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A Automated Accelerated IHT with De-bias Step

In the main text, we mention that Algorithm 2 can be boosted better in practice using de-bias steps. Here we
present the algorithm with de-bias step, as shown in Algorithm 3.

Like Automated Accelerated IHT, Algorithm 3 also starts with active subspace expansion, i.e., line 3 & 4. As
Z = supp(zt) = supp(wt−1) ∪ supp(wt) is a 2k-sparse index set, the expanded index set S is a 3k-sparse index
set that is the union of the support of three elements, i.e.,

S = supp(wt−1) ∪ supp(wt) ∪ supp(ΠCk\Z (∇f(zt))).

We note that, with a little abuse of notation, we use Z to denote both the support set Z ⊂ [n], and the subspace
restricted by the support, i.e., {x ∈ Rn | supp(x) ⊆ Z}, depending on the context.
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Algorithm 3 Automated Accelerated IHT - II (A-IHT II)

input Objective f(w) = ‖y − Φw‖22; sparsity k
1: t = 0, z0 = 0, w0 = 0
2: repeat
3: Z = supp(zt)
4: S = supp(ΠCk\Z (∇f(zt))) ∪ Z where |S| ≤ 3k {active subspace expansion}
5: ∇̃(1) = ∇f(zt)

∣∣
S

6: µ
(1)
t = arg minµ f(zt − µ∇̃(1)) =

‖∇̃(1)‖22
2‖Φ∇̃(1)‖22

{step size selection}

7: xt = ΠCk∩Rn
+

(
zt − µ(1)

t ∇f(zt)
)

{projected gradient descent}

8: ∇̃(2) = ∇f(xt)
∣∣
supp(x)

9: µ
(2)
t = arg minµ f(xt − µ∇̃(2)) =

‖∇̃(2)‖22
2‖Φ∇̃(2)‖22

{step size selection}

10: wt+1 = ΠRn
+

(xt − µ(2)
t ∇̃(2)) {de-bias step}

11: τt+1 = arg minτ f(wt+1 + τ(wt+1 − wt)) = 〈y−Φwt+1,Φ(wt+1−wt)〉
2‖Φ(wt+1−wt)‖22

12: zt+1 = wt+1 + τt+1(wt+1 − wt) {momentum step}
13: t = t+ 1
14: until Stop criteria met
15: return wt

The subspace corresponding to this index set S is a subspace that the algorithm considers as potential to achieve
low loss within. Therefore, in the next step, we perform projected gradient descent in this expanded subspace.
Note that we use ∇f(·)

∣∣
S to denote a sparse subset S of the gradient, i.e., setting the ith entry of ∇f(·) to 0 if

i /∈ S.

The projected gradient descent step consists of three sub-steps, i.e., step size selection (line 6), gradient descent
(line 7), and projection to non-negative k-sparse restricted domain (line 7). The step size selection is performed
by an exact line search to obtain a good step size automatically. The projection step (line 7) is where we do “hard
thresholding” to obtain a k-sparse solution xt. As mentioned before, this projection step can be done optimally
in the sense of `2-norm by choosing the k-largest non-negative elements.

Then, we come to the key difference between Algorithm 2 and Algorithm 3, i.e., the de-bias step at line 8, 9 & 10.
With additional de-bias steps, we adjust the solution k-sparse solution xt inside its own sparse space, i.e., the
space corresponding to supp(xt), such that a better k-sparse solution is found. After computing the gradient
(line 8), another exact line search is performed (line 9). By gradient descent and imposing the non-negativity
constraint (line 10), we have the solution wt+1 for this iteration.

Lastly, the momentum step (line 11 & 12) is the same as Algorithm 2. We select the momentum term as the
minimizer of the objective: τt+1 = arg minτ f(wt+1 + τ(wt+1 − wt)), and then apply the momentum to our
solutions wt+1 and wt as zt+1 = wt+1 + τt+1(wt+1 − wt) to capture memory in the algorithm. Momentum can
offer faster convergence rate for convex optimization (Nesterov, 1983).

B Theoretical Analysis

In this section, we provide a detailed theoretical analysis that is abstracted in the main paper due to space
limitation. All of the proofs are defer to section C for clarity. To begin with, let us show that all of the projection
operators used in our algorithms can be done optimally and efficiently.

Given an index set S ⊆ [n], the projection of w to the subspace with support S is ΠS(w), which can be done
optimally by setting wSc = 0, where Sc denotes the complement of S. We note that, with a little abuse of
notation, we use S to denote both the support set S ⊂ [n], and the subspace restricted by the support, i.e.,
{x ∈ Rn | supp(x) ⊆ S}. The projection to non-negative space, i.e., ΠRn

+
(w), can also be done optimally and

efficiently by setting the negative entries to zero. Moreover, ΠCk is shown to be optimal by simply picking the top
k largest (in absolute value) entries. It is also the case for ΠCk∩Rn

+
(w), where it can be done by picking the top k
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largest non-negative entries. The optimality for the above projections is in terms of Euclidean distance.

Let us show the optimality for ΠCk∩Rn
+

(w). Given a k-sparse support S, the optimal projection of w ∈ Rn to
its restricted sparsity space intersecting the non-negative orthant is w′ = ΠS∩Rn

+
(w). We can see that for entry

i ∈ [n], w′i = wi if i ∈ S and wi ≥ 0, and w′i = 0 otherwise. Therefore, the distance between w and its projection
to S ∩Rn+ is ‖w′ −w‖22 = ‖w‖22 −

∑
i∈S,wi>0 w

2
i . As ΠCk∩Rn

+
(w) = minS:|S|≤k ΠS∩Rn

+
(w), we can see that it is the

support with k largest wi that has the least distance. Therefore, simply picking top k largest non-negative entries
gives the optimal projection.

We give the convergence analysis for our main algorithm Automated Accelerated IHT in Algorithm 2. One
standard assumption about the objective is required for the theory to begin, i.e., RIP property, which is a normal
assumption in IHT context, reflecting convexity and smoothness of the objective in some sense (Khanna &
Kyrillidis, 2018; Kyrillidis & Cevher, 2014). We note that the assumption is not necessary but is sufficient. For
example, if the number of samples required to exactly construct ĝ is less than the coreset size (ak = 0 in RIP), so
that the system becomes underdetermined, then local minima can be global one achieving zero-error without
the RIP. On the other hand, when the number of samples goes to infinity, RIP ensures the eigenvalues of the
covariance matrix, cov[Li(θ),Lj(θ)] where θ ∼ π̂, are lower and upper bounded. It is an active area of research in
random matrix theory to quantify RIP constants e.g. see (Baraniuk et al., 2008).
Assumption 1 (Restricted Isometry Property). Matrix Φ in the objective function satisfies the RIP property,
i.e., for ∀w ∈ Ck

αk‖w‖22 ≤ ‖Φw‖22 ≤ βk‖w‖22.

It is known that there are connections between RIP and restricted strong convexity and smoothness assumptions
(Chen & Sanghavi, 2010); thus our results could potentially generalized for different convex f(·) functions.

Leading to our main theorem, some useful technical properties are presented. An useful observation is that, for
any set S ⊆ [n], the projection operator ΠS : Rn → Rn is in fact a linear operator in the form of a diagonal
matrix

ΠS = {diag(δi)}ni=1,

where δi is an indicator function: δi = 1 if i ∈ S, and δi = 0 otherwise. This leads to our first lemma.
Lemma 1. Supposing Φ satisfies the RIP assumption, given a sparse set S ⊆ [n] and |S| ≤ k, for ∀w ∈ Rn it
holds that

αk‖ΠSw‖2 ≤ ‖ΠSΦ>ΦΠSw‖2 ≤ βk‖ΠSw‖2.

Lemma 1 reveals a property of the eigenvalues of ΠSΦ>ΦΠS , which leads to the following lemma that bounds an
iterated projection using the RIP property.
Lemma 2. Supposing Φ satisfies the RIP assumption, given two sets S1,S2 ⊆ [n] and |S1 ∪S2| ≤ k, for ∀w ∈ Rn
it holds that

‖ΠS1
Φ>ΦΠSc

1
ΠS2

w‖2 ≤ βk−αk

2 · ‖ΠS2
w‖2.

Armed with above two lemmas, we are ready to prove convergence for Automated Accelerated IHT (Algorithm 2).
A key observation is that solution wt+1 found by Algorithm 2 is derived by the following two steps:

{wt, wt−1}
1

====⇒
line 9

zt
2

====⇒
line 7

wt+1.

Procedure 1 is a momentum step, with momentum size chosen automatically; procedure 2 aims for exploration
in an expanded subspace spanned by a 3k-sparse subset S, and projecting to k-sparse non-negative subspace.

We break down the proof into two parts. Denoting the optimal solution as

w? = arg min
w∈Ck∩Rn

+

‖y − Φw‖22,

we propose the following two lemmas for the two steps respectively.
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Lemma 3. For procedure 1 , the following iterative invariant holds.

‖zt − w?‖2 ≤ |1 + τt| · ‖wt − w?‖2 + |τt| · ‖wt−1 − w?‖2.

For the second procedure, we consider the actual step size µt automatically chosen by the algorithm. Noting that
|supp(∇̃t)| ≤ 3k, according to RIP we can see that the step size µt =

‖∇̃t‖22
2‖Φ∇̃t‖22

is bounded as

1

2β3k
≤ µt ≤

1

2α3k
.

Therefore, using the Lemma 1 and Lemma 2, one can prove the following lemma.

Lemma 4. For procedure 2 , the following iterative invariant holds.

‖wt+1 − w?‖2 ≤ ρ‖zt − w?‖2 + 2β3k

√
β2k‖ε‖2,

where ρ =
(

2 max{ β2k

α3k
− 1, 1− α2k

β3k
}+ β4k−α4k

α3k

)
, and ‖ε‖2 = ‖y − Φw?‖2 is the optimal objective value.

Combining the above two lemmas leads to our main convergence analysis theorem.

Theorem 1 (Restated). In the worst case scenario, with Assumption 1, the solutions path find by Automated
Accelerated IHT (Algorithm 2) satisfy the following iterative invariant.

‖wt+1 − w?‖2 ≤ ρ|1 + τt| · ‖wt − w?‖2 + ρ|τt| · ‖wt−1 − w?‖2 + 2β3k

√
β2k‖ε‖2,

where ρ =
(

2 max{ β2k

α3k
− 1, 1− α2k

β3k
}+ β4k−α4k

α3k

)
, and ‖ε‖2 = ‖y − Φw?‖2 is the optimal objective value.

The theorem provides an upper bound invariant among consecutive iterates of the algorithm. To have better
sense of convergence rate, we assume the optimal solution achieves ‖ε‖2 = 0. Theorem 1 then implies

‖wt+1 − w?‖2 ≤ ρ(1 + |τt|)‖wt − w?‖2 + ρ|τt| · ‖wt−1 − w?‖2.

Given the above homogeneous recurrence, we can solve for the following corollary that shows linear convergence
of the proposed algorithm under given conditions.

Corollary 1 (Restated). Given the iterative invariant as stated in Theorem 1, and assuming the optimal solution
achieves ‖ε‖2 = 0, the solution found by Algorithm 2 satisfies:

f(wt+1)− f(w?) ≤ φt
(
β2k

α2k
f(w1) +

ρτβ2k

φαk
f(w0)

)
,

where φ = (ρ(1 + τ) +
√
ρ2(1 + τ)2 + 4ρτ)/2 and τ = maxi∈[t] |τi|. It is sufficient to show linear convergence to

the global optimum, when φ < 1, or equivalently ρ < 1/(1 + 2τ).

C Proofs

This section provides proofs for the theoretical results presented in the previous section. For the sake of good
readability, the lemma/theorem to be proven is also restated preceding its proof.

C.1 Proof of Lemma 1

Lemma 1 (Restated). Supposing Φ satisfies the RIP assumption, given a sparse set S ⊆ [n] and |S| ≤ k, for
∀w ∈ Rn it holds that

αk‖ΠSw‖2 ≤ ‖ΠSΦ>ΦΠSw‖2 ≤ βk‖ΠSw‖2.
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Proof. Recall that ΠS is a linear operator that projects a vector w ∈ Rn to sparse restricted set with support S
by simply setting wi = 0 for each i /∈ S. As a result, for a k-sparse set S, ΠSw is a k-sparse vector. Given that
Φ ∈ Rm×n satisfies RIP property, for ∀w ∈ Rn, it holds that

αk‖ΠSw‖22 ≤ ‖ΦΠSw‖22 ≤ βk‖ΠSw‖22. (4)

Let us denote b = ΦΠSw, and 〈·, ·〉 as standard Euclidean inner product. With regular linear algebra manipulation,
the following stands:

‖ΠSΦ>b‖22 = max
x∈Rn:‖x‖2=1

(
〈ΠSΦ>b, x〉

)2
= max
x∈Rn:‖x‖2=1

(
b>ΦΠSx

)2
= max
x∈Rn:‖x‖2=1

(〈b,ΦΠSx〉)2

= max
x∈Rn:‖x‖2=1

(〈ΦΠSw,ΦΠSx〉)2
, (5)

where the second equality is due to the fact that ΠS is symmetric, i.e., (ΠSΦ>b)> = b>ΦΠS .

Letting x? be the solution of (5), we have the upper bound of (5):

(5) = (〈ΦΠSw,ΦΠSx
?〉)2 ≤ ‖ΦΠSw‖22 · ‖ΦΠSx

?‖22,

where the inequality is by Cauchy-Schwarz inequality applying on inner product.

On the other hand, the lower bound can be obtained by removing the maximizing operator and setting x =
ΠSw/‖ΠSw‖2, as follows. Denoting x′ = ΠSw/‖ΠSw‖2, we have,

(5) ≥ (〈ΦΠSw,ΦΠSx
′〉)2

= ‖ΦΠSw‖22 · ‖ΦΠSx
′‖22,

where the last equality is due to that ΠSw and x′ are parallel.

Applying (4) to the above upper bound and lower bound, it follows that

(5) ≤ ‖ΦΠSw‖22 · ‖ΦΠSx
?‖22 ≤ βk‖ΠSw‖22 · βk‖ΠSx?‖22,

(5) ≥ ‖ΦΠSw‖22 · ‖ΦΠSx
′‖22 ≥ αk‖ΠSw‖22 · αk‖ΠSx′‖22. (6)

Noting that x? is an unit-length vector, and the projection ΠS is done by setting elements to zero, we can see
that ‖Πx?‖2 ≤ 1. As x′ = ΠSw/‖ΠSw‖2 has already been a sparse vector in the restricted space by S, we can
see that ‖ΠSx′‖2 = ‖x′‖2 = 1. Plugging them in (6), it holds that

α2
k‖ΠSw‖22 = αk‖ΠSw‖22 · αk‖ΠSx′‖22 ≤ (5) ≤ βk‖ΠSw‖22 · βk‖ΠSx?‖22 ≤ β2

k‖ΠSw‖22.

Plugging that (5) = ‖ΠSΦ>b‖22 = ‖ΠSΦ>ΦΠSw‖22, and taking the square root, we finally have

αk‖ΠSw‖2 ≤ ‖ΠSΦ>ΦΠSw‖2 ≤ βk‖ΠSw‖2.

C.2 Proof of Lemma 2

Lemma 2 (Restated). Supposing Φ satisfies the RIP assumption, given two sets S1,S2 ⊆ [n] and |S1 ∪ S2| ≤ k,
for ∀w ∈ Rn it holds that

‖ΠS1
Φ>ΦΠSc

1
ΠS2

w‖2 ≤ βk−αk

2 · ‖ΠS2
w‖2.
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Proof. Similar to the proof of Lemma 1, we first write the norm in the form of an inner product. Given two sets
S1,S2 ⊆ [n] and |S1 ∪ S2| ≤ k, for ∀w ∈ Rn, with regular linear algebra manipulation, it holds that

‖ΠS1Φ>ΦΠSc
1
ΠS2w‖2

= max
b∈Rn:‖b‖2=1

|〈b,ΠS1Φ>ΦΠSc
1
ΠS2w〉|

= max
b∈Rn:‖b‖2=1

|〈ΦΠS1
b,ΦΠSc

1
ΠS2

w〉|, (7)

where the second equality is due to the fact that ΠS1
is symmetric.

Define two unit-length vectors

X =
ΠSc

1
ΠS2

w

‖ΠSc
1
ΠS2w‖2

, Y =
ΠS1

b

‖ΠS1
b‖
,

and we can see that 〈X,Y 〉 = 0, as Sc1 and S1 are disjoint. As a result, ‖X + Y ‖22 = ‖X‖22 + ‖Y ‖22 = 2. Moreover,
given that |S1 ∪ S2| ≤ k, we can see that X + Y is k-sparse. Applying the RIP property, the following holds:

2αk = αk‖X + Y ‖22 ≤ ‖ΦX + ΦY ‖22 ≤ βk‖X + Y ‖22 = 2βk.

Similarly, ‖X − Y ‖22 = 2 and X − Y is also k-sparse:

2αk ≤ ‖ΦX − ΦY ‖22 ≤ 2βk.

Noting that

〈ΦX,ΦY 〉 =
‖ΦX + ΦY ‖22 − ‖ΦX − ΦY ‖22

4
,

we can see the following,

−βk − αk
2

≤ 〈ΦX,ΦY 〉 ≤ βk − αk
2

. (8)

Recall that
(7) = max

‖b‖2=1
|〈ΦX,ΦY 〉| · ‖ΠS1b‖2 · ‖ΠSc

1
ΠS2w‖2,

and apply (8) to the above, we conclude that

(7) ≤ max
‖b‖2=1

βk − αk
2

· ‖ΠS1
b‖2 · ‖ΠSc

1
ΠS2

w‖2

≤ βk − αk
2

‖ΠS2
w‖2.

C.3 Proof of Lemma 3

Lemma 3 (Restated). For procedure 1 , the following iterative invariant holds.

‖zt − w?‖2 ≤ |1 + τt| · ‖wt − w?‖2 + |τt| · ‖wt−1 − w?‖2.

Proof. According to line 9 in Algorithm 2, with some regular linear algebra manipulation, we can derive

‖zt − w?‖2 = ‖wt + τt(wt − wt−1)− w?‖2
= ‖(1 + τt)(wt − w?) + τt(w

? − wt−1)‖2
≤ |1 + τt|‖wt − w?‖2 + |τt|‖wt−1 − w?‖2,

where the last inequality is done by triangle inequality.
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C.4 Proof of Lemma 4

Lemma 4 (Restated). For procedure 2 , the following iterative invariant holds.

‖wt+1 − w?‖2 ≤ ρ‖zt − w?‖2 + 2β3k

√
β2k‖ε‖2,

where ρ =
(

2 max{ β2k

α3k
− 1, 1− α2k

β3k
}+ β4k−α4k

α3k

)
, and ‖ε‖2 = ‖y − Φw?‖2 is the optimal objective value.

Proof. Denoting v = zt − µt∇f(zt), and set S? = supp(wt+1) ∪ supp(w?), we begin by the projection at line 7 in
Algorithm 2. Applying the triangle inequality,

‖wt+1 − w?‖2 ≤ ‖wt+1 −ΠS?v‖2 + ‖ΠS?v − w?‖2. (9)

As S? = supp(wt+1) ∪ supp(w?), we can observe that 〈wt+1,ΠS?cv〉 = 0 and 〈w?,ΠS?cv〉 = 0. As a result,

‖wt+1 −ΠS?v‖22 = ‖wt+1 − v + ΠS?cv‖22
= ‖wt+1 − v‖22 + ‖ΠS?cv‖22 + 2〈wt+1 − v,ΠS?cv〉
= ‖wt+1 − v‖22 + ‖ΠS?cv‖22 + 2〈−v,ΠS?cv〉
≤ ‖w? − v‖22 + ‖ΠS?cv‖22 + 2〈−v,ΠS?cv〉
= ‖w? − v‖22 + ‖ΠS?cv‖22 + 2〈w? − v,ΠS?cv〉
= ‖w? − v + ΠS?cv‖22
= ‖w? −ΠS?v‖22,

where the inequality is due to the projection step wt+1 = ΠCk∩Rn
+
v is done optimally, and w? ∈ Ck ∩Rn+. Plugging

the above inequality into (9), it holds that

‖wt+1 − w?‖2 ≤ 2‖ΠS?v − w?‖2. (10)

Expanding v and denoting ε = Φw? − y, we have

v = zt − µt (∇f(zt))

= zt − µt
(
2Φ>(Φzt − y)

)
= zt − µt

(
2Φ>Φ(zt − w?) + 2Φ>(Φw? − y)

)
= zt − 2µtΦ

>Φ(zt − w?)− 2µtΦ
>ε.

Plugging the above into inequality (10), we can further expand

‖wt+1 − w?‖2 ≤ 2‖ΠS?(zt − 2µtΦ
>Φ(zt − w?)− 2µtΦ

>ε)− w?‖2
= 2‖ΠS?(zt − w?)− 2µtΠS?Φ>Φ(zt − w?)− 2µtΠS?Φ>ε‖2
≤ 2‖ΠS?(zt − w?)− 2µtΠS?Φ>Φ(zt − w?)‖2 + 4µt‖ΠS?Φ>ε‖2
= 2‖ΠS?(zt − w?)− 2µtΠS?Φ>ΦI(zt − w?)‖2 + 4µt‖ΠS?Φ>ε‖2. (11)

Expanding the identity matrix by I = ΠS? + ΠS?c , we have

(11) ≤ 2‖(I − 2µtΠS?Φ>ΦΠS?)ΠS?(zt − w?)‖2︸ ︷︷ ︸
A

+ 4µt‖ΠS?Φ>ΦΠS?c(zt − w?)‖2︸ ︷︷ ︸
B

+ 4µt‖ΠS?Φ>ε︸ ︷︷ ︸
C

‖2.

Now we bound the three terms respectively.
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Noting that |S?| ≤ 2k, according to Lemma 1, in the subspace with support S?, i.e., {w | supp(w) = S?}, the
eigenvalues α2k ≤ λS?(ΠS?Φ>ΦΠS?) ≤ β2k. Therefore, eigenvalues

λS?(I − 2µtΠS?Φ>ΦΠS?) ∈ [1− 2µtβ2k, 1− 2µtα2k],

which means

A ≤ 2 max{2µtβ2k − 1, 1− 2µtα2k}‖ΠS?(zt − w?)‖2
≤ 2 max{β2k/α3k − 1, 1− α2k/β3k}‖zt − w?‖2.

For term B, demoting S ′ = supp(zt) ∪ supp(w?), it can be observed that

B = 4µt‖ΠS?Φ>ΦΠS?cΠS′(zt − w?)‖2.

Noting that |S ′ ∪ S?| ≤ 4k, by directly applying Lemma 2 we have

B ≤ 4µt
β4k − α4k

2
‖ΠS′(zt − w?)‖2

≤ β4k − α4k

α3k
‖zt − w?‖2.

To complete the proof, let us deal with the last piece. Similar to the techniques used in the proof on Lemma 1,

‖ΠS?Φ>ε‖2 = max
x∈Rn:‖x‖2=1

〈ΠS?Φ>ε, x〉

= max
x∈Rn:‖x‖2=1

ε>ΦΠS?x

= max
x∈Rn:‖x‖2=1

〈ε,ΦΠS?x〉

≤ max
x∈Rn:‖x‖2=1

‖ε‖2 · ‖ΦΠS?x‖2

≤
√
β2k‖ε‖2,

where the last inequality is done by directly applying the definition of RIP. Therefore,

C ≤ 4µt
√
β2k‖ε‖2 ≤ 2β3k

√
β2k‖ε‖2.

Combining the 3 pieces together, we finally derive

‖wt+1 − w?‖2 ≤ 2 max{β2k

α3k
− 1, 1− α2k

β3k
}‖zt − w?‖2

+
β4k − α4k

α3k
‖zt − w?‖2 + 2β3k

√
β2k‖ε‖2.

Rearranging the inequality completes the proof.

C.5 Proof of Theorem 1

Theorem 1 (Restated). In the worst case scenario, with Assumption 1, the solutions path find by Automated
Accelerated IHT (Algorithm 2) satisfy the following iterative invariant.

‖wt+1 − w?‖2 ≤ ρ|1 + τt| · ‖wt − w?‖2 + ρ|τt| · ‖wt−1 − w?‖2 + 2β3k

√
β2k‖ε‖2,

where ρ =
(

2 max{ β2k

α3k
− 1, 1− α2k

β3k
}+ β4k−α4k

α3k

)
, and ‖ε‖2 = ‖y − Φw?‖2 is the optimal objective value.

Proof. Lemma 3 suggests

‖zt − w?‖2 ≤ |1 + τt|‖wt − w?‖2 + |τt|‖wt−1 − w?‖2.
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Combining with lemma 4, i.e.,

‖wt+1 − w?‖2 ≤ ρ‖zt − w?‖2 + 2β3k

√
β2k‖ε‖2,

where ρ =
(

2 max{ β2k

α3k
− 1, 1− α2k

β3k
}+ β4k−α4k

α3k

)
, and ‖ε‖2 = ‖y − Φw?‖2, we have

‖xt − w?‖2 ≤ρ|1 + τt|‖wt − w?‖2 + ρ|τt|‖wt−1 − w?‖2 + 2β3k

√
β2k‖ε‖2,

which completes the proof.

C.6 Proof of Corollary 1

Corollary 1 (Restated). Given the iterative invariant as stated in Theorem 1, and assuming the optimal solution
achieves ‖ε‖2 = 0, the solution found by Algorithm 2 satisfies:

f(wt+1)− f(w?) ≤ φt
(
β2k

α2k
f(w1) +

ρτβ2k

φαk
f(w0)

)
,

where φ = (ρ(1 + τ) +
√
ρ2(1 + τ)2 + 4ρτ)/2 and τ = maxi∈[t] |τi|. It is sufficient to show linear convergence to

the global optimum, when φ < 1, or equivalently ρ < 1/(1 + 2τ).

Proof. Theorem 1 provides an upper bound invariant among consecutive iterates of the algorithm. To have better
sense of convergence rate, we assume the optimal solution achieves ‖ε‖2 = 0. Theorem 1 then implies

‖wt+1 − w?‖2 ≤ ρ(1 + |τt|)‖wt − w?‖2 + ρ|τt| · ‖wt−1 − w?‖2
≤ ρ(1 + τ)‖wt − w?‖2 + ρτ · ‖wt−1 − w?‖2.

Rearranging the inequality with some regular algebraic manipulations, we have

‖wt+1 − w?‖2 +
ρτ

φ
‖wt − w?‖2 ≤ φ

(
‖wt − w?‖2 +

ρτ

φ
‖wt−1 − w?‖2

)
≤ φt

(
‖w1 − w?‖2 +

ρτ

φ
‖w0 − w?‖2

)
,

where φ =

√
ρ2(1+τ)2+4ρτ+ρ(1+τ)

2 .

Noting that all ρ, τ, φ are non-negative, we can relax the inequality a bit to be

‖wt+1 − w?‖2 ≤ φt
(
‖w1 − w?‖2 +

ρτ

φ
‖w0 − w?‖2

)
. (12)

It is sufficient for linear convergence when φ < 1, i.e.,√
ρ2(1 + τ)2 + 4ρτ + ρ(1 + τ)

2
< 1

⇐⇒
√
ρ2(1 + τ)2 + 4ρτ < 2− ρ(1 + τ)

⇐⇒

{
ρ2(1 + τ)2 + 4ρτ < (2− ρ(1 + τ))2

0 < 2− ρ(1 + τ)

⇐⇒

{
ρ(1 + 2τ) < 1

ρ(1 + τ) < 2

⇐⇒ ρ < 1/(1 + 2τ)

In our case, this also indicates the linear convergence of function values. Noting that (wt+1 − w?) and (w1 − w?)
are at most 2k-sparse, and (w0 − w?) = −w? is k-sparse, we have the following statements according to RIP
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property:

‖Φ(wt+1 − w?)‖22 ≤ β2k‖wt+1 − w?‖22
‖Φ(w1 − w?)‖22 ≥ α2k‖w1 − w?‖22
‖Φ(w0 − w?)‖22 ≥ αk‖w0 − w?‖22

As we assume ‖ε‖2 = ‖y − Φw?‖2 = 0, i.e., y = Φw? and f(w?), we can see that

f(wt+1) = ‖Φwt+1 − y‖22 ≤ β2k‖wt+1 − w?‖22
f(w1) = ‖Φw1 − y‖22 ≥ α2k‖w1 − w?‖22
f(w0) = ‖Φw0 − y‖22 ≥ αk‖w0 − w?‖22

Plugging these into (12) completes the proof.

D Additional Related Work

Thresholding-based optimization algorithms have been attractive alternatives to relaxing the constraint to a
convex one or to greedy selection. Bahmani et al. (2013) provide a gradient thresholding algorithm that generalizes
pursuit approaches for compressed sensing to more general losses. Yuan et al. (2018) study convergence of gradient
thresholding algorithms for general losses. Jain et al. (2014) consider several variants of thresholding-based
algorithms for high dimensional sparse estimation. Nguyen et al. (2014); Li et al. (2016) discuss convergence
properties of thresholding algorithms for stochastic settings, while in (Jain et al., 2016) the algorithm is extended
to structured sparsity. Greedy algorithms (Shalev-Shwartz et al., 2010) for cardinality constrained problems
have similar convergence guarantees and smaller per iteration cost but tend to underperform when compared to
thresholding-based algorithms (Khanna & Kyrillidis, 2018).

Acceleration using momentum term (Beck & Teboulle, 2009; Ghadimi et al., 2015) allows for faster convergence of
first-order methods without increasing the per iteration cost. In the context of accelerating sparsity constrained
first-order optimization, Khanna & Kyrillidis (2018); Blumensath (2012) use momentum terms in conjunction
with thresholding and prove linear convergence of their method. We extend their work by also including additional
constraints of non-negativity. More recently, there have also been works (Ma et al., 2019) that study acceleration
in sampling methods such as MCMC that are relevant to Bayesian coresets.

E Additional Results for Synthetic Gaussian Posterior Inference

Additional results for experiments in section 5.1 are provided in this section.

From an optimization perspective, one may be curious about the convergence speed of the two proposed algorithms,
i.e., A-IHT and Accelerated A-IHT II (Algorithm 2 & 3). The convergence for the two algorithms compared to
the solutions by baselines are presented in Figure 5. The x-axis is iteration number for A-IHT and A-IHT II, and
the y-axis is the objective function to be minimized, i.e.,

f(w) = ‖y − Φw‖22,

where y =
∑n
i=1 ĝi and Φ = [ĝ1, . . . , ĝn].

The two IHT algorithms’ fast convergence speed reflects what our theory suggests. They surpass GIGA within
about 30 iterations, and surpass SparseVI within 50 iterations (A-IHT II) and within 100 iterations (A-IHT),
respectively. Although we should note that the objective function which SparseVI minimizes is reverse KL
divergence instead of l2 distance, the two IHT algorithms can achieve much better solutions when considering KL
divergence as well, as shown in Figure 1. Moreover, the tendency of a further decrease in objective value is still
observed for the two IHT algorithms at 300th iteration.

Illustration of the coresets constructed by A-IHT II in the first trial after projecting to 2D is presented in Figure 6.

F Additional Results for Radial Basis Regression

In this section, we provide additional experimental results of posterior contours for the radial basis regression
experiment (section 5.2).
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Figure 5: Convergence results for synthetic Gaussian posterior inference (subsection 5.1) when sparsity setting
k = 200 in the first trial. For GIGA, SparseVI and Uniform, each of the objective function values f is calculated
by the final output of each algorithms.

Exact A-IHT II, 0 pts Exact A-IHT II, 20 pts

Exact A-IHT II, 50 pts Exact A-IHT II, 100 pts

Figure 6: Illustration of true posterior and posterior constructed by A-IHT II after projecting to 2-dimensional
plane for synthetic Gaussian posterior inference (Section 5.1). Results at different sparsity level are shown. The
ellipses indicate 2σ-prediction of the posterior distribution, and the black dots represent coreset points selected
with their radius denoting the respective weights.

We plot the posterior contours for both the true posterior and coreset posterior when sparsity level k = 300 in
the first four random trials out of ten trials. The coreset posterior constructed by our Algorithm 3 recovers the
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A-IHT II Corset Posterior Coreset size: 300 True Posterior SparseVI Corset Posterior Coreset size: 300

A-IHT II Corset Posterior Coreset size: 300 True Posterior SparseVI Corset Posterior Coreset size: 300

A-IHT II Corset Posterior Coreset size: 300 True Posterior SparseVI Corset Posterior Coreset size: 300

A-IHT II Corset Posterior Coreset size: 300 True Posterior SparseVI Corset Posterior Coreset size: 300

Figure 7: Experiments on Bayesian radial basis function regression in the first four random trials out of ten trails,
where coreset sparsity setting k = 300. Coreset points are presented as black dots, with their radius indicating
assigned weights. Posterior constructed by Accelerated IHT II (left) shows almost exact contours as the true
posterior distribution (middle), while posterior constructed by SparseVI (right) shows deviated contours from the
true posterior distribution.
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(a) synthetic dataset for logistic regression
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(b) phishing dataset for logistic regression
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(c) chemical reactivities dataset for logistic regression

Figure 8: Bayesian coreset construction for logistic regression (LR) using the three different datasets. All the
algorithms are run 20 times, and the median as well as the interval of 35th and 65th percentile, indicated as
the shaded area, are reported. Different maximal coreset size k is tested from 1 to 100. Forward KL (left) and
reverse KL (middle) divergence between estimated true posterior and coreset posterior indicate the quality of
the constructed coreset. The smaller the KL divergence, the better the coreset is. The running time for each
algorithm is also recorded (right).

true posterior almost exactly, unlike SparseVI. Results are shown in Figure 7.

G Details and Extensive Results of the Bayesian Logistic and Poisson Regression
Experiments

We consider how IHT performs when used in real applications where the closed-form expressions are unattainable.
As the true posterior is unknown, a Laplace approximation is used for GIGA and IHT to derive the finite
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(a) synthetic dataset for Poisson regression
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(b) biketrips dataset for Poisson regression

0 20 40 60 80 100

Coreset Size k

10^-3

10^-2

10^-1

10^0

F
o
rw
a
rd
K
L

A-IHT

A-IHT II

GIGA

SparseVI

Uniform

Prior

0 20 40 60 80 100

Coreset Size k

10^-3

10^-2

10^-1

R
e
v
e
rs
e
K
L

A-IHT

A-IHT II

GIGA

SparseVI

Uniform

Prior

10^-4 10^-3 10^-2 10^-1 10^0 10^1 10^2 10^3

CPU Time (s)

10^-3

10^-2

10^-1

R
e
v
e
rs
e
K
L

A-IHT

A-IHT II

GIGA

SparseVI

Uniform

(c) airportdelays dataset for Poisson regression

Figure 9: Bayesian coreset construction for Poisson regression (PR) using the three different datasets. All the
algorithms are run 20 times, and the median as well as the interval of 35th and 65th percentile, indicated as
the shaded area, are reported. Different maximal coreset size k is tested from 1 to 100. Forward KL (left) and
reverse KL (middle) divergence between estimated true posterior and coreset posterior indicate the quality of
the constructed coreset. The smaller the KL divergence, the better the coreset is. The running time for each
algorithms is also recorded (right).

projection of the distribution, i.e., ĝi. Further, Monte Carlo sampling is needed to derive gradients of DKL for
SparseVI. We compare different algorithms estimating the posterior distribution for logistic regression and Poisson
regression. The reverse KL and forward KL between the coreset posterior and true posterior are estimated using
another Laplace approximation. The experiment was proposed by Campbell & Broderick (2019), and is used in
(Campbell & Broderick, 2018) (GIGA) and (Campbell & Beronov, 2019) (SparseVI). The experimental settings
for each baseline algorithms are set following their original settings for this experiment. In addition, we conduct
additional experiments using a stochastic gradient estimator or using an alternative evaluation for coreset quality.
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For logistic regression, given a dataset {(xn, yn) ∈ RD × {1,−1} | i ∈ [N ]}, we aim to infer θ ∈ RD+1 based on
the model:

yn | xn, θ ∼ Bern
(

1

1 + e−z
>
n θ

)
,

where zn = [x>n , 1]>. Three datasets are used for logistic regression. The synthetic dataset for logistic
regression consists of data xn sampled i.i.d. from standard normal distribution N (0, I), and label yn sampled
from Bernoulli distribution conditioned on xn and θ = [3, 3, 0]>. The original phishing dataset4 consists of N =
11055 data points with dimensionD = 68. The phishing dataset used in this experiment is preprocessed (Campbell
& Beronov, 2019) via principle component analysis to project each data points to dimension of D = 10 to mitigate
high computation by SparseVI. The original chemical reactivities dataset5 has N = 26733 data points with
dimension D = 10. We uniformly sub-sample N = 500 data points from each datasets for this experiment, due to
the high computation cost of SparseVI.

For Poisson regression, given {(xn, yn) ∈ RD × N | i ∈ [N ]}, we aim to infer θ ∈ RD+1 from model

yn | xn, θ ∼ Poiss
(

log
(

1 + e−z
>
n θ
))

,

where zn = [x>n , 1]>. Three other datasets are used for Poisson regression: the synthetic dataset for Poisson
regression consists of data xn sampled i.i.d. from a standard normal distribution N (0, 1), and target yn sampled
from Poisson distribution conditioned on xn and θ = [1, 0]>. The biketrips dataset6 consists of N = 17386 data
points with dimension D = 8. The airportdelays dataset7 has N = 7580 data points with dimension D = 15.
Same as logistic regression, we uniformly sub-sample N = 500 data points from each datasets for this experiment.

The comparison of the algorithms for Bayesian coreset construction for logistic regression are shown in Figure 8,
and Bayesian coreset construction for Poisson regression are shown in Figure 9. The left column shows forward
KL divergence given sparsity setting k, the middle column shows reverse KL divergence, and the right column
presents the running time for corset construction for each algorithm.

It is observed that A-IHT and A-IHT II achieve state-of-the-art performance. The IHT algorithms often obtain
coresets with smaller KL than GIGA and SparseVI, with computing time comparable to GIGA, significantly less
than SparseVI. The experiments indicate that IHT outperforms the previous methods, improving the trade-off
between accuracy and performance.

The results on large-scale datasets have been presented in the Figure 4 in the main paper. Next, we present two
additional sets of experiments that are omitted in the main paper.

Stochastic Gradient Estimator. For large-scale datasets, it is often necessary to “batch" the algorithms. IHT
can be easily batched by replacing the gradient with a stochastic gradient estimator that only a batch of data in
each iteration.

Recall that for IHT the gradient of the objective function f(w) = ‖y − Φw‖2 is ∇f(w) = 2Φ>(Φw − y), where
Φ ∈ RS×n. As we introduced in section 2, S is the number of samples θ ∼ π̂, and n is the number of data. Thus,
we can form a unbiased gradient estimator as

g̃(w) = 2Γ>1 Φ>(ΦΓ2w − y),

where Γ1,Γ2 ∈ Rn×n are i.i.d sampled from a distribution πΓ with EΓ1∼πΓ
[Γ1] = EΓ2∼πΓ

[Γ2] = I, where I ∈ Rn×n
is the identity matrix. Therefore,

Eg̃(w) = 2(EΓ1)>Φ>(ΦEΓ2w − y) = 2IΦ>(ΦIw − y) = ∇f(w),

showing that g̃(w) is an unbiased estimator of ∇f(w).

4https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
5http://komarix.org/ac/ds
6http://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset
7The airportdelays dataset was constructed (Campbell & Broderick, 2019) by combining flight delay data (http://

stat-computing.org/dataexpo/2009/the-data.html) and weather data (https://www.wunderground.com/history/.).

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
http://komarix.org/ac/ds
http://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset
http://stat-computing.org/dataexpo/2009/the-data.html
http://stat-computing.org/dataexpo/2009/the-data.html
https://www.wunderground.com/history/.
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Figure 10: Bayesian coreset construction for logistic regression and Poisson regression using the six different
datasets. All the algorithms are run 20 times, and the median as well as the interval of 35th and 65th percentile,
indicated as the shaded area, are reported. Different maximal coreset size k is tested from 1 to 100. Symmetrized
KL divergence between estimated true posterior and coreset posterior indicate the quality of the constructed
coreset. The smaller the KL divergence, the better the coreset is.

For example, we can form the estimator using a batch of data with batch size B by letting Γ1,Γ2 be random
matrices as randomly setting n − B rows of n

B I be zero. Equivalently, it is the same as randomly picking B
columns of Φ, setting the rest columns be zero, and scale the matrix by n/B. Noting that each column of Φ
corresponds to each of the n data points, this operation is essentially to approximate Φ using a batch of data
with batch size B, and thus it approximates the gradient using a batch of a data.

We test how Algorithm 2 performs on the Bayesian logistic regression and Poisson regression using the stochastic
estimator with batch size B = n/5. All of the experimental settings are the same as what we have introduced in
this section. As a summary of both forward FL and reverse KL, we use the symmetrized KL (i.e., the sum of
forward KL and reverse KL) as the evaluation metric for coreset quality. The results are shown in Figure 10.
It is observed that A-IHT with the stochastic gradient estimator (A-IHT batch grad.) performs comparably to
the A-IHT. We note that the batched version of A-IHT can be improved by increasing its maximal number of
iterations, i.e., optimization with stochastic gradient needs more iterations to converge, or using a better batch
gradient estimator. Theoretical study on accelerated IHT with approximated gradients is still an open question
to the best of our knowledge. Further research on accelerated IHT with stochastic gradients is an interesting
future work.

`2-distance Evaluation of Coreset Quality. In the previous experiments in the subsection, the coreset quality
is evaluated by approximating the KL divergence between the full-dataset posterior and coreset posterior. As an
alternative way to measure the coreset quality, we measure the `2-distance between the maximum-a-posteriori
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Figure 11: Bayesian coreset construction for logistic regression and Poisson regression using the six different
datasets. All the algorithms are run 20 times, and the median as well as the interval of 35th and 65th percentile,
indicated as the shaded area, are reported. Different maximal coreset size k is tested from 1 to 100. `2-distance
between the MAP estimators of the full-dataset posterior and coreset posterior indicate the quality of the
constructed coreset. The smaller the `2-distance, the better the coreset is.

(MAP) estimation of the full-dataset posterior and coreset posterior. The results are shown in Figure 11. It is
observed that the two IHT algorithms usually achieve the best results, except that SparseVI achieves the lowest
`2-distance on two datasets. However, SparseVI costs ×104 more time than IHT and GIGA.


