Provably Efficient Actor-Critic for Risk-Sensitive and Robust Adversarial RL: A Linear-Quadratic Case

A Pseudocode of NENAC for Zero-Sum Games in General

In this section, we present the detailed description of NENAC for RSRL and RARL in general, which is introduced
in §3. Note that the computation of the natural policy gradients requires taking expectation with respect to pg 1.,

Algorithm 2 NENAC for Zero-Sum Games in General
Input: Initial parameters Ky and Lg. Stepsize ¢ of the outer loop. Stepsize v of the inner loop. Number of
iterations 7 of the inner loop. Number of iterations N of the outer loop. Feasible parameter set L.
1: Initialization: K < Ky, L < Lg.
2: forn=0,1,...,.,N do
3:  Initialization: K < Ko(L).
fort=0,1,...,7 do N
Inner Critic Step: Estimate Qx 1 by Q* via policy evaluation (e.g. GTD).
Inner Actor Step: K + K —~-Z(K; L)*lE(w,u,v)NﬁK,L[VKlog i, (u,v|z) - @)‘(m,u, v)].
end for R
Outer Critic Step: Estimate Qg 1, by Q* via policy evaluation (e.g. GTD).
9:  Outer Actor Step: L« Ho{L + ¢ Z(L; K) 'E(y )i, VL7 L (0,0 ] 2) - QM (@, u, v)]}.
10: end for
Output: (K, L) that estimates (K*, L*), where K is the optimal policy for RSRL and RARL.

which is the stationary distribution induced by 7k 1. For RSRL and RARL in general, such an expectation can
be obtained by sampling from pg . For RSRL and RARL in the LQ setting, we develop a more efficient method
to obtain the natural policy gradient, which is introduced in §4.

B Proof of the Main Results

In this section, we present the proof of Theorem 5.3. To this end, we first restate Theorem 5.3 with detailed
dependency as follows.

Theorem B.1 (Theorem 5.3 restated). Suppose that Assumptions 4.1, 4.3 and 5.1 hold. Let {(K}*,L™)}:n>0
be generated by Algorithm 1. Then, the following properties hold.

(i) For a fixed n, let K; = K} and L = L". We set the number of GTD iterations at the inner critic step
T = Q(e~?), the stepsize of the inner loop

7 < [IRI + 0min(¥o) - | BI? - (J(Ko, L) +x)] ",

and the number of inner loop iterations 7 = (log(1/€)). Then, with probability at least 1 — €1, it holds
that

J(K7,L)— J(K(L),L) <.

(ii) We set the number of GTD iterations at the outer critic step T2% = Q(e719), the stepsize ¢ < 7 for some
£ > 0, and the number of outer loop iteration N' = O(¢~2). Then, it holds with probability at least 1 — £1°
that

N
NTES F| < e

n=1

Proof. Our analysis consists of two parts. In the first part, we show the global convergence of the inner loop.
Then, in the second part, we show the global convergence of the outer loop, which corresponds to the global
convergence of Algorithm 1. In what follows, for notational simplicity, we denote (1) 1. by (7 for any notation (.

Global Convergence of the Inner Loop. The proof of the global convergence of the inner loop is based on
Yang et al. (2019); Fazel et al. (2018). For notational simplicity, let K; = K}* and L = L" for a fixed n. In the
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inner loop, we solve the following optimization problem
rr}l(i/n J(K', L),
for a fixed L € £, where £ is defined in (4.10). For a fixed L, we have that v; = — Lz +aan?. Thus, the transition
takes the following form of
Tyy1 = Ay + Bug + C(—Lay + 09n?) + er = Apa + Bug + ey, (B.1)
where we write
A, =A-CL, ect =e;+ 09 - Cn?. (B.2)
The cost function takes the form of
c(z,u) =E,p [:L'TQCL' +u'Ru— (=L + o9n®) " S(—Lx + 02772)]
=2'Qrr+u Ru+Ep [(02772)TS(027]2)], (B.3)
where we write
QL=Q—-L"SL. (B.4)

Note that E,2[(c2n?) T S(oan?)] is independent of K and L. Thus, the cost function in (B.3) is equivalent to the
following cost function

cr(r,u) =2 Qrz +u' Ru. (B.5)

Thus, the inner loop is equivalent to a single agent LQ control problem with transition dynamics(B.1) and cost
function (B.5). For a fixed L € £, we update K via

Et:A%(zt,L’Kt+A23L7A%(1t,L7 Kt+1:Kt*’Y'Et7
where A &1, 1 the output of Algorithm 3 that estimates Ag . Ideally, K; converges to K (L), which is the optimal
solution of the inner minimization problem.

We then establish the following lemma that characterizes the difference between P 1 and Pk 1/, which serves as
a fundamental lemma though the proof.

Lemma B.2 (Cost Difference). Let (K, L) and (K’, L") be stable policy pairs. Let {z}}:>0 be the sequence
generated by x( = x,z;, | = (A — BK' — CL")x} for t > 0. Then, it holds that

2" P px —a! Py o= E Ag.ni, 0 (),

t>0
where
Agpxrp(e) =20 (K —K) " Ex oz +2" (K'— K)"(R+ B" Px . B)(K' — K)x
+22 (L = L)Fgpz+a" (I’ = L) (=S + CTPx 1,C) (L' — L)x
+22" (L' = L)' CT P B(K' — K)z.
Proof. See a detailed proof in §E.4. O

Applying Lemma B.2, we establish the following lemma, which characterizes the gradient dominance of J(K, L)
with respect to K.

Lemma B.3 (Gradient Dominance of J(K, L)). For any stable policy (K, L), under Assumption 4.1, we have
that

Omin(¥) - |[R+ BT P, B| ™" Tr(Eg [ Ex,L) (B.6)
< J(K,L) = J(K(L),L) < 1/omin(R) - |Si|l - Tr(Eg  Ex.L).
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Proof. See §E.5 for details. O

By Polyak (1963), Lemma B.3 is sufficient to show the linear convergence in objective function of natural policy
gradient if we have the exact Ek, 1. Since we only have the estimation EKM L of Ek, 1, we need to aggregate
the error of estimating Ex, 1 by EK“L‘ Note that we assume (Ky, L) is a stable policy pair by Assumption 5.1,
which implies that J(Ko, L) is finite. We use mathematical induction to prove that {J(K;, L)}+>0 is a monotone
decreasing sequence. Suppose that J(K;, L) < J, (Ko, L) < co. We define K], as the parameter obtained by a
single step of natural policy gradient with Ek, ; as follows

Kt/+1 = Kt — ’YEKt,L-

We use K[, as the interpolating term of K; and K;y;. The following lemma that characterizes the decrease of
J(K} 4, L).

Lemma B.4. We set v to satisfy that
) -1
7 < (IR + omin(¥o) - | BI? - (J(Ko, L)+ X)) -
Then, we have that
J(Kip1, L) = J(Ke, L) £ = Omin(Po) - omin(R) - |ZL )71+ (J(K, L) = J(K(L), L).
Proof. See a detailed proof in §E.6. O
In the sequel, we set v to satisfy
-1
7 < (IRl + omin(¥a) - [ BI? - (J (Ko, L) +%)) -

We establish the following lemma that characterizes the difference |J(Kyy1,L) — J(K{ 1, L)|.

Lemma B.5. At the the t-th inner iteration, we set the number of GTD iterations Ti%, at the inner critic step
in Algorithm 1) to satisfy that

5
in Poly (J (K¢, L), || Kilr, || Lllr, £7")
Trp > . (B.7)
Omin(Tk,,) - (1 — p(A— BK, — CL)) - (J(K;, L) — J(K(L), L))
Then, we have that
| J(K 41, L) = T (Kis, L)
<1/2-7 - 0min(¥s) - Omin(R) - ||ZEH71 : (J(Kt: L) — J(K(L), L)),
with probability at least 1 — (T8,) 4.
Proof. See a detailed proof in §E.7. O

We set Ti1 to satisfy (B.7) of Lemma B.5. By Lemma B.4 and B.5, we have with probability at least 1 — (Ti%,)~*
that

J(Kig1, L) = J(Ky, L) < [J(K{yy, L) = J(Kpp, L) + J (K, L) = (K, L)

<
< <1/2-7 - 0uin( ) - uin(R) - S5 71 (J(Kw L) — J(K(L), L) <0, (B&)

which shows that the sequence {J(K¢, L)}:>o decreases monotonously. By rearranging the inequality (B.8), we
have with probability at least 1 — (7/%))~* that

J(Kt+1,L) - J(K(L), L) < [1 - 7/2 . Umin(\l}o) . UInin(R) : HE*LH_l] : (J(KtvL) - J(K(L)vL))7
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which shows the linear convergence of the inner loop of Algorithm 1. Specifically, to ensure that J(K;, L) —
J(K(L),L) < e, we set the number of iterations 7 of the inner loop of Algorithm 1 to be

(B.9)

T > 7_1 . Umin(‘I/cr)_l . Umin(R)_l : HEEH . log (Z[J(KOVL) _EJ(K(L)7L)] >7

where we use that fact that —log™'(1 —z) < 2~ ! for 0 < z < 1. Recall that we set Trp = Q(¢°) to ensure the
condition (B.7), which implies that the failure probability of each inner critic step is (T3%)~% = O(¢?°). Thus,
by noting that the total number of iterations is 7 = Q(log(1/¢)), we have that the failure probability of the
inner loop in Algorithm 1 is bounded by O(e?” - log(1/¢)) < €!°. Thus, we show that when we set the number
of inner loop iteration to be 7 = Q(log(1/€)) and the number of GTD iterations at the inner critic step to be
T = Q(e~®), it hold that J(K7, L) — J(K(L), L) < € with probability at least 1 — e~'°. Thus, we complete the
proof of part (i) of Theorem 5.3.

Global Convergence of the Outer Loop. The proof of the global convergence of the outer loop is based on
Zhang et al. (2019b), which is based on the population version of the policy gradient and the exact K(L). In
contrast to their model-based analysis, our analysis is based on the actor-critic scheme, which requires us to
propagate the errors due to the estimation of K (L) and the policy gradient. In the outer loop, we update L via

Ln+1 == HL{L” +¢- ﬁn}: ﬁn == K:;(Zn7LnKn + K33n7LnL’n - K%n’Ln7

where K" = K%. By part (i) of Theorem 5.3, we have that K" approximates K (L") in the sense that
J(K™, L™) — J(K(L™),L) < e. We define

LM =TIR{L" + .- F}. }, (B.10)

where £ is defined in (4.10) and TI% = ITI%" is defined in (4.13). We use L™*! to connect L"** and L™. We obtain
the following lemma from Zhang et al. (2019b) for the projection operator I1%.

Lemma B.6 (Lemma 6.3 in Zhang et al. (2019b)). The set £ is convex and compact, and the projection operator
I, is convex. For and Lq, Lo € R4*™2 it holds that

Tr(S;HE{L1 — Lo} ' (L1 — L)) > Tr(S;1E{L1 — Lo} 'TIZ{L; — Lo}).

By Lemma B.2, we establish the following lemma, which lower bounds the value difference 2" P},z — 2" P} x.

Lemma B.7. Suppose that (K’,L’),(K(L),L) are two stable policy pairs. Further, let z, = z,z,,, =
(A— BK' — CL')x}. Then we have

o Prrpr—a  Pie >y 20, (L — L) Fiay =3 a) (L' — L)Wy (L' — L)
t>0 t>0

where Wp, takes the form of
Wp=8-C'P;C+C"P;B(R+B"P;B)"'B"P;C
—Ss-CT((P) '+ BST'BT)'C.
Proof. See §E.8 for a detailed proof. O

Recall that J*(L) = ming J(K, L) is the inner minimum value for a fixed L. We show that {J*(L")},>0 is
monotonously decreasing by induction. We assume that J*(L") < J*(L°). We define

Fro =" (ME{L" + - Ff.} — L. (B.11)

It then holds that Lt =17 4. ﬁLn. We establish the following lemma to demonstrate the increase from
J*(L™) to J*(L™F1).
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Lemma B.8. There exist some positive constant ¢ > 0 such that for any stepsize ¢ € (0, ],
JHLY) = T (L") > /2 - 0min (Uo) 7 - || Frn |
Proof. See §E.9 for a detailed proof. O

We now bound the difference J*(L"+1) — J*(L"*1). We obtain the following lemma from Zhang et al. (2019b)
that demonstrates the Lipschitz continuous of J*(L).

Lemma B.9 (Proposition B.1 in Zhang et al. (2019b)). For any L, L’ € L, there exists a constant B% > 0 such
that it holds when ||L — L'|| < B% that

1Pt = PL | < BZ - |IL— L),
for a constant BE.
By Lemma B.9 and (C.7) of Proposition C.1, we have that
(L) = T (L) < BE [0, |- L — L (B.12)
for ||L"+1 — L1 < BE. By the definition of L™ in (B.10) and the convexity of IIz in Lemma B.6, we have that
IL" T = L <o ||y — Fal. (B.13)
Thus, we proceed to bound the difference between ﬁ" and F},.. By the triangle inequality, we have
1Ew — Fioll < |1Fa = Fren po |l + | Fien o — Finll- (B.14)
By (B.12), (B.13), and (B.14), we have that
(L) = (L] < 0 BE | - (1B = Ficn o | + | Frcn in — Fill). (B.15)
For the first term on the right-hand side of (B.15), we have that
1F = Ficn oo | < I[Rgn zn = Agen o] - (1K™ || + 12" 4+ 1). (B.16)

Thus, by Theorem 5.2, the difference ||ﬁn — Fgn pn|| is sufficiently small when we set the number of GTD

iterations T9W at the outer critic step to be sufficiently large. For the second term on the right-hand side of

(B.15), we establish the following lemma. The following lemma bounds the difference ||Fxn ;» — Ff.| on the
right of (B.15).

Lemma B.10. For stable policy pair (K, L), it holds that that
|Fics = Fill < € (J(K, L) = J(K(L), L)),
where C' > 0 is a constant.
Proof. See §E.10 for a detailed proof. O

Thus, by plugging (B.16) and Lemma B.10 into (B.15), we have that
T (DY) — JF (L)
<0 BE |- (IRkn s — Mg ol (LK + 127 +1) + - (™27~ (L)) (B17)
By Lemma B.8, to establish the increase from J*(L") to J*(L"*1), it suffices to show that

(L) = (L) < /4 0in (W) - ([ Bl (B.18)
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By comparing (B.17) and (B.18), we note that (B.18) holds if the following two inequalities holds simultaneously

1/8 - Oin (W) - [ P
B 1ol - (B + (1L + 1)
1/8- Umin(\llo)_l ) ”i';L"”2

C-BZ - [%|| ’

|Agn pn — Agn o]l < (B.19)

J(K", L") — J*(L") < (B.20)

We now fix a € > 0 and consider Hf n|| > €. By Theorem 5.2, if we set the number of GTD iterations at the outer
critic step T2W = Q(e719), we have that the condition (B.19) holds with failure probability O(g4?). Meanwhile,
following from (B.9) by setting the number of inner loop iterations 7 = Q(log(1/¢)) and the number of GTD
iterations at the inner critic step T2, = Q(e710), we have that the condition (B.20) holds with failure probability
O(2%). Note that when (B.19) and (B.20) hold, by (B.18) and Lemma B.8, we have that

4(J*(Ln+1) _ J*(Ln))

Fra|? < B.21
I1Fon P < S (B.21)
Upon telescoping (B.21), we have that
N-1 N-1

1 ~ 1 ~ Umin(‘lla) I:J* —J* (LO)]

— Frollp < | = Fral2 <2 .

3 2 WPl < N;ﬂnup_\/ L
By setting V' = Q(e72), we have that N'71 - ZQZOl |Fn|| < e. By the union bound, the failure probability is
N - (0(e?°) + O(£%)) < &1, Thus, we complete the proof of Theorem 5.3. O

C Policy Gradient Theorem in the LQ setting

We first give a detailed version of Proposition 4.2. The proof is a modification of that of Proposition 3.1 in Yang
et al. (2019), which establishes the policy gradient theorem for the single-agent linear quadratic regulator under
the ergodic setting. Compared with Yang et al. (2019), we need to consider the system determined by the two
competing players. Note that Proposition C.1 recovers Proposition 3.1 in Yang et al. (2019) when L = 0.

Proposition C.1. We assume that the policy 7x ris stable in the sense that p(A — BK — CL) < 1. Let
Pk, 1, Yk, be the unique positive definite solutions to the following Lyapunov equations
Pk =(Q+K'RK ~L"SL)+ (A~ BK —CL)" Pk .(A— BK — CL), (C.1)
Ykr=Y,+(A-BK - CL)Xg(A-BK-CL)". (C.2)
Then, the Markov chain z;41 = (A — BK — CL)z; + € has a stationary distribution pg = N(0,Xk ). We

denote the second tensor power of state-action pair (z,u,v) by ®(z,u,v) = (z,u,v)®?. We define the parameter
matrix Ag j, for the function Qg 1, as follows,

AR, AR ARL Q+ AT Py A AT Py 1B ATPg 1.C
A=A, A2, AR | = BTPg A R+ B"Pg 1B BT Pk 1.C . (C.3)
AR L A2 AR CTPx A C"Px1B ~S+C"PgC

Then, the state and state-action value functions are quadratic functions, taking the form

Vi.p(z) =2 Pz — Tr(Px 1 Yk.1), (C.4)
Qr,r(z,u,v) = Tr(AK,LCI)(m,u, 1))) +4x.L, (C.5)

where qx 1 = —07 - Tr(R+ Pg ., BBT) — 0% -Tr(—S + Pk, ,CCT) is independent of (x,u,v). We have the following
Bellman equation,

Tr(Ag,.®(z,u,v)) = c(z,u,v) — J(K,L) + ET" [T‘I‘(AK,LCI)(J?I,U/, v')) )ac, u, v], (C.6)
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where (2',v,v") denotes the subsequent state-action pair following policy 7 1. Further, for the ergodic cost
J(K, L), it holds that

=Tr((Q + K'RK — L"SL)Yk. 1) + o1 Tr(R) — 05 Tx(S),

= Tr(Px.rV,) + oiTr(R) — o3 Tr(S), (C.7)
ViJ(K,L)=2((R+ B"Px,1B)K — B Pg 1 (A— CL))Yk 1 = 2Ek 1Yk 1, (C.8)
ViJ(K,L)=2((-S+ C"Px,,O)L — C" Py (A — BK))Sk 1 = 2Fk 1 Xk 1. (C.9)

Here Ex 1, and Fi 1 are given by
Egp=(R+B Pk B)K —B' P (A—CL)= AR K+ AR L—A3,, (C.10)
Frp=(-S+C"PgC)L—C Pk (A—BK) =A% L+ A2 K — A}, (C.11)

where Ay, is defined in (C.3). Further, 2Ek ; and 2F,, corresponds to the natural gradient of J(K, L).

Proof. By direct computation, the Markov chain defined in (4.2) has a stationary distribution N(0, Xk, 1), where

Y k.1, is the positive definite solution to the Lyapunov equation (C.2). By the definition of J(K, L) in (3.1), the
ergodic cost J(K, L) is the the cost evaluated on the stationary distribution pk,r,, which implies that

J(K, L) = Eonpr,ummi,L(-|2) [C(

=Tr((Q + K'RK — L' SL)Sk 1) + 03 Tr(R) — o3 Tx(S). (C.12)

T, u, v)}

This establishes the first equality of (C.7).

For notational simplicity, we define the following operators for the stable policy pair (K, L)

Tin(Q) =Y (A~ BK — CL)'Q((A~ BK — CL)") ", (C.13)
t>0

T, =" (A~ BK - CL)") QA BK — CL)", (C.14)
t>0

which satisfy the following Lyapunov equations
T (Q) =Q+ (A— BK —CL)Tk..()(A—- BK —CL) ", (C.15)
T (Q) =Q+(A—BK —CL) Ti 1(Q)(A - BK — CL). (C.16)
For any positive definite matrices ; and Qy, since p(A — BK — CL) < 1, it holds that
Tr (1 T 1(Q)) = ZTr(Ql(A — BK — CL)'Qy((A - BK — C’L)t)T)
>0
_ ZTI«(((A ~ BK — CL)") '@ (A - BK — CL)tQQ>
>0
= Tr(T¥ 1 (21)2). (C.17)
Combining (C.1), (C.2), (C.15), and (C.16), we have Px,p = T/ ;(Q + KTRK — LTSL) and Y. = Tr,1.(¥s).
Thus, by (C.17), it holds that
Tr(Q+K'RK — LTSL)Yk,) = Tr((Q+ K"RK — LT SL) Tk .(¥,))
=Tr(T{ (Q+ K "RK — LTSL)¥,) = Tr(Px L V,).
Combining with (C.12), we establish the second equality of (C.7). Second, we proceed to establish the state value

function Vi r(x) in (C.4) and state-action value function Qg r, in (C.5). By the definition of Vi () in (3.2), it
holds that

Vie,p(x) = ZE’”‘*L [c(achut, v) |xo = x,uy = —Kxy + oymp vy = —Lay + 0217?]
>0
= (E”K 220 (Q+ KTRK — LTSL)xy |z = 2] — J(K) + 02Tx(R) — agTr(S)).
>0
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Combining with the linear transition (4.2), Vi r(z) is quadratic in z. We write Vi 1(z) = 2" Vg 17 + vk 1, for
matrix Vg r, and constant vk r, which are determined in the sequel. Note that Vk () satisfies the following
Bellman equation,

Vi,£ (%) = E(u,p)omi 1 [c(m, u, v)} —J(K,L)+Ex,1 [V(ﬂc’) | x],

where 2’ is the subsequent state of z following the policy 7k, 1. Therefore, the matrix Vg i, satisfies the following
equation.

' Vggr=2 (Q+ K RK ~L"SL)x+2" (A~ BK —CL)" Vg (A~ BK — CL)z,

which implies that Vg ;, satisfies the same Lyapunov equation as P . By the uniqueness of P, we deduce
that Vg 1 = Pk, . Combining with the fact that E,,, , [Vk r(x)] = 0, we complete the proof of (C.4).

Furthermore, by the definition of Qx,1(x, u,v) in (3.3), we have the following equation.
Qk.,L(z,u,v) = c(z,u,v) — J(K) + Ex . [Vk,0(2') | 2, u,v]. (C.18)

Combining (C.4) and (C.18), by direct computation, we obtain (C.5), and then the Bellman equation (C.6) of
Rk, follows.

In the following, we proceed to characterize the expressions of policy gradient (C.8) and (C.9). By (C.7), it holds
that

Vi J(K,L) = 2RK Sk  + Vi Tr(QoXk.1), (C.19)
Vi J(K, L) = —2SLYk. 1 + Vi Tr(QoXk 1), (C.20)

where Qo = Q+ KT RK — LT L. We first compute the expression (C.8). Note that Tr,.(¥Y,) =Xk 1, and (C.15),
for the second term on the right of (C.19), we have that

ViTr(QoXk,) = VkTr[(A — BK — CL)"Qo(A — BK — CL)Xk 1]
= 2B"Qu(A—~ BK — CL)Sk 1 + VkTr(Q1 ¥k 1),

where Q; = (A — BK — CL)"Qo(A — BK — CL). Moreover, we denote by Q; := (A — BK — C’L)tTQO(A -
BK — CL)'. Note that }.,~, Q; = Pk, and that Q; — 0 when ¢ goes to infinity, we have that

ViTr(QoXk,r) = —2BT [Z Qi](A— BK — CL)Skp + ViTr(Qi3k,1)
=0

= 2B"Pg(A— BK — CL)Sk 1.

Combining with (C.19), we establish (C.8). Similarly, we establish (C.9).

Finally, we establish the fact that Fx ; and Fi  relate with the natural policy gradients. For the Gaussian policy
7k, 1, defined in (4.1), the corresponding Fisher information, denoted by Z(K, L), has the following structure

[Z(K;L)] KoKy = Eomprc.p (o) ~msr [V, logmg p(u,v| )V, log T, (u, v )]
=077 Bappe p (woymrmrcr 125 - My ] = 07 2 Licir - (Zxp) -
Similarly, we have that

[I(L7 K)] LijL = 052 T (EK,L)jj“

Thus, the natural policy gradients take the form of
[Z(K; L)] T'WrJ(K,L) = Vi J(K, L)Yk, = 2Bk 1,
[Z(L; K)] 7'V (K, L) = VLJ(K, L)S5}, = 2Fk 1.

Therefore, we conclude the proof of Proposition (C). O



Provably Efficient Actor-Critic for Risk-Sensitive and Robust Adversarial RL: A Linear-Quadratic Case

D Gradient Temporal-Difference

In this section, we present the GTD algorithm that estimate Ak, defined in (C.3) at the critic steps. Our GTD
is based on Yang et al. (2019), which develop GTD for the single-agent LQR problem. We extend this approach
to the two-agent zero-sum LQ game. For notational simplicity, we denote by z = (x, u,v) the state-action pair,
and by Z = X x U x V the state-action space.

To solve the RSRL and RARL, we need to sample from the MDP M for the two-player zero-sum game introduced
in §2.3, while we only have access to the original MDP M = (X,U, P, & Dy) in §2.1 for the single-agent RSRL and
RARL. To sample from M in the sequel, we first sample the initial state o ~ Dy. At state x; (¢ > 0), the agent
takes action u; and receives a cost ¢;. Then, the system transits to the next state z;y,. Letting ¢, = ¢, — UtT Svg
and xy41 = Tyy1 + Cvg, we have that {(z, ;) }1>0 is a trajectory from the MDP M by following {u;} and {v;}.

We define the following feature vector
o(z) = svec[(z)®2], (D.1)

for any z € Z. We denote the vectorization of A 1 by A* = svec(Ax,r). Note that we omit the dependence of
A* on (K, L) for notational simplicity. Then, we write the Bellman equation in (4.7) of state-action function as
follows,

(9(2), A = e(2) = S, L) + (B i some 1y [0 X7).

Here 2’ = (2/,4/,v"), and the expectation E is with respect to the conditional distribution ]5( | 27K, 1)

that takes the form of

2/~P( | 2)

ﬁ(z/ |z 7r,L) = P(x'|2)- WK,L(UI, o' 2).

- (120) - (152). o2

Along the formulation of Liu et al. (2015); Yang et al. (2019), we define the following notations,

We define

T = EZN?’K,L,Z'NIS(' | zmk,1) [d)(z) [(Z)(Z) - ¢(Z’)] T} ’
N FE ) (D3)

Here pk 1, is the stationary distribution induced by mx 1, over Z, which takes the form of
pr,0(2) = pr,r(2) - Tr,L(uw,v| x), Vz = (z,u,v) € X xU X V.

Then, by direct computation, we have the following linear equation

<E<z)~ﬁ:L [6(2)] Tg,L) r= (JE)II:LL)> ' (D4)

The solution of (D.4) is unique if the matrix Tk ;, is invertible, which is verified by the following lemma.

Lemma D.1. For any policy 7k, that is stable in the sense that p(A— BK —CL) < 1, the matrix Tk 1, defined
in (D.3) is invertible, and it holds that

2
ITx.ll < 2(0f + 03 + A+ IKI* + |LI%) - [Sx.ll)”

It then holds that B ;, is the unique solution of (D.4).

Proof. See a detailed proof in §D.2. O
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The linear equation defined in (D.4) is equivalent to the following minimization problem,

2
)

mﬁin 18" = J(K, L) + ||Banpy. [0(2)] B + Tk.1B8° — i1

where the expectation is with respect to By Fenchel duality, solving the above linear equation is equivalent to the
following minimax problem,

. B ) o
pin mox G(B,w) =B, 5, wnb( ey (908 w32, 2)], (D.5)

where ¢ is defined as follows,

908, w2, 2) = [8 — e(z)] -w' — 5 - Jwl3 + (8(2) - {8" + [6(z) — 6] B — e(2)},w?). (D6)

By the property of Fenchel duality and (D.4), the optimal solution of (D.5) is (5*,0). We note that g(3,w; z, 2’)
is convex with respect to 8 and concave with respect to w. To solve minimax problem defined in (D.5), we apply
stochastic primal-dual update to (8, w) as follows,

Biy1 = Iy, {/Bt — ot - Vag(Bt, we; 24, Zt+1)}7

W41 = wa{wt — Oy ng(ﬁt, Wt; Zts Zt+l)}a

where {zt is drawn from zg ~ D, 2441 ~ 13( | zt;7k,1.). Here for the stability of the algorithm, we project j

Yeso
and w to some compact sets Xg and Xy, which are defined as follows,

X ={#:0< 8" <J(K,L), |18 < s }, (D7)
A = {w: '] < J(K, L), w2 < Rw | (D.8)
Here Rp and Ry are defined by
Rp=C-(J(K,L)/omin(¥,)) + Co, (D.9)
Rw =C- Ry 0nin(Q — LTSL) ™ (d+ || K|} + |L13)° - J(K, L)* + Co, (D.10)

for absolute constants C' > 0 and Cy. We conclude the above discussion in Algorithm 3.

We establish Theorem 5.2 that characterizes the sublinear convergence of Algorithm 3. For the completeness, we
restate the theorem as follows.

Theorem D.2 (Convergence of GTD (Algorithm 3)). Let A be the output of Algorithm 3 after T iterations.
We set the stepsize ay = 1/v/t. Then, For the sufficiently large T, it holds with probability at least 1 — T—* that

Poly (J(K, L), 1K |, | Elle, oin (@ = LTSL) ™) jogi 1
omin(Tk,) - (1 — p(A— BK — CL)) N

IA - Agrl} <

where Poly is a polynomial.

Proof. See §D.1 for a detailed proof. O
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Algorithm 3 GTD for Estimating Ag r..

Input: Policy 7k, 1, number of GTD iterations Trp, and step sizes {at}fzo.
Initialize the primal and dual variables 3y € Xz and wy € X,.
Sample xg ~ D. Take action (ug,vg) ~ 7(- | g), and observe the cost ¢y and next state z1. Let zo = (20, uo, Vo)
fort=1,2,...,7 do
Take action (ug,v) ~ 7k (- |2z¢), and observe the cost ¢; and next state z¢11. Let z; = (x4, us,vy) and
#(2) = svec(zz ).
5151 = 5:&1—1 - Qg {wt1—1 + <¢(zt_1),w?_1>],

B2 = B —au- [(6(e0-1) = 6(20)) dlee1) T,

wf = (1 =) wi_y + o [BE — el

wi = (1 =) - wiy +a-¢(2-1) [5371 + [6(z-1) — ¢>(Zt)]T5t271 - Ct—1}.
Project 8; and w; to the space Xp and Xy specified in (D.7) and (D.8).

end for .
D i B~ D cqwy
B= =

ZT:1 at ’ Z?:l at

Output: A = smat(32) that estimates A .

D.1 Proof of Theorem 5.2

Proof. The proof of Theorem 5.2 is based on Yang et al. (2019). In comparison, we establish the global convergence
of GTD for the two-agent zero sum LQ game, whereas they do it for the single-agent LQR. The proof of Theorem
5.2 takes three steps. First, we prove that the optimal solution of (D.5) is contained in the parameter domain
Xp X Xw. Second, we define the optimality gap of the minimax problem in (D.5), and relate the gap to the
difference between current iterates and the optimal solution. At last, we prove that the optimality gap converges
to zero sublinearly.

We first establish the following lemma that shows the saddle point of the objective function defined in (D.5) is
contained in the parameter domain X x Xy .

Lemma D.3. For any g € X, we define
w(B) = argmax G(B, w).
w
Then, it holds that w(8) € Xw. Moreover, the optimal solution (8*,0) of (D.5) is contained in Xy x Xp.

Proof. See a detailed proof in §E.1. O

To analyze the convergence of Algorithm 3, we define the optimality gap for (D.5) as

Gap(f, @) = max G(f,w) - min G(5, D), (D11)

for any (@ W) € Xp x Xw. We establish the following lemma relating the primal-dual gap defined in (D.11) to
the gap between (8, @) and the saddle point (5*,0).

Lemma D.4 (Bound Parameter Difference via Objective Difference). For any (E, W) € Xpx Xy, let A= smat(5?).
Then we have

Gap(B, ©)

~ 2 ~ 9
/3 —J(K,L +|[A—=A <
| ( ) )| H K,LHF = in(T 7 )Qa

where T 1, is defined in (D.3).

Proof. See §E.2 for a detailed proof. O
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Note that Algorithm 3 is a stochastic gradient based method. We have
G(B» w) = EZ’\‘PK.LJ/NIS(' | 2) [9(57 w; z, Z/)]

where ¢ is defined in (D.6). The expectation is taken with respect to x ~ pg 1, where pk 1, is the stationary
distribution induced by policy 7, 1. But the trajectory {z;};>¢ is generated from zg ~ D, 2441 ~ ]3( -| ), which
implies that {z;} is not drawn from the stationary distribution pg . Such a case has been studied in Wang
et al. (2017). However, different from the setting in Wang et al. (2017), our function g(53, w; z, z’) is not Lipschitz
continuous in (8, w), which makes the analysis of Wang et al. (2017) not applicable for our setting. To bypass
such an issue, we prove that the function g is Lipschitz continuous in (5, w) with high probability, which allows
us to apply Theorem 1 in Wang et al. (2017) to establish the following lemma.

-~

Lemma D.5. It holds for the output (3, w) of Algorithm 3 after T iterations that
(log 7)*

Gap(B,’LT)) < POly(J(]{7 L),RB,Rw,Jmin(Q — LTSL)*l) . ma

with probability at least 1 — T—%.
Proof. See a detailed proof in §E.3. O
Combining Lemma D.3, Lemma D.4 and Lemma D.5, we complete the proof of Theorem 5.2. O

D.2 Proof of Lemma D.1

Recall that we denote by z = (z,u,v) the state action pair. and by 2z’ = (2/,u,v") the subsequent state action
pair following 7k 1. Then, by (2.5), we have that,

2 =Uz+¢(, (D.12)
where U and ( are defined as follows.
Iy €t
U = 7K (A B C) ; Ct = 7K€t —+ 0'1771 . (D13)
—L —Ley + 09m?

Here ny ~ N(0, I, ), n2 ~ N(0, Iin, ) are Gaussian noises. By the fact that p(MN) = p(NM) for any matrices
M, N and that p(A — BK — CL) < 1, we have that p(U) < 1. We denote the covariance matrix of ¢; by ¥,,
which takes the form of

- I L\ (0o o 0
U,=|-K|U[-K| +[|0 oil,, 0
—L —L 0 0  02l,,

Recall that we denote by pg 1, the stationary distribution of (z,u,v) induced by 7x, . We denote the covariance
matrix of px, 1 by pk,r, which takes the form of

- I L\ [0 0 0
EK,L = | -K EK,L -K + 10 O’%Iml 0 . (D14)
—L —L 0 0 03l
By (D.14), we upper bound the norms of §~]K7L as follows,
ISk Llle < oPmy + o3ma + (d+ | K[+ ILIE) - 1Sk L], (D.15)
ISkl <o +05+ 1+ K>+ [L]?) - [|Zx. Ll (D.16)

By the fact that p(U) < 1 and the definition of S 1, in (C.2) of Proposition C.1, we conclude that S 1, is the
unique positive definite solution of the Lyapunov equation,

Sk =V, + USg U’ (D.17)

We prove a stronger lemma to establish Lemma D.1,
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Lemma D.6. For any policy mx ;, that is stable in the sense that p(A — BK — CL) < 1, it holds for the matrix
Tk, 1, defined in (D.3) that

QK,L = (iK,L ® i}gL) — (i}gLUT) ® (iK,LUT) = (iK,L ® iK_’L)(I —-UT & UT). (D.18)
Moreover, Tk 1, is invertible and it holds that

2
ITx.cll < 2(0F + 03 + A+ KN + [1L1%) - [Bx.]])” (D.19)

Proof. We first prove (D.18) of Lemma D.6. We denote the right-hand side of (D.18) by
T = (iK,L ® EK,L) — (iKyLUT) ® (EKJ/UT) = (EK,L ® iKyL)(I — (]T ® UT)

In what follows, we show that for any matrices M, N, it holds that svec(M )T, rsvec(N) = svec(M)Tsvec(N).
By (D.12) and the fact that ¢(z) = svec(zz") in (D.1), we have that

¢(z) — ¢(z') =svec[zz” — (Uz+)(Uz+¢) ']
By the fact that z and ¢ are independent and the definition of Tk 1, in (D.3), we have that
Tr,L = Eonpp [svec(zzT)svec(zzT —Uzz'UT — \TIU)T}.
Let M and N be two matrices. Then, we have that
svec(M)Z g psvec(N) = B,z , [(22 7, M) - (227 = Uzz"UT — ¥, N
=E.pi, |2 Mzz" (N =U'NU)2| = E.z, [2T M2] - (¥, N)
=2M, Sk (N -~ U NU)SkL) + (M, Sk ) [(N-U'NUEk 1) — (¥, N)]. (D.20)

where the last equality holds because of the following lemma

Lemma D.7. Let g ~ N(0, I;) be some standard Gaussian random vector in R? and let A1, A, be two symmetric
matrices. Then we have

Elg" A1g-g" Asg] = 2Tr(A; As) 4 Tr(A;) - Tr(Ay).
Proof. See e.g. Nagar (1959); Magnus et al. (1978) for a detailed proof. O

By (D.17), we have that
(N—U'NU, k1) = (N, Sk.1) — (N, USg  UT) = (N, ¥,).
Therefore, by (D.20), we have that
svec(M)T g svec(N) = 2(M, §K7L(N - UTNU)iK,L>
= QSVGC(M)T(EDK’L ® §K7L - f)K,LUT ® EK,LUT)SVGC(N)T
= 2svec(M)" [(ExL @ Sk, p)I — U @U")]svec(N)". (D.21)
Since (D.21) holds for any matrices M, N, we have that
Tk = (EK,L ® i31{,1:)(1 ~-UTeU'),
which concludes (D.18). By the fact that p(U) = p(A — BK — CL) < 1, we concludes that T ;, is invertible.
Finally, we upper bound || Tk, ||. By the triangle inequality, we have that
1Tkl < 1Zk ® Srcll - A+ [UT@TUTY)
< Exrl?- L+ U)7)
<28kl (D.22)

where the last inequality follows from the fact that p(U) < 1, and the second inequality holds as a result of the
following lemma from Alizadeh et al. (1998)
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Lemma D.8 (Lemma 7.2 in Alizadeh et al. (1998)). Let A, B € R™*™ be two matrices that can be diagonalizable
simultaneously, and let Ay, ..., A, and pq, ..., 44y, be the eigenvalues of A, B respectively. Then, the eigenvalues of
A ® B are given by {1/2- (Aipj + Ajps), 4,5 € [m]}.

Plugging (D.16) into (D.22), we have that
2
ITx.cll < 2(0F + 03 + A+ KN+ L% - 1Zx.L])

which completes the proof of Lemma D.6. O

E Proof of Supporting Lemmas

E.1 Proof of Lemma D.3

Proof. We first show that w(3) € Xy for any 8 € Xp. By the definition of G(S,w) in (D.5) and the property of
quadratic function, we have that

w(f) = argmax G(B,w) =

w

[H(z,z/;ﬂ)}.

2~pre L2 ~P( | 2T L)
where we define H(z.2'; 3) as follows
H' (223 8) = B' = o(2), (E1)
H(2,2/38) = {8 + [6(2) - 6(=))] ' % = e(2) }o(2). (E:2)

Thus, it suffices to bound H(z, 2’; 8) for any 8 € X5. We bound the two components H'(z, 2’; 3) and H?(z, 2’; 3)
separately. We first bound H'(z, 2’; ). By (E.1), we have that

[0 (B)] = B o iy [H (202 B)]| = [BY = J (K, D)] < J(K, L), (E3)

where the second inequality follows from the fact that 8! € [0, J(K, L)]. We now bound H?(z,2'; 3). By (E.2),
we have that

w2(6) = EzNﬁk_L,Z/Nﬁ(- | zmK,L) [‘H2(’Z7 Z/; ﬁ)] = 51 : IE2"’/3K,L [¢(Z)] + QK;L52 - bK7L7
where Tk 1 and by 1, are defined in (D.3). By the fact that 8 € X in (D.7) we have that
[w? (B < J(K, L) - |[Ben . [6(2)] || + 1S5l - B + loxc |- (E.4)

We now bound the three terms on the right-hand side of (E.4). In what follows, we use the same notation b K,L
defined in (D.14). For the first term on the right-hand side of (E.4), we have that

[Eoniic. [6()]]| = IEk LllE < 0F -1+ 03 - mz + (d+ | K| + I LIE) - [ Szl (E.5)
For the second term on the right-hand side of (E.4), by Lemma D.6, we have that
2

I1Tx.Lll2 < 2(0f + 03 + 1+ [|K[* + IL1*) - [Zx.2ll) ™ (E.6)

For the last term on the right-hand side of (E.4), it suffices to bound bk, we now study the linear operator
induced by by 1. For any positive definite matrix M € R(@+m1)x(d+m1) we have

(br,,svec(M)) = E. 5, .. | (#(2),svec(M)) - <¢>(z),svec(diag(Q,R, —S))>

= 2(Sk rdiag(Q, R, —8)Sk 1, M) + (Sk 1, diag(Q, R, =) - Sk, M) (E.7)

where the first equality follows from the fact that c¢(z) = (¢(z),svec(diag(Q, R,S))), and the second equality
follows form Lemma D.7. Thus, we have that

loxe.cll < 3(IQlr + | Rlle + IS e) - [ Sx.clE
2
<3(IQllr + IRl + 1ISlle) - (oim1 + o3ma + (d + | K& + ILIE) - [Zx.2ll), (E8)

where the last inequality follows from (D.15). We establish the following lemma to bound || Xx 1|
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Lemma E.1. For any stable policy 7k 1, we have
HEK,LH S [J(K, L) + X] /Umin(Q - LTSL)a HPK,L” S [J(K, L) + X] /O'min(\lla)'
Here x is defined as y := (—0?Tr(R) + o2 Tr(S)) ™.

Proof. By (C.7) in Proposition C.1, we have that

J(K,L)+x>Tr((Q— LTSL+ K"RK)Yk ) > omin(Q@ — LT SL) - | Sk L,
J(K, L)+ x > Tr(Pr,.¥Ys) 2 omin(Yo) - || Pk, L]|-

Therefore, we conclude the proof. O

Plugging (E.5), (E.6), and (E.8) into (E.4), by Lemma E.1, we get that
[w?(B)I < C - (d+ | K|+ 1LI3)? - Ri - omin (Q — LTSL) ™2+ (J(K, L) +x)* + Co, (E.9)

where C, Cy > 0 are constants. Thus, combining (E.3), (E.9), and the definition of Xy in (D.8), we concludes
that w(B) € Xw for any 5 € Xp.

It remains to show that 8* € X. By the definition of 8* in (D.2) and the definition of Xg in (D.7), it suffices to
bound [|[Ak |lr. By the definition of Ak 1 in (4.4), we have that

Q+ATPx A ATPg 1B AT Pg 1 C

Axr=| B"Pxy A R+B"PyxiB  B'Pg.C
CTPg A C'PxrB  —S+CTPg . C

Q T
= R +(A B C) Pkr(A B 0O).
-9
which implies that
1Ak Llle < @1k + I1Rllr + Se + (IAIE + I1BIE + ICIE) - 1Pl (E.10)

Apply Lemma E.1 to (E.10), we get that

IAk.2lle < 1Qlr + IRl + [[SIlr + (1Al + IBIIE + ICIE) - (J(K, L) + x) /omin(¥o)
=Co+C - (J(K,L)+ X)/0min(¥s). (E.11)

By (E.11) and definition of Rp in (D.9), we conclude that 3* € Xg. Thus, we complete the proof. O
E.2 Proof of Lemma D.4
Proof. First, by the definition of G(8,w) in (D.5), we have for any 3 € Xp,w € Xy that

Bt = T L) + 118" Eengie, [0(2)] + Tae £ = b rllf = max G(B,w) < Gap(B, @), (E.12)

where the last inequality follows from the following inequality

min G(8,w) < Bnelng G(B,w(p)) =G(p*,0) =0.

BeEXB

By the definition of §* in (D.2), we rewrite the left-hand side of (E.12) as follows

2

(s oo ) B 2 oo (3 = 708, P+ 1R~ A ) (E.13)
Combining (E.12) and (E.13), we have that
(18" = T L) + IIA = A ]?) < 1/omin(Ti,)” - Gap(B, @), (E.14)

which completes the proof of Lemma D.4. O
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E.3 Proof of Lemma D.5

Proof. First, let us characterize the geometrically B-mixing property of our problem via the following lemma.

Lemma E.2 (Geometrically 8-mixing). Consider a linear transition z;.; = Uz + e;, where z; € RP is the
Markov Chain and e; ~ N (0, ¥) is the Gaussian noise independent of {z;}+>0, and U € RP*P satisfies that
p(U) < 1. We denote by v; the distribution of z; and by N(0,X) the stationary distribution of z;. We define
the k-th mixing time coefficient B(k) as follows

B(k) = SltlpEmw [IP~, (- | 20 = 2) = Pno,zo) (DllTv].
Then, it holds that
Bk) < Cp0[Te(Sac) + m(1 - p) 212",
where p € (p(U), 1), and C, i is a constant depending on U and p.

We obtain the following theorem from Wang et al. (2017) to establish Lemma D.5.

Theorem E.3 (Theorem 1 in Wang et al. (2017)). Let Xy and Xp be two convex, closed, and bounded sets
and the radius of Xy x Xy is D > 0. Consider the following minimax stochastic optimization problem

Bnelgls wnelggvcv G(B,w) = Eenslg(8, w; )]

where £ is a random variable drawn from =. The function g is convex in 8 and concave in w. We assume Z is
the stationary distribution of a Markov Chain {& }$2, with uniform mixing time 7(n) for any n > 0. Meanwhile,
we assume that for almost every &, the function g(3, w;€) is L; Lipschitz continuous for every 8 € Xp,w € Xy .
The stochastic gradient Vgg(5,w;€) and V,,g(8,w; &) are Lo-Lipschitz continuous for every § € X, w € Xy
and almost every £. For any non-increasing step size oy, the projected primal dual stochastic gradient method
updates 8 and w by

Birr =xy [Be — ar - Vg (B, wi; &), Wi = My [wy + ap - Vg(Be, we; &)].

for t € [T —1]. Let

T T
tho oy fy tho QW

T T
Dot Do Qt

Then, for any 6,7 > 0 such that 7(n) < T'/2, it holds with probability at least 1 — ¢ that

B=

; W=

T 1 T T
3 . mi o) < . 2
max G(B,w) — min G(3,w) < (;at) {40+ 417 ;at +A2;at
T ) 1/2
+16DL; - [27’(77) -log (7(n)/d) - (Zat + 7'(17)0[1)} }, (E.15)
t=0
where we define
Ag=D*+12Doy - 7(n), Ay =4L1D, Ay =10L, + (24L3 +8L,L2D) - 7(n). (E.16)

Specifically, for geometrically 8-mixing process defined in Lemma E.2, we have the following corollary.

Corollary E.4. Use the same setting as in Theorem E.3. We assume that the k-th mixing time satisfies
B(k) < Cep* for some C¢ > 0,p < 1. We set step size a; = a/v/t for some a > 0. Then, we have that, with
probability at least 1 — 4,

_ C-D?+ L3+ L1LyD log?T +1log(1/8) C-CelyD
— mi 7) < . .
wedny GBw) ey GBw) < log(1/p) VT * T
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Proof. The proof follows direct computations. By the property of geometrically S-mixing processes, we define
mixing time by 7(n) = log(n/C¢)/logp and n = C¢/T. We set oy = a/v/T and the constants Ao, A1, Ay as

(E.16). Note that Zle 1/t ~logT, Zthl 1/v/t ~ 2y/T. Thus, we bound the first three terms of the right-hand
side of (E.15) as follows

Ay < C-D?-logT/log(1/p),
T
Ay <C-CelyDJT,

t=0
T
A2) 0o} <C-(Ly + L3 + L1 Ly D) -1og? T/VT.
t=0
For the last term, we have

T
16DLy |27 (n) log ((n)/0) (3 a7 + 7(n)as)

t=0
< C- DLy log T/ log(1/p)\/loglog T + log(1/6).

]1/2

Thus, we conclude the proof of Corollary E.4. O

However, since z ~ pk 1, is not bounded, the function f(8,w;z,2’) defined in (D.6) is not Lipschitz continuous
with probability bigger than 0, which prevents us to apply Theorem 1 in Wang et al. (2017) directly. Instead,
the following lemma confirms that z is bounded with high probability, so f is Lipschitz continuous with high
probability.

Lemma E.5 (Hansen-Wright inequality). Let A € R™*™ be a matrix and let n ~ N(0, I,,,) is a Gaussian random
variable. Then there exists some constant C' > 0 such that for any ¢ > 0, it holds that

Plln" An—E(n" An)| > t] < 2exp (— Cmin{e*||A[|5>, ¢l A }).
Proof. See Rudelson et al. (2013) for a detailed proof. O

Applying Lemma E.5 to z ~ pk,, = N(0, iK,L), where iK,L is defined in (D.17), we have that
Pl — TS| > 1) < 2exp (= Comin {2 Sl - 1S 7). (E.17)

for an absolute constant C. We set ¢t = C - || S ||l -log T for sufficiently large C; such that C - C; > 6. Then,
we have that

- |Exell5? = CF -log” T+ |EK, LIP - IEx L 7?2 CF - (d+ ma) ' log? T > ¢ [ Excr] ™, (E.18)

where the first inequality holds as a result of the relation between operator norms and Frobenius norms, and the
second inequality holds for sufficiently large T such that C;(d +m;)~tlogT > 1. Define

& = {llz]* - Tr(Ex,r) < C1 - |k, - log T, (E.19)

for t € [T]. We wite & = N1<;<7&. Combining (E.17) and (E.18) we get P(&;) > 1 — 2T, Applying union
bound to 1 <t < T, we have that P(£) > 1 —2775. On event &, by (E.19), we have that

| log T+ Tr(Sk ) < C-log T+ ISk Llr, (E.20)

) _
< .
1I§nta§XT llze]* < C1- |12k, L

which illustrates an upper bound on the feature vectors ¢(z;),1 <t < T, since we have H(]ﬁ(z)H2 =|z||3.

To prove Theorem 5.2, we consider the minimax optimization problem (D.5) restricted on the set £. For any z,
we define

& = {lllp:lla — Te(Cx,n)| < C1 - [Ex.ll - log T (E.21)
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Thus, by (E.19), we have P(£,) > 1 — 275, For the feature vector ¢, vector function H, and objective function
g and G, we define

#(2) = ¢(z) - Lg.,
H(z,72';8) = H(z,72';8) - 1¢, - 1¢_,,
c(z) = c(z) - 1e,, (E.22)
9B, w;2,2") = g(B,w; 2,2") - 1g, - 1g,,
G(ﬁ, w) = ]EZNPKYL’ZINﬁ(. | zmre.r) [g(ﬂv W3 z, Z’)} .

We note that when conditioned on &, the output o/f_\t/he primal dual stoch:istic update applied~on G is the same
as that on G. We denote the duality gap for G by Gap(8, W) = maxyex,, G(5,w) —mingex, G(B,W). Since g is
Lipschitz continuous, we apply Corollary E.4 to bound the primal dual gap Gap(8, w).

To apply Corollary E.4, we first establish upper bounds of the Vg .9, V; 39 and Viwﬁ to show that g and Vg
are Lipschitz continuous, where g is defined in (E.22). By direct computation, we have that

Vg =w'+¢(z) w?, Vg = [6(2) "] T [8(2) — 6(2)] (E.23)
Vg =B —ez) —w', Vg = H?(2,2; 8) — w’. (E-24)
By (E.20) and (E.23), we have that
IVsll2 < C - (log T)* - [[Z]3 (E.25)
For the gradient with respect to w, we first bound H2. By (E.2),
IE2( < (18" + (1) + 16G)) - Be + (1Q1le + IRl + 1S][e) - I6()1) - 6(2)]],

which concludes that

Vgl < \/\51 —&(2) + w2 + ([w?| + | H?(2, 2'; B)])?
< C-(logT)° - (J(K,L) + RE + Ry + |IEx Ll - 12k - (E.26)
Meanwhile, we have V%ﬂﬁ = 0 and that V2§ = —I, which, combined with (E.25) and (E.26), implies that g

and Vg are Lipschitz continuous with respect to 5 and w. Let E, @ be the output of GTD (Algorithm 3) applied
on G. Then, by applying Corollary E.4, we have with probability at least 1 — T~5 that

Gap(B S5 ~ 4
Gap(f,w) < Poly(J(K, L), R, Rw, |k L]F) - (flig;?ﬁ
o .
< Poly(J(K, L), Rp, Rw, 0min(Q — LT SL)™") - ﬁi?ﬁ (B.27)

where the second inequality holds as a result of Lemma E.1, and p € (p(A — BK — CL),1).
We note that when the event £ = Nj<;<7& holds, it holds that (3,w) = (E, w). Thus, it remains to bound the
difference |Gap — Gap|. For any 3 € X, w € X, we have that
|G(B,w) = G(B,w)| = [(E- o0 [H(2, 25 8) = H(z,2; 8)],w)|
< |B..[H' (2,25 8) — H'(2,2; B)]| - J(K, L)
HEZ,Z’ [ﬁQ(zazl;B) —H2(Z,Z,,/j))”| 'RW7 (E28)

+

where the expectation is with respect to z ~ pk 2" ~ ﬁ( | z; 7K, 1). For the two terms on the right-hand side of
(E.28), we have that

H' (2,2 8) — H*(2,7; B) = c(2) - e, (E.29)
H(2,2';8) = H*(2,7/; 8) = H*(2,2; B)Lec + 6(2') T B - 6(2) - L. - gz, (E-30)
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We first bound the right-hand side of (E.29). Applying Cauchy-Schwarz inequality to the first term of the
right-hand side of (E.28) and (E.29), we have that

|H 2,25 8) — B (2.2 8)] < \/P(ES) - Earpe, [e()7]. (E.31)
Since z,2z" ~ N(0, iK,L)y we have that
E.o [[l6()]*] = Bz [l6(DI*] < C - [Zk,n (E.32)
for an absolute constant C'. Thus, we have that
. 2
Eenie,r [6(2)?] = Eanpie, [(6(2) Tsvec(diag(Q, R, —5)))]
< C-(IQIF + IRIF + ISIE) - 12k, 215 (E.33)
By plugging (E.33) into (E.31) and the fact that P(€,) > 1 — 275, we have that
B [H' (2,25 8) = H' (2,2 8)]| < C-T7% - (IQI + | RIF + 1S18)"* - Sz - (E.34)
We now bound the right-hand side of (E.30). By the Cauchy-Schwarz inequality, we have
HEZ,Z' I:E[2(Z7 Z/; B) - Hz('zv Z/; B)] H2
< VBED) /e o [1H2(2, 25 )] + \[B(ES) - JE- o [l0(=) T 82 - 6(2)113]. (E.35)

For the first term on the right-hand side of (E.35), by the definition of H? in (E.2) and the Cauchy-Schwartz
inequality, we have that

E. o [|H%(2, 25 A)|1]
<418 B [[9()IP] + /B [le(2) 1] - B [I6(2) 4]+
B 16 T2 B [0 [4] 4 B [l T80T - B [l0(2)14]). (B36)
Plugging (E.32) into (E.36), by (E.33), we have for an absolute constant C' that

E.. [|H*(z 2 B)IIP] < C - (J(K, L)* + BRE + |QIF + [RIE + ISIF) - k.- (E.37)
Plugging (E.37) into (E.35), by P(£,) > 1 — 2775, we have that

. [H? (2,25 8) = H*(2,2'; 8)] |,

<C-T3 (J(K,L)? + Ry + [|QIE + 1RIE + 1S13) 15k 13- (E.38)
Plugging (E.33) and (E.38) into (E.28), we have that
G(B,w) — G(B,w)| < C-T7* (J(K,L)* + Ry + Riy) - [IZx. 13, (E.39)

for an absolute constant C. So for sufficiently large T', we have that |é (8,w) — G(B,w)| < T~!, which implies
that

(Gap(B, @) — Gap(B,@)| < max |G(B,w) = G(B, w)| + max |G(8,8) - G(B, )] < 27~", (E.40)

wWEXw

Finally, note that & holds with probability 1 — T5. Thus, by (E.27), we have with probability at least
1—277% > T~* that

4
Gap(3, @) < Poly(J(K, L), Rp, Bw, ouin(@ — LTSL)™1) (fligpfz/f Lot
P B ) T -1y . (log T)*
< POly(J(Ka L)7RB7RW7Um1n(Q L SL) ) (1 — p)\/T7 (E41)

where p € (p(A— BK — CL),1). Thus, we complete the proof of Lemma D.5. O
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E.4 Proof of Lemma B.2

Proof. Note that Pk j, and Pk 1 satisfy the Bellman equation in (C.1). Using the operator 7 ' defined in (C.14),
we have that Pr 1 = T 1, (Q + (K')TR(K') — (L')T S(L')), which implies that

ITPK/’L/I
=Y "aT[(A- BK' —CL)] " (Q+ (K")TR(K') - (L')TS(L")) (A~ BK' — CL')*
=D @) (Q+ (K)TR(K") — (L')TS(L)))a}.
t>0

So we have that
Z'TPK/7L/£E — xTPK,Lx

- {x;T (Q+K'"RK'— L'"SL')a}, + a,, | P17}, — xQTPKL:L“Q}

t>0
= Z A p.x L (2t),
t>0
where
Ak n k1 ()
T{(@+K'TRK'— L'TSL') + (A= BK' = CL') P 1(A— BK' = CL) - P }a!
=22 (K' —K) " Egpz+a2 (K —K)"(R+B"PgB)(K' — K)x

+ 20" (L' = L)Fgpr+a (L' = L) (=S +CT Pg .C) (L' — L)z

+2¢" (L' = L) C"Px 1 B(K' — K)z,
which completes the proof. O

E.5 Proof of Lemma B.3
Proof. First, for the upper bound in (B.6), by (C.7) and Lemma B.2, we have that
J(K,L)— J(K(L),L) = Tr((Px,. — P})V,) = —E;Kfl@{o v [A% k) (@), (E.42)
where 7}, = (A — BK(L) — C’L)xf. By completing the square, for any K, K’, we have
Ak k(@) =20 (K' = K)'Ex o+ 2" (K' = K)(R+ B Px ,B)(K' — K)z
= Tr [me [K'— K+ (R+ B P B) ‘Ex,] (R+ BT PgB)
K - K+ (R+ BTPK’LB)*IEKLH
—Tr(zz"E(R+ B Pk .B) 'Eg)
> —Tr(zz' Eg(R+ B' Pk, ,B) 'Ekg), (E.43)
where the equality holds when K’ = K — (R + BT Pk, B) 'Ek 1. By (E.42) and (E.43), we have that
J(K,L)— J(K(L),L)
<R+ BT PioB) M- T (Engnon [ Y wiwi]) - Te(B 1 Bicn). (B.44)
>0
On the other hand, we have

Exn(0,v,) Zﬂitﬂﬁt = zU~N(o,w0)[TK(L),L($$T)} = YK(L),Ls
>0
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which combining with o, (R + BTPK,LB) > omin(R) and (E.44), we have that

J(K,L) = J(K(L), L) < 1/owmin - [|IZL]| - Tr(E L Ex,L)-

Meanwhile, to establish the lower bound, note that in (E.43) the equality is obtained when K’ = K — (R +
BTPKLB)”EK’L, so we have
= _Ezgva(O,\P(,)[Z A%{,K’ (z)]

t>0
= TY<E;,L(R + BTPK,LB)AEK,LEK',L)
> 1/0min(¥o) - [|R+ BT Pk o B|| "' Tr(Ef 1 Ex,L).

E.6 Proof of Lemma B.4

Proof. According to Polyak (1963), we need to show that |J(Kj,,,L) — J(K¢ L)| is bounded by
O(TY(EIT(MLEKML)). By Lemma B.2, we have

(K1, L) = T(Ki, L) = Te(Pre, 1 — Pico.2)¥o)

=2y Te(Bx, . Bx.p - Tx,) +7° Te(Ey, 1 (R+ B Px 1 B)Ek, 1 - Xk,.L)

< =2y Te(Bg, 1B, Sk,.0) + VIR + B P LBl - Tr(Eg, 1 Ex, - Tk,1)

< =2y Te(Eg, Bx,.L Sk,.1)

+ (IR + omin (o) - [| B - (J (Ko, L) + X)) - Te(Bg, 1 Br, 1 - Xk, L), (E.45)
where the last inequality is a result of Lemma E.1 and the induction assumption J(K;, L) < J(Kp, L). Set v > 0
to be sufficiently small such that

1

7 < [IBI + owmin (%) - [|BI” - (J (Ko, L) + X)) (E.46)

Combining (E.45) and (E.46), applying Lemma B.3 and the fact Xk, ;, = U,, we get that

J(Kp1, L) = J(Ke, L) < =y Te(Bg, Bx,p - Bx,.1) < —7 - 0min(Vo) - Tr(Eg, Pk, 1)
< =7 omin(Vo) - Omin(R) - HEK(L),L‘F1 “(J(Ky, L) = J(K(L), L)). (E.47)
This inequality also implies that J(Kj ,,L) < J(K;,L) < J(Ko, L). Further, (E.47) implies that
J(Kt//+17 L) - J(K(L), L) < [1 - Umin(‘ya) : Umin(R) : ||EK(L),LH71]
(J(Ky, L) = J(K(L), L))

O

E.7 Proof of Lemma B.5
Proof. We now bound the difference of J(K;,,, L) and J(K¢y1,L). By (C.7) in Proposition 4.2, we have that
[T (K41, L) = J(Kiy, D) = |Te((PrciyaoL = Py, ) %0) | < I%ollp - 1Pryz = Py, ol (E.48)

We modify Lemma 24 in Fazel et al. (2018) to construct an upper bound of [Pk, r — Pk;,, cll, which is
established in the following lemma.
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Lemma E.6 (Perturbation of Pk j, for fixed L). Suppose that K’ is a small perturbation of K in the sense that

Umin(\lla)

1K — K'|| < :
4- kol - IB]l- (l4 = BK - CL| +1)

(E.49)

Then, we have that

1Prr L = Pl < Coie (Vo) - ISl - 1K - |RI| - | BI| - | K — K|l (E.50)

min

Proof. See a detailed proof in Fazel et al. (2018). Note that for fixed L, the problem is equivalent to single agent
LQR problem. O

To verify condition (E.49) of Lemma E.6, in what follows, we establish an upper bound of
4Bkl - 1Bl - (1A = By — CL|| + 1) - [ Ky — iy
By the fact that |A — BK — CL|| < 1, and Lemma E.1, we have that

48kl 1B (A= BEpsa — CL| +1) - [ Kir — K ||
<8||B|l - (J(Ker1, L) + x) - [ Ko — K| (E.51)

By the definition of K/, we have that
1K1 = Kiall <5 (U1K + 120D - Ak, L = Ax, - (E.52)
Combining (E.51) and (E.52), to ensure condition (E.49), it suffices to make the following inequality holds
8y Bl - (J(Ki41, L) +x) - A+ 1K + LD - 1Ak, 2 = Ak, 2]]) < Omin (o). (E.53)
On the other hand, to establish Lemma B.5, we need to ensure the following inequality

C 0pin (Vo) N85 ozl (1 ea |2 - I RI 1B 1K en = K7

min

<1/27 Omin(Po) - omin(R) - (1L - (J (K, L) = J(K(L), L)),
which is implied by
C-J(Ko(L), L)* - | Kpga |* - (L4 [ Koga || + L) - Ak, 2 = Ak, o]l < (J(Kiy L) = J(K(L), L)) (E.54)
Here we apply Lemma E.1 and assume that || R||, || B]|, omin (V) are constants. Thus, to ensure (E.54) and (E.53),

we need to ensure

J(Ky, L) — J(K(L), L)

. E.55
C IR L) [KiilP - (L+ [Ea | < T (E-55)

Ak, L — Axll <

By Theorem 5.2, (E.55) holds with probability 1 — Tir3 by setting

. Poly (J (K¢, L), | Kille. | L. r~) 5
~ \owin(Tk,,2) (1—p(A—BK,—CL)) - (J(K¢, L) — J(K(L),L)) ] ’

which completes the proof.
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E.8 Proof of Lemma B.7
Proof. Applying Lemma B.2, we have that

T T px !
' Pgrpw—x' Plo = E Ak (r).L.x,0(Th),
>0

where 2y = z, 2, = (A — BK' — CL')z}. Moreover, by completing the square and that E} = 0, we have
T *
Agyprp(x) =2 (K'—K(L)) (R+B'P;B)(K' — K(L))x
+22 (L'~ L)Ffz+2" (L' = L) (=S +CTP;C) (L' — L)z
+2¢"(L'—L)'CTP;B(K' — K(L))x
=22 (L' ~L)"Fja+2" (L' - L)(-S+ C"P;C)(L' — L)x
+2T[K' - K(L)— (R+B"PfB)"'BTP;C(I' — L)] ' (R+ B P{B)
[K'—K(L)— (R+B"P;B)"'B"P;C(L' — L)|x
—z' (L' -L)"C"P;B(R+B"P;B)'B"P;C(L' — L)z
>2:" (L —L) " Ffx —a" (L' = L)"W,(L' — L)x.
By Woodbury matrix identity, we have that
Wy =8-C"[P;—P;B(R+B"P;B)"'B"P}]C
—S—CcT[(Pp)t+BS'BT]'C

which means that W} is monotonically decreasing when P} is increasing. O

E.9 Proof of Lemma B.8
Proof. By applying Lemma B.7, we have that
" Pfx— ' Plax > 20 ZJ:;TZ;,;,,FE"Z; —2. Z x;TﬁJnWLnﬁ'Lnx;,
5>0 50
where z{, = z,2,,, = (A — BK(L"™') — CL)x.

After taking expectation with respect to z ~ N(0, ¥, ), combining with (C.7) and that 77,.,(V,) = ¥},..,, we
have that

JHLMY) = (L) > 20 Te(Sh 0 FfuFn) — 2 T (S50 Fpu Wia Firn ). (E.56)
We now bound the two terms on the right-hand side of (E.56) separately.
First, we bound the first term on the right of (E.56). Applying Lemma B.6 and tangle inequality, we have

Te(Shnar Fln Fin) = To(S5 B Fre) — S50 — Siall - [Te(F Ffn)

. (E.57)

To bound the second term of (E.57), we obbtain the following lemma from Zhang et al. (2019b).

Lemma E.7 (Lemma 6.8 in Zhang et al. (2019b)). Under Assumption 4.1, for any L, L’ € £, there exists some
constants B%, BE, BE > 0, such that if

. IB||[BE|| A~ BE(L) - CL|| + || P;[|C|]
|L — L'|| < min{ BE, )
‘ BE|IB[C]]

2(| A~ BK(L) - CL|| + 1) (BE || B| + |C]) }

(E.58)

(BE2IBI? + [|CI1? + 2B£ || BIl||C]
it holds that
27 =S4l <4(I|A - BK(L) = CL| + 1) (BZ|B + |C) - 1L = L'||.
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Thus, if we set Kz > 0 to denote the infimum taken over all of the constraints of |[L’ — L|| in (E.58), i.e

BE|B|[C] !
2mA—BKu»—cmm4Jw§wﬂ+ncD}

B||[BE||A— BK(L) - CL Prl[lC
K¢:=igg{85ﬂ'” Al (L) = CL|| + 1P ]ICl]

(BE)2IBI? +1ICI> + 2BZ I BIIIC]
combining with (E.57), we have
Te (S} i FLe ) 2 0min (Vo)™ - || Fon [}
—160- (||A = BK(L) = CLI| + 1) (BEIB| + ICI) [ Fr 71 F7x e (E.59)
provided that
1L = 2| = o | Fpn ]| < K. (E-60)

Note that we can bound ||Fi« || by the following lemma from Zhang et al. (2019b).

Lemma E.8 (Lemma 6.9 in Zhang et al. (2019b)). Let ||FL|| be the projected policy gradient defined in (B.11).
Then it holds that

2
VP

A

oumin(¥o) - | Frlr < [VLI*(D)]

2J*(L +2x [WilI[J (K, L*) — J*(L)]
Umm(\Il ) ’

where p = min{d, m2}.

By Lemma E.8; to ensure (E.60), we have the following requirement.

L<ZL: K- IC[, Umln( )
=T 2g(K(L), L) + 2x \ ([Wee|[J(K*, L) — J (K (L?), L™)]

For the second term on the right side of (E.56), noticing that by Lemma E.1 and Lemma B.7, it holds that

. = ~ . ~ J(K(L™),L™) - ||S||p ,, ~
St FLaWin Fpn < ||S5alle - [[Weelle - | Fonl[p < /2 (AL )H )| “FHFLTLH% (E.61)

Thus, substituting (E.59) and (E.61) to (E.56), we have that

T = T 2 0 o () B30 — -y 2 E D IS Onin (o)

—16¢- (||A = BK(L) = CL| + 1) (BZ 1Bl + ICI)I1FLx I¥), (E.62)

which gives the other requirement on ¢

JE(L™), L) - [S]le - omin(¥o)

o<t =5|vim
£16- (|4~ BK(L) — CL| + 1) (BEBI + [CI) | Fi 1]
Note that if we denote 7 = infrc.{z¥, 75}, then 7 > 0. Further, by (E.62), for any ¢ € (0,7), it holds that
THLMY) = JHE) 2 1/2 - omin(Uo) ™ - | Frn |3,

which completes the proof. O
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E.10 Proof of Lemma B.10
Proof. By the expression of F 1, in (C.11), we have

|F.r — Fi|| = |CT P (CL + BK — A) — CT P; (CL + BK(L) — A)||
<lcl-[IPEl-11BI - 1K = K(L)|| + |1 P, — PLll - |A = BK — CL|]
<|cl- [IBI- 1P|l - 1K — K(L)|| + |1 Px.. — PLll, (E.63)

where the last inequality holds as a result of the fact that p(A — BK — CL) < 1, and P* = P}. For the first term
on the right-hand side of the last inequality, by Lemma B.2, we have that

J(K, L)~ (L) = Te((K ~ K(L)"(R+ BT PB)(K ~ K(L)) - ¥,
> oin(V5) - TH((K — K(1))T (R+ BT PLB)(K - K(L))
> Omin(R) - Omin (¥o) - || K — K(L)H% (E.64)
For the second term on the right-hand side of the last inequality, by (C.7), we have that
| Py, — Pf|| < omin(¥o) ™" - [J(K, L) — J*(L)]. (E.65)
Thus, plugging (E.64) and (E.65) into (E.63), we have that
* - — * * 1/2
1Frcr = FE |l < omin(R) ™72 - omin(Wo) 2 || |B - 1P| - [J(K, L) = ()]
+ O'min(qja)71 : HCH ' [‘](Kr L) - J*(L)]

for an absolute constant C', which completes the proof. O



