K,L

⇥
z>Mzz>(N � U>NU)z

⇤
� Ez⇠e⇢K,L

⇥
z>Mz

⇤
· he �, Ni

= 2hM, e⌃K,L(N � U>NU)e⌃K,Li+ hM, e⌃K,Li ·
⇥
hN � U>NU, e⌃K,Li � he �, Ni

⇤
. (D.20)

where the last equality holds because of the following lemma
Lemma D.7. Let g ⇠ N(0, Id) be some standard Gaussian random vector in Rd and let A1, A2 be two symmetric
matrices. Then we have

E[g>A1g · g>A2g] = 2Tr(A1A2) + Tr(A1) · Tr(A2).

Proof. See e.g. Nagar (1959); Magnus et al. (1978) for a detailed proof.

By (D.17), we have that

hN � U>NU, e⌃K,Li = hN, e⌃K,Li � hN,U e⌃K,LU
>i = hN, e �i.

Therefore, by (D.20), we have that

svec(M)TK,Lsvec(N) = 2hM, e⌃K,L(N � U>NU)e⌃K,Li
= 2svec(M)>(e⌃K,L ⌦ e⌃K,L � e⌃K,LU

> ⌦ ⌃K,LU
>)svec(N)>

= 2svec(M)>
⇥
(e⌃K,L ⌦ e⌃K,L)(I � U> ⌦ U>)

⇤
svec(N)>. (D.21)

Since (D.21) holds for any matrices M,N , we have that

TK,L = (e⌃K,L ⌦ e⌃K,L)(I � U> ⌦ U>),

which concludes (D.18). By the fact that ⇢(U) = ⇢(A�BK � CL) < 1, we concludes that TK,L is invertible.

Finally, we upper bound kTK,Lk. By the triangle inequality, we have that

kTK,Lk  ke⌃K,L ⌦ e⌃K,Lk · (1 + kU> ⌦ U>k)
 ke⌃K,Lk2 · (1 + kUk2)
 2ke⌃K,Lk2, (D.22)

where the last inequality follows from the fact that ⇢(U) < 1, and the second inequality holds as a result of the
following lemma from Alizadeh et al. (1998)
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Lemma D.8 (Lemma 7.2 in Alizadeh et al. (1998)). Let A,B 2 Rm⇥m be two matrices that can be diagonalizable
simultaneously, and let �1, ...,�m and µ1, ..., µm be the eigenvalues of A,B respectively. Then, the eigenvalues of
A⌦B are given by {1/2 · (�iµj + �jµi), i, j 2 [m]}.

Plugging (D.16) into (D.22), we have that

kTK,Lk  2
�
�2
1 + �2

2 + (1 + kKk2 + kLk2) · k⌃K,Lk
�2
, ,

which completes the proof of Lemma D.6.

E Proof of Supporting Lemmas

E.1 Proof of Lemma D.3

Proof. We first show that w(�) 2 XW for any � 2 XB . By the definition of G(�, w) in (D.5) and the property of
quadratic function, we have that

w(�) = argmax
w

G(�, w) = Ez⇠e⇢K,L,z0⇠ eP (· | z;⇡K,L)

⇥
H(z, z0;�)

⇤
.

where we define H(z.z0;�) as follows

H1(z.z0;�) = �1 � c(z), (E.1)

H2(z, z0;�) =
n
�1 +

⇥
�(z)� �(z0)

⇤>
�2 � c(z)

o
�(z). (E.2)

Thus, it suffices to bound H(z, z0;�) for any � 2 XB . We bound the two components H1(z, z0;�) and H2(z, z0;�)
separately. We first bound H1(z, z0;�). By (E.1), we have that

|w1(�)| =
���Ez⇠e⇢K,L,z0⇠ eP (· | z;⇡K,L)

⇥
H1(z, z0;�)

⇤��� =
���1 � J(K,L)

��  J(K,L), (E.3)

where the second inequality follows from the fact that �1 2 [0, J(K,L)]. We now bound H2(z, z0;�). By (E.2),
we have that

w2(�) = Ez⇠e⇢K,L,z0⇠ eP (· | z;⇡K,L)

⇥
H2(z, z0;�)

⇤
= �1 · Ez⇠e⇢K,L

⇥
�(z)

⇤
+ TK,L�

2 � bK,L,

where TK,L and bK,L are defined in (D.3). By the fact that � 2 XB in (D.7) we have that

kw2(�)k  J(K,L) ·
��Ez⇠e⇢K,L

⇥
�(z)

⇤��+ kTK,Lk · R̄B + kbK,Lk. (E.4)

We now bound the three terms on the right-hand side of (E.4). In what follows, we use the same notation e⌃K,L

defined in (D.14). For the first term on the right-hand side of (E.4), we have that
��Ez⇠e⇢K,L

⇥
�(z)

⇤�� = ke⌃K,LkF  �2
1 ·m1 + �2

2 ·m2 + (d+ kKk2F + kLk2F) · k⌃K,Lk. (E.5)

For the second term on the right-hand side of (E.4), by Lemma D.6, we have that

kTK,Lk2  2
�
�2
1 + �2

2 + (1 + kKk2 + kLk2) · k⌃K,Lk
�2
. (E.6)

For the last term on the right-hand side of (E.4), it suffices to bound bK,L, we now study the linear operator
induced by bK,L. For any positive definite matrix M 2 R(d+m1)⇥(d+m1), we have

hbK,L, svec(M)i = Ez⇠e⇢K,L


h�(z), svec(M)i ·

⌦
�(z), svec

�
diag(Q,R,�S)

�↵�

= 2he⌃K,Ldiag(Q,R,�S)e⌃K,L,Mi+ he⌃K,L, diag(Q,R,�S)i · he⌃K,L,Mi (E.7)

where the first equality follows from the fact that c(z) = h�(z), svec(diag(Q,R, S))i, and the second equality
follows form Lemma D.7. Thus, we have that

kbK,Lk  3(kQkF + kRkF + kSkF) · ke⌃K,Lk2F
 3(kQkF + kRkF + kSkF) ·

�
�2
1m1 + �2

2m2 + (d+ kKk2F + kLk2F) · k⌃K,Lk
�2
, (E.8)

where the last inequality follows from (D.15). We establish the following lemma to bound k⌃K,Lk.
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Lemma E.1. For any stable policy ⇡K,L, we have

k⌃K,Lk 
⇥
J(K,L) + �

⇤
/�min(Q� L>SL), kPK,Lk 

⇥
J(K,L) + �

⇤
/�min( �).

Here � is defined as � := (��2
1Tr(R) + �2

2Tr(S))
+.

Proof. By (C.7) in Proposition C.1, we have that

J(K,L) + � � Tr
�
(Q� L>SL+K>RK)⌃K,L

�
� �min(Q� L>SL) · k⌃K,Lk,

J(K,L) + � � Tr(PK,L �) � �min( �) · kPK,Lk.

Therefore, we conclude the proof.

Plugging (E.5), (E.6), and (E.8) into (E.4), by Lemma E.1, we get that

kw2(�)k  C · (d+ kKk2F + kLk2F)2 · R̄B · �min(Q� L>SL)�2 ·
�
J(K,L) + �

�2
+ C0, (E.9)

where C,C0 > 0 are constants. Thus, combining (E.3), (E.9), and the definition of XW in (D.8), we concludes
that w(�) 2 XW for any � 2 XB .

It remains to show that �⇤ 2 XB . By the definition of �⇤ in (D.2) and the definition of XB in (D.7), it suffices to
bound k⇤K,LkF. By the definition of ⇤K,L in (4.4), we have that

⇤K,L =

0

@
Q+A>PK,LA A>PK,LB A>PK,LC
B>PK,LA R+B>PK,LB B>PK,LC
C>PK,LA C>PK,LB �S+C>PK,LC

1

A

=

0

@
Q

R
�S

1

A+
�
A B C

�>
PK,L

�
A B C

�
.

which implies that

k⇤K,LkF  kQkF + kRkF + kSkF +
�
kAk2F + kBk2F + kCk2F

�
· kPK,Lk. (E.10)

Apply Lemma E.1 to (E.10), we get that

k⇤K,LkF  kQkF + kRkF + kSkF +
�
kAk2F + kBk2F + kCk2F

�
·
�
J(K,L) + �

�
/�min( �)

= C0 + C ·
�
J(K,L) + �

�
/�min( �). (E.11)

By (E.11) and definition of R̄B in (D.9), we conclude that �⇤ 2 XB . Thus, we complete the proof.

E.2 Proof of Lemma D.4

Proof. First, by the definition of G(�, w) in (D.5), we have for any b� 2 XB , bw 2 XW that

|b�1 � J(K,L)|2 + kb�1 · Ez⇠e⇢K,L

⇥
�(z)

⇤
+ TK,L

b�2 � bK,Lk22 = max
w2XW

G(b�, w)  Gap(b�, bw), (E.12)

where the last inequality follows from the following inequality

min
�2XB

G(�, bw)  min
�2XB

G(�, w(�)) = G(�⇤, 0) = 0.

By the definition of �⇤ in (D.2), we rewrite the left-hand side of (E.12) as follows
����

✓
1 0

Ez⇠e⇢K,L

⇥
�(z)

⇤
TK,L

◆
(b� � �⇤)

����
2

� �min(TK,L)
2 ·

�
|b�1 � J(K,L)|2 + kb⇤� ⇤K,Lk2

�
. (E.13)

Combining (E.12) and (E.13), we have that

(|b�1 � J(K,L)|2 + kb⇤� ⇤K,Lk2)  1/�min(TK,L)
2 · Gap(b�, bw), (E.14)

which completes the proof of Lemma D.4.
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E.3 Proof of Lemma D.5

Proof. First, let us characterize the geometrically �-mixing property of our problem via the following lemma.
Lemma E.2 (Geometrically �-mixing). Consider a linear transition zt+1 = Uzt + et, where zt 2 RD is the
Markov Chain and et ⇠ N(0, ) is the Gaussian noise independent of {zt}t�0, and U 2 RD⇥D satisfies that
⇢(U) < 1. We denote by ⌫t the distribution of zt and by N(0,⌃1) the stationary distribution of zt. We define
the k-th mixing time coefficient �(k) as follows

�(k) = sup
t

Ez⇠⌫t

⇥
kPzk(· | z0 = z)� PN(0,⌃1)(·)kTV

⇤
.

Then, it holds that

�(k)  C⇢,U [Tr(⌃1) +m(1� ⇢)�2]1/2⇢k,

where ⇢ 2 (⇢(U), 1), and C⇢,U is a constant depending on U and ⇢.

We obtain the following theorem from Wang et al. (2017) to establish Lemma D.5.
Theorem E.3 (Theorem 1 in Wang et al. (2017)). Let XW and XB be two convex, closed, and bounded sets
and the radius of XW ⇥ XW is D > 0. Consider the following minimax stochastic optimization problem

min
�2XB

max
w2XW

G(�, w) = E⇠⇠⌅[g(�, w; ⇠)]

where ⇠ is a random variable drawn from ⌅. The function g is convex in � and concave in w. We assume ⌅ is
the stationary distribution of a Markov Chain {⇠t}1t=0 with uniform mixing time ⌧(⌘) for any ⌘ > 0. Meanwhile,
we assume that for almost every ⇠, the function g(�, w; ⇠) is L1 Lipschitz continuous for every � 2 XB , w 2 XW .
The stochastic gradient r�g(�, w; ⇠) and rwg(�, w; ⇠) are L2-Lipschitz continuous for every � 2 XB , w 2 XW

and almost every ⇠. For any non-increasing step size ↵t, the projected primal dual stochastic gradient method
updates � and w by

�t+1 = ⇧XB

⇥
�t � ↵t ·r�g(�t, wt; ⇠t)

⇤
, wt+1 = ⇧Y

⇥
wt + ↵t ·rwg(�t, wt; ⇠t)

⇤
.

for t 2 [T � 1]. Let

�̄ =

PT
t=0 ↵t�tPT
t=0 ↵t

, w̄ =

PT
t=0 ↵twtPT
t=0 ↵t

.

Then, for any �, ⌘ > 0 such that ⌧(⌘)  T/2, it holds with probability at least 1� � that

max
w2XW

G(�̄, w)� min
�2XB

G(�, w̄) 
⇣ TX

t=0

↵t

⌘�1n
A0 +A1 · ⌘ ·

TX

t=0

↵t +A2

TX

t=0

↵2
t

+16DL1 ·
h
2⌧(⌘) · log

�
⌧(⌘)/�

�
·
� TX

t=0

↵2
t + ⌧(⌘)↵1

�i1/2o
, (E.15)

where we define

A0 = D2 + 12D↵1 · ⌧(⌘), A1 = 4L1D, A2 = 10L1 +
�
24L2

1 + 8L1L2D
�
· ⌧(⌘). (E.16)

Specifically, for geometrically �-mixing process defined in Lemma E.2, we have the following corollary.
Corollary E.4. Use the same setting as in Theorem E.3. We assume that the k-th mixing time satisfies
�(k)  C⇠⇢k for some C⇠ > 0, ⇢ < 1. We set step size ↵t = ↵/

p
t for some ↵ > 0. Then, we have that, with

probability at least 1� �,

max
w2XW

G(�̄, w)� min
�2XB

G(�, w̄)  C ·D2 + L2
1 + L1L2D

log(1/⇢)
· log

2 T + log(1/�)p
T

+
C · C⇠L1D

T
.
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Proof. The proof follows direct computations. By the property of geometrically �-mixing processes, we define
mixing time by ⌧(⌘) = log(⌘/C⇠)/ log ⇢ and ⌘ = C⇠/T . We set ↵t = ↵/

p
T and the constants A0, A1, A2 as

(E.16). Note that
PT

t=1 1/t ⇠ log T,
PT

t=1 1/
p
t ⇠ 2

p
T . Thus, we bound the first three terms of the right-hand

side of (E.15) as follows

A0  C ·D2 · log T/ log(1/⇢),

A1 · ⌘ ·
TX

t=0

↵t  C · C⇠L1D/T,

A2

TX

t=0

↵2
t  C · (L1 + L2

1 + L1L2D) · log2 T/
p
T .

For the last term, we have

16DL1

h
2⌧(⌘) log

�
⌧(⌘)/�

�� TX

t=0

↵2
t + ⌧(⌘)↵1

�i1/2

 C ·DL1 log T/ log(1/⇢)
p

log log T + log(1/�).

Thus, we conclude the proof of Corollary E.4.

However, since z ⇠ e⇢K,L is not bounded, the function f(�, w; z, z0) defined in (D.6) is not Lipschitz continuous
with probability bigger than 0, which prevents us to apply Theorem 1 in Wang et al. (2017) directly. Instead,
the following lemma confirms that z is bounded with high probability, so f is Lipschitz continuous with high
probability.
Lemma E.5 (Hansen-Wright inequality). Let A 2 Rm⇥m be a matrix and let ⌘ ⇠ N(0, Im) is a Gaussian random
variable. Then there exists some constant C > 0 such that for any t � 0, it holds that

P
⇥
|⌘>A⌘ � E(⌘>A⌘)| > t

⇤
 2 exp

�
� Cmin{t2kAk�2

F , tkAk�1}
�
.

Proof. See Rudelson et al. (2013) for a detailed proof.

Applying Lemma E.5 to z ⇠ e⇢K,L = N(0, e⌃K,L), where e⌃K,L is defined in (D.17), we have that

P
�
|kzk2 � Tr(e⌃K,L)| > t

�
 2 exp

⇣
� C ·min

�
t2 · ke⌃K,Lk�2

F , t · ke⌃K,Lk�1
 ⌘

, (E.17)

for an absolute constant C. We set t = C1 · ke⌃K |Lk · log T for sufficiently large C1 such that C · C1 � 6. Then,
we have that

t2 · ke⌃K,Lk�2
F = C2

1 · log2 T · ke⌃K,Lk2 · ke⌃K,Lk�2
F � C2

1 · (d+m1)
�1 log2 T � t · ke⌃K,Lk�1, (E.18)

where the first inequality holds as a result of the relation between operator norms and Frobenius norms, and the
second inequality holds for sufficiently large T such that C1(d+m1)�1 log T � 1. Define

Et =
�
kztk2 � Tr(e⌃K,L)  C1 · ke⌃K,Lk · log T

 
, (E.19)

for t 2 [T ]. We wite E = \1tT Et. Combining (E.17) and (E.18) we get P(Et) � 1 � 2T�6. Applying union
bound to 1  t  T , we have that P(E) � 1� 2T�5. On event E , by (E.19), we have that

max
1tT

kztk2  C1 · ke⌃K,Lk · log T +Tr(e⌃K,L)  C · log T · ke⌃K,LkF, (E.20)

which illustrates an upper bound on the feature vectors �(zt), 1  t  T , since we have
���(z)

��
2
= kzk22.

To prove Theorem 5.2, we consider the minimax optimization problem (D.5) restricted on the set E . For any z,
we define

Ez =
�
|k�zk2 � Tr(e⌃K,L)| < C1 · ke⌃K,Lk · log T

 
. (E.21)
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Thus, by (E.19), we have P(Ez) � 1� 2T�6. For the feature vector �, vector function H, and objective function
g and G, we define

e�(z) = �(z) · 1Ez ,

eH(z, z0;�) = H(z, z0;�) · 1Ez ·1Ez0 ,

ec(z) = c(z) · 1Ez ,

eg(�, w; z, z0) = g(�, w; z, z0) · 1Ez ·1Ez0 ,

eG(�, w) = Ez⇠⇢K,L,z0⇠ eP (· | z;⇡K,L)

⇥
eg(�, w; z, z0)

⇤
.

(E.22)

We note that when conditioned on E , the output of the primal dual stochastic update applied on eG is the same
as that on G. We denote the duality gap for eG by gGap(b�, bw) = maxw2XW

eG(b�, w)�min�2XB
eG(�, bw). Since eg is

Lipschitz continuous, we apply Corollary E.4 to bound the primal dual gap gGap(b�, bw).

To apply Corollary E.4, we first establish upper bounds of the r(�,w)eg, r2
�,�eg and r2

w,weg to show that eg and reg
are Lipschitz continuous, where eg is defined in (E.22). By direct computation, we have that

r�1eg = w1 + e�(z)>w2, r�2eg = [e�(z)>w2]>[e�(z)� e�(z0)] (E.23)

rw1eg = �1 � ec(z)� w1, rw2eg = eH2(z, z0;�)� w2. (E.24)

By (E.20) and (E.23), we have that

kr�egk2  C · (log T )2 · ke⌃k2F. (E.25)

For the gradient with respect to w, we first bound eH2. By (E.2),

k eH2k 
�
|�1|+ (ke�(z)k+ ke�(z0)k) · R̄B + (kQkF + kRkF + kSkF) · ke�(z)k

�
· ke�(z)k,

which concludes that

krwegk 
q

|�1 � ec(z) + w1|2 + (|w2|+ k eH2(z, z0;�)k)2

 C · (log T )3 ·
�
J(K,L) + R̄2

B + R̄2
W + ke⌃K,Lk2F

�
· ke⌃K,LkF. (E.26)

Meanwhile, we have r2
��eg = 0 and that r2

wweg = �I, which, combined with (E.25) and (E.26), implies that eg
and reg are Lipschitz continuous with respect to � and w. Let e�, ew be the output of GTD (Algorithm 3) applied
on eG. Then, by applying Corollary E.4, we have with probability at least 1� T�5 that

gGap(e�, ew)  Poly
�
J(K,L), R̄B , R̄W , ke⌃K,LkF

�
· (log T )4

(1� ⇢)
p
T

 Poly
�
J(K,L), R̄B , R̄W ,�min(Q� L>SL)�1

�
· (log T )4

(1� ⇢)
p
T
, (E.27)

where the second inequality holds as a result of Lemma E.1, and ⇢ 2 (⇢(A�BK � CL), 1).

We note that when the event E = \1tT Et holds, it holds that (�̄, w̄) = (e�, ew). Thus, it remains to bound the
difference |Gap� gGap|. For any � 2 XB , w 2 XW , we have that

| eG(�, w)�G(�, w)| =
��⌦Ez,z0

⇥ eH(z, z0;�)�H(z, z0;�)
⇤
, w

↵��


��Ez,z0

⇥ eH1(z, z0;�)�H1(z, z0;�)
⇤�� · J(K,L)

+
��Ez,z0

⇥ eH2(z, z0;�)�H2(z, z0;�)
⇤�� · R̄W , (E.28)

where the expectation is with respect to z ⇠ e⇢K,L, z0 ⇠ eP (· | z;⇡K,L). For the two terms on the right-hand side of
(E.28), we have that

eH1(z, z0;�)�H2(z, z0;�) = c(z) · 1Ec
z
, (E.29)

eH2(z, z0;�)�H2(z, z0;�) = H2(z, z0;�)1Ec
z
+ �(z0)>�2 · �(z) · 1Ez · 1Ec

z0
, (E.30)
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We first bound the right-hand side of (E.29). Applying Cauchy-Schwarz inequality to the first term of the
right-hand side of (E.28) and (E.29), we have that

| eH1(z, z0;�)�H1(z, z0;�)| 
q

P(Ec
z) · Ez⇠e⇢K,L

⇥
c(z)2

⇤
. (E.31)

Since z, z0 ⇠ N(0, e⌃K,L), we have that

Ez,z0
⇥
k�(z)k4

⇤
= Ez,z0

⇥
k�(z0)k4

⇤
 C · ke⌃K,Lk4F, (E.32)

for an absolute constant C. Thus, we have that

Ez⇠e⇢K,L

⇥
c(z)2

⇤
= Ez⇠e⇢K,L

⇥�
�(z)>svec(diag(Q,R,�S))

�2⇤

 C · (kQk2F + kRk2F + kSk2F) · ke⌃K,Lk2F (E.33)

By plugging (E.33) into (E.31) and the fact that P(Ez) > 1� 2T�6, we have that
��Ez,z0

⇥ eH1(z, z0;�)�H1(z, z0;�)
⇤��  C · T�3 · (kQk2F + kRk2F + kSk2F)1/2 · ke⌃K,LkF. (E.34)

We now bound the right-hand side of (E.30). By the Cauchy-Schwarz inequality, we have
��Ez,z0

⇥ eH2(z, z0;�)�H2(z, z0;�)
⇤��

2


p
P(Ec

z) ·
q

Ez,z0
⇥
kH2(z, z0;�)k2

⇤
+
q

P(Ec
z0) ·

q
Ez.z0

⇥
k�(z0)>�2 · �(z)k22

⇤
. (E.35)

For the first term on the right-hand side of (E.35), by the definition of H2 in (E.2) and the Cauchy-Schwartz
inequality, we have that

Ez,z0
⇥
kH2(z, z0;�)k2

⇤

 4
⇣
|�1|2 · Ez,z0

⇥
k�(z)k2

⇤
+
q

Ez,z0
⇥
|c(z)|4

⇤
· Ez,z0

⇥
k�(z)k4

⇤
+

+
q

Ez,z0
⇥
|�(z)>�2|4

⇤
· Ez,z0

⇥
k�(z)k4

⇤
+
q
Ez,z0

⇥
|�(z0)>�2|4

⇤
· Ez,z0

⇥
k�(z)k4

⇤⌘
. (E.36)

Plugging (E.32) into (E.36), by (E.33), we have for an absolute constant C that

Ez,z0
⇥
kH2(z, z0;�)k2

⇤
 C ·

�
J(K,L)2 + R̄2

B + kQk2F + kRk2F + kSk2F
�
· ke⌃K,Lk4F. (E.37)

Plugging (E.37) into (E.35), by P(Ez) � 1� 2T�6, we have that
��Ez,z0

⇥ eH2(z, z0;�)�H2(z, z0;�)
⇤��

2

 C · T�3 ·
�
J(K,L)2 + R̄2

B + kQk2F + kRk2F + kSk2F
�1/2·ke⌃K,Lk2F. (E.38)

Plugging (E.33) and (E.38) into (E.28), we have that

| eG(�, w)�G(�, w)|  C · T�3 ·
�
J(K,L)2 + R̄2

B + R̄2
W

�
· ke⌃K,Lk2F, (E.39)

for an absolute constant C. So for sufficiently large T , we have that | eG(�, w)�G(�, w)| < T�1, which implies
that

|Gap(b�, bw)� gGap(b�, bw)|  max
w2XW

|G(b�, w)� eG(b�, w)|+ max
�2XB

|G(�, bw)� eG(�, bw)|  2T�1. (E.40)

Finally, note that E holds with probability 1 � T�5. Thus, by (E.27), we have with probability at least
1� 2T�5 > T�4 that

Gap(�̄, w̄)  Poly
�
J(K,L), R̄B , R̄W ,�min(Q� L>SL)�1

�
· (log T )4

(1� ⇢)
p
T

+ 2T�1

 Poly
�
J(K,L), R̄B , R̄W ,�min(Q� L>SL)�1

�
· (log T )4

(1� ⇢)
p
T
, (E.41)

where ⇢ 2 (⇢(A�BK � CL), 1). Thus, we complete the proof of Lemma D.5.
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E.4 Proof of Lemma B.2

Proof. Note that PK,L and PK0,L0 satisfy the Bellman equation in (C.1). Using the operator T > defined in (C.14),
we have that PK0,L0 = T >

K0,L0

�
Q+ (K 0)>R(K 0)� (L0)>S(L0)

�
, which implies that

x>PK0,L0x

=
X

t�0

x>⇥(A�BK 0 � CL0)t
⇤>�

Q+ (K 0)>R(K 0)� (L0)>S(L0)
�
(A�BK 0 � CL0)t

=
X

t�0

(x0
t)

>�Q+ (K 0)>R(K 0)� (L0)>S(L0)
�
x0
t.

So we have that

x>PK0,L0x� x>PK,Lx

=
X

t�0

n
x0
t
>�

Q+K 0>RK 0 � L0>SL0�x0
t + x0

t+1
>
PK,Lx

0
t+1 � x0

t
>
PK,Lx

0
t

o

=
X

t�0

AK,L,K0,L0(xt),

where

AK,L,K0,L0(x)

= x0>
n�

Q+K 0>RK 0 � L0>SL0�+ (A�BK 0 � CL0)>PK,L(A�BK 0 � CL0)� PK,L

o
x0

= 2x>(K 0 �K)>EK,Lx+ x>(K 0 �K)>(R+B>PK,LB)(K 0 �K)x

+ 2x>(L0 � L)FK,Lx+ x>(L0 � L)>(�S + C>PK,LC)(L0 � L)x

+ 2x>(L0 � L)>C>PK,LB(K 0 �K)x,

which completes the proof.

E.5 Proof of Lemma B.3

Proof. First, for the upper bound in (B.6), by (C.7) and Lemma B.2, we have that

J(K,L)� J
�
K(L), L

�
= Tr

�
(PK,L � P ⇤

L) �

�
= �E⇡K(L),L

x⇤
0⇠N(0, �)

⇥
AL

K,K(L)(x
⇤
t )
⇤
, (E.42)

where x⇤
t+1 =

�
A�BK(L)� CL

�
x⇤
t . By completing the square, for any K,K 0, we have

AL
K,K(L)(x) = 2x>(K 0 �K)>EK,Lx+ x>(K 0 �K)(R+B>PK,LB)(K 0 �K)x

= Tr
h
xx>⇥K 0 �K + (R+B>PK,LB)�1EK,L

⇤>
(R+B>PK,LB)

·
⇥
K 0 �K + (R+B>PK,LB)�1EK,L

⇤i

� Tr
�
xx>E>

K(R+B>PK,LB)�1EK

�

� �Tr
�
xx>E>

K(R+B>PK,LB)�1EK

�
, (E.43)

where the equality holds when K 0 = K � (R+B>PK,LB)�1EK,L. By (E.42) and (E.43), we have that

J(K,L)� J
�
K(L), L

�

 k(R+B>PK,LB)�1k · Tr
⇣
Ex⇤

0⇠N(0, �)

⇥X

t�0

x⇤
tx

⇤
t
>⇤⌘ · Tr(E>

K,LEK,L). (E.44)

On the other hand, we have

Ex⇤
0⇠N(0, �)

⇥X

t�0

x⇤
tx

⇤
t
>⇤ = Ex⇤

0⇠N(0, �)

h
TK(L),L(xx

>)
i
= ⌃K(L),L,
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which combining with �min(R+B>PK,LB) � �min(R) and (E.44), we have that

J(K,L)� J(K(L), L)  1/�min · k⌃⇤
Lk · Tr(E>

K,LEK,L).

Meanwhile, to establish the lower bound, note that in (E.43) the equality is obtained when K 0 = K � (R +
B>PK,LB)�1EK,L, so we have

J(K,L)� J(K(L), L) � J(K,L)� J(K 0, L)

= �Ex0
0⇠N(0, �)[

X

t�0

AL
K,K0(x0

t)]

= Tr
⇣
E>

K,L(R+B>PK,LB)�1EK,L⌃K0,L

⌘

� 1/�min( �) · kR+B>PK,LBk�1Tr(E>
K,LEK,L).

E.6 Proof of Lemma B.4

Proof. According to Polyak (1963), we need to show that |J(K 0
t+1, L) � J(Kt, L)| is bounded by

O
�
Tr(E>

Kt,L
EKt,L)

�
. By Lemma B.2, we have

J(K 0
t+1, L)� J(Kt, L) = Tr((PK0

t+1,L
� PKt,L) �)

= �2� · Tr(E>
Kt,LEKt,L · ⌃Kt,L) + �2 · Tr(E>

Kt,L(R+B>PK,LB)EKt,L · ⌃Kt,L)

 �2� · Tr(E>
Kt,LEKt,L · ⌃Kt,L) + �2kR+B>PK,LBk · Tr(E>

Kt,LEKt,L · ⌃Kt,L)

 �2� · Tr(E>
Kt,LEKt,L · ⌃Kt,L)

+ �2(kRk+ �min( �) · kBk2 · (J(K0, L) + �)) · Tr(E>
Kt,LEKt,L · ⌃Kt,L), (E.45)

where the last inequality is a result of Lemma E.1 and the induction assumption J(Kt, L)  J(K0, L). Set � > 0
to be sufficiently small such that

� 
⇥
kRk+ �min( �) · kBk2 · (J(K0, L) + �)

⇤�1
. (E.46)

Combining (E.45) and (E.46), applying Lemma B.3 and the fact ⌃Kt,L �  �, we get that

J(K 0
t+1, L)� J(Kt, L)  �� · Tr(E>

Kt,LEKt,L · ⌃Kt,L)  �� · �min( �) · Tr(E>
Kt,LEKt,L)

 �� · �min( �) · �min(R) · k⌃K(L),Lk�1 · (J(Kt, L)� J(K(L), L)). (E.47)

This inequality also implies that J(K 0
t+1, L)  J(Kt, L)  J(K0, L). Further, (E.47) implies that

J(K 0
t+1, L)� J(K(L), L) 

⇥
1� � · �min( �) · �min(R) · k⌃K(L),Lk�1

⇤

· (J(Kt, L)� J(K(L), L))

E.7 Proof of Lemma B.5

Proof. We now bound the difference of J(K 0
t+1, L) and J(Kt+1, L). By (C.7) in Proposition 4.2, we have that

|J(Kt+1, L)� J(K 0
t+1, L)| =

��Tr
�
(PKt+1,L � PK0

t+1,L
) �

���  k �kF · kPKt+1,L � PK0
t+1,L

k. (E.48)

We modify Lemma 24 in Fazel et al. (2018) to construct an upper bound of kPKt+1,L � PK0
t+1,L

k, which is
established in the following lemma.
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Lemma E.6 (Perturbation of PK,L for fixed L). Suppose that K 0 is a small perturbation of K in the sense that

kK �K 0k  �min( �)

4 · k⌃K,Lk · kBk ·
�
kA�BK � CLk+ 1

� . (E.49)

Then, we have that

kPK0,L � PK,Lk  C��1
min( �) · k⌃K,Lk · kKk2 · kRk · kBk · kK �K 0k. (E.50)

Proof. See a detailed proof in Fazel et al. (2018). Note that for fixed L, the problem is equivalent to single agent
LQR problem.

To verify condition (E.49) of Lemma E.6, in what follows, we establish an upper bound of

4 · k⌃Kt+1,Lk · kBk ·
�
kA�BKt+1 � CLk+ 1

�
· kKt+1 �K 0

t+1k.

By the fact that kA�BK � CLk < 1, and Lemma E.1, we have that

4 · k⌃Kt+1,Lk · kBk ·
�
kA�BKt+1 � CLk+ 1

�
· kKt+1 �K 0

t+1k
 8kBk ·

�
J(Kt+1, L) + �

�
· kKt+1 �K 0

t+1k (E.51)

By the definition of K 0
t+1, we have that

kKt+1 �K 0
t+1k  � · (1 + kKtk+ kLk) · kb⇤Kt,L � ⇤Kt,Lk. (E.52)

Combining (E.51) and (E.52), to ensure condition (E.49), it suffices to make the following inequality holds

8� · kBk ·
�
J(Kt+1, L) + �

�
· (1 + kKtk+ kLk) · kb⇤Kt,L � ⇤Kt,Lk)  �min( �). (E.53)

On the other hand, to establish Lemma B.5, we need to ensure the following inequality

C · ��1
min( �) · k⌃Kt+1,Lk · kKt+1k2 · kRk · kBk · kKt+1 �K 0

t+1k
 1/2 · � · �min( �) · �min(R) · k⌃⇤

Lk�1 ·
�
J(Kt, L)� J(K(L), L)

�
,

which is implied by

C · J(K0(L), L)
2 · kKt+1k2 · (1 + kKt+1k+ kLk) · kb⇤Kt,L � ⇤Kt,Lk 

�
J(Kt, L)� J(K(L), L)

�
. (E.54)

Here we apply Lemma E.1 and assume that kRk, kBk,�min( �) are constants. Thus, to ensure (E.54) and (E.53),
we need to ensure

kb⇤Kt,L � ⇤Kt,Lk 
J(Kt, L)� J(K(L), L)

C · J(K0(L), L)2 · kKt+1k2 · (1 + kKt+1k+ kLk)
. (E.55)

By Theorem 5.2, (E.55) holds with probability 1� T�4
TD by setting

T �
 

Poly
�
J(Kt, L), kKtkF, kLkF,�1

�

�min(TKt,L) ·
�
1� ⇢(A�BKt � CL)

�
·
�
J(Kt, L)� J(K(L), L)

�
!5

,

which completes the proof.
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E.8 Proof of Lemma B.7

Proof. Applying Lemma B.2, we have that

x>PK0,L0x� x>P ⇤
Lx =

X

t�0

AK(L),L,K0,L0(x0
t),

where x0
0 = x, x0

t+1 = (A�BK 0 � CL0)x0
t. Moreover, by completing the square and that E⇤

L = 0, we have

AK(L),L,K0,L0(x) = x>�K 0 �K(L)
�>

(R+B>P ⇤
LB)

�
K 0 �K(L)

�
x

+ 2x>(L0 � L)F ⇤
Lx+ x>(L0 � L)>(�S + C>P ⇤

LC)(L0 � L)x

+ 2x>(L0 � L)>C>P ⇤
LB

�
K 0 �K(L)

�
x

= 2x>(L0 � L)>F ⇤
Lx+ x>(L0 � L)(�S + C>P ⇤

KC)(L0 � L)x

+ x>⇥K 0 �K(L)� (R+B>P ⇤
LB)�1B>P ⇤

LC(L0 � L)
⇤>

(R+B>P ⇤
LB)

·
⇥
K 0 �K(L)� (R+B>P ⇤

LB)�1B>P ⇤
LC(L0 � L)

⇤
x

� x>(L0 � L)>C>P ⇤
LB(R+B>P ⇤

LB)�1B>P ⇤
LC(L0 � L)x

� 2x>(L0 � L)>F ⇤
Lx� x>(L0 � L)>WL(L

0 � L)x.

By Woodbury matrix identity, we have that

WL = S � C>⇥P ⇤
L � P ⇤

LB(R+B>P ⇤
LB)�1B>P ⇤

L

⇤
C

= S � C>⇥(P ⇤
L)

�1 +BS�1B>⇤�1
C

which means that W ⇤
L is monotonically decreasing when P ⇤

L is increasing.

E.9 Proof of Lemma B.8

Proof. By applying Lemma B.7, we have that

x>P ⇤
L̄n+1x� x>P ⇤

Lnx � 2◆ ·
X

s�0

x0
s
> eF>

LnF ⇤
Lnx0

s � ◆2 ·
X

s�0

x0
s
> eF>

LnWLn eFLnx0
s,

where x0
0 = x, x0

s+1 =
�
A�BK(L̄n+1)� CL

�
x0
s.

After taking expectation with respect to x ⇠ N(0, �), combining with (C.7) and that T ⇤
L̄n+1( �) = ⌃⇤

L̄n+1 , we
have that

J⇤(L̄n+1)� J⇤(Ln) � 2◆ · Tr
�
⌃⇤

L̄n+1
eF>
LnF ⇤

Ln

�
� ◆2 · Tr

�
⌃⇤

L̄n+1
eF>
LnWLn eFLn

�
. (E.56)

We now bound the two terms on the right-hand side of (E.56) separately.

First, we bound the first term on the right of (E.56). Applying Lemma B.6 and tangle inequality, we have

Tr(⌃⇤
L̄n+1

eF>
LnF ⇤

Ln) � Tr(⌃⇤
Ln

eF>
Ln

eFLn)� k⌃⇤
L̄n+1 � ⌃⇤

Lnk ·
��Tr( eF>

LnF ⇤
Ln)

��. (E.57)

To bound the second term of (E.57), we obbtain the following lemma from Zhang et al. (2019b).
Lemma E.7 (Lemma 6.8 in Zhang et al. (2019b)). Under Assumption 4.1, for any L,L0 2 L, there exists some
constants BL

L,BP
L ,BK

L > 0, such that if

kL� L0k  min

(
BL
L,
kBk

⇥
BP
LkA�BK(L)� CLk+ kP ⇤

LkkCk
⇤

BP
LkBkkCk

,

2
�
kA�BK(L)� CLk+ 1

��
BK
L kBk+ kCk

�

(BK
L )2kBk2 + kCk2 + 2BK

L kBkkCk

)
, (E.58)

it holds that

k⌃⇤
L � ⌃⇤

L0k  4
�
kA�BK(L)� CLk+ 1

��
BK
L kBk+ kCk

�
· kL� L0k.
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Thus, if we set KL > 0 to denote the infimum taken over all of the constraints of kL0 � Lk in (E.58), i.e.,

KL = inf
L2L

(
BL
L,
kBk

⇥
BP
LkA�BK(L)� CLk+ kP ⇤

LkkCk
⇤

BP
LkBkkCk

,

2
�
kA�BK(L)� CLk+ 1

��
BK
L kBk+ kCk

�

(BK
L )2kBk2 + kCk2 + 2BK

L kBkkCk

)

combining with (E.57), we have

Tr(⌃⇤
L̄n+1

eF>
LnF ⇤

Ln) � �min( �)
�1 · k eFLnk2F

� 16◆ ·
�
kA�BK(L)� CLk+ 1

��
BK
L kBk+ kCk

�
k eFLnk2FkF ⇤

LnkF, (E.59)

provided that

kL̄n+1 � Lnk = ◆ · k eFLnk  KL. (E.60)

Note that we can bound k eFLnk by the following lemma from Zhang et al. (2019b).

Lemma E.8 (Lemma 6.9 in Zhang et al. (2019b)). Let k eFLk be the projected policy gradient defined in (B.11).
Then it holds that

2
p
p
�min( �) · k eFLkF  krLJ

⇤(L)k

 2J⇤(L) + 2�


·

s
kWLk

⇥
J(K⇤, L⇤)� J⇤(L)

⇤

�min( �)
,

where p = min{d,m2}.

By Lemma E.8, to ensure (E.60), we have the following requirement.

◆  ◆̄L1 =
 · KL

2J
�
K(Ln), Ln

�
+ 2�

·
s

�min( �)

kWLnk
⇥
J(K⇤, L⇤)� J

�
K(Ln), Ln

�⇤

For the second term on the right side of (E.56), noticing that by Lemma E.1 and Lemma B.7, it holds that

⌃⇤
L̄n+1

eF>
LnWLn eFLn  k⌃⇤

LnkF · kWLnkF · k eFLnk2F 
p
m2

J(K(Ln), Ln) · kSkF


k eFLnk2F (E.61)

Thus, substituting (E.59) and (E.61) to (E.56), we have that

J⇤(L̄n+1)� J⇤(Ln) � ◆ · �min( �)
�1 · k eFLnk2F(1� ◆ ·

p
m2

J(K(Ln), Ln) · kSkF · �min( �)


� 16◆ ·

�
kA�BK(L)� CLk+ 1

��
BK
L kBk+ kCk

�
kF ⇤

LnkF), (E.62)

which gives the other requirement on ◆

◆  ◆̄L2 =
1

2
·
hp

m2
J(K(Ln), Ln) · kSkF · �min( �)



+ 16 ·
�
kA�BK(L)� CLk+ 1

��
BK
L kBk+ kCk

�
kF ⇤

LnkF
i�1

Note that if we denote ◆̄ = infL2L{◆̄L1 , ◆̄L2 }, then ◆̄ > 0. Further, by (E.62), for any ◆ 2 (0, ◆̄), it holds that

J⇤(L̄n+1)� J⇤(Ln) � ◆/2 · �min( �)
�1 · k eFLnk2F,

which completes the proof.
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E.10 Proof of Lemma B.10

Proof. By the expression of FK,L in (C.11), we have

kFK,L � F ⇤
Lk = kC>PK,L

�
CL+BK �A

�
� C>P ⇤

L

�
CL+BK(L)�A

�
k

 kCk ·
⇥
kP ⇤

Lk · kBk · kK �K(L)k+ kPK,L � P ⇤
Lk · kA�BK � CLk

⇤

 kCk ·
⇥
kBk · kP ⇤k · kK �K(L)k+ kPK,L � P ⇤

Lk
⇤
, (E.63)

where the last inequality holds as a result of the fact that ⇢(A�BK �CL) < 1, and P ⇤ ⌫ P ⇤
L. For the first term

on the right-hand side of the last inequality, by Lemma B.2, we have that

J(K,L)� J⇤(L) = Tr
⇣
(K �K(L))>(R+B>P ⇤

LB)(K �K(L)) · �

⌘

� �min( �) · Tr((K �K(L))>(R+B>P ⇤
LB)(K �K(L)))

� �min(R) · �min( �) · kK �K(L)k2F. (E.64)

For the second term on the right-hand side of the last inequality, by (C.7), we have that

kPK,L � P ⇤
Lk  �min( �)

�1 ·
⇥
J(K,L)� J⇤(L)

⇤
. (E.65)

Thus, plugging (E.64) and (E.65) into (E.63), we have that

kFK,L � F ⇤
Lk  �min(R)�1/2 · �min( �)

�1/2 · kCk · kBk · kP ⇤k ·
⇥
J(K,L)� J⇤(L)

⇤1/2

+ �min( �)
�1 · kCk ·

⇥
J(K,L)� J⇤(L)

⇤

 C ·
⇥
J(K,L)� J(K(L), L)

⇤
,

for an absolute constant C, which completes the proof.


