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Abstract

Risk-sensitivity plays a central role in artifi-
cial intelligence safety. In this paper, we study
the global convergence of the actor-critic algo-
rithm for risk-sensitive reinforcement learning
(RSRL) with exponential utility, which re-
mains challenging for policy optimization as it
lacks the linearity needed to formulate policy
gradient. To bypass such an issue of nonlin-
earity, we resort to the equivalence between
RSRL and robust adversarial reinforcement
learning (RARL), which is formulated as a
zero-sum Markov game with a hypothetical
adversary. In particular, the Nash equilib-
rium (NE) of such a game yields the optimal
policy for RSRL, which is provably robust.
We focus on a simple yet fundamental set-
ting known as linear-quadratic (LQ) game.
To attain the optimal policy, we develop a
nested natural actor-critic algorithm, which
provably converges to the NE of the LQ game
at a sublinear rate, thus solving both RSRL
and RARL. To the best knowledge, the pro-
posed nested actor-critic algorithm appears
to be the first model-free policy optimization
algorithm that provably attains the optimal
policy for RSRL and RARL in the LQ setting,
which sheds light on more general settings.

1 Introduction

Reinforcement learning (RL) (Sutton and Barto, 2018)
combined with deep neural networks achieves tremen-
dous successes in applications (Mnih et al., 2015; Silver
et al., 2016, 2017; OpenAI, 2018; Vinyals et al., 2019)
where powerful simulators enable the RL agent to learn
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by trial and error from massive experience data. In real-
world applications, however, due to practical concerns
such as damage avoidance, compared with minimizing
the cumulative cost in expectation, ensuring the safety
of the agent is often of higher priority (Garcıa and
Fernández, 2015; Amodei et al., 2016). To this end, the
agent needs to account for the uncertainty in the cumu-
lative cost, which is known as the risk-sensitive criterion
of safe RL (Garcıa and Fernández, 2015). In particu-
lar, the notion of risk reflects the intrinsic uncertainty
(Tamar et al., 2015) that arises from the stochastic na-
ture of the underlying Markov decision process (MDP).
Correspondingly, risk-sensitive reinforcement learning
(RSRL) (Howard and Matheson, 1972) alters the opti-
mization problem of the agent by incorporating a risk
measure into the objective or constraint.

One of the most prevalent risk measures is the expo-
nential utility (Pratt, 1978), which finds wide appli-
cations in economics and operations research (Rouge
and El Karoui, 2000; Hu et al., 2005). In this setting,
the agent aims to maximize the expectation of the cu-
mulative cost transformed by the exponential function.
Despite its elegant form, due to the lack of linearity,
it remains challenging to establish the policy gradi-
ent theorem (Sutton et al., 2000), which leaves it an
open problem to apply model-free policy optimization
(Schulman et al., 2015, 2017) to this setting.

To address the lack of linearity in RSRL with exponen-
tial utility, we resort to the equivalence between risk-
sensitivity and robustness (Osogami, 2012; Hernández-
Hernández and Marcus, 1996; Jaśkiewicz, 2007). In
particular, we show that our RSRL problem is equiv-
alent to robust adversarial RL (RARL) (Pinto et al.,
2017), where both the cost and transition are perturbed
by a hypothetical adversary, giving rise to a zero-sum
Markov game that is amenable to model-free policy
optimization.

Towards theoretically understanding RSRL and RARL,
we focus on a simple yet fundamental setting with lin-
ear transition and quadratic cost (LQ), which captures
the key challenges of RSRL and RARL in more general
settings. Our goal is to obtain the Nash equilibrium
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(NE) of the resulting zero-sum Markov LQ game, where
the agent and hypothetical adversary are the minimiz-
ing and maximizing players, respectively. In particular,
the corresponding NE yields the optimal policy of the
agent, which enjoys robustness guarantees. However,
solving such an LQ game amounts to minimax opti-
mization with nonconvex-nonconcave objective, which
remains less theoretically understood. For example,
even gradient-based algorithms may diverge or cycle
(Daskalakis and Panageas, 2018; Mazumdar and Ratliff,
2018).

In face of the challenge of nonconvex-nonconcave op-
timization, we develop a nested natural actor-critic
algorithm (Kakade, 2002; Peters and Schaal, 2008) for
solving the LQ game arising from RSRL and RARL.
To achieve algorithmic stability, we update the policy
of the agent at a faster pace, meaning that the agent
seeks to minimize the expected cumulative cost using
actor-critic given a fixed adversary. Once the agent
attains its optimal policy, the adversary seeks to un-
dermine its performance by maximizing the expected
cumulative cost. In particular, we prove that nested
natural actor-critic attains a sequence of policy pairs
that converge to the NE at a sublinear rate, which
implies that the agent attains the optimal policy of
RSRL and RARL.

Main Contribution. Our contribution is two-fold.
First, by exploiting the equivalence among RSRL,
RARL, and zero-sum games, we propose the nested
natural actor-critic algorithm to solve them together.
Second, when focusing on the LQ setting, we prove
that the nested natural actor-critic converges to the NE
at a sublinear rate. As a result, it attains the optimal
policy of RSRL and RARL, which is provably robust.
To the best of our knowledge, the proposed algorithm
is the first model-free policy optimization algorithm
for RSRL, RARL, and zero-sum games with provable
guarantees in the LQ setting.

Related Work. RSRL with exponential utility based
on Q-learning is studied in (Borkar, 2001; Borkar and
Meyn, 2002; Borkar, 2002; Mihatsch and Neuneier,
2002). However, their asymptotic analysis only covers
the tabular setting. Meanwhile, the existing study of
robust MDP (Nilim and El Ghaoui, 2005; Xu and Man-
nor, 2010; Wiesemann et al., 2013; Wolff et al., 2012;
Delage and Mannor, 2010; Lim et al., 2013; Kalyana-
sundaram et al., 2002; Le Tallec, 2007) and RARL
(Pinto et al., 2017; Pattanaik et al., 2018) is either
model-based (Wolff et al., 2012; Delage and Mannor,
2010; Kalyanasundaram et al., 2002), Q-learning-based
(Nilim and El Ghaoui, 2005; Le Tallec, 2007), or empir-
ical (Pinto et al., 2017; Pattanaik et al., 2018) without
provable guarantees. In contrast, our proposed model-

free policy optimization algorithm allows for function
approximation and enjoys nonasymptotic guarantees
of global convergence. Zhang et al. (2019a) study the
policy optimization with robustness under the LQ set-
ting. However, this work only studies the convergence
of model-based policy gradient for H2/H∞ robust con-
trol under the noiseless setting. Their work requires
the population version of the gradient, and is thus
essentially model-based.

Our work is also related to a vast body of literature
on zero-sum Markov games. See, e.g., Littman (1994);
Lagoudakis and Parr (2002); Conitzer and Sandholm
(2007); Pérolat et al. (2016a,b); Yang et al. (2019); Zou
et al. (2019) and the references therein. However, the
study of model-free policy optimization for zero-sum
Markov games is limited. Existing work either does not
have provable guarantees (Lowe et al., 2017; Pinto et al.,
2017) or is restricted to the tabular setting (Bowling,
2001; Pérolat et al., 2018; Srinivasan et al., 2018).

In the context of policy optimization in the LQ setting,
our proof is based on the analysis of Fazel et al. (2018);
Malik et al. (2018); Yang et al. (2019); Zhang et al.
(2019b); Bu et al. (2019). Compared with Fazel et al.
(2018); Malik et al. (2018); Yang et al. (2019), our
setting of LQ game is significantly more challenging
as it involves minimax optimization with nonconvex-
nonconcave objective, whereas their setting only in-
volves minimization. Compared with Zhang et al.
(2019b); Bu et al. (2019), whose analysis requires the
population version of policy gradient and is hence essen-
tially model-based, our analysis allows for model-free
policy optimization, which involves optimizing both
the actor and critic. See Tu and Recht (2018) for the
gap between model-based and model-free methods for
RL in the LQ setting.

Notation. We denote the spectral radius of any matrix
A by ρ(A). For any two matrices M ∈ Rm×n, N ∈
Rn×m, we denote by 〈M,N〉 = Tr(MN) the inner
product over the matrix space. For any set X , we
denote the set of probability distributions on X by
P(X ). For any matrix M , we denote by svec(M) the
vectorization of M , and by smat the inverse of svec.
We denote the tensor product of two matrices A and
B by A⊗B, and the n-th tensor power of a matrix A
by A⊗n := A⊗A⊗ ...⊗A. We denote by σmin(A) the
smallest singular value of matrix A.

2 Background

In this section, we first introduce the risk-sensitive
reinforcement learning (RSRL) and the robust adver-
sarial reinforcement learning (RARL) problem, and
proceed to formulate them as zero-sum games. After
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that, we introduce the linear-quadratic (LQ) setting
for the theoretical analysis of RSRL and RARL.

2.1 RSRL and RARL

RSRL. We consider a (single-agent) Markov decision
process (MDP) given by M̄ = (X ,U , P̄ , c̄,D0), where
X and U are the state and action spaces, respectively,
P̄ : X ×U → P(X ) is the transition kernel, c̄ : X ×U →
R+ is the cost function, and D0 is the initial state
distribution. An agent interacts with the environment
in the following manner. At state xt ∈ X , the agent
takes action ut and receives a cost c̄t = c̄(xt, ut). Then,
the system transits to the next state xt+1 according
to the transition kernel P̄ (· |xt, ut). In RSRL, we are
interested in minimizing the following risk-sensitive
average cost criterion,

min
{ut}

lim
T→∞

T−1 · logED0

[
exp
( T∑
t=0

c̄(xt, ut)
)]
, (2.1)

where the expectation is with respect to x0 ∼ D0 and
xt+1 ∼ P̄ (· |xt, ut). However, the lack of linearity in
the RSRL objective defined in (2.1) prohibits policy
optimization (Kakade, 2002; Peters and Schaal, 2008;
Schulman et al., 2015, 2017) to minimizing it directly.
To bypass such an issue, we exploit the duality between
the logarithmic moment generating function and the
Kullback–Leibler (KL) divergence (Jaśkiewicz, 2007),
that is, it holds for any µ ∈ P(X ) that

logEx∼µ exp
[
g(x)

]
= sup
ν∈P(X )

Ex∼ν
[
g(x)−DKL(ν ‖µ)

]
.

Here DKL is the KL-divergence. This duality viewpoint
allows us to view (2.1) as a two-player zero-sum game by
following the lines of Hernández-Hernández and Marcus
(1996); Jaśkiewicz (2007); Saldi et al. (2018). Apart
from the original agent with action space U , we consider
a hypothetical adversary with action space V = P(X ).
At state xt, the (original) agent chooses action ut ∈ U ,
while the adversary chooses action νt ∈ V. Subject
to the influence of the adversary, the agent pays the
adversary a cost c̄(xt, ut)−DKL(νt ‖ P̄ (· |xt, ut)). Then,
the system moves to the next state xt+1 according to
νt. Then, RSRL defined in (2.1) is reformulated as the
following zero-sum game,

min
{ut}

max
{νt}

lim
T→∞

ED0

[
T−1 ·

T∑
t=0

c(xt, ut, νt)
]
. (2.2)

Here the expectation is with respect to x0 ∼ D0,
xt+1 ∼ νt, and c(x, u, ν) = c̄(x, u)−DKL(ν ‖ P̄ (· |x, u)).
Letting V = P(X ) and P (· |x, u, ν) = ν(·), the zero-
sum game is given by the two-player MDP M =
(X , (U ,V), P, c,D0). In the context of zero-sum games,

if the solution to (2.2) exists and the min and max op-
erators are interchangeable, we call the solution value
as the value of the game and the action sequences {u∗t }
and {ν∗t } that attain the value of the game as the Nash
equilibrium (NE). Note that when the NE exists, {u∗t }
solves the minimization problem defined in (2.1).

RARL. The zero-sum game (2.2) coincides with the
formulation of RARL (Pinto et al., 2017) for a manually
designed cost function c(x, u, ν), where an adversary
with manually designed action space is induced. Specif-
ically, the optimization problem in RARL is formulated
as follows,

min
{ut}

max
{νt}

lim
T→∞

Ex0∼D0

[
T−1 ·

T∑
t=0

c(xt, ut, νt)
]
,

where the transition xt+1 ∼ P (· |xt, ut, νt) is impacted
by the action νt of the adversary. Note that here the
cost function and the action νt of the adversary are
manually designed (Pinto et al., 2017). In particular,
RARL is formulated as a zero-sum game between the
agent and the adversary, whose NE corresponds to the
optimal solution to RARL.

2.2 Linear-Quadratic Setting

We now consider the linear-quadratic (LQ) setting
of RSRL and RARL, where we have X = Rd and
U = Rm1 . It is known that RARL is a zero-sum
game by its formulation (Pinto et al., 2017). In what
follows, we show that RSRL in LQ setting can also be
formulated a zero LQ game.

In the LQ setting, we consider the following linear
transition dynamics and quadratic cost function,

xt+1 = Axt +But + et,

c̄(xt, ut) = x>t Qxt + u>t Rut.

Here A ∈ Rd×d and B ∈ Rd×m1 specify the linear
transition dynamics, et ∼ N(0,Ψ) is the Gaussian
noise, and Q ∈ Rd×d, R ∈ Rm1×m1 are positive definite
matrices that collectively define the quadratic cost
function. Note that the transition kernel P̄ (· |x, u) =
N(Ax + Bu,Ψ) is Gaussian. In parallel to §2.1, we
induce a hypothetical adversary, which chooses action
νt ∈ P(X ) at state xt. The agent pays the adversary a
cost c̄(xt, ut)−DKL(νt ‖ P̄ (· |xt, ut)). Then, the system
moves to the next state xt+1 according to νt. The
resulting optimization problem takes the form of (2.2).
However, optimizing over all possible νt ∈ P(X ) is
not tractable. Hence, we instead consider a simpler
case, where νt is obtained from a Gaussian family
{N(vt +Axt +But,Ψ) | vt ∈ Rd}. With a slight abuse
of notation, we write vt as the action of the adversary
in place of νt, since νt is fully characterized by vt. It
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then holds that DKL(νt ‖ P̄ (· |xt, ut)) = v>t Ψ−1vt. We
remark that the Gaussian class of transition kernels
captures the most important properties of the original
model. That is, upon the impact of the adversary vt,
the system is able to transit to any next state xt+1

if the adversary takes action vt = xt+1 − Axt − But.
Thus, in parallel to §2.1, RSRL in the LQ setting is
formulated as the following zero-sum LQ game,

min
{ut}

max
{vt}

lim
T→∞

ED0

[ 1

T

T∑
t=0

(
c̄(xt, ut)− v>t Ψ−1vt

)]
.

(2.3)

Here the expectation is with respect to x0 ∼ D0, xt+1 =
Axt +But + vt + et, and et ∼ N(0,Ψ). Note that the
transition kernel is given by P (· |x, u, v) = N(v+Ax+
Bu,Ψ) and the cost function is given by c(x, u, v) =
c̄(xt, ut)− v>Ψ−1v.

2.3 Zero-Sum LQ Game

As discussed in §2.2, RSRL and RARL can both be for-
mulated as the zero-sum LQ game, which is introduced
in the sequel.

A zero-sum LQ game is given by a (two-player) MDP
M = (X , (U ,V), P, c,D0), where X = Rd is the state
space, U = Rm1 and V = Rm2 are the action spaces of
the agent and the adversary, respectively, P : X × U ×
V → P(X ) is the transition kernel, c : X × U × V → R
is the quadratic cost function, and D0 ∈ P(X ) is the
initial state distribution. In the zero-sum LQ game, at
state xt ∈ X , the agent chooses action ut ∈ U , while
the adversary chooses vt ∈ V. Then, the agent pays
the adversary a cost c(xt, ut, vt) that takes the form of

c(xt, ut, vt) = x>t Qxt + u>t Rut − v>t Svt (2.4)

and the system transits to the next state xt+1 via the
following linear transition dynamics,

xt+1 = Axt +But + Cvt + et. (2.5)

Here A ∈ Rd×d, B ∈ Rd×m1 , and C ∈ Rd×m2 spec-
ify the linear transition dynamics, et ∼ N(0,Ψ) is
the Gaussian noise, and Q ∈ Rd×d, R ∈ Rm1×m1 , S ∈
Rm2×m2 are positive definite matrices that define the
quadratic cost function c. Specifically, for RSRL, we
set C = Id and S = Ψ−1. For RARL, C and S are
manually designed (Pinto et al., 2017). We characterize
the zero-sum LQ game by the following generalized al-
gebraic Riccati equation (GARE) (Başar and Bernhard,
2008),

P = A>PA+Q (2.6)

−
(
B>PA
C>PA

)>(
R+B>PB B>PC
C>PB −S+C>PC

)−1(
B>PA
C>PA

)
.

We denote by P ∗ the positive definite solution to GARE
defined in (2.6), which corresponds to the value of the
game.

3 Nested Natural Actor-Critic

In this section, we establish NEsted Natural Actor-
Critic (NENAC), which aims to find the NE of (2.2).
We parameterize the joint policy of the agent and the
adversary by πK,L : X → P(U×V), where (K,L) is the
parameter and πK,L(u, v |x) = π

(1)
K (u |x) · π(2)

L (v |x).
For a given policy πK,L, we define the ergodic cost
J(K,L) as follows,

J(K,L) = lim
T→∞

EπK,Lx0∼D0

[ 1

T

T∑
t=0

c(xt, ut, vt)
]
, (3.1)

where we denote by EπK,L the expectation with respect
to (ut, vt) ∼ πK,L(· |xt) and xt+1 ∼ P (· |xt, ut, vt).
Correspondingly, we define the (advantage) state value
function VK,L : X → R and the (advantage) state-
action value function QK,L : X ×U ×V → R as follows,

VK,L(x) = EπK,L
[ ∞∑
t=0

(
c(xt, ut, vt)− J(K,L)

) ∣∣∣x],
(3.2)

QK,L(x, u, v)

= EπK,L
[ ∞∑
t=0

(
c(xt, ut, vt)− J(K,L)

) ∣∣∣x, u, v]. (3.3)

Here the expectations are conditioned on x0 = x
and x0 = x, u0 = u, v0 = v, respectively. For no-
tational simplicity, we denote by ρK,L ∈ P(X ) and
ρ̃K,L(x, u, v) = ρK,L(x) · πK,L(u, v |x) ∈ P(X ×U ×V)
the stationary distributions induced by πK,L on the
state space and state-action space, respectively. It
holds that

J(K,L) = Eρ̃K,L [c(x, u, v)].

Our goal is to find the NE (K∗, L∗), which satisfies
that

min
K

max
L

J(K,L) = max
K

min
L
J(K,L) = J(K∗, L∗).

(3.4)

In order to stabilize the transition dynamics (Zhang
et al., 2019b), our algorithm aims to solve the maximin
optimization problem,

max
L

min
K

J(K,L),

as opposed to the minimax formulation in (2.2). Note
that the optimum of the minimax and the maximin
formulation are equivalent as long as the NE exists.
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For a given L, the inner minimization problem is a singe-
agent reinforcement learning problem, which aims to
find the stationary-point solution K(L) to the inner
minimization problem. Moreover, we show that the
stationary-point solution K(L) is the optimal solution
to the inner minimization problem in the LQ setting.
See Lemma 4.4 for details. In general, the stationary-
point solution o may not be the global minimizer for the
inner minimization problem. Following from (Peters
and Schaal, 2008), K(L) can be obtained by natural
actor-critic, which updates K via

K ′ = K − γ ·
[
I(K;L)

]−1∇KJ(K,L). (3.5)

Here γ > 0 is the stepsize, ∇KJ(K,L) is the policy
gradient with respect to K, and I(K;L) is the Fisher
information of πK,L with respect to K, which is defined
as

I(K;L) (3.6)

= Eρ̃K,L
[
∇K log πK,L(u, v |x)∇K log πK,L(u, v |x)>

]
.

By the policy gradient theorem (Sutton et al., 2000),
we have that

∇KJ(K,L) (3.7)

= Eρ̃K,L
[
∇K log πK,L(u, v |x) ·QK,L(x, u, v)

]
,

where the expectation is with respect to (x, u, v) ∼
ρ̃K,L. As customary with the actor-critic scheme, we
parameterize the state-action value function QK,L in
(3.7) by Q̂λ with λ as its parameter, which is esti-
mated at the critic step. Specifically, at the critic step,
we utilize policy evaluation (e.g. GTD) to estimate
QK,L(x, u, v). Then, at the actor step, we update K
via (3.5) with Q̂λ in place of QK,L.

When the stationary-point solution K(L) of the inner
minimization problem is obtained, we update L via the
following projected nested natural policy gradient,

L′ = ΠL

{
L+ ι ·

[
I
(
L;K(L)

)]−1

∇LJ∗(L)

}
. (3.8)

Here ι > 0 is the stepsize, L is the feasible parameter
set for algorithmic stability, which is specified later,
I(L;K) is the Fisher information with respect to L,
and ∇LJ∗(L) is the gradient of J∗(L) = J(K(L), L),
where K(L) is stationary-point solution of the inner
minimization problem. Note that

∇LJ∗(L) = ∇LK(L)∇KJ
(
K(L), L

)
+∇LJ

(
K(L), L

)
= ∇LJ

(
K(L), L

)
,

since K(L) is the stationary point. In parallel to (3.6)

and (3.7), I(L;K) and ∇LJ∗(L) take the forms of

I(L;K)

= Eρ̃K,L
[
∇L log πK,L(u, v |x)∇L log πK,L(u, v |x)>

]
,

∇LJ∗(L) = ∇LJ
(
K(L), L

)
= Eρ̃K(L),L

[
∇L log πK(L),L(u, v |x) ·QK(L),L(x, u, v)

]
.

Also, we utilize policy evaluation (e.g. GTD) to esti-
mate QK(L),L by Q̂λ, where λ is the parameter. We
conclude the above discussion in Algorithm 2 in §A for
a detailed description. In the next section, we present
NENAC for RSRL and RARL in the LQ setting.

4 NENAC for RSRL and RARL in
the LQ Setting

In this section, we develop NENAC for RSRL and
RARL in the LQ setting. We first introduce the fol-
lowing assumption on the existence of the solution P ∗
to (2.6).
Assumption 4.1. There exists a unique positive defi-
nite solution P ∗ to GARE defined in (2.6). Moreover,
P ∗ satisfies that S − C>P ∗C � 0.

By Stoorvogel and Weeren (1994); Başar and Bernhard
(2008); Al-Tamimi et al. (2007), Assumption 4.1 guar-
antees the existence of the NE, which satisfies (3.4) and
yields the optimal solution of RSRL and RARL. Similar
assumptions are also made in the literatures of policy
optimization methods for zero-sum LQ games (Zhang
et al., 2019b; Bu et al., 2019). Moreover, P ∗ induces
an optimal policy pair (K∗, L∗) ∈ Rm1×d×Rm2×d that
solves (3.4), which is executed via

ut = −K∗xt, vt = −L∗xt.

The linearity of the optimal policy inspires us to con-
sider the class of linear policies. However, due to the
lack of exploration, deterministic policies are prone
to causing suboptimal solutions in practice. Instead,
we prefer stochastic policies that encourages explo-
ration. Specifically, given matrices K ∈ Rm1×d and
L ∈ Rm2×d, we are interested in the Gaussian policy
πK,L, which is executed via

ut = −Kxt + σ1 · η1
t , vt = −Lxt + σ2 · η2

t , (4.1)

where η1
t and η2

t are independently drawn from Gaus-
sian distribution N(0, Im1) and N(0, Im2) and σ2

1 , σ
2
2 ≥

0 are variances. Note that the optimal deterministic
policy is included in the class of Gaussian policies
by setting σ1 = σ2 = 0. For notational simplicity,
given any σ = (σ1, σ2), we define the covariance matrix
Ψσ = Ψ + σ2

1 ·BB> + σ2
2 · CC>. Thus, the transition

dynamics of the state following policy πK,L is given by

xt+1 = (A−BK − CL)xt + εt, (4.2)
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where εt = et + σ1 · η1
t + σ2 · η2

t ∼ N(0,Ψσ) (t ≥ 0)
are i.i.d. Gaussian random variables. Note that the
dynamics {xt}t≥0 is a Markov chain. We establish the
following proposition, which characterizes the closed
forms of the objective functions and policy gradients
for RSRL and RARL in the LQ setting, whose proof is
contained in §C of Appendix.

Proposition 4.2. We assume that πK,L is stable in
the sense that ρ(A − BK − CL) < 1. Let PK,L be
the unique positive definite solution to the following
Lyapunov equation,

PK,L = (Q+K>RK − L>SL) (4.3)

+ (A−BK − CL)>PK,L(A−BK − CL).

For notational simplicity, we denote the second tensor
power of the state-action pair (x, u, v) by Φ(x, u, v) =
(x, u, v)⊗2 and define the parameter matrix ΛK,L as
follows,Λ11

K,L Λ12
K,L Λ13

K,L

Λ21
K,L Λ22

K,L Λ23
K,L

Λ31
K,L Λ32

K,L Λ33
K,L

 (4.4)

=

Q+A>PK,LA A>PK,LB A>PK,LC
B>PK,LA R+B>PK,LB B>PK,LC
C>PK,LA C>PK,LB −S+C>PK,LC

 .

Then, the state value function VK,L and the state-action
value function QK,L are quadratic functions, taking the
forms of

VK,L(x) = x>PK,Lx− Tr(PK,LΣK,L), (4.5)

QK,L(x, u, v) = Tr
(
ΛK,LΦ(x, u, v)

)
+ qK,L, (4.6)

where qK,L = −σ2
1 · Tr(R+ PK,LBB

T )− σ2
2 · Tr(−S +

PK,LCC
>). Moreover, we have the following Bellman

equation,〈
ΛK,L,Φ(x, u, v)

〉
= c(x, u, v)− J(K,L)

+ EπK,L
[〈

ΛK,L,Φ(x′, u′, v′)
〉 ∣∣∣x, u, v], (4.7)

where (x′, u′, v′) denotes the subsequent state-action
pair of (x, u, v) following policy πK,L. Furthermore, for
the natural policy gradient, we have[

I(K;L)
]−1∇KJ(K,L) = 2EK,L,[

I(L;K)
]−1∇LJ(K,L) = 2FK,L.

(4.8)

Here EK,L and FK,L are given by

EK,L = Λ22
K,LK + Λ23

K,LL− Λ21
K,L,

FK,L = Λ33
K,LL+ Λ32

K,LK − Λ31
K,L.

(4.9)

where ΛK,L is defined in (4.4).

Following (4.8) of Proposition 4.2, to estimate the nat-
ural policy gradient in (3.5) and (3.8), it suffices to
estimate the parameter matrix ΛK,L defined in (4.4).
Based on the Bellman equation in (4.7), we develop
a variant of GTD (Algorithm 3) at the critic steps to
estimate ΛK,L using Λ̂K,L in §D. Note that for RSRL
and RARL, we need to sample from the two-player
MDP M for the zero-sum game introduced in §2.3,
while we only have access to the single-agent MDP M̄
for single-agent RL in §2.1. We include the method
of sampling fromM based on M̄ in §D. Other policy
evaluation methods, such as TD(λ) and GTD2 (Sutton
and Barto, 2018), can also be applied to estimating
ΛK,L. To apply Proposition 4.2, the policy pair (K,L)
must be stable in the sense that ρ(A−BK −CL) < 1,
upon which we impose the following assumption.

Assumption 4.3. The NE (K∗, L∗) is stable in the
sense that ρ(A − BK∗ − CL∗) < 1. We assume that
there exists an absolute constant κ > 0 such that
σmin(Q− (L∗)>SL∗) ≥ κ.

This assumption assumes the stability of the NE, which
is also made in Zhang et al. (2019b); Bu et al. (2019).
We define the following feasible parameter set L for L,

L = {L ∈ Rm2×d |σmin(Q− L>SL) ≥ κ}. (4.10)

For algorithmic stability, we utilize a projection step
to ensure that L ∈ L. Then, for a fixed L ∈ L, the
inner minimization problem becomes a single-agent
LQ regulator problem, which can be solved by policy
optimization (Fazel et al., 2018; Yang et al., 2019).
In particular, to maintain a model-free algorithm, we
utilize the natural actor-critic (Yang et al., 2019) to
obtain the stationary-point solution of the inner mini-
mization problem. Specifically, based on (4.8) and (4.9)
of Proposition 4.2, at the inner actor step, we update
K via

Kn
t+1 = Kn

t − γ · Ênt , (4.11)

where

Ênt = Λ̂22
Kn
t ,L

nK + Λ̂23
Kn
t ,L

nL− Λ̂21
Kn
t ,L

n .

Here the superscription n and the subscription t refer
to the n-th outer iteration and the t-th inner itera-
tion, respectively, γ > 0 is the stepsize, and Λ̂Kn

t ,L
n

is the estimator of ΛKn
t ,L

n , which is obtained at the
inner critic step by using Algorithm 3. The following
lemma characterizes the optimality of K(L), which is
the stationary point of the inner minimization problem.

Lemma 4.4 (Optimality ofK(L), Lemma 6.2 in Zhang
et al. (2019b)). Under Assumption 4.3, for any L ∈ L,
(K(L), L) is stable in the sense that ρ

(
A− BK(L)−

CL
)
< 1. Meanwhile, there exists a positive definite
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solution P ∗L to the following Riccati equation for the
inner minimization problem,

P ∗L = (Q− L>SL) + (A− CL)>P ∗L(A− CL)

− (A− CL)>P ∗LC(R+B>P ∗LB)−1C>P ∗L(A− CL).

Moreover, it holds that P ∗L � PK,L for any K such that
(K,L) is stable.

For notational simplicity, we write Kn = Kn
T obtained

after T inner iterations, which approximates K(Ln).
Recall that ∇LJ∗(L) = ∇LJ(K(L), L). Thus, based
on (4.8) and (4.9) of Proposition 4.2, we update L via
the following nested natural policy gradient,

Ln+1 = ΠLn

L
{
Ln + ι · F̂n

}
, (4.12)

where

F̂n = Λ̂32
Kn,LnK + Λ̂33

Kn,LnL− Λ̂31
Kn,Ln .

Here ι > 0 is the stepsize, Λ̂Kn,Ln is the estimator
of ΛKn,Ln , which is obtained at the outer critic step
from Algorithm 3, and ΠLn

L is the projection operator
defined as

ΠL
L(L̄) = argmin

L̂∈L

{
(L̂− L̄)>ΣK(L),L(L̂− L̄)

}
. (4.13)

Note that the matrix ΣK(L),L in the projection operator
is induced solely for technical reason and is adopt from
Zhang et al. (2019b). We obtain the following lemma
from Zhang et al. (2019b), which characterizes the
global optimality of the stationary point of J(K,L).

Lemma 4.5 (Lemma 3.3 in Zhang et al. (2019b)). We
assume that the covariance matrix ΣK,L is full rank
for any stable policy pair (K,L). Let (K∗, L∗) be the
stationary point of J(K,L), i.e.,

∇KJ(K∗, L∗) = ∇LJ(K∗, L∗) = 0.

Then, under Assumption 4.1, (K∗, L∗) is the the NE
satisfying (3.4).

Lemma 4.5 characterizes the global optimality of the
stationary-point solution of the minimax optimization
problem. We conclude our algorithm in the LQ setting
in Algorithm 1.

5 Main Results

In this section, we establish the global optimality and
convergence of Algorithm 1. We first impose the fol-
lowing assumption on the stability of the initialization.

Assumption 5.1. We assume that in Algorithm 1,
the initial policy pair

(
K0(L), L

)
is stable.

Algorithm 1 NENAC for RSRL and RARL in the
LQ Setting
Input: Initial parameters K0 and L0. Stepsizes γ and

ι of the inner and outer loop, respectively. Number
of iterations T and N of the inner and outer loop,
respectively. Number of GTD iterations T in

TD and
T out

TD at the inner and outer critic steps, respectively.
Feasible parameter set L defined in (4.10).

1: Initialization: K ← K0, L← L0.
2: for n = 0, 1, ...,N do
3: Initialization: K ← K0(L).
4: for t = 0, 1, ..., T do
5: Inner Critic Step: Estimate ΛK,L by Λ̂ via

Algorithm 3 with number of GTD iterations
T in

TD. Ê ← Λ̂22K + Λ̂23L− Λ̂21.
6: Inner Actor Step: K ← K − γ · Ê.
7: end for
8: Outer Critic Step: Estimate ΛK,L by Λ̂ via

Algorithm 3 with number of GTD iterations T out
TD .

F̂ ← Λ̂32K + Λ̂33L− Λ̂31.
9: Outer Actor Step: L← ΠL{L+ ι · F̂}.
10: end for
Output: (K,L) that estimates (K∗, L∗), where K is

the optimal policy for RSRL and RARL.

The assumption that we have access to stable initial
policy pairs (K0(L), L) for any L ∈ L is commonly used
in the literatures on reinforcement learning in the LQ
setting (Dean et al., 2017, 2018a,b; Fazel et al., 2018;
Bu et al., 2019; Yang et al., 2019; Zhang et al., 2019b),
which ensures that J

(
K0(L), L

)
< ∞. Furthermore,

in Lemma 4.4, we show that the policy pairs (K,L)
generated by Algorithm 1 are stable under Assumptions
4.3 and 5.1.

In Algorithm 1, we utilize Algorithm 3 for the policy
evaluation at the critic steps. We establish the fol-
lowing theorem that characterizes the convergence of
GTD (Algorithms 3). See Theorem D.2 for a detailed
dependency .
Theorem 5.2 (Global Optimality and Convergence
of Algorithm 3, Informal). Let Λ̂ be the output of
Algorithm 3 after T iterations. We set the stepsize
αt = 1/

√
t. Then, for sufficiently large T , it holds with

probability at least 1− T−4 that

‖Λ̂− ΛK,L‖2F = O
( log4 T√

T

)
.

Proof. See §D for a detailed proof.

Theorem 5.2 characterizes the global optimality and
sublinear rate of convergence of Algorithm 3. Similar
result is established in Yang et al. (2019) for single-
agent LQ regulator. In contrast, we study the case of
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RSRL and RARL in the LQ setting, which involves
the zero-sum LQ games. Now we are ready to establish
the following theorem. See Theorem B.1 for a detailed
dependency.

Theorem 5.3 (Global Convergence of Algorithm 1,
Informal). Suppose that Assumptions 4.1, 4.3 and 5.1
hold. Let {(Kn

t , L
n)}n,t≥0 be generated by Algorithm 1.

Then, with the proper choices of the stepsizes γ > 0
and ι > 0 and the number of GTD iterations T in

TD and
T out

TD , we have the following results.

(i) In the inner loop of Algorithm 1, the sequence
{Kn

t }t≥0 converges to K(Ln) at the linear rate.
Specifically, for any ε > 0, by setting the number
of iterations T = Ω(log(1/ε)), we have that

J(Kn
T , L

n)− J∗(Ln) ≤ ε,

with probability at least 1− ε10.

(ii) In the outer loop of Algorithm 1, the sequence
{(Kn, Ln)}n≥0 converges to the NE sublinearly.
Specifically, we define F̃L = ι−1 · [ΠL

L{L + ι ·
F̂K(L),L}−L]. Then, for any ε > 0, by setting the
number of iterations N = Ω(ε−2), we have that

1

N

N∑
n=1

‖F̃Ln‖ ≤ ε,

with probability at least 1− ε10.

Proof. See §B for a detailed proof.

Theorem 5.3 shows that Algorithm 1 converges sublin-
early to the NE, which implies that Kn converges to
the optimal policy for RSRL and RARL at sublinear
rate. Similar results are established in Zhang et al.
(2019a); Bu et al. (2019). However, their analysis is
based on the population version of policy gradient and
is hence essentially model-based. In contrast, we utilize
the actor-critic algorithm and hence allow for model-
free policy optimization. To the best of our knowledge,
this result is the first nonasymptotic convergence result
for actor-critic algorithms on RSRL and RARL.

6 Conclusion

In this paper, we establish the equivalence between
RSRL/RARL and zero-sum games in general and de-
velop NENAC (Algorithm 2) to find the NE of zero-sum
games in general. Meanwhile, towards the theoretic
understanding of RSRL and RARL, we study the LQ
setting, where RSRL and RARL are equivalent to zero-
sum LQ games. Based on the policy gradient theorem
for zero-sum LQ games in Proposition 4.2, we develop

NENAC (Algorithm 1) for RSRL and RARL in the
LQ setting, which provably converges to the optimal
solution of RSRL and RARL at the sublinear rate.

References
Al-Tamimi, A., Lewis, F. L. and Abu-Khalaf, M.
(2007). Model-free q-learning designs for linear
discrete-time zero-sum games with application to
h-infinity control. Automatica, 43 473–481.

Alizadeh, F., Haeberly, J.-P. A. and Overton, M. L.
(1998). Primal-dual interior-point methods for
semidefinite programming: convergence rates, stabil-
ity and numerical results. SIAM Journal on Opti-
mization, 8 746–768.

Amodei, D., Olah, C., Steinhardt, J., Christiano, P.,
Schulman, J. and Mané, D. (2016). Concrete prob-
lems in ai safety. arXiv preprint arXiv:1606.06565.

Başar, T. and Bernhard, P. (2008). H-infinity optimal
control and related minimax design problems: A dy-
namic game approach. Springer Science & Business
Media.

Borkar, V. S. (2001). A sensitivity formula for risk-
sensitive cost and the actor–critic algorithm. Systems
& Control Letters, 44 339–346.

Borkar, V. S. (2002). Q-learning for risk-sensitive con-
trol. Mathematics of Operations Research, 27 294–
311.

Borkar, V. S. and Meyn, S. P. (2002). Risk-sensitive
optimal control for Markov decision processes with
monotone cost. Mathematics of Operations Research,
27 192–209.

Bowling, M. (2001). Rational and convergent learning
in stochastic games. In International Conference on
Artificial Intelligence.

Bu, J., Ratliff, L. J. and Mesbahi, M. (2019). Global
convergence of policy gradient for sequential zero-
sum linear quadratic dynamic games.

Conitzer, V. and Sandholm, T. (2007). AWESOME:
A general multiagent learning algorithm that con-
verges in self-play and learns a best response against
stationary opponents. Machine Learning, 67 23–43.

Daskalakis, C. and Panageas, I. (2018). The limit
points of (optimistic) gradient descent in min-max
optimization. In Advances in Neural Information
Processing Systems.

Dean, S., Mania, H., Matni, N., Recht, B. and
Tu, S. (2017). On the sample complexity of
the linear quadratic regulator. arXiv preprint
arXiv:1710.01688.

Dean, S., Mania, H., Matni, N., Recht, B. and Tu, S.
(2018a). Regret bounds for robust adaptive control



Yufeng Zhang, Zhuoran Yang, Zhaoran Wang

of the linear quadratic regulator. arXiv preprint
arXiv:1805.09388.

Dean, S., Tu, S., Matni, N. and Recht, B. (2018b).
Safely learning to control the constrained
linear quadratic regulator. arXiv preprint
arXiv:1809.10121.

Delage, E. and Mannor, S. (2010). Percentile optimiza-
tion for Markov decision processes with parameter
uncertainty. Operations Research, 58 203–213.

Fazel, M., Ge, R., Kakade, S. M. and Mesbahi, M.
(2018). Global convergence of policy gradient meth-
ods for the linear quadratic regulator. arXiv preprint
arXiv:1801.05039.

Garcıa, J. and Fernández, F. (2015). A comprehensive
survey on safe reinforcement learning. The Journal
of Machine Learning Research, 16 1437–1480.

Hernández-Hernández, D. and Marcus, S. I. (1996).
Risk sensitive control of markov processes in count-
able state space. Systems & Control Letters, 29
147–155.

Howard, R. A. and Matheson, J. E. (1972). Risk-
sensitive Markov decision processes. Management
Science, 18 356–369.

Hu, Y., Imkeller, P., Müller, M. et al. (2005). Utility
maximization in incomplete markets. The Annals of
Applied Probability, 15 1691–1712.

Jaśkiewicz, A. (2007). Average optimality for risk-
sensitive control with general state space. The Annals
of Applied Probability, 17 654–675.

Kakade, S. M. (2002). A natural policy gradient. In
Advances in Neural Information Processing Systems.

Kalyanasundaram, S., Chong, E. K. and Shroff, N. B.
(2002). Markov decision processes with uncertain
transition rates: Sensitivity and robust control. In
Conference on Decision and Control, vol. 4. IEEE.

Lagoudakis, M. G. and Parr, R. (2002). Value func-
tion approximation in zero-sum markov games. In
Uncertainty in Artificial Intelligence.

Le Tallec, Y. (2007). Robust, risk-sensitive, and data-
driven control of Markov decision processes. Ph.D.
thesis, Massachusetts Institute of Technology.

Lim, S. H., Xu, H. and Mannor, S. (2013). Reinforce-
ment learning in robust Markov decision processes.
In Advances in Neural Information Processing Sys-
tems.

Littman, M. L. (1994). Markov games as a framework
for multi-agent reinforcement learning. In Machine
Learning Proceedings 1994. Elsevier, 157–163.

Liu, B., Liu, J., Ghavamzadeh, M., Mahadevan, S.
and Petrik, M. (2015). Finite-sample analysis of

proximal gradient td algorithms. In Conference on
Uncertainty in Artificial Intelligence.

Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, O. P.
and Mordatch, I. (2017). Multi-agent actor-critic
for mixed cooperative-competitive environments. In
Advances in Neural Information Processing Systems.

Magnus, J. R. et al. (1978). The moments of products
of quadratic forms in normal variables. Univ., Insti-
tuut voor Actuariaat en Econometrie.

Malik, D., Pananjady, A., Bhatia, K., Khamaru, K.,
Bartlett, P. L. and Wainwright, M. J. (2018).
Derivative-free methods for policy optimization:
Guarantees for linear quadratic systems. arXiv
preprint arXiv:1812.08305.

Mazumdar, E. and Ratliff, L. J. (2018). On the con-
vergence of competitive, multi-agent gradient-based
learning. arXiv preprint arXiv:1804.05464.

Mihatsch, O. and Neuneier, R. (2002). Risk-sensitive
reinforcement learning. Machine learning, 49 267–
290.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A.,
Veness, J., Bellemare, M. G., Graves, A.,
Riedmiller, M., Fidjeland, A. K., Ostrovski, G.
et al. (2015). Human-level control through deep
reinforcement learning. Nature, 518 529–533.

Nagar, A. L. (1959). The bias and moment matrix of
the general k-class estimators of the parameters in
simultaneous equations. Econometrica: Journal of
the Econometric Society 575–595.

Nilim, A. and El Ghaoui, L. (2005). Robust control of
Markov decision processes with uncertain transition
matrices. Operations Research, 53 780–798.

OpenAI (2018). Openai Five. https://blog.openai.
com/openai-five/.

Osogami, T. (2012). Robustness and risk-sensitivity in
Markov decision processes. In Advances in Neural
Information Processing Systems.

Pattanaik, A., Tang, Z., Liu, S., Bommannan, G. and
Chowdhary, G. (2018). Robust deep reinforcement
learning with adversarial attacks. In International
Conference on Autonomous Agents and MultiAgent
Systems. International Foundation for Autonomous
Agents and Multiagent Systems.

Pérolat, J., Piot, B., Geist, M., Scherrer, B. and
Pietquin, O. (2016a). Softened approximate policy
iteration for markov games. In International Con-
ference on Machine Learning.

Pérolat, J., Piot, B. and Pietquin, O. (2018). Actor-
critic fictitious play in simultaneous move multistage
games. In International Conference on Artificial
Intelligence and Statistics.

https://blog.openai.com/openai-five/
https://blog.openai.com/openai-five/


Provably Efficient Actor-Critic for Risk-Sensitive and Robust Adversarial RL: A Linear-Quadratic Case

Pérolat, J., Piot, B., Scherrer, B. and Pietquin, O.
(2016b). On the use of non-stationary strategies
for solving two-player zero-sum markov games. In
International Conference on Artificial Intelligence
and Statistics.

Peters, J. and Schaal, S. (2008). Natural actor-critic.
Neurocomputing, 71 1180–1190.

Pinto, L., Davidson, J., Sukthankar, R. and Gupta, A.
(2017). Robust adversarial reinforcement learning.
In International Conference on Machine Learning.

Polyak, B. T. (1963). Gradient methods for minimizing
functionals. Zhurnal Vychislitel’noi Matematiki i
Matematicheskoi Fiziki, 3 643–653.

Pratt, J. W. (1978). Risk aversion in the small and
in the large. In Uncertainty in Economics. Elsevier,
59–79.

Rouge, R. and El Karoui, N. (2000). Pricing via utility
maximization and entropy. Mathematical Finance,
10 259–276.

Rudelson, M., Vershynin, R. et al. (2013). Hanson-
wright inequality and sub-gaussian concentration.
Electronic Communications in Probability, 18.

Saldi, N., Basar, T. and Raginsky, M. (2018). Discrete-
time risk-sensitive mean-field games. arXiv preprint
arXiv:1808.03929.

Schulman, J., Levine, S., Abbeel, P., Jordan, M. and
Moritz, P. (2015). Trust region policy optimization.
In International Conference on Machine Learning.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A.
and Klimov, O. (2017). Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347.

Silver, D., Huang, A., Maddison, C. J., Guez, A.,
Sifre, L., Van Den Driessche, G., Schrittwieser, J.,
Antonoglou, I., Panneershelvam, V., Lanctot, M.
et al. (2016). Mastering the game of Go with deep
neural networks and tree search. Nature, 529 484–
489.

Silver, D., Schrittwieser, J., Simonyan, K.,
Antonoglou, I., Huang, A., Guez, A., Hubert, T.,
Baker, L., Lai, M., Bolton, A. et al. (2017). Mas-
tering the game of Go without human knowledge.
Nature, 550 354.

Srinivasan, S., Lanctot, M., Zambaldi, V., Pérolat, J.,
Tuyls, K., Munos, R. and Bowling, M. (2018). Actor-
critic policy optimization in partially observable mul-
tiagent environments. In Advances in Neural Infor-
mation Processing Systems.

Stoorvogel, A. A. and Weeren, A. J. (1994). The
discrete-time riccati equation related to the
h/sub/spl infin//control problem. IEEE Transac-
tions on Automatic Control, 39 686–691.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement
learning: An introduction. MIT Press.

Sutton, R. S., McAllester, D. A., Singh, S. P. and
Mansour, Y. (2000). Policy gradient methods for
reinforcement learning with function approximation.
In Advances in Neural Information Processing Sys-
tems.

Tamar, A., Chow, Y., Ghavamzadeh, M. and
Mannor, S. (2015). Policy gradient for coherent
risk measures. In Advances in Neural Information
Processing Systems.

Tu, S. and Recht, B. (2018). The gap between model-
based and model-free methods on the linear quadratic
regulator: An asymptotic viewpoint. arXiv preprint
arXiv:1812.03565.

Vinyals, O., Babuschkin, I., Chung, J., Mathieu, M.,
Jaderberg, M., Czarnecki, W. M., Dudzik, A.,
Huang, A., Georgiev, P., Powell, R., Ewalds, T.,
Horgan, D., Kroiss, M., Danihelka, I., Agapiou, J.,
Oh, J., Dalibard, V., Choi, D., Sifre, L., Sulsky, Y.,
Vezhnevets, S., Molloy, J., Cai, T., Budden, D.,
Paine, T., Gulcehre, C., Wang, Z., Pfaff, T.,
Pohlen, T., Wu, Y., Yogatama, D., Cohen, J.,
McKinney, K., Smith, O., Schaul, T., Lillicrap, T.,
Apps, C., Kavukcuoglu, K., Hassabis, D. and
Silver, D. (2019). AlphaStar: Mastering the
Real-Time Strategy Game StarCraft II.

Wang, Y., Chen, W., Liu, Y., Ma, Z.-M. and
Liu, T.-Y. (2017). Finite sample analysis of
the GTD policy evaluation algorithms in markov set-
ting. In Advances in Neural Information Processing
Systems.

Wiesemann, W., Kuhn, D. and Rustem, B. (2013). Ro-
bust Markov decision processes. Mathematics of
Operations Research, 38 153–183.

Wolff, E. M., Topcu, U. and Murray, R. M. (2012). Ro-
bust control of uncertain Markov decision processes
with temporal logic specifications. In Conference on
Decision and Control.

Xu, H. and Mannor, S. (2010). Distributionally robust
Markov decision processes. In Advances in Neural
Information Processing Systems.

Yang, Z., Chen, Y., Hong, M. and Wang, Z. (2019).
Provably global convergence of actor-critic: A case
for linear quadratic regulator with ergodic cost. In
Advances in Neural Information Processing Systems.

Zhang, K., Hu, B. and Başar, T. (2019a). Policy opti-
mization for H2 linear control with H∞ robustness
guarantee: Implicit regularization and global conver-
gence.

Zhang, K., Yang, Z. and Başar, T. (2019b). Policy
optimization provably converges to nash equilibria
in zero-sum linear quadratic games.



Yufeng Zhang, Zhuoran Yang, Zhaoran Wang

Zou, S., Xu, T. and Liang, Y. (2019). Finite-sample
analysis for sarsa and q-learning with linear function
approximation. arXiv preprint arXiv:1902.02234.



Provably Efficient Actor-Critic for Risk-Sensitive and Robust Adversarial RL: A Linear-Quadratic Case

A Pseudocode of NENAC for Zero-Sum Games in General

In this section, we present the detailed description of NENAC for RSRL and RARL in general, which is introduced
in §3. Note that the computation of the natural policy gradients requires taking expectation with respect to ρ̃K,L,

Algorithm 2 NENAC for Zero-Sum Games in General
Input: Initial parameters K0 and L0. Stepsize ι of the outer loop. Stepsize γ of the inner loop. Number of

iterations T of the inner loop. Number of iterations N of the outer loop. Feasible parameter set L.
1: Initialization: K ← K0, L← L0.
2: for n = 0, 1, ...,N do
3: Initialization: K ← K0(L).
4: for t = 0, 1, ..., T do
5: Inner Critic Step: Estimate QK,L by Q̂λ via policy evaluation (e.g. GTD).
6: Inner Actor Step: K ← K − γ · I(K;L)−1E(x.u.v)∼ρ̃K,L [∇K log πK,L(u, v |x) · Q̂λ(x, u, v)].
7: end for
8: Outer Critic Step: Estimate QK,L by Q̂λ via policy evaluation (e.g. GTD).
9: Outer Actor Step: L← ΠL{L+ ι · I(L;K)−1E(x,u,v)∼ρ̃K,LE[∇LπK,L(u, v |x) · Q̂λ(x, u, v)]}.
10: end for
Output: (K,L) that estimates (K∗, L∗), where K is the optimal policy for RSRL and RARL.

which is the stationary distribution induced by πK,L. For RSRL and RARL in general, such an expectation can
be obtained by sampling from ρ̃K,L. For RSRL and RARL in the LQ setting, we develop a more efficient method
to obtain the natural policy gradient, which is introduced in §4.

B Proof of the Main Results

In this section, we present the proof of Theorem 5.3. To this end, we first restate Theorem 5.3 with detailed
dependency as follows.

Theorem B.1 (Theorem 5.3 restated). Suppose that Assumptions 4.1, 4.3 and 5.1 hold. Let {(Kn
t , L

n)}t,n≥0

be generated by Algorithm 1. Then, the following properties hold.

(i) For a fixed n, let Kt = Kn
t and L = Ln. We set the number of GTD iterations at the inner critic step

T in
TD = Ω(ε−5), the stepsize of the inner loop

γ ≤
[
‖R‖+ σmin(Ψσ) · ‖B‖2 · (J(K0, L) + χ)

]−1
,

and the number of inner loop iterations T = Ω(log(1/ε)). Then, with probability at least 1− ε10, it holds
that

J(KT , L)− J(K(L), L) ≤ ε.

(ii) We set the number of GTD iterations at the outer critic step T out
TD = Ω(ε−10), the stepsize ι ≤ ῑ for some

ῑ > 0, and the number of outer loop iteration N = O(ε−2). Then, it holds with probability at least 1− ε10

that

N−1 ·
N∑
n=1

‖F̃Ln‖ ≤ ε.

Proof. Our analysis consists of two parts. In the first part, we show the global convergence of the inner loop.
Then, in the second part, we show the global convergence of the outer loop, which corresponds to the global
convergence of Algorithm 1. In what follows, for notational simplicity, we denote ζK(L),L by ζ∗L for any notation ζ.

Global Convergence of the Inner Loop. The proof of the global convergence of the inner loop is based on
Yang et al. (2019); Fazel et al. (2018). For notational simplicity, let Kt = Kn

t and L = Ln for a fixed n. In the
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inner loop, we solve the following optimization problem

min
K′

J(K ′, L),

for a fixed L ∈ L, where L is defined in (4.10). For a fixed L, we have that vt = −Lxt+σ2η
2
t . Thus, the transition

takes the following form of

xt+1 = Axt +But + C(−Lxt + σ2η
2
t ) + et = ALxt +But + eC,t, (B.1)

where we write

AL = A− CL, eC,t = et + σ2 · Cη2
t . (B.2)

The cost function takes the form of

c(x, u) = Eη2
[
x>Qx+ u>Ru− (−Lx+ σ2η

2)>S(−Lx+ σ2η
2)
]

= x>QLx+ u>Ru+ Eη2
[
(σ2η

2)>S(σ2η
2)
]
, (B.3)

where we write

QL = Q− L>SL. (B.4)

Note that Eη2 [(σ2η
2)>S(σ2η

2)] is independent of K and L. Thus, the cost function in (B.3) is equivalent to the
following cost function

cL(x, u) = x>QLx+ u>Ru. (B.5)

Thus, the inner loop is equivalent to a single agent LQ control problem with transition dynamics(B.1) and cost
function (B.5). For a fixed L ∈ L, we update K via

Êt = Λ̂22
Kt,L ·Kt + Λ̂23L− Λ̂21

Kt,L, Kt+1 = Kt − γ · Êt,

where Λ̂K,L is the output of Algorithm 3 that estimates ΛK,L. Ideally, Kt converges to K(L), which is the optimal
solution of the inner minimization problem.

We then establish the following lemma that characterizes the difference between PK,L and PK′,L′ , which serves as
a fundamental lemma though the proof.
Lemma B.2 (Cost Difference). Let (K,L) and (K ′, L′) be stable policy pairs. Let {x′t}t≥0 be the sequence
generated by x′0 = x, x′t+1 = (A−BK ′ − CL′)x′t for t ≥ 0. Then, it holds that

x>PK′,L′x− x>PK,Lx =
∑
t≥0

AK,L,K′,L′(x
′
t),

where

AK,L,K′,L′(x) = 2x>(K ′ −K)>EK,Lx+ x>(K ′ −K)>(R+B>PK,LB)(K ′ −K)x

+ 2x>(L′ − L)FK,Lx+ x>(L′ − L)>(−S + C>PK,LC)(L′ − L)x

+ 2x>(L′ − L)>C>PK,LB(K ′ −K)x.

Proof. See a detailed proof in §E.4.

Applying Lemma B.2, we establish the following lemma, which characterizes the gradient dominance of J(K,L)
with respect to K.
Lemma B.3 (Gradient Dominance of J(K,L)). For any stable policy (K,L), under Assumption 4.1, we have
that

σmin(Ψ) · ‖R+B>PK,LB‖−1 · Tr(E>K,LEK,L) (B.6)

≤ J(K,L)− J(K(L), L) ≤ 1/σmin(R) · ‖Σ∗L‖ · Tr(E>K,LEK,L).



Provably Efficient Actor-Critic for Risk-Sensitive and Robust Adversarial RL: A Linear-Quadratic Case

Proof. See §E.5 for details.

By Polyak (1963), Lemma B.3 is sufficient to show the linear convergence in objective function of natural policy
gradient if we have the exact EKt,L. Since we only have the estimation ÊKt,L of EKt,L, we need to aggregate
the error of estimating EKt,L by ÊKt,L. Note that we assume (K0, L) is a stable policy pair by Assumption 5.1,
which implies that J(K0, L) is finite. We use mathematical induction to prove that {J(Kt, L)}t≥0 is a monotone
decreasing sequence. Suppose that J(Kt, L) ≤ JL(K0, L) <∞. We define K ′t+1 as the parameter obtained by a
single step of natural policy gradient with EKt,L as follows

K ′t+1 = Kt − γEKt,L.

We use K ′t+1 as the interpolating term of Kt and Kt+1. The following lemma that characterizes the decrease of
J(K ′t+1, L).

Lemma B.4. We set γ to satisfy that

γ ≤
(
‖R‖+ σmin(Ψσ) · ‖B‖2 ·

(
J(K0, L) + χ

))−1

.

Then, we have that

J(K ′t+1, L)− J(Kt, L) ≤ −γ · σmin(Ψσ) · σmin(R) · ‖Σ∗L‖−1 ·
(
J(Kt, L)− J(K(L), L

)
.

Proof. See a detailed proof in §E.6.

In the sequel, we set γ to satisfy

γ ≤
(
‖R‖+ σmin(Ψσ) · ‖B‖2 ·

(
J(K0, L) + χ

))−1

.

We establish the following lemma that characterizes the difference |J(Kt+1, L)− J(K ′t+1, L)|.
Lemma B.5. At the the t-th inner iteration, we set the number of GTD iterations T in

TD at the inner critic step
in Algorithm 1) to satisfy that

T in
TD ≥

(
Poly

(
J(Kt, L), ‖Kt‖F, ‖L‖F, κ−1

)
σmin(TKt,L) ·

(
1− ρ(A−BKt − CL)

)
·
(
J(Kt, L)− J(K(L), L)

))5

. (B.7)

Then, we have that ∣∣J(K ′t+1, L)− J(Kt+1, L)
∣∣

≤ 1/2 · γ · σmin(Ψσ) · σmin(R) · ‖Σ∗L‖−1 ·
(
J(Kt, L)− J(K(L), L)

)
,

with probability at least 1− (T in
TD)−4.

Proof. See a detailed proof in §E.7.

We set T in
TD to satisfy (B.7) of Lemma B.5. By Lemma B.4 and B.5, we have with probability at least 1− (T in

TD)−4

that

J(Kt+1, L)− J(Kt, L) ≤ |J(K ′t+1, L)− J(Kt+1, L)|+ J(K ′t+1, L)− J(Kt, L)

≤ −1/2 · γ · σmin(Ψ) · σmin(R) · ‖Σ∗L‖−1 ·
(
J(Kt, L)− J(K(L), L)

)
≤ 0, (B.8)

which shows that the sequence {J(Kt, L)}t≥0 decreases monotonously. By rearranging the inequality (B.8), we
have with probability at least 1− (T in

TD)−4 that

J(Kt+1, L)− J(K(L), L) ≤
[
1− γ/2 · σmin(Ψσ) · σmin(R) · ‖Σ∗L‖−1

]
·
(
J(Kt, L)− J(K(L), L)

)
,
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which shows the linear convergence of the inner loop of Algorithm 1. Specifically, to ensure that J(Kt, L) −
J(K(L), L) ≤ ε, we set the number of iterations T of the inner loop of Algorithm 1 to be

T ≥ γ−1 · σmin(Ψσ)−1 · σmin(R)−1 · ‖Σ∗L‖ · log

(
2
[
J(K0, L)− J(K(L), L)

]
ε

)
, (B.9)

where we use that fact that − log−1(1− x) ≤ x−1 for 0 ≤ x < 1. Recall that we set TTD = Ω(ε−5) to ensure the
condition (B.7), which implies that the failure probability of each inner critic step is (T in

TD)−4 = O(ε20). Thus,
by noting that the total number of iterations is T = Ω(log(1/ε)), we have that the failure probability of the
inner loop in Algorithm 1 is bounded by O(ε20 · log(1/ε)) ≤ ε10. Thus, we show that when we set the number
of inner loop iteration to be T = Ω(log(1/ε)) and the number of GTD iterations at the inner critic step to be
T in

TD = Ω(ε−5), it hold that J(KT , L)− J(K(L), L) ≤ ε with probability at least 1− ε−10. Thus, we complete the
proof of part (i) of Theorem 5.3.

Global Convergence of the Outer Loop. The proof of the global convergence of the outer loop is based on
Zhang et al. (2019b), which is based on the population version of the policy gradient and the exact K(L). In
contrast to their model-based analysis, our analysis is based on the actor-critic scheme, which requires us to
propagate the errors due to the estimation of K(L) and the policy gradient. In the outer loop, we update L via

Ln+1 = ΠL{Ln + ι · F̂n}, F̂n = Λ̂32
Kn,LnK

n + Λ̂33
Kn,LnL

n − Λ̂31
Kn,Ln ,

where Kn = Kn
T . By part (i) of Theorem 5.3, we have that Kn approximates K(Ln) in the sense that

J(Kn, Ln)− J(K(Ln), L) ≤ ε. We define

L̄n+1 = Πn
L
{
Ln + ι · F ∗Ln

}
, (B.10)

where L is defined in (4.10) and Πn
L = ΠLn

L is defined in (4.13). We use L̄n+1 to connect Ln+1 and Ln. We obtain
the following lemma from Zhang et al. (2019b) for the projection operator ΠL

L.

Lemma B.6 (Lemma 6.3 in Zhang et al. (2019b)). The set L is convex and compact, and the projection operator
ΠL is convex. For and L1, L2 ∈ Rd×m2 , it holds that

Tr
(
Σ∗LΠL

L{L1 − L2}>(L1 − L2)
)
≥ Tr

(
Σ∗LΠL

L{L1 − L2}>ΠL
L{L1 − L2}

)
.

By Lemma B.2, we establish the following lemma, which lower bounds the value difference x>P ∗L′x− x>P ∗Lx.
Lemma B.7. Suppose that

(
K ′, L′

)
,
(
K(L), L

)
are two stable policy pairs. Further, let x′0 = x, x′t+1 =

(A−BK ′ − CL′)x′t. Then we have

x>PK′,L′x− x>P ∗Lx ≥
∑
t≥0

2x′t
>

(L′ − L)>F ∗Lx
′
t −
∑
t≥0

x′t
>

(L′ − L)>WL(L′ − L)x′t

where WL takes the form of

WL = S − C>P ∗LC + C>P ∗LB(R+B>P ∗LB)−1B>P ∗LC

= S − C>
(
(P ∗L)−1 +BS−1B>

)−1
C.

Proof. See §E.8 for a detailed proof.

Recall that J∗(L) = minK J(K,L) is the inner minimum value for a fixed L. We show that {J∗(Ln)}n≥0 is
monotonously decreasing by induction. We assume that J∗(Ln) ≤ J∗(L0). We define

F̃Ln = ι−1 ·
(
ΠLn

L {Ln + ι · F ∗Ln} − Ln
)
. (B.11)

It then holds that L̄n+1 = Ln + ι · F̃Ln . We establish the following lemma to demonstrate the increase from
J∗(Ln) to J∗(L̄n+1).
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Lemma B.8. There exist some positive constant ῑ > 0 such that for any stepsize ι ∈ (0, ῑ],

J∗(L̄n+1)− J∗(Ln) ≥ ι/2 · σmin(Ψσ)−1 · ‖F̃Ln‖2.

Proof. See §E.9 for a detailed proof.

We now bound the difference J∗(Ln+1)− J∗(L̄n+1). We obtain the following lemma from Zhang et al. (2019b)
that demonstrates the Lipschitz continuous of J∗(L).

Lemma B.9 (Proposition B.1 in Zhang et al. (2019b)). For any L,L′ ∈ L, there exists a constant BLL > 0 such
that it holds when ‖L− L′‖ ≤ BLL that

‖P ∗L − P ∗L′‖ ≤ BPL · ‖L− L′‖,

for a constant BPL .

By Lemma B.9 and (C.7) of Proposition C.1, we have that

|J∗(L̄n+1)− J∗(Ln+1)| ≤ BPL · ‖Ψσ‖ · ‖Ln+1 − L̄n+1‖, (B.12)

for ‖Ln+1 − L̄n+1‖ ≤ BLL. By the definition of L̄n in (B.10) and the convexity of ΠL in Lemma B.6, we have that

‖Ln+1 − L̄n+1‖ ≤ ι · ‖F̂n − F ∗Ln‖. (B.13)

Thus, we proceed to bound the difference between F̂n and F ∗Ln . By the triangle inequality, we have

‖F̂n − F ∗Ln‖ ≤ ‖F̂n − FKn,Ln‖+ ‖FKn,Ln − F ∗Ln‖. (B.14)

By (B.12), (B.13), and (B.14), we have that∣∣J∗(L̄n+1)− J∗(Ln+1)
∣∣ ≤ ι · BPL · ‖Ψσ‖ ·

(
‖F̂n − FKn,Ln‖+ ‖FKn,Ln − F ∗Ln‖

)
. (B.15)

For the first term on the right-hand side of (B.15), we have that

‖F̂n − FKn,Ln‖ ≤ ‖Λ̂Kn,Ln − ΛKn,Ln‖ · (‖Kn‖+ ‖Ln‖+ 1). (B.16)

Thus, by Theorem 5.2, the difference ‖F̂n − FKn,Ln‖ is sufficiently small when we set the number of GTD
iterations T out

TD at the outer critic step to be sufficiently large. For the second term on the right-hand side of
(B.15), we establish the following lemma. The following lemma bounds the difference ‖FKn,Ln − F ∗Ln‖ on the
right of (B.15).

Lemma B.10. For stable policy pair (K,L), it holds that that

‖FK,L − F ∗L‖ ≤ C ·
(
J(K,L)− J

(
K(L), L

))
,

where C > 0 is a constant.

Proof. See §E.10 for a detailed proof.

Thus, by plugging (B.16) and Lemma B.10 into (B.15), we have that

|J∗(L̄n+1)− J∗(Ln+1)|

≤ ι · BPL · ‖Ψσ‖ ·
(
‖Λ̂Kn,Ln − ΛKn,Ln‖ ·

(
‖Kn‖+ ‖Ln‖+ 1

)
+ C ·

(
J(Kn, Ln)− J∗(Ln)

))
. (B.17)

By Lemma B.8, to establish the increase from J∗(Ln) to J∗(Ln+1), it suffices to show that

|J∗(L̄n+1)− J∗(Ln+1)| ≤ ι/4 · σmin(Ψσ)−1 · ‖F̃Ln‖2. (B.18)
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By comparing (B.17) and (B.18), we note that (B.18) holds if the following two inequalities holds simultaneously

‖Λ̂Kn,Ln − ΛKn,Ln‖ ≤
1/8 · σmin(Ψσ)−1 · ‖F̃Ln‖2

BPL · ‖Ψσ‖ · (‖Kn‖+ ‖Ln‖+ 1)
, (B.19)

J(Kn, Ln)− J∗(Ln) ≤ 1/8 · σmin(Ψσ)−1 · ‖F̃Ln‖2

C · BPL · ‖Ψσ‖
. (B.20)

We now fix a ε > 0 and consider ‖F̃Ln‖ ≥ ε. By Theorem 5.2, if we set the number of GTD iterations at the outer
critic step T out

TD = Ω(ε−10), we have that the condition (B.19) holds with failure probability O(ε40). Meanwhile,
following from (B.9) by setting the number of inner loop iterations T = Ω(log(1/ε)) and the number of GTD
iterations at the inner critic step T in

TD = Ω(ε−10), we have that the condition (B.20) holds with failure probability
O(ε20). Note that when (B.19) and (B.20) hold, by (B.18) and Lemma B.8, we have that

‖F̃Ln‖2 ≤
4
(
J∗(Ln+1)− J∗(Ln))

σmin(Ψσ)
. (B.21)

Upon telescoping (B.21), we have that

1

N

N−1∑
n=0

‖F̃Ln‖F ≤

√√√√ 1

N

N−1∑
n=0

‖F̃Ln‖2F ≤ 2

√
σmin(Ψσ)

[
J∗ − J∗(L0)

]
ι · N

.

By setting N = Ω(ε−2), we have that N−1 ·
∑N−1
n=0 ‖F̃Ln‖ ≤ ε. By the union bound, the failure probability is

N · (O(ε20) +O(ε40)) ≤ ε10. Thus, we complete the proof of Theorem 5.3.

C Policy Gradient Theorem in the LQ setting

We first give a detailed version of Proposition 4.2. The proof is a modification of that of Proposition 3.1 in Yang
et al. (2019), which establishes the policy gradient theorem for the single-agent linear quadratic regulator under
the ergodic setting. Compared with Yang et al. (2019), we need to consider the system determined by the two
competing players. Note that Proposition C.1 recovers Proposition 3.1 in Yang et al. (2019) when L = 0.

Proposition C.1. We assume that the policy πK,Lis stable in the sense that ρ(A − BK − CL) < 1. Let
PK,L,ΣK,L be the unique positive definite solutions to the following Lyapunov equations

PK,L = (Q+K>RK − L>SL) + (A−BK − CL)>PK,L(A−BK − CL), (C.1)

ΣK,L = Ψσ + (A−BK − CL)ΣK,L(A−BK − CL)>. (C.2)

Then, the Markov chain xt+1 = (A − BK − CL)xt + εt has a stationary distribution ρK,L = N(0,ΣK,L). We
denote the second tensor power of state-action pair (x, u, v) by Φ(x, u, v) = (x, u, v)⊗2. We define the parameter
matrix ΛK,L for the function QK,L as follows,

ΛK,L =

Λ11
K,L Λ12

K,L Λ13
K,L

Λ21
K,L Λ22

K,L Λ23
K,L

Λ31
K,L Λ32

K,L Λ33
K,L

 =

Q+A>PK,LA A>PK,LB A>PK,LC
B>PK,LA R+B>PK,LB B>PK,LC
C>PK,LA C>PK,LB −S + C>PK,LC

 . (C.3)

Then, the state and state-action value functions are quadratic functions, taking the form

VK,L(x) = x>PK,Lx− Tr(PK,LΣK,L), (C.4)

QK,L(x, u, v) = Tr
(
ΛK,LΦ(x, u, v)

)
+ qK,L, (C.5)

where qK,L = −σ2
1 ·Tr(R+PK,LBB

T )−σ2
2 ·Tr(−S+PK,LCC

>) is independent of (x, u, v). We have the following
Bellman equation,

Tr
(
ΛK,LΦ(x, u, v)

)
= c(x, u, v)− J(K,L) + EπK,L

[
Tr
(
ΛK,LΦ(x′, u′, v′)

) ∣∣∣x, u, v], (C.6)
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where (x′, u′, v′) denotes the subsequent state-action pair following policy πK,L. Further, for the ergodic cost
J(K,L), it holds that

J(K,L) = Tr
(
(Q+K>RK − L>SL)ΣK,L

)
+ σ2

1Tr(R)− σ2
2Tr(S),

= Tr(PK,LΨσ) + σ2
1Tr(R)− σ2

2Tr(S), (C.7)

∇KJ(K,L) = 2
(
(R+B>PK,LB)K −B>PK,L(A− CL)

)
ΣK,L = 2EK,LΣK,L, (C.8)

∇LJ(K,L) = 2
(
(−S + C>PK,LC)L− C>PK,L(A−BK)

)
ΣK,L = 2FK,LΣK,L. (C.9)

Here EK,L and FK,L are given by

EK,L = (R+B>PK,LB)K −B>PK,L(A− CL) = Λ22
K,LK + Λ23

K,LL− Λ21
K,L, (C.10)

FK,L = (−S + C>PK,LC)L− C>PK,L(A−BK) = Λ33
K,LL+ Λ32

K,LK − Λ31
K,L. (C.11)

where ΛK,L is defined in (C.3). Further, 2EK,L and 2FK,L corresponds to the natural gradient of J(K,L).

Proof. By direct computation, the Markov chain defined in (4.2) has a stationary distribution N(0,ΣK,L), where
ΣK,L is the positive definite solution to the Lyapunov equation (C.2). By the definition of J(K,L) in (3.1), the
ergodic cost J(K,L) is the the cost evaluated on the stationary distribution ρK,L, which implies that

J(K,L) = Ex∼ρK,L,u∼πK,L(· | x)

[
c(x, u, v)

]
= Tr

(
(Q+K>RK − L>SL)ΣK,L

)
+ σ2

1Tr(R)− σ2
2Tr(S). (C.12)

This establishes the first equality of (C.7).

For notational simplicity, we define the following operators for the stable policy pair (K,L)

TK,L(Ω) =
∑
t≥0

(A−BK − CL)tΩ
(
(A−BK − CL)t

)>
, (C.13)

T >K,L(Ω) =
∑
t≥0

(
(A−BK − CL)t

)>
Ω(A−BK − CL)t, (C.14)

which satisfy the following Lyapunov equations

TK,L(Ω) = Ω + (A−BK − CL)TK,L(Ω)(A−BK − CL)>, (C.15)

T >K,L(Ω) = Ω + (A−BK − CL)>TK,L(Ω)(A−BK − CL). (C.16)

For any positive definite matrices Ω1 and Ω2, since ρ(A−BK − CL) < 1, it holds that

Tr
(
Ω1TK,L(Ω2)

)
=
∑
t≥0

Tr
(

Ω1(A−BK − CL)tΩ2

(
(A−BK − CL)t

)>)
=
∑
t≥0

Tr
((

(A−BK − CL)t
)>

Ω1(A−BK − CL)tΩ2

)
= Tr

(
T >K,L(Ω1)Ω2

)
. (C.17)

Combining (C.1), (C.2), (C.15), and (C.16), we have PK,L = T >K,L(Q+K>RK − L>SL) and ΣK,L = TK,L(Ψσ).
Thus, by (C.17), it holds that

Tr
(
(Q+K>RK − L>SL)ΣK,L

)
= Tr

(
(Q+K>RK − L>SL)TK,L(Ψσ)

)
= Tr

(
T >K,L(Q+K>RK − L>SL)Ψσ

)
= Tr(PK,LΨσ).

Combining with (C.12), we establish the second equality of (C.7). Second, we proceed to establish the state value
function VK,L(x) in (C.4) and state-action value function QK,L in (C.5). By the definition of VK,L(x) in (3.2), it
holds that

VK,L(x) =
∑
t≥0

EπK,L
[
c(xt, ut, vt) |x0 = x, ut = −Kxt + σ1η

1
t , vt = −Lxt + σ2η

2
t

]
=
∑
t≥0

(
EπK,L

[
x>t (Q+K>RK − L>SL)xt

∣∣x0 = x
]
− J(K) + σ2

1Tr(R)− σ2
2Tr(S)

)
.
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Combining with the linear transition (4.2), VK,L(x) is quadratic in x. We write VK,L(x) = x>VK,Lx+ vK,L for
matrix VK,L and constant vK,L, which are determined in the sequel. Note that VK,L(x) satisfies the following
Bellman equation,

VK,L(x) = E(u,v)∼πK,L
[
c(x, u, v)

]
− J(K,L) + EK,L

[
V (x′)

∣∣x],
where x′ is the subsequent state of x following the policy πK,L. Therefore, the matrix VK,L satisfies the following
equation.

x>VK,Lx = x>(Q+K>RK − L>SL)x+ x>(A−BK − CL)>VK,L(A−BK − CL)x,

which implies that VK,L satisfies the same Lyapunov equation as PK,L. By the uniqueness of PK,L, we deduce
that VK,L = PK,L. Combining with the fact that Ex∼ρK,L [VK,L(x)] = 0, we complete the proof of (C.4).

Furthermore, by the definition of QK,L(x, u, v) in (3.3), we have the following equation.

QK,L(x, u, v) = c(x, u, v)− J(K) + EK,L
[
VK,L(x′) |x, u, v

]
. (C.18)

Combining (C.4) and (C.18), by direct computation, we obtain (C.5), and then the Bellman equation (C.6) of
QK,L follows.

In the following, we proceed to characterize the expressions of policy gradient (C.8) and (C.9). By (C.7), it holds
that

∇KJ(K,L) = 2RKΣK,L +∇KTr(Q0ΣK,L), (C.19)
∇LJ(K,L) = −2SLΣK,L +∇LTr(Q0ΣK,L), (C.20)

where Q0 = Q+K>RK −L>L. We first compute the expression (C.8). Note that TK,L(Ψσ) = ΣK,L and (C.15),
for the second term on the right of (C.19), we have that

∇KTr(Q0ΣK,L) = ∇KTr
[
(A−BK − CL)>Q0(A−BK − CL)ΣK,L

]
= −2B>Q0(A−BK − CL)ΣK,L +∇KTr(Q1ΣK,L),

where Q1 = (A − BK − CL)>Q0(A − BK − CL). Moreover, we denote by Qt := (A−BK − CL)t
>
Q0(A −

BK − CL)t. Note that
∑∞
t=0Qt = PK,L and that Qt → 0 when t goes to infinity, we have that

∇KTr(Q0ΣK,L) = −2B>
[ n∑
t=0

Qt
]
(A−BK − CL)ΣK,L +∇KTr

(
QtΣK,L

)
= −2B>PK,L(A−BK − CL)ΣK,L.

Combining with (C.19), we establish (C.8). Similarly, we establish (C.9).

Finally, we establish the fact that EK,L and FK,L relate with the natural policy gradients. For the Gaussian policy
πK,L defined in (4.1), the corresponding Fisher information, denoted by I(K,L), has the following structure[

I(K;L)
]
KijKi′j′

= Ex∼ρK,L,(u,v)∼πK,L
[
∇Kij log πK,L(u, v |x)∇Ki′j′ log πK,L(u, v |x)

]
= σ−2

1 · Ex∼ρK,L,(u,v)∼πK,L
[
η1
i xj · η1

i′xj′
]

= σ−2
1 · 1i=i′ · (ΣK,L)jj′ .

Similarly, we have that [
I(L;K)

]
LijLi′j′

= σ−2
2 · 1i=i′ · (ΣK,L)jj′ .

Thus, the natural policy gradients take the form of[
I(K;L)

]−1∇KJ(K,L) = ∇KJ(K,L)Σ−1
K,L = 2EK,L,[

I(L;K)
]−1∇LJ(K,L) = ∇LJ(K,L)Σ−1

K,L = 2FK,L.

Therefore, we conclude the proof of Proposition (C).
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D Gradient Temporal-Difference

In this section, we present the GTD algorithm that estimate ΛK,L defined in (C.3) at the critic steps. Our GTD
is based on Yang et al. (2019), which develop GTD for the single-agent LQR problem. We extend this approach
to the two-agent zero-sum LQ game. For notational simplicity, we denote by z = (x, u, v) the state-action pair,
and by Z = X × U × V the state-action space.

To solve the RSRL and RARL, we need to sample from the MDPM for the two-player zero-sum game introduced
in §2.3, while we only have access to the original MDP M̄ = (X ,U , P̄ , c̄,D0) in §2.1 for the single-agent RSRL and
RARL. To sample fromM in the sequel, we first sample the initial state x0 ∼ D0. At state xt (t ≥ 0), the agent
takes action ut and receives a cost c̄t. Then, the system transits to the next state x̄t+1. Letting ct = c̄t − v>t Svt
and xt+1 = x̄t+1 + Cvt, we have that {(xt, ct)}t≥0 is a trajectory from the MDPM by following {ut} and {vt}.

We define the following feature vector

φ(z) = svec
[
(z)⊗2

]
, (D.1)

for any z ∈ Z. We denote the vectorization of ΛK,L by λ∗ = svec(ΛK,L). Note that we omit the dependence of
λ∗ on (K,L) for notational simplicity. Then, we write the Bellman equation in (4.7) of state-action function as
follows,

〈φ(z), λ∗〉 = c(z)− J(K,L) +
〈
Ez′∼P̃ (· | z;πK,L)

[
φ(z′)

]
, λ∗
〉
.

Here z′ = (x′, u′, v′), and the expectation Ez′∼P̃ (· | z) is with respect to the conditional distribution P̃ (· | z;πK,L)

that takes the form of

P̃ (z′ | z;πK,L) = P (x′ | z) · πK,L(u′, v′ |x′).

We define

β∗ =

(
(β∗)1

(β∗)2

)
=

(
J(K,L)
λ∗

)
. (D.2)

Along the formulation of Liu et al. (2015); Yang et al. (2019), we define the following notations,

TK,L = Ez∼ρ̃K,L,z′∼P̃ (· | z;πK,L)

[
φ(z)

[
φ(z)− φ(z′)

]>]
,

bK,L = Ez∼ρ̃K,L,z′∼P̃ (· | z;πK,L)

[
c(z)φ(z)

]
. (D.3)

Here ρ̃K,L is the stationary distribution induced by πK,L over Z, which takes the form of

ρ̃K,L(z) = ρK,L(x) · πK,L(u, v |x), ∀z = (x, u, v) ∈ X × U × V.

Then, by direct computation, we have the following linear equation(
1 0

E(z)∼ρ̃K,L
[
φ(z)

]
TK,L

)
β∗ =

(
J(K,L)
bK,L

)
. (D.4)

The solution of (D.4) is unique if the matrix TK,L is invertible, which is verified by the following lemma.

Lemma D.1. For any policy πK,L that is stable in the sense that ρ(A−BK−CL) < 1, the matrix TK,L defined
in (D.3) is invertible, and it holds that

‖TK,L‖ ≤ 2
(
σ2

1 + σ2
2 + (1 + ‖K‖2 + ‖L‖2) · ‖ΣK,L‖

)2
.

It then holds that β∗K,L is the unique solution of (D.4).

Proof. See a detailed proof in §D.2.
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The linear equation defined in (D.4) is equivalent to the following minimization problem,

min
β
|β1 − J(K,L)|2 +

∥∥Ez∼ρ̃K,L[φ(z)
]
β1 + TK,Lβ

2 − bK,L
∥∥2
,

where the expectation is with respect to By Fenchel duality, solving the above linear equation is equivalent to the
following minimax problem,

min
β∈Xβ

max
w∈Xw

G(β,w) = Ez∼ρ̃K,L,z′∼P̃ (· | z;πK,L)

[
g(β,w; z, z′)

]
, (D.5)

where g is defined as follows,

g(β,w; z, z′) =
[
β1 − c(z)

]
· w1 − 1

2
· ‖w‖22 +

〈
φ(z) ·

{
β1 +

[
φ(z)− φ(z′)

]>
β2 − c(z)

}
, w2

〉
. (D.6)

By the property of Fenchel duality and (D.4), the optimal solution of (D.5) is (β∗, 0). We note that g(β,w; z, z′)
is convex with respect to β and concave with respect to w. To solve minimax problem defined in (D.5), we apply
stochastic primal-dual update to (β,w) as follows,

βt+1 = ΠXB

{
βt − αt · ∇βg(βt, wt; zt, zt+1)

}
,

wt+1 = ΠXW

{
wt − αt · ∇wg(βt, wt; zt, zt+1)

}
,

where
{
zt
}
t≥0

is drawn from z0 ∼ D, zt+1 ∼ P̃ (· | zt;πK,L). Here for the stability of the algorithm, we project β
and w to some compact sets XB and XW , which are defined as follows,

XB =
{
β : 0 ≤ β1 ≤ J(K,L), ‖β2‖ ≤ R̄B

}
, (D.7)

XW =
{
w : |w1| ≤ J(K,L), ‖w2‖2 ≤ R̄W

}
. (D.8)

Here R̄B and R̄W are defined by

R̄B = C ·
(
J(K,L)/σmin(Ψσ)

)
+ C0, (D.9)

R̄W = C · R̄B · σmin(Q− L>SL)−2 ·
(
d+ ‖K‖2F + ‖L‖2F

)2 · J(K,L)2 + C0, (D.10)

for absolute constants C > 0 and C0. We conclude the above discussion in Algorithm 3.

We establish Theorem 5.2 that characterizes the sublinear convergence of Algorithm 3. For the completeness, we
restate the theorem as follows.

Theorem D.2 (Convergence of GTD (Algorithm 3)). Let Λ̂ be the output of Algorithm 3 after T iterations.
We set the stepsize αt = 1/

√
t. Then, For the sufficiently large T , it holds with probability at least 1− T−4 that

‖Λ̂− ΛK,L‖2F ≤
Poly

(
J(K,L), ‖K‖F, ‖L‖F, σmin(Q− L>SL)−1

)
σmin(TK,L) ·

(
1− ρ(A−BK − CL)

) · log4 T√
T

,

where Poly is a polynomial.

Proof. See §D.1 for a detailed proof.
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Algorithm 3 GTD for Estimating ΛK,L.
Input: Policy πK,L, number of GTD iterations TTD, and step sizes {αt}Tt=0.
Initialize the primal and dual variables β0 ∈ Xβ and w0 ∈ Xw.
Sample x0 ∼ D. Take action (u0, v0) ∼ π(· |x0), and observe the cost c0 and next state x1. Let z0 = (x0, u0, v0)
for t = 1, 2, ..., T do
Take action (ut, vt) ∼ πK,L(· |xt), and observe the cost ct and next state xt+1. Let zt = (xt, ut, vt) and
φ(z) = svec(zz>).
β1
t = β1

t−1 − αt ·
[
w1
t−1 + 〈φ(zt−1), w2

t−1〉
]
,

β2
t = β2

t−1 − αt ·
[(
φ(zt−1)− φ(zt)

)
φ(zt−1)>w2

t−1

]
,

w1
t = (1− αt) · w1

t−1 + αt · [β1
t−1 − ct−1],

w2
t = (1− αt) · w2

t−1 + αt · φ(zt−1)
[
β1
t−1 +

[
φ(zt−1)− φ(zt)

]>
β2
t−1 − ct−1

]
.

Project βt and wt to the space XB and XW specified in (D.7) and (D.8).
end for
β̂ =

∑T
t=1 αtβt∑T
t=1 αt

, ŵ =
∑T
t=1 αtwt∑T
t=1 αt

.

Output: Λ̂ = smat(β̂2) that estimates ΛK,L.

D.1 Proof of Theorem 5.2

Proof. The proof of Theorem 5.2 is based on Yang et al. (2019). In comparison, we establish the global convergence
of GTD for the two-agent zero sum LQ game, whereas they do it for the single-agent LQR. The proof of Theorem
5.2 takes three steps. First, we prove that the optimal solution of (D.5) is contained in the parameter domain
XB × XW . Second, we define the optimality gap of the minimax problem in (D.5), and relate the gap to the
difference between current iterates and the optimal solution. At last, we prove that the optimality gap converges
to zero sublinearly.

We first establish the following lemma that shows the saddle point of the objective function defined in (D.5) is
contained in the parameter domain XB ×XW .

Lemma D.3. For any β ∈ XB , we define

w(β) = argmax
w

G(β,w).

Then, it holds that w(β) ∈ XW . Moreover, the optimal solution (β∗, 0) of (D.5) is contained in XW ×XB .

Proof. See a detailed proof in §E.1.

To analyze the convergence of Algorithm 3, we define the optimality gap for (D.5) as

Gap(β̂, ŵ) = max
w∈XW

G(β̂, w)− min
β∈XB

G(β, ŵ), (D.11)

for any (β̂, ŵ) ∈ XB ×XW . We establish the following lemma relating the primal-dual gap defined in (D.11) to
the gap between (β̂, ŵ) and the saddle point (β∗, 0).

Lemma D.4 (Bound Parameter Difference via Objective Difference). For any (β̂, ŵ) ∈ XB×XW , let Λ̂ = smat(β2).
Then we have

∣∣β̂1 − J(K,L)
∣∣2 + ‖Λ̂− ΛK,L‖2F ≤

Gap(β̂, ŵ)

σmin(TK,L)2
,

where TK,L is defined in (D.3).

Proof. See §E.2 for a detailed proof.
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Note that Algorithm 3 is a stochastic gradient based method. We have

G(β,w) = Ez∼ρK,L,z′∼P̃ (· | z)
[
g(β,w; z, z′)

]
where g is defined in (D.6). The expectation is taken with respect to x ∼ ρK,L, where ρ̃K,L is the stationary
distribution induced by policy πK,L. But the trajectory {zt}t≥0 is generated from z0 ∼ D, zt+1 ∼ P̃ (· | z), which
implies that {zt} is not drawn from the stationary distribution ρ̃K,L. Such a case has been studied in Wang
et al. (2017). However, different from the setting in Wang et al. (2017), our function g(β,w; z, z′) is not Lipschitz
continuous in (β,w), which makes the analysis of Wang et al. (2017) not applicable for our setting. To bypass
such an issue, we prove that the function g is Lipschitz continuous in (β,w) with high probability, which allows
us to apply Theorem 1 in Wang et al. (2017) to establish the following lemma.

Lemma D.5. It holds for the output (β̂, ŵ) of Algorithm 3 after T iterations that

Gap(β̄, w̄) ≤ Poly
(
J(K,L), R̄B , R̄W , σmin(Q− L>SL)−1

)
· (log T )4

(1− ρ)
√
T
,

with probability at least 1− T−4.

Proof. See a detailed proof in §E.3.

Combining Lemma D.3, Lemma D.4 and Lemma D.5, we complete the proof of Theorem 5.2.

D.2 Proof of Lemma D.1

Recall that we denote by z = (x, u, v) the state action pair. and by z′ = (x′, u′, v′) the subsequent state action
pair following πK,L. Then, by (2.5), we have that,

z′ = Uz + ζ, (D.12)

where U and ζ are defined as follows.

U :=

 Id
−K
−L

(A B C
)
, ζt :=

 et
−Ket + σ1η

1

−Let + σ2η
2

 . (D.13)

Here η1 ∼ N(0, Im1
), η2 ∼ N(0, Im2

) are Gaussian noises. By the fact that ρ(MN) = ρ(NM) for any matrices
M,N and that ρ(A − BK − CL) < 1, we have that ρ(U) < 1. We denote the covariance matrix of ζt by Ψ̃σ,
which takes the form of

Ψ̃σ =

 Id
−K
−L

Ψ

 Id
−K
−L

> +

0 0 0
0 σ2

1Im1
0

0 0 σ2
2Im2

 .

Recall that we denote by ρ̃K,L the stationary distribution of (x, u, v) induced by πK,L. We denote the covariance
matrix of ρ̃K,L by ρ̃K,L, which takes the form of

Σ̃K,L =

 Id
−K
−L

ΣK,L

 Id
−K
−L

> +

0 0 0
0 σ2

1Im1
0

0 0 σ2
2Im2

 . (D.14)

By (D.14), we upper bound the norms of Σ̃K,L as follows,

‖Σ̃K,L‖F ≤ σ2
1m1 + σ2

2m2 +
(
d+ ‖K‖2F + ‖L‖2F

)
· ‖ΣK,L‖, (D.15)

‖Σ̃K,L‖ ≤ σ2
1 + σ2

2 +
(
1 + ‖K‖2 + ‖L‖2

)
· ‖ΣK,L‖. (D.16)

By the fact that ρ(U) < 1 and the definition of ΣK,L in (C.2) of Proposition C.1, we conclude that Σ̃K,L is the
unique positive definite solution of the Lyapunov equation,

Σ̃K,L = Ψ̃σ + U Σ̃K,LU
>. (D.17)

We prove a stronger lemma to establish Lemma D.1,
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Lemma D.6. For any policy πK,L that is stable in the sense that ρ(A−BK − CL) < 1, it holds for the matrix
TK,L defined in (D.3) that

TK,L = (Σ̃K,L ⊗ Σ̃K,L)− (Σ̃K,LU
>)⊗ (Σ̃K,LU

>) = (Σ̃K,L ⊗ Σ̃K,L)(I − U> ⊗ U>). (D.18)

Moreover, TK,L is invertible and it holds that

‖TK,L‖ ≤ 2
(
σ2

1 + σ2
2 + (1 + ‖K‖2 + ‖L‖2) · ‖ΣK,L‖

)2
. (D.19)

Proof. We first prove (D.18) of Lemma D.6. We denote the right-hand side of (D.18) by

T̄ = (Σ̃K,L ⊗ Σ̃K,L)− (Σ̃K,LU
>)⊗ (Σ̃K,LU

>) = (Σ̃K,L ⊗ Σ̃K,L)(I − U> ⊗ U>).

In what follows, we show that for any matrices M,N , it holds that svec(M)TK,Lsvec(N) = svec(M)T̄svec(N).
By (D.12) and the fact that φ(z) = svec(zz>) in (D.1), we have that

φ(z)− φ(z′) = svec
[
zz> − (Uz + ζ)(Uz + ζ)>

]
.

By the fact that z and ζ are independent and the definition of TK,L in (D.3), we have that

TK,L = Ez∼ρ̃K,L
[
svec(zz>)svec(zz> − Uzz>U> − Ψ̃σ)>

]
.

Let M and N be two matrices. Then, we have that

svec(M)TK,Lsvec(N) = Ez∼ρ̃K,L
[
〈zz>,M〉 · 〈zz> − Uzz>U> − Ψ̃σ, N〉

]
= Ez∼ρ̃K,L

[
z>Mzz>(N − U>NU)z

]
− Ez∼ρ̃K,L

[
z>Mz

]
· 〈Ψ̃σ, N〉

= 2〈M, Σ̃K,L(N − U>NU)Σ̃K,L〉+ 〈M, Σ̃K,L〉 ·
[
〈N − U>NU, Σ̃K,L〉 − 〈Ψ̃σ, N〉

]
. (D.20)

where the last equality holds because of the following lemma
Lemma D.7. Let g ∼ N(0, Id) be some standard Gaussian random vector in Rd and let A1, A2 be two symmetric
matrices. Then we have

E[g>A1g · g>A2g] = 2Tr(A1A2) + Tr(A1) · Tr(A2).

Proof. See e.g. Nagar (1959); Magnus et al. (1978) for a detailed proof.

By (D.17), we have that

〈N − U>NU, Σ̃K,L〉 = 〈N, Σ̃K,L〉 − 〈N,U Σ̃K,LU
>〉 = 〈N, Ψ̃σ〉.

Therefore, by (D.20), we have that

svec(M)TK,Lsvec(N) = 2〈M, Σ̃K,L(N − U>NU)Σ̃K,L〉

= 2svec(M)>(Σ̃K,L ⊗ Σ̃K,L − Σ̃K,LU
> ⊗ ΣK,LU

>)svec(N)>

= 2svec(M)>
[
(Σ̃K,L ⊗ Σ̃K,L)(I − U> ⊗ U>)

]
svec(N)>. (D.21)

Since (D.21) holds for any matrices M,N , we have that

TK,L = (Σ̃K,L ⊗ Σ̃K,L)(I − U> ⊗ U>),

which concludes (D.18). By the fact that ρ(U) = ρ(A−BK − CL) < 1, we concludes that TK,L is invertible.

Finally, we upper bound ‖TK,L‖. By the triangle inequality, we have that

‖TK,L‖ ≤ ‖Σ̃K,L ⊗ Σ̃K,L‖ · (1 + ‖U> ⊗ U>‖)

≤ ‖Σ̃K,L‖2 · (1 + ‖U‖2)

≤ 2‖Σ̃K,L‖2, (D.22)

where the last inequality follows from the fact that ρ(U) < 1, and the second inequality holds as a result of the
following lemma from Alizadeh et al. (1998)
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Lemma D.8 (Lemma 7.2 in Alizadeh et al. (1998)). Let A,B ∈ Rm×m be two matrices that can be diagonalizable
simultaneously, and let λ1, ..., λm and µ1, ..., µm be the eigenvalues of A,B respectively. Then, the eigenvalues of
A⊗B are given by {1/2 · (λiµj + λjµi), i, j ∈ [m]}.

Plugging (D.16) into (D.22), we have that

‖TK,L‖ ≤ 2
(
σ2

1 + σ2
2 + (1 + ‖K‖2 + ‖L‖2) · ‖ΣK,L‖

)2
, ,

which completes the proof of Lemma D.6.

E Proof of Supporting Lemmas

E.1 Proof of Lemma D.3

Proof. We first show that w(β) ∈ XW for any β ∈ XB . By the definition of G(β,w) in (D.5) and the property of
quadratic function, we have that

w(β) = argmax
w

G(β,w) = Ez∼ρ̃K,L,z′∼P̃ (· | z;πK,L)

[
H(z, z′;β)

]
.

where we define H(z.z′;β) as follows

H1(z.z′;β) = β1 − c(z), (E.1)

H2(z, z′;β) =
{
β1 +

[
φ(z)− φ(z′)

]>
β2 − c(z)

}
φ(z). (E.2)

Thus, it suffices to bound H(z, z′;β) for any β ∈ XB . We bound the two components H1(z, z′;β) and H2(z, z′;β)
separately. We first bound H1(z, z′;β). By (E.1), we have that

|w1(β)| =
∣∣∣Ez∼ρ̃K,L,z′∼P̃ (· | z;πK,L)

[
H1(z, z′;β)

]∣∣∣ =
∣∣β1 − J(K,L)

∣∣ ≤ J(K,L), (E.3)

where the second inequality follows from the fact that β1 ∈ [0, J(K,L)]. We now bound H2(z, z′;β). By (E.2),
we have that

w2(β) = Ez∼ρ̃K,L,z′∼P̃ (· | z;πK,L)

[
H2(z, z′;β)

]
= β1 · Ez∼ρ̃K,L

[
φ(z)

]
+ TK,Lβ

2 − bK,L,

where TK,L and bK,L are defined in (D.3). By the fact that β ∈ XB in (D.7) we have that

‖w2(β)‖ ≤ J(K,L) ·
∥∥Ez∼ρ̃K,L[φ(z)

]∥∥+ ‖TK,L‖ · R̄B + ‖bK,L‖. (E.4)

We now bound the three terms on the right-hand side of (E.4). In what follows, we use the same notation Σ̃K,L
defined in (D.14). For the first term on the right-hand side of (E.4), we have that∥∥Ez∼ρ̃K,L[φ(z)

]∥∥ = ‖Σ̃K,L‖F ≤ σ2
1 ·m1 + σ2

2 ·m2 + (d+ ‖K‖2F + ‖L‖2F) · ‖ΣK,L‖. (E.5)

For the second term on the right-hand side of (E.4), by Lemma D.6, we have that

‖TK,L‖2 ≤ 2
(
σ2

1 + σ2
2 + (1 + ‖K‖2 + ‖L‖2) · ‖ΣK,L‖

)2
. (E.6)

For the last term on the right-hand side of (E.4), it suffices to bound bK,L, we now study the linear operator
induced by bK,L. For any positive definite matrix M ∈ R(d+m1)×(d+m1), we have

〈bK,L, svec(M)〉 = Ez∼ρ̃K,L
[
〈φ(z), svec(M)〉 ·

〈
φ(z), svec

(
diag(Q,R,−S)

)〉]
= 2〈Σ̃K,Ldiag(Q,R,−S)Σ̃K,L,M〉+ 〈Σ̃K,L,diag(Q,R,−S)〉 · 〈Σ̃K,L,M〉 (E.7)

where the first equality follows from the fact that c(z) = 〈φ(z), svec(diag(Q,R, S))〉, and the second equality
follows form Lemma D.7. Thus, we have that

‖bK,L‖ ≤ 3(‖Q‖F + ‖R‖F + ‖S‖F) · ‖Σ̃K,L‖2F
≤ 3(‖Q‖F + ‖R‖F + ‖S‖F) ·

(
σ2

1m1 + σ2
2m2 + (d+ ‖K‖2F + ‖L‖2F) · ‖ΣK,L‖

)2
, (E.8)

where the last inequality follows from (D.15). We establish the following lemma to bound ‖ΣK,L‖.
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Lemma E.1. For any stable policy πK,L, we have

‖ΣK,L‖ ≤
[
J(K,L) + χ

]
/σmin(Q− L>SL), ‖PK,L‖ ≤

[
J(K,L) + χ

]
/σmin(Ψσ).

Here χ is defined as χ := (−σ2
1Tr(R) + σ2

2Tr(S))+.

Proof. By (C.7) in Proposition C.1, we have that

J(K,L) + χ ≥ Tr
(
(Q− L>SL+K>RK)ΣK,L

)
≥ σmin(Q− L>SL) · ‖ΣK,L‖,

J(K,L) + χ ≥ Tr(PK,LΨσ) ≥ σmin(Ψσ) · ‖PK,L‖.

Therefore, we conclude the proof.

Plugging (E.5), (E.6), and (E.8) into (E.4), by Lemma E.1, we get that

‖w2(β)‖ ≤ C · (d+ ‖K‖2F + ‖L‖2F)2 · R̄B · σmin(Q− L>SL)−2 ·
(
J(K,L) + χ

)2
+ C0, (E.9)

where C,C0 > 0 are constants. Thus, combining (E.3), (E.9), and the definition of XW in (D.8), we concludes
that w(β) ∈ XW for any β ∈ XB .

It remains to show that β∗ ∈ XB . By the definition of β∗ in (D.2) and the definition of XB in (D.7), it suffices to
bound ‖ΛK,L‖F. By the definition of ΛK,L in (4.4), we have that

ΛK,L =

Q+A>PK,LA A>PK,LB A>PK,LC
B>PK,LA R+B>PK,LB B>PK,LC
C>PK,LA C>PK,LB −S+C>PK,LC


=

Q R
−S

+
(
A B C

)>
PK,L

(
A B C

)
.

which implies that

‖ΛK,L‖F ≤ ‖Q‖F + ‖R‖F + ‖S‖F +
(
‖A‖2F + ‖B‖2F + ‖C‖2F

)
· ‖PK,L‖. (E.10)

Apply Lemma E.1 to (E.10), we get that

‖ΛK,L‖F ≤ ‖Q‖F + ‖R‖F + ‖S‖F +
(
‖A‖2F + ‖B‖2F + ‖C‖2F

)
·
(
J(K,L) + χ

)
/σmin(Ψσ)

= C0 + C ·
(
J(K,L) + χ

)
/σmin(Ψσ). (E.11)

By (E.11) and definition of R̄B in (D.9), we conclude that β∗ ∈ XB . Thus, we complete the proof.

E.2 Proof of Lemma D.4

Proof. First, by the definition of G(β,w) in (D.5), we have for any β̂ ∈ XB , ŵ ∈ XW that

|β̂1 − J(K,L)|2 + ‖β̂1 · Ez∼ρ̃K,L
[
φ(z)

]
+ TK,Lβ̂

2 − bK,L‖22 = max
w∈XW

G(β̂, w) ≤ Gap(β̂, ŵ), (E.12)

where the last inequality follows from the following inequality

min
β∈XB

G(β, ŵ) ≤ min
β∈XB

G(β,w(β)) = G(β∗, 0) = 0.

By the definition of β∗ in (D.2), we rewrite the left-hand side of (E.12) as follows∥∥∥∥( 1 0
Ez∼ρ̃K,L

[
φ(z)

]
TK,L

)
(β̂ − β∗)

∥∥∥∥2

≥ σmin(TK,L)2 ·
(
|β̂1 − J(K,L)|2 + ‖Λ̂− ΛK,L‖2

)
. (E.13)

Combining (E.12) and (E.13), we have that

(|β̂1 − J(K,L)|2 + ‖Λ̂− ΛK,L‖2) ≤ 1/σmin(TK,L)2 ·Gap(β̂, ŵ), (E.14)

which completes the proof of Lemma D.4.
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E.3 Proof of Lemma D.5

Proof. First, let us characterize the geometrically β-mixing property of our problem via the following lemma.

Lemma E.2 (Geometrically β-mixing). Consider a linear transition zt+1 = Uzt + et, where zt ∈ RD is the
Markov Chain and et ∼ N(0,Ψ) is the Gaussian noise independent of {zt}t≥0, and U ∈ RD×D satisfies that
ρ(U) < 1. We denote by νt the distribution of zt and by N(0,Σ∞) the stationary distribution of zt. We define
the k-th mixing time coefficient β(k) as follows

β(k) = sup
t

Ez∼νt
[
‖Pzk(· | z0 = z)− PN(0,Σ∞)(·)‖TV

]
.

Then, it holds that

β(k) ≤ Cρ,U [Tr(Σ∞) +m(1− ρ)−2]1/2ρk,

where ρ ∈ (ρ(U), 1), and Cρ,U is a constant depending on U and ρ.

We obtain the following theorem from Wang et al. (2017) to establish Lemma D.5.

Theorem E.3 (Theorem 1 in Wang et al. (2017)). Let XW and XB be two convex, closed, and bounded sets
and the radius of XW ×XW is D > 0. Consider the following minimax stochastic optimization problem

min
β∈XB

max
w∈XW

G(β,w) = Eξ∼Ξ[g(β,w; ξ)]

where ξ is a random variable drawn from Ξ. The function g is convex in β and concave in w. We assume Ξ is
the stationary distribution of a Markov Chain {ξt}∞t=0 with uniform mixing time τ(η) for any η > 0. Meanwhile,
we assume that for almost every ξ, the function g(β,w; ξ) is L1 Lipschitz continuous for every β ∈ XB , w ∈ XW .
The stochastic gradient ∇βg(β,w; ξ) and ∇wg(β,w; ξ) are L2-Lipschitz continuous for every β ∈ XB , w ∈ XW
and almost every ξ. For any non-increasing step size αt, the projected primal dual stochastic gradient method
updates β and w by

βt+1 = ΠXB
[
βt − αt · ∇βg(βt, wt; ξt)

]
, wt+1 = ΠY

[
wt + αt · ∇wg(βt, wt; ξt)

]
.

for t ∈ [T − 1]. Let

β̄ =

∑T
t=0 αtβt∑T
t=0 αt

, w̄ =

∑T
t=0 αtwt∑T
t=0 αt

.

Then, for any δ, η > 0 such that τ(η) ≤ T/2, it holds with probability at least 1− δ that

max
w∈XW

G(β̄, w)− min
β∈XB

G(β, w̄) ≤
( T∑
t=0

αt

)−1{
A0 +A1 · η ·

T∑
t=0

αt +A2

T∑
t=0

α2
t

+16DL1 ·
[
2τ(η) · log

(
τ(η)/δ

)
·
( T∑
t=0

α2
t + τ(η)α1

)]1/2}
, (E.15)

where we define

A0 = D2 + 12Dα1 · τ(η), A1 = 4L1D, A2 = 10L1 +
(
24L2

1 + 8L1L2D
)
· τ(η). (E.16)

Specifically, for geometrically β-mixing process defined in Lemma E.2, we have the following corollary.

Corollary E.4. Use the same setting as in Theorem E.3. We assume that the k-th mixing time satisfies
β(k) ≤ Cξρ

k for some Cξ > 0, ρ < 1. We set step size αt = α/
√
t for some α > 0. Then, we have that, with

probability at least 1− δ,

max
w∈XW

G(β̄, w)− min
β∈XB

G(β, w̄) ≤ C ·D2 + L2
1 + L1L2D

log(1/ρ)
· log2 T + log(1/δ)√

T
+
C · CξL1D

T
.



Provably Efficient Actor-Critic for Risk-Sensitive and Robust Adversarial RL: A Linear-Quadratic Case

Proof. The proof follows direct computations. By the property of geometrically β-mixing processes, we define
mixing time by τ(η) = log(η/Cξ)/ log ρ and η = Cξ/T . We set αt = α/

√
T and the constants A0, A1, A2 as

(E.16). Note that
∑T
t=1 1/t ∼ log T,

∑T
t=1 1/

√
t ∼ 2

√
T . Thus, we bound the first three terms of the right-hand

side of (E.15) as follows

A0 ≤ C ·D2 · log T/ log(1/ρ),

A1 · η ·
T∑
t=0

αt ≤ C · CξL1D/T,

A2

T∑
t=0

α2
t ≤ C · (L1 + L2

1 + L1L2D) · log2 T/
√
T .

For the last term, we have

16DL1

[
2τ(η) log

(
τ(η)/δ

)( T∑
t=0

α2
t + τ(η)α1

)]1/2
≤ C ·DL1 log T/ log(1/ρ)

√
log log T + log(1/δ).

Thus, we conclude the proof of Corollary E.4.

However, since z ∼ ρ̃K,L is not bounded, the function f(β,w; z, z′) defined in (D.6) is not Lipschitz continuous
with probability bigger than 0, which prevents us to apply Theorem 1 in Wang et al. (2017) directly. Instead,
the following lemma confirms that z is bounded with high probability, so f is Lipschitz continuous with high
probability.
Lemma E.5 (Hansen-Wright inequality). Let A ∈ Rm×m be a matrix and let η ∼ N(0, Im) is a Gaussian random
variable. Then there exists some constant C > 0 such that for any t ≥ 0, it holds that

P
[
|η>Aη − E(η>Aη)| > t

]
≤ 2 exp

(
− C min{t2‖A‖−2

F , t‖A‖−1}
)
.

Proof. See Rudelson et al. (2013) for a detailed proof.

Applying Lemma E.5 to z ∼ ρ̃K,L = N(0, Σ̃K,L), where Σ̃K,L is defined in (D.17), we have that

P
(
|‖z‖2 − Tr(Σ̃K,L)| > t

)
≤ 2 exp

(
− C ·min

{
t2 · ‖Σ̃K,L‖−2

F , t · ‖Σ̃K,L‖−1
})
, (E.17)

for an absolute constant C. We set t = C1 · ‖Σ̃K |L‖ · log T for sufficiently large C1 such that C · C1 ≥ 6. Then,
we have that

t2 · ‖Σ̃K,L‖−2
F = C2

1 · log2 T · ‖Σ̃K,L‖2 · ‖Σ̃K,L‖−2
F ≥ C2

1 · (d+m1)−1 log2 T ≥ t · ‖Σ̃K,L‖−1, (E.18)

where the first inequality holds as a result of the relation between operator norms and Frobenius norms, and the
second inequality holds for sufficiently large T such that C1(d+m1)−1 log T ≥ 1. Define

Et =
{
‖zt‖2 − Tr(Σ̃K,L) ≤ C1 · ‖Σ̃K,L‖ · log T

}
, (E.19)

for t ∈ [T ]. We wite E = ∩1≤t≤TEt. Combining (E.17) and (E.18) we get P(Et) ≥ 1 − 2T−6. Applying union
bound to 1 ≤ t ≤ T , we have that P(E) ≥ 1− 2T−5. On event E , by (E.19), we have that

max
1≤t≤T

‖zt‖2 ≤ C1 · ‖Σ̃K,L‖ · log T + Tr(Σ̃K,L) ≤ C · log T · ‖Σ̃K,L‖F, (E.20)

which illustrates an upper bound on the feature vectors φ(zt), 1 ≤ t ≤ T , since we have
∥∥φ(z)

∥∥
2

= ‖z‖22.

To prove Theorem 5.2, we consider the minimax optimization problem (D.5) restricted on the set E . For any z,
we define

Ez =
{
|‖φz‖2 − Tr(Σ̃K,L)| < C1 · ‖Σ̃K,L‖ · log T

}
. (E.21)
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Thus, by (E.19), we have P(Ez) ≥ 1− 2T−6. For the feature vector φ, vector function H, and objective function
g and G, we define

φ̃(z) = φ(z) · 1Ez ,

H̃(z, z′;β) = H(z, z′;β) · 1Ez ·1Ez′ ,
c̃(z) = c(z) · 1Ez ,

g̃(β,w; z, z′) = g(β,w; z, z′) · 1Ez ·1Ez′ ,

G̃(β,w) = Ez∼ρK,L,z′∼P̃ (· | z;πK,L)

[
g̃(β,w; z, z′)

]
.

(E.22)

We note that when conditioned on E , the output of the primal dual stochastic update applied on G̃ is the same
as that on G. We denote the duality gap for G̃ by G̃ap(β̂, ŵ) = maxw∈XW G̃(β̂, w)−minβ∈XB G̃(β, ŵ). Since g̃ is
Lipschitz continuous, we apply Corollary E.4 to bound the primal dual gap G̃ap(β̂, ŵ).

To apply Corollary E.4, we first establish upper bounds of the ∇(β,w)g̃, ∇2
β,β g̃ and ∇2

w,wg̃ to show that g̃ and ∇g̃
are Lipschitz continuous, where g̃ is defined in (E.22). By direct computation, we have that

∇β1 g̃ = w1 + φ̃(z)>w2, ∇β2 g̃ = [φ̃(z)>w2]>[φ̃(z)− φ̃(z′)] (E.23)

∇w1 g̃ = β1 − c̃(z)− w1, ∇w2 g̃ = H̃2(z, z′;β)− w2. (E.24)

By (E.20) and (E.23), we have that

‖∇β g̃‖2 ≤ C · (log T )2 · ‖Σ̃‖2F. (E.25)

For the gradient with respect to w, we first bound H̃2. By (E.2),

‖H̃2‖ ≤
(
|β1|+ (‖φ̃(z)‖+ ‖φ̃(z′)‖) · R̄B + (‖Q‖F + ‖R‖F + ‖S‖F) · ‖φ̃(z)‖

)
· ‖φ̃(z)‖,

which concludes that

‖∇wg̃‖ ≤
√
|β1 − c̃(z) + w1|2 + (|w2|+ ‖H̃2(z, z′;β)‖)2

≤ C · (log T )3 ·
(
J(K,L) + R̄2

B + R̄2
W + ‖Σ̃K,L‖2F

)
· ‖Σ̃K,L‖F. (E.26)

Meanwhile, we have ∇2
ββ g̃ = 0 and that ∇2

wwg̃ = −I, which, combined with (E.25) and (E.26), implies that g̃
and ∇g̃ are Lipschitz continuous with respect to β and w. Let β̃, w̃ be the output of GTD (Algorithm 3) applied
on G̃. Then, by applying Corollary E.4, we have with probability at least 1− T−5 that

G̃ap(β̃, w̃) ≤ Poly
(
J(K,L), R̄B , R̄W , ‖Σ̃K,L‖F

)
· (log T )4

(1− ρ)
√
T

≤ Poly
(
J(K,L), R̄B , R̄W , σmin(Q− L>SL)−1

)
· (log T )4

(1− ρ)
√
T
, (E.27)

where the second inequality holds as a result of Lemma E.1, and ρ ∈ (ρ(A−BK − CL), 1).

We note that when the event E = ∩1≤t≤TEt holds, it holds that (β̄, w̄) = (β̃, w̃). Thus, it remains to bound the
difference |Gap− G̃ap|. For any β ∈ XB , w ∈ XW , we have that

|G̃(β,w)−G(β,w)| =
∣∣〈Ez,z′[H̃(z, z′;β)−H(z, z′;β)

]
, w
〉∣∣

≤
∣∣Ez,z′[H̃1(z, z′;β)−H1(z, z′;β)

]∣∣ · J(K,L)

+
∥∥Ez,z′[H̃2(z, z′;β)−H2(z, z′;β)

]∥∥ · R̄W , (E.28)

where the expectation is with respect to z ∼ ρ̃K,L, z′ ∼ P̃ (· | z;πK,L). For the two terms on the right-hand side of
(E.28), we have that

H̃1(z, z′;β)−H2(z, z′;β) = c(z) · 1Ecz , (E.29)

H̃2(z, z′;β)−H2(z, z′;β) = H2(z, z′;β)1Ecz + φ(z′)>β2 · φ(z) · 1Ez · 1Ecz′ , (E.30)
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We first bound the right-hand side of (E.29). Applying Cauchy-Schwarz inequality to the first term of the
right-hand side of (E.28) and (E.29), we have that

|H̃1(z, z′;β)−H1(z, z′;β)| ≤
√

P(Ecz) · Ez∼ρ̃K,L
[
c(z)2

]
. (E.31)

Since z, z′ ∼ N(0, Σ̃K,L), we have that

Ez,z′
[
‖φ(z)‖4

]
= Ez,z′

[
‖φ(z′)‖4

]
≤ C · ‖Σ̃K,L‖4F, (E.32)

for an absolute constant C. Thus, we have that

Ez∼ρ̃K,L
[
c(z)2

]
= Ez∼ρ̃K,L

[(
φ(z)>svec(diag(Q,R,−S))

)2]
≤ C · (‖Q‖2F + ‖R‖2F + ‖S‖2F) · ‖Σ̃K,L‖2F (E.33)

By plugging (E.33) into (E.31) and the fact that P(Ez) > 1− 2T−6, we have that∣∣Ez,z′[H̃1(z, z′;β)−H1(z, z′;β)
]∣∣ ≤ C · T−3 · (‖Q‖2F + ‖R‖2F + ‖S‖2F)1/2 · ‖Σ̃K,L‖F. (E.34)

We now bound the right-hand side of (E.30). By the Cauchy-Schwarz inequality, we have∥∥Ez,z′[H̃2(z, z′;β)−H2(z, z′;β)
]∥∥

2

≤
√
P(Ecz) ·

√
Ez,z′

[
‖H2(z, z′;β)‖2

]
+
√

P(Ecz′) ·
√
Ez.z′

[
‖φ(z′)>β2 · φ(z)‖22

]
. (E.35)

For the first term on the right-hand side of (E.35), by the definition of H2 in (E.2) and the Cauchy-Schwartz
inequality, we have that

Ez,z′
[
‖H2(z, z′;β)‖2

]
≤ 4
(
|β1|2 · Ez,z′

[
‖φ(z)‖2

]
+
√

Ez,z′
[
|c(z)|4

]
· Ez,z′

[
‖φ(z)‖4

]
+

+
√

Ez,z′
[
|φ(z)>β2|4

]
· Ez,z′

[
‖φ(z)‖4

]
+
√
Ez,z′

[
|φ(z′)>β2|4

]
· Ez,z′

[
‖φ(z)‖4

])
. (E.36)

Plugging (E.32) into (E.36), by (E.33), we have for an absolute constant C that

Ez,z′
[
‖H2(z, z′;β)‖2

]
≤ C ·

(
J(K,L)2 + R̄2

B + ‖Q‖2F + ‖R‖2F + ‖S‖2F
)
· ‖Σ̃K,L‖4F. (E.37)

Plugging (E.37) into (E.35), by P(Ez) ≥ 1− 2T−6, we have that∥∥Ez,z′[H̃2(z, z′;β)−H2(z, z′;β)
]∥∥

2

≤ C · T−3 ·
(
J(K,L)2 + R̄2

B + ‖Q‖2F + ‖R‖2F + ‖S‖2F
)1/2·‖Σ̃K,L‖2F. (E.38)

Plugging (E.33) and (E.38) into (E.28), we have that

|G̃(β,w)−G(β,w)| ≤ C · T−3 ·
(
J(K,L)2 + R̄2

B + R̄2
W

)
· ‖Σ̃K,L‖2F, (E.39)

for an absolute constant C. So for sufficiently large T , we have that |G̃(β,w)−G(β,w)| < T−1, which implies
that

|Gap(β̂, ŵ)− G̃ap(β̂, ŵ)| ≤ max
w∈XW

|G(β̂, w)− G̃(β̂, w)|+ max
β∈XB

|G(β, ŵ)− G̃(β, ŵ)| ≤ 2T−1. (E.40)

Finally, note that E holds with probability 1 − T−5. Thus, by (E.27), we have with probability at least
1− 2T−5 > T−4 that

Gap(β̄, w̄) ≤ Poly
(
J(K,L), R̄B , R̄W , σmin(Q− L>SL)−1

)
· (log T )4

(1− ρ)
√
T

+ 2T−1

≤ Poly
(
J(K,L), R̄B , R̄W , σmin(Q− L>SL)−1

)
· (log T )4

(1− ρ)
√
T
, (E.41)

where ρ ∈ (ρ(A−BK − CL), 1). Thus, we complete the proof of Lemma D.5.
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E.4 Proof of Lemma B.2

Proof. Note that PK,L and PK′,L′ satisfy the Bellman equation in (C.1). Using the operator T > defined in (C.14),
we have that PK′,L′ = T >K′,L′

(
Q+ (K ′)>R(K ′)− (L′)>S(L′)

)
, which implies that

x>PK′,L′x

=
∑
t≥0

x>
[
(A−BK ′ − CL′)t

]>(
Q+ (K ′)>R(K ′)− (L′)>S(L′)

)
(A−BK ′ − CL′)t

=
∑
t≥0

(x′t)
>(Q+ (K ′)>R(K ′)− (L′)>S(L′)

)
x′t.

So we have that

x>PK′,L′x− x>PK,Lx

=
∑
t≥0

{
x′t
>(
Q+K ′

>
RK ′ − L′>SL′

)
x′t + x′t+1

>
PK,Lx

′
t+1 − x′t

>
PK,Lx

′
t

}
=
∑
t≥0

AK,L,K′,L′(xt),

where

AK,L,K′,L′(x)

= x′
>
{(
Q+K ′

>
RK ′ − L′>SL′

)
+ (A−BK ′ − CL′)>PK,L(A−BK ′ − CL′)− PK,L

}
x′

= 2x>(K ′ −K)>EK,Lx+ x>(K ′ −K)>(R+B>PK,LB)(K ′ −K)x

+ 2x>(L′ − L)FK,Lx+ x>(L′ − L)>(−S + C>PK,LC)(L′ − L)x

+ 2x>(L′ − L)>C>PK,LB(K ′ −K)x,

which completes the proof.

E.5 Proof of Lemma B.3

Proof. First, for the upper bound in (B.6), by (C.7) and Lemma B.2, we have that

J(K,L)− J
(
K(L), L

)
= Tr

(
(PK,L − P ∗L)Ψσ

)
= −EπK(L),L

x∗0∼N(0,Ψσ)

[
ALK,K(L)(x

∗
t )
]
, (E.42)

where x∗t+1 =
(
A−BK(L)− CL

)
x∗t . By completing the square, for any K,K ′, we have

ALK,K(L)(x) = 2x>(K ′ −K)>EK,Lx+ x>(K ′ −K)(R+B>PK,LB)(K ′ −K)x

= Tr
[
xx>

[
K ′ −K + (R+B>PK,LB)−1EK,L

]>
(R+B>PK,LB)

·
[
K ′ −K + (R+B>PK,LB)−1EK,L

]]
− Tr

(
xx>E>K(R+B>PK,LB)−1EK

)
≥ −Tr

(
xx>E>K(R+B>PK,LB)−1EK

)
, (E.43)

where the equality holds when K ′ = K − (R+B>PK,LB)−1EK,L. By (E.42) and (E.43), we have that

J(K,L)− J
(
K(L), L

)
≤ ‖(R+B>PK,LB)−1‖ · Tr

(
Ex∗0∼N(0,Ψσ)

[∑
t≥0

x∗tx
∗
t
>]) · Tr(E>K,LEK,L). (E.44)

On the other hand, we have

Ex∗0∼N(0,Ψσ)

[∑
t≥0

x∗tx
∗
t
>] = Ex∗0∼N(0,Ψσ)

[
TK(L),L(xx>)

]
= ΣK(L),L,
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which combining with σmin(R+B>PK,LB) ≥ σmin(R) and (E.44), we have that

J(K,L)− J(K(L), L) ≤ 1/σmin · ‖Σ∗L‖ · Tr(E>K,LEK,L).

Meanwhile, to establish the lower bound, note that in (E.43) the equality is obtained when K ′ = K − (R +
B>PK,LB)−1EK,L, so we have

J(K,L)− J(K(L), L) ≥ J(K,L)− J(K ′, L)

= −Ex′0∼N(0,Ψσ)[
∑
t≥0

ALK,K′(x
′
t)]

= Tr
(
E>K,L(R+B>PK,LB)−1EK,LΣK′,L

)
≥ 1/σmin(Ψσ) · ‖R+B>PK,LB‖−1Tr(E>K,LEK,L).

E.6 Proof of Lemma B.4

Proof. According to Polyak (1963), we need to show that |J(K ′t+1, L) − J(Kt, L)| is bounded by
O
(
Tr(E>Kt,LEKt,L)

)
. By Lemma B.2, we have

J(K ′t+1, L)− J(Kt, L) = Tr((PK′t+1,L
− PKt,L)Ψσ)

= −2γ · Tr(E>Kt,LEKt,L · ΣKt,L) + γ2 · Tr(E>Kt,L(R+B>PK,LB)EKt,L · ΣKt,L)

≤ −2γ · Tr(E>Kt,LEKt,L · ΣKt,L) + γ2‖R+B>PK,LB‖ · Tr(E>Kt,LEKt,L · ΣKt,L)

≤ −2γ · Tr(E>Kt,LEKt,L · ΣKt,L)

+ γ2(‖R‖+ σmin(Ψσ) · ‖B‖2 · (J(K0, L) + χ)) · Tr(E>Kt,LEKt,L · ΣKt,L), (E.45)

where the last inequality is a result of Lemma E.1 and the induction assumption J(Kt, L) ≤ J(K0, L). Set γ > 0
to be sufficiently small such that

γ ≤
[
‖R‖+ σmin(Ψσ) · ‖B‖2 · (J(K0, L) + χ)

]−1
. (E.46)

Combining (E.45) and (E.46), applying Lemma B.3 and the fact ΣKt,L � Ψσ, we get that

J(K ′t+1, L)− J(Kt, L) ≤ −γ · Tr(E>Kt,LEKt,L · ΣKt,L) ≤ −γ · σmin(Ψσ) · Tr(E>Kt,LEKt,L)

≤ −γ · σmin(Ψσ) · σmin(R) · ‖ΣK(L),L‖−1 · (J(Kt, L)− J(K(L), L)). (E.47)

This inequality also implies that J(K ′t+1, L) ≤ J(Kt, L) ≤ J(K0, L). Further, (E.47) implies that

J(K ′t+1, L)− J(K(L), L) ≤
[
1− γ · σmin(Ψσ) · σmin(R) · ‖ΣK(L),L‖−1

]
· (J(Kt, L)− J(K(L), L))

E.7 Proof of Lemma B.5

Proof. We now bound the difference of J(K ′t+1, L) and J(Kt+1, L). By (C.7) in Proposition 4.2, we have that

|J(Kt+1, L)− J(K ′t+1, L)| =
∣∣Tr
(
(PKt+1,L − PK′t+1,L

)Ψσ

)∣∣ ≤ ‖Ψσ‖F · ‖PKt+1,L − PK′t+1,L
‖. (E.48)

We modify Lemma 24 in Fazel et al. (2018) to construct an upper bound of ‖PKt+1,L − PK′t+1,L
‖, which is

established in the following lemma.
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Lemma E.6 (Perturbation of PK,L for fixed L). Suppose that K ′ is a small perturbation of K in the sense that

‖K −K ′‖ ≤ σmin(Ψσ)

4 · ‖ΣK,L‖ · ‖B‖ ·
(
‖A−BK − CL‖+ 1

) . (E.49)

Then, we have that

‖PK′,L − PK,L‖ ≤ Cσ−1
min(Ψσ) · ‖ΣK,L‖ · ‖K‖2 · ‖R‖ · ‖B‖ · ‖K −K ′‖. (E.50)

Proof. See a detailed proof in Fazel et al. (2018). Note that for fixed L, the problem is equivalent to single agent
LQR problem.

To verify condition (E.49) of Lemma E.6, in what follows, we establish an upper bound of

4 · ‖ΣKt+1,L‖ · ‖B‖ ·
(
‖A−BKt+1 − CL‖+ 1

)
· ‖Kt+1 −K ′t+1‖.

By the fact that ‖A−BK − CL‖ < 1, and Lemma E.1, we have that

4 · ‖ΣKt+1,L‖ · ‖B‖ ·
(
‖A−BKt+1 − CL‖+ 1

)
· ‖Kt+1 −K ′t+1‖

≤ 8‖B‖ ·
(
J(Kt+1, L) + χ

)
· ‖Kt+1 −K ′t+1‖ (E.51)

By the definition of K ′t+1, we have that

‖Kt+1 −K ′t+1‖ ≤ γ · (1 + ‖Kt‖+ ‖L‖) · ‖Λ̂Kt,L − ΛKt,L‖. (E.52)

Combining (E.51) and (E.52), to ensure condition (E.49), it suffices to make the following inequality holds

8γ · ‖B‖ ·
(
J(Kt+1, L) + χ

)
· (1 + ‖Kt‖+ ‖L‖) · ‖Λ̂Kt,L − ΛKt,L‖) ≤ σmin(Ψσ). (E.53)

On the other hand, to establish Lemma B.5, we need to ensure the following inequality

C · σ−1
min(Ψσ) · ‖ΣKt+1,L‖ · ‖Kt+1‖2 · ‖R‖ · ‖B‖ · ‖Kt+1 −K ′t+1‖
≤ 1/2 · γ · σmin(Ψσ) · σmin(R) · ‖Σ∗L‖−1 ·

(
J(Kt, L)− J(K(L), L)

)
,

which is implied by

C · J(K0(L), L)2 · ‖Kt+1‖2 · (1 + ‖Kt+1‖+ ‖L‖) · ‖Λ̂Kt,L − ΛKt,L‖ ≤
(
J(Kt, L)− J(K(L), L)

)
. (E.54)

Here we apply Lemma E.1 and assume that ‖R‖, ‖B‖, σmin(Ψσ) are constants. Thus, to ensure (E.54) and (E.53),
we need to ensure

‖Λ̂Kt,L − ΛKt,L‖ ≤
J(Kt, L)− J(K(L), L)

C · J(K0(L), L)2 · ‖Kt+1‖2 · (1 + ‖Kt+1‖+ ‖L‖)
. (E.55)

By Theorem 5.2, (E.55) holds with probability 1− T−4
TD by setting

T ≥

(
Poly

(
J(Kt, L), ‖Kt‖F, ‖L‖F, κ−1

)
σmin(TKt,L) ·

(
1− ρ(A−BKt − CL)

)
·
(
J(Kt, L)− J(K(L), L)

))5

,

which completes the proof.
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E.8 Proof of Lemma B.7

Proof. Applying Lemma B.2, we have that

x>PK′,L′x− x>P ∗Lx =
∑
t≥0

AK(L),L,K′,L′(x
′
t),

where x′0 = x, x′t+1 = (A−BK ′ − CL′)x′t. Moreover, by completing the square and that E∗L = 0, we have

AK(L),L,K′,L′(x) = x>
(
K ′ −K(L)

)>
(R+B>P ∗LB)

(
K ′ −K(L)

)
x

+ 2x>(L′ − L)F ∗Lx+ x>(L′ − L)>(−S + C>P ∗LC)(L′ − L)x

+ 2x>(L′ − L)>C>P ∗LB
(
K ′ −K(L)

)
x

= 2x>(L′ − L)>F ∗Lx+ x>(L′ − L)(−S + C>P ∗KC)(L′ − L)x

+ x>
[
K ′ −K(L)− (R+B>P ∗LB)−1B>P ∗LC(L′ − L)

]>
(R+B>P ∗LB)

·
[
K ′ −K(L)− (R+B>P ∗LB)−1B>P ∗LC(L′ − L)

]
x

− x>(L′ − L)>C>P ∗LB(R+B>P ∗LB)−1B>P ∗LC(L′ − L)x

≥ 2x>(L′ − L)>F ∗Lx− x>(L′ − L)>WL(L′ − L)x.

By Woodbury matrix identity, we have that

WL = S − C>
[
P ∗L − P ∗LB(R+B>P ∗LB)−1B>P ∗L

]
C

= S − C>
[
(P ∗L)−1 +BS−1B>

]−1
C

which means that W ∗L is monotonically decreasing when P ∗L is increasing.

E.9 Proof of Lemma B.8

Proof. By applying Lemma B.7, we have that

x>P ∗L̄n+1x− x>P ∗Lnx ≥ 2ι ·
∑
s≥0

x′s
>
F̃>LnF

∗
Lnx

′
s − ι2 ·

∑
s≥0

x′s
>
F̃>LnWLn F̃Lnx

′
s,

where x′0 = x, x′s+1 =
(
A−BK(L̄n+1)− CL

)
x′s.

After taking expectation with respect to x ∼ N(0,Ψσ), combining with (C.7) and that T ∗
L̄n+1(Ψσ) = Σ∗

L̄n+1 , we
have that

J∗(L̄n+1)− J∗(Ln) ≥ 2ι · Tr
(
Σ∗L̄n+1 F̃

>
LnF

∗
Ln
)
− ι2 · Tr

(
Σ∗L̄n+1 F̃

>
LnWLn F̃Ln

)
. (E.56)

We now bound the two terms on the right-hand side of (E.56) separately.

First, we bound the first term on the right of (E.56). Applying Lemma B.6 and tangle inequality, we have

Tr(Σ∗L̄n+1 F̃
>
LnF

∗
Ln) ≥ Tr(Σ∗Ln F̃

>
Ln F̃Ln)− ‖Σ∗L̄n+1 − Σ∗Ln‖ ·

∣∣Tr(F̃>LnF
∗
Ln)
∣∣. (E.57)

To bound the second term of (E.57), we obbtain the following lemma from Zhang et al. (2019b).
Lemma E.7 (Lemma 6.8 in Zhang et al. (2019b)). Under Assumption 4.1, for any L,L′ ∈ L, there exists some
constants BLL,BPL ,BKL > 0, such that if

‖L− L′‖ ≤ min

{
BLL,
‖B‖

[
BPL‖A−BK(L)− CL‖+ ‖P ∗L‖‖C‖

]
BPL‖B‖‖C‖

,

2
(
‖A−BK(L)− CL‖+ 1

)(
BKL ‖B‖+ ‖C‖

)
(BKL )2‖B‖2 + ‖C‖2 + 2BKL ‖B‖‖C‖

}
, (E.58)

it holds that

‖Σ∗L − Σ∗L′‖ ≤ 4
(
‖A−BK(L)− CL‖+ 1

)(
BKL ‖B‖+ ‖C‖

)
· ‖L− L′‖.
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Thus, if we set KL > 0 to denote the infimum taken over all of the constraints of ‖L′ − L‖ in (E.58), i.e.,

KL = inf
L∈L

{
BLL,
‖B‖

[
BPL‖A−BK(L)− CL‖+ ‖P ∗L‖‖C‖

]
BPL‖B‖‖C‖

,

2
(
‖A−BK(L)− CL‖+ 1

)(
BKL ‖B‖+ ‖C‖

)
(BKL )2‖B‖2 + ‖C‖2 + 2BKL ‖B‖‖C‖

}

combining with (E.57), we have

Tr(Σ∗L̄n+1 F̃
>
LnF

∗
Ln) ≥ σmin(Ψσ)−1 · ‖F̃Ln‖2F
− 16ι ·

(
‖A−BK(L)− CL‖+ 1

)(
BKL ‖B‖+ ‖C‖

)
‖F̃Ln‖2F‖F ∗Ln‖F, (E.59)

provided that

‖L̄n+1 − Ln‖ = ι · ‖F̃Ln‖ ≤ KL. (E.60)

Note that we can bound ‖F̃Ln‖ by the following lemma from Zhang et al. (2019b).

Lemma E.8 (Lemma 6.9 in Zhang et al. (2019b)). Let ‖F̃L‖ be the projected policy gradient defined in (B.11).
Then it holds that

2
√
p
σmin(Ψσ) · ‖F̃L‖F ≤ ‖∇LJ∗(L)‖

≤ 2J∗(L) + 2χ

κ
·

√
‖WL‖

[
J(K∗, L∗)− J∗(L)

]
σmin(Ψσ)

,

where p = min{d,m2}.

By Lemma E.8, to ensure (E.60), we have the following requirement.

ι ≤ ῑL1 =
κ · KL

2J
(
K(Ln), Ln

)
+ 2χ

·

√
σmin(Ψσ)

‖WLn‖
[
J(K∗, L∗)− J

(
K(Ln), Ln

)]
For the second term on the right side of (E.56), noticing that by Lemma E.1 and Lemma B.7, it holds that

Σ∗L̄n+1 F̃
>
LnWLn F̃Ln ≤ ‖Σ∗Ln‖F · ‖WLn‖F · ‖F̃Ln‖2F ≤

√
m2

J(K(Ln), Ln) · ‖S‖F
κ

‖F̃Ln‖2F (E.61)

Thus, substituting (E.59) and (E.61) to (E.56), we have that

J∗(L̄n+1)− J∗(Ln) ≥ ι · σmin(Ψσ)−1 · ‖F̃Ln‖2F(1− ι ·
√
m2

J(K(Ln), Ln) · ‖S‖F · σmin(Ψσ)

κ

− 16ι ·
(
‖A−BK(L)− CL‖+ 1

)(
BKL ‖B‖+ ‖C‖

)
‖F ∗Ln‖F), (E.62)

which gives the other requirement on ι

ι ≤ ῑL2 =
1

2
·
[√

m2
J(K(Ln), Ln) · ‖S‖F · σmin(Ψσ)

κ

+ 16 ·
(
‖A−BK(L)− CL‖+ 1

)(
BKL ‖B‖+ ‖C‖

)
‖F ∗Ln‖F

]−1

Note that if we denote ῑ = infL∈L{ῑL1 , ῑL2 }, then ῑ > 0. Further, by (E.62), for any ι ∈ (0, ῑ), it holds that

J∗(L̄n+1)− J∗(Ln) ≥ ι/2 · σmin(Ψσ)−1 · ‖F̃Ln‖2F,

which completes the proof.
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E.10 Proof of Lemma B.10

Proof. By the expression of FK,L in (C.11), we have

‖FK,L − F ∗L‖ = ‖C>PK,L
(
CL+BK −A

)
− C>P ∗L

(
CL+BK(L)−A

)
‖

≤ ‖C‖ ·
[
‖P ∗L‖ · ‖B‖ · ‖K −K(L)‖+ ‖PK,L − P ∗L‖ · ‖A−BK − CL‖

]
≤ ‖C‖ ·

[
‖B‖ · ‖P ∗‖ · ‖K −K(L)‖+ ‖PK,L − P ∗L‖

]
, (E.63)

where the last inequality holds as a result of the fact that ρ(A−BK −CL) < 1, and P ∗ � P ∗L. For the first term
on the right-hand side of the last inequality, by Lemma B.2, we have that

J(K,L)− J∗(L) = Tr
(

(K −K(L))>(R+B>P ∗LB)(K −K(L)) ·Ψσ

)
≥ σmin(Ψσ) · Tr((K −K(L))>(R+B>P ∗LB)(K −K(L)))

≥ σmin(R) · σmin(Ψσ) · ‖K −K(L)‖2F. (E.64)

For the second term on the right-hand side of the last inequality, by (C.7), we have that

‖PK,L − P ∗L‖ ≤ σmin(Ψσ)−1 ·
[
J(K,L)− J∗(L)

]
. (E.65)

Thus, plugging (E.64) and (E.65) into (E.63), we have that

‖FK,L − F ∗L‖ ≤ σmin(R)−1/2 · σmin(Ψσ)−1/2 · ‖C‖ · ‖B‖ · ‖P ∗‖ ·
[
J(K,L)− J∗(L)

]1/2
+ σmin(Ψσ)−1 · ‖C‖ ·

[
J(K,L)− J∗(L)

]
≤ C ·

[
J(K,L)− J(K(L), L)

]
,

for an absolute constant C, which completes the proof.
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