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Abstract

Bayesian coresets have emerged as a promising
approach for implementing scalable Bayesian
inference. The Bayesian coreset problem in-
volves selecting a (weighted) subset of the data
samples, such that the posterior inference us-
ing the selected subset closely approximates
the posterior inference using the full dataset.
This manuscript revisits Bayesian coresets
through the lens of sparsity constrained opti-
mization. Leveraging recent advances in ac-
celerated optimization methods, we propose
and analyze a novel algorithm for coreset se-
lection. We provide explicit convergence rate
guarantees and present an empirical evalua-
tion on a variety of benchmark datasets to
highlight our proposed algorithm’s superior
performance compared to state-of-the-art on
speed and accuracy.

1 Introduction

Bayesian coresets have emerged as a promising ap-
proach for scalable Bayesian inference (Huggins et al.,
2016; Campbell & Broderick, 2018, 2019; Campbell &
Beronov, 2019). The key idea is to select a (weighted)
subset of the data such that the posterior inference
using the selected subset closely approximates the pos-
terior inference using the full dataset. This creates a
trade-off, where using Bayesian coresets as opposed to
the full dataset exchanges approximation accuracy for
computational speedups. We study Bayesian coresets
as they are easy to implement, effective in practice,
and come with useful theoretical guarantees that relate
the coreset size with the approximation quality.
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The main technical challenge in the Bayesian coreset
problem lies in handling the combinatorial constraints –
we desire to select a few data points out of many as the
coreset. In terms of optimization, previous approaches
mainly rely on two ideas: convexification and greedy
methods. In convexification (Campbell & Broderick,
2019), the sparsity constraint – i.e., selection of k data
samples – is relaxed into a convex `1-norm constraint.
This allows them to use out-of-the-box solvers such as
Frank-Wolfe (FW) type-of methods (Frank & Wolfe,
1956; Jaggi, 2013). An alternative approach is by us-
ing greedy methods (Campbell & Broderick, 2018),
which constructs a sparse weight vector based on lo-
cal decisions to greedily optimize the approximation
problem (Tropp & Gilbert, 2007; Needell & Tropp,
2009). The resulting method, greedy iterative geodesic
ascent (GIGA), achieves linear convergence with no
hyper-parameter tuning and optimal scaling (Campbell
& Broderick, 2018). More recently, sparse variational
inference (SparseVI) is considered for Bayesian coreset
construction. SparseVI also employs a greedy algo-
rithm to minimize a KL divergence objective. The
method achieves state-of-the-art accuracy, but at a
cost of higher computational requirements. Therefore,
existing work illustrates the trade-off between accuracy
and efficiency, opening a gap for improvements.

We revisit Bayesian coresets through the lens of sparsity
constrained optimization. Sparsity, a kind of noncon-
vexity, appears in a variety of applications in machine
learning and statistics. For instance, compressed sens-
ing (Donoho et al., 2006; Candes, 2008) is an example
where sparsity is used as a complexity measure for
signal representation. Leveraging and building upon
recent advances in non-convex optimization, we solve
the Bayesian coreset problem based on hard thresh-
olding algorithms (Blumensath & Davies, 2009) that
directly work on the non-convex sparsity constraint.
Hard-thresholding schemes are highly flexible, and eas-
ily accommodate variations such as subspace explo-
ration (Dai & Milenkovic, 2009), de-bias steps (Needell
& Tropp, 2009), adaptive step size selections (Kyrillidis
& Cevher, 2011), as well as different types of spar-
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sity constraints, such as group sparsity (Baldassarre
et al., 2016), sparsity within groups (Kyrillidis et al.,
2015), and generic structured sparsity (Baraniuk et al.,
2010). The thresholding step involves a projection
onto the k-sparsity constraint set to determine the se-
lected sample set in each iteration. While we achieve
state-of-the-art accuracy using direct application of this
algorithm, re-building the set in every iteration makes
it slower than previous works. To fix this, we employ
line search for step size selection and momentum based
techniques (Khanna & Kyrillidis, 2018) to accelerate
the algorithm, also achieving state-of-the-art speed.

Contributions. In this paper, we adapt accelerated
iterative hard thresholding schemes to the Bayesian
coreset problem. Despite directly attacking the non-
convex optimization problem, we provide strong con-
vergence guarantees. To summarize our contributions:

• We revisit the Bayesian coreset problem via a non-
convex (sparse) optimization lens, and provide an
IHT-based algorithm that combines hard threshold-
ing and momentum steps;

• We analyze its convergence based on standard as-
sumptions;

• We provide extensive empirical evaluation1 to show
superior performance of the proposed method vis-à-
vis state-of-the-art algorithms in terms of approxi-
mation accuracy as well as speed.

2 Problem Formulation

Given n observations, one can compute the log-
likelihood Li(θ) of each of the observations, param-
eterized by θ. Assuming observations are conditionally
independent given θ, one can represent the likelihood
of all the observations as the sum of individual log-
likelihoods, i.e., L(θ) =

∑n
i=1 Li(θ). With prior density

π0(θ), the posterior density can be derived as:

π(θ) := 1
Z ·e
L(θ) · π0(θ),

where Z =
∫
eL(θ)π0(θ)dθ is a normalization factor.

However, for most applications, exact posterior esti-
mation is intractable; i.e., π is too hard to evaluate
exactly. Practitioners use algorithms for approximate
inference that may approximate the π in a closed-form
(e.g., using variational inference), or allow for sampling
from the posterior without providing a closed-form
expression (e.g., MCMC methods). Such algorithms
often scale at least linearly with the size of the dataset
n, which makes them prohibitively expensive for large

1Code available at https://github.com/jackyzyb/
bayesian-coresets-optimization

datasets. As such, designing algorithms to speed up
inference is an area of active research.

One solution to the scalability problem is to use coresets.
Coresets approximate the empirical log-likelihood L =∑n
i=1 Li using a weighted sum of a subset of all the log-

likelihoods Li. In other words, we use Lw =
∑n
i=1 wiLi

to approximate the true L, where w ∈ Rn+ is a non-
negative sparse vector. It will be useful to view that
L,Li and Lw are functions in a Hilbert space, and
we will use L2-norm to denote the 2-norm defined in
function space, differentiating with the `2-norm defined
in Euclidean space. We enforce the sparsity constraint
as ‖w‖0 ≤ k, for k < n; here ‖ · ‖0 denotes the pseudo-
norm that counts the number of non-zero entries.

When k < n, posterior estimation (e.g., using MCMC
or variational inference) is less expensive on the coreset
as opposed to the entire dataset. However, sparsifying
w involves dropping some samples, which in turn im-
plies deviating from the best performance possible from
using the full dataset. The Bayesian coreset problem
is formulated to minimize this loss in performance.

The Bayesian Coreset Problem. The Bayesian
coreset problem is to control the deviation of coreset
log-likelihood from true log-likelihood via sparsity:

arg min
w∈Rn

f(w) := Dist(L, Lw)

s.t. ‖w‖0 ≤ k, wi ≥ 0,∀i.
(1)

Key components are (i) the weights w ∈ Rn+ over n
data points, (ii) the function f(·) that controls the devi-
ation between the full-dataset log-likelihood L and the
coreset log-likelihood Lw using the distance functional
Dist(·, ·), and (iii) the non-convex sparsity constraint
that restricts the number of nonzeros in w, thus con-
straining the number of active data points in the coreset.
Examples of Dist(·, ·) include the weighted L2-norm
(Campbell & Broderick, 2019) and the KL-divergence
(Campbell & Beronov, 2019). In this manuscript, we
consider the L2(π̂)-norm as the distance metric in the
embedding Hilbert space, i.e.,

Dist(L, Lw)2 = ‖L − Lw‖2π̂,2
= Eθ∼π̂

[
(L(θ)− Lw(θ))2

]
, (2)

where π̂ is a weighting distribution that has the same
support as true posterior π. Ideally, π̂ is the true pos-
terior, which is obviously unknown. However, one can
employ Laplace approximation to derive an inexpen-
sive and reasonable approximation for π̂ (Campbell &
Broderick, 2019).

To account for the shift invariance, we write gi =
Li−Eθ∼π̂Li(θ), so the equivalent optimization problem
is now: minimize ‖

∑n
i=1 gi −

∑n
i=1 wigi‖2π̂,2. Further,

https://github.com/jackyzyb/bayesian-coresets-optimization
https://github.com/jackyzyb/bayesian-coresets-optimization
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noting that the L2(π̂)-norm is in the form of expec-
tation (equation (2)), it can be approximated by a
finite-dimensional `2-norm which replaces the function
with a vector of sampled evaluations θ ∼ π̂, i.e., its
Monte Carlo approximation. Thus, given S samples
{θj}Sj=1, θj ∼ π̂, and using

ĝi = 1√
S
·
[
Li(θ1)− L̄i, . . . ,Li(θS)− L̄i

]> ∈ RS

as projections from function space to standard Eu-
clidean space, where L̄i = 1

S

∑S
j=1 Li(θj), the Bayesian

coreset problem (1) becomes a finite-dimensional sparse
regression problem:

arg min
w∈Rn

f(w) :=

∥∥∥∥∥
n∑
i=1

ĝi −
n∑
i=1

wiĝi

∥∥∥∥∥
2

2

s.t. ‖w‖0 ≤ k, wi ≥ 0,∀i.

(3)

The resulting sparse regression problem is non-convex
due to the combinatorial nature of the constraints.
Previous methods that use this `2-norm formula-
tion (Campbell & Broderick, 2019, 2018) offers
less satisfactory approximation accuracy compared
to the state-of-the-art sparse variational inference
method (Campbell & Beronov, 2019). However, the
high computational cost of the latter method makes it
impractical for real-world large datasets. Nonetheless,
as we will show, our approach for solving equation (3)
using a variant of iterative hard thresholding, achieves
better accuracy and speed.

3 Our approach

Algorithm 1 Vanilla IHT
input Objective f : Rn → R; sparsity k; step size µ
1: Initialize w
2: repeat
3: w ← ΠCk∩Rn

+
(w − µ∇f(w))

4: until Stop criteria met
5: return w

For clarity of exposition, we gradually build up our
approach for solving the optimization problem (3). The
fundamental ingredient of our approach is the vanilla
Iterative Hard Thresholding (IHT) method presented in
Algorithm 1. We develop our approach by augmenting
IHT with momentum updates, step size selection for
line search and active subspace expansion techniques to
accelerate and automate the algorithm (Algorithms 2
& 3). Details follow.

3.1 Iterative Hard Thresholding (IHT)

The classical IHT (Blumensath & Davies, 2009) is a
projected gradient descent method that performs a

gradient descent step and then projects the iterate
onto the non-convex k-sparsity constraint set. We
denote the orthogonal projection of a given z ∈ Rn
to a space C ⊆ Rn as: ΠC(z) := arg minw∈C ‖w − z‖2.
Define the sparsity restricted space as: Ck =

{
w ∈ Rn :

|supp(w)| ≤ k
}
, where supp(w) = {i|wi 6= 0} denotes

the support set of w. Here, we describe the plain
sparsity case, but one can consider different realizations
of Ck as in (Baldassarre et al., 2016; Kyrillidis et al.,
2015; Baraniuk et al., 2010). The projection step in
the classical IHT, i.e.,, ΠCk , can be computed easily
by selecting the top-k elements in O(n log k) time; but
projection can be more challenging for more complex
constraint sets, e.g., if the variable is a distribution on
a lattice (Zhang et al., 2019).

For our problem, we require that the projected sparse
vector only has non-negative values. For vector vari-
ate functions, the projection step in Algorithm 1, i.e.,
ΠCk∩Rn

+
(w) is also straightforward; it can be done opti-

mally in O(n log k) time by simply picking the top k
largest non-negative elements. More discussions about
the projections are presented in section B in appendix.

3.2 Accelerated IHT

For clarity, we rewrite the problem in equation (3) as:

w∗ = arg min
w∈Ck∩Rn

+

f(w) := ‖y − Φw‖22,

where y =
∑n
i=1 ĝi and Φ = [ĝ1, . . . , ĝn]. In this case,

∇f(w) ≡ −2Φ>(y − Φw).

Step size selection in IHT: Classical results on the
performance of IHT algorithms come with rigorous
convergence guarantees (under regularity conditions)
(Blumensath & Davies, 2009; Foucart, 2011). However,
these results require step size assumptions that either
do not work in practice, or rely on strong assumptions.
For example, in (Blumensath & Davies, 2009; Foucart,
2011) strong isometry constant bounds are assumed
to allow step size µ = 1 for all the iterations, and
thus remove the requirement of hyper-parameter tun-
ing. Moreover, the authors in (Blumensath & Davies,
2010) present toy examples by carefully selecting Φ
so that the vanilla IHT algorithm diverges without
appropriate step size selection. In this work, given
the quadratic objective f(w), we perform exact line
search to obtain the best step size per iteration (Blu-
mensath & Davies, 2010; Kyrillidis & Cevher, 2011):
µt := ‖∇̃t‖22/2‖Φ∇̃t‖22; details in Algorithm 2.

Memory in vanilla IHT: Based upon the same
ideas as step size selection, we propose to in-
clude adaptive momentum acceleration; we select
the momentum term as the minimizer of the ob-
jective: τt+1 = arg minτ f(wt+1 + τ(wt+1 − wt)) =
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Algorithm 2 Automated Accelerated IHT (A-IHT)

input Objective f(w) = ‖y − Φw‖22; sparsity k
1: t = 0, z0 = 0, w0 = 0
2: repeat
3: Z = supp(zt)
4: S = supp(ΠCk\Z (∇f(zt))) ∪ Z where |S| ≤ 3k

5: ∇̃t = ∇f(zt)
∣∣
S

6: µt = arg minµ f(zt − µ∇̃t) =
‖∇̃t‖22

2‖Φ∇̃t‖22
7: wt+1 = ΠCk∩Rn

+
(zt − µt∇f(zt))

8: τt+1 = arg minτ f(wt+1 + τ(wt+1 − wt))
= 〈y−Φwt+1,Φ(wt+1−wt)〉

2‖Φ(wt+1−wt)‖22
9: zt+1 = wt+1 + τt+1(wt+1 − wt)
10: t = t+ 1
11: until Stop criteria met
12: return wt

〈y−Φwt+1,Φ(wt+1−wt)〉
2‖Φ(wt+1−wt)‖22

, which also comes out as a closed-
form solution. The step zt+1 = wt+1 + τt+1(wt+1−wt)
at the end of the algorithm captures memory in the
algorithm based on the results on acceleration by Nes-
terov (1983) for convex optimization.

Automated Accelerated IHT for coreset selec-
tion: Combining the ideas above leads to Automated
Accelerated IHT, as presented in Algorithm 2. The
algorithm alternates between the projection step (steps
6 and 7) after the gradient updates, and the momen-
tum acceleration step (step 8). It thus maintains two
sets of iterates that alternatively update each other in
each iteration at only a constant factor increase in per
iteration complexity. The iterate wt at iteration t is
the most recent estimate of the optimizer, while the
iterate zt models the effect of momentum or “memory"
in the iterates. We have shown exact line search that
solves one dimensional problems to automate the step
size selection (µ) and the momentum parameter (τ) for
acceleration. In practice, these parameters can also be
selected using a backtracking line search.

Using de-bias steps in Automated Accelerated
IHT: Based on pursuit methods for sparse optimiza-
tion (Needell & Tropp, 2009; Dai & Milenkovic, 2009;
Kyrillidis & Cevher, 2014), we propose a modification
that improves upon Algorithm 2 both in speed and ac-
curacy in empirical evaluation. The modified algorithm
is presented in Algorithm 3 in section A in appendix
due to space limitations. The key differences of Algo-
rithm 3 from Algorithm 2 are that, with additional
de-bias steps, one performs another gradient step and
a line search in the sparsified space in each iteration
for further error reduction. We omit these steps in
the algorithmic description to maintain clarity, since
these steps do not provide much intellectual merit to

the existing algorithm, but help boost the practical
performance of Automated Accelerated IHT.

Time complexity analysis. Here, we analyze the
time complexity of IHT in terms of the dataset size n
and coreset size k, and show that IHT is faster than
previous methods for Bayesian coreset construction.
We take Algorithm 2 as an example and let the stop-
ping criteria be a constant constraint on number of
iterations; the time complexity for all the three versions
of IHT (i.e., Algorithm 1, 2, 3) are the same. As the
dimension of zt, wt is n, and the matrix multiplication
Φw has complexity O(n), we can see that each line in
Algorithm 2 except for the projection steps (line 4 and
line 7) have complexity O(n). The projection steps,
as we have discussed in subsection 3.1, can be done
in O(n log k). Therefore, the total time complexity of
IHT is O(n log k). In comparison, previous state-of-the-
art algorithms GIGA (Campbell & Broderick, 2018)
and SparseVI (Campbell & Beronov, 2019) have time
complexity O(nk), which is exponentially slower than
IHT in terms of coreset size k. We note that some
other factors play a role in the time complexity, e.g.,
the number of samples from posterior for IHT, GIGA
and SparseVI; the number of iterations of the stochas-
tic gradient descent in SparseVI. However, unlike n
and k defined by the problem, those factors are chosen
parameters specific to each algorithm. Therefore, we
treat them as pre-specified constants, and focus on the
complexity w.r.t. dataset size n and coreset size k.

3.3 Theoretical Analysis of Convergence

In this subsection, we study the convergence properties
of our main algorithm Automated Accelerated IHT in
Algorithm 2. We make a standard assumption about
the objective – the Restricted Isometry Property or
RIP (Assumption 1), which is a standard assumption
made for analysis of IHT and its variants.
Assumption 1 (Restricted Isometry Property (RIP)).
The matrix Φ in the objective function satisfies the RIP
property, i.e., for ∀w ∈ Ck

αk‖w‖22 ≤ ‖Φw‖22 ≤ βk‖w‖22.

In RIP, αk reflects the convexity and βk reflects the
smoothness of the objective in some sense (Khanna
& Kyrillidis, 2018; Kyrillidis & Cevher, 2014). We
note that the assumption may not be necessary but
is sufficient to show convergence theoretically. For
example, if the number of samples required to exactly
construct ĝ is less than the coreset size (ak = 0 in
RIP), so that the system becomes under-determined,
then a local minimum can also be global achieving
zero error without assuming that the RIP holds. On
the other hand, when the number of samples goes to
infinity, RIP is saying that the restricted eigenvalues of
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covariance matrix, cov[Li(θ),Lj(θ)] where θ ∼ π̂, are
upper bounded and lower bounded away from 0. It is
an active area of research in random matrix theory to
quantify RIP constants e.g. see (Baraniuk et al., 2008).

RIP generalizes to restricted strong convexity and
smoothness (Chen & Sanghavi, 2010); thus our results
could potentially be extended to general convex f(·)
functions. We present our main result next, and defer
the details of the theory to section B in the appendix.

Theorem 1. In the worst case scenario, with Assump-
tion 1, the solutions path found by Automated Acceler-
ated IHT satisfies the following iterative invariant.

‖wt+1 − w∗‖2 ≤ ρ|1 + τt| · ‖wt − w∗‖2
+ ρ|τt| · ‖wt−1 − w∗‖2 + 2β3k

√
β2k‖ε‖2,

where ρ =
(

2 max{ β2k

α3k
− 1, 1− α2k

β3k
}+ β4k−α4k

α3k

)
, and

‖ε‖2 = ‖y − Φw∗‖2 is the optimal error.

The theorem provides an upper bound invariant among
consecutive iterates of the algorithm. To have a bet-
ter sense of convergence rate, we can derive linear
convergence from our iterative invariant, as shown in
Corollary 1.

Corollary 1. Given the iterative invariant as stated in
Theorem 1, and assuming the optimal solution achieves
‖ε‖2 = 0, the solution found by Algorithm 2 satisfies:

f(wt+1)− f(w?) ≤ φt
(
β2k

α2k
f(w1) +

ρτβ2k

φαk
f(w0)

)
,

where φ = (ρ(1 + τ) +
√
ρ2(1 + τ)2 + 4ρτ)/2 and τ =

maxi∈[t] |τi|. It is sufficient to show linear convergence
to the global optimum, when φ < 1, or equivalently
ρ < 1/(1 + 2τ).

We note that Theorem 1 holds more generally, and
we chose the simplifying condition of ‖ε‖2 = 0 for
Corollary 1 to clearly highlight the main result of linear
convergence. If ‖ε‖2 > 0, the linear convergence (up
to an error) can be proved in the same way but with
more complicated expressions.

Thus, Algorithm 2 generates a sequence of iterates that
decrease the quadratic objective in equation (3) at a
geometric rate. The quadratic objective can upper
bound the symmetric KL divergence, i.e., the sum of
forward KL and reverse KL divergences, between the
constructed coreset posterior and the true posterior
under certain conditions, as shown in Proposition 2 by
Campbell & Beronov (2019), which further justifies our
approach of using this objective.

Our theory and algorithm differ from the work
by Khanna & Kyrillidis (2018) in several ways. The

non-negative constraint is unique to the Bayesian core-
set problem, and extending the analysis from the origi-
nal IHT to our setting is non-trivial (see Section B in
appendix). Further, the new analysis we present does
not work with the restricted gradient used by Khanna
& Kyrillidis (2018), which is why we choose to use the
full gradient instead (line 7 in Algorithm 2). We note
that the restricted gradient refers to the ∇f(zt)|S in
Algorithm 2. We also observe empirically in our exper-
iments that using the full gradient performs better for
the coreset problem. The high-level idea is that, during
the iterations, it is not guaranteed that S (line 4 in
Algorithm 2) contains the optimal support, while the
full gradient is guaranteed to provide information on
the optimal support. Further, we also automated the
step-size selection, the momentum selection, and the
de-bias step selection to minimize the need of tuning.
Recall that vanilla IHT (Algorithm 1) is much slower
than the greedy approach by Campbell & Broderick
(2018), and so the enhancements we propose are crucial
to ensure that the overall algorithm is both faster as
well as better performing than the state-of-the-art.

4 Related Work

Other scalable approaches for Bayesian inference in-
clude subsampling and streaming methods for varia-
tional Bayes (Hoffman et al., 2013; Broderick et al.,
2013), subsampling methods for MCMC (Welling &
Teh, 2011; Ahn et al., 2012; Korattikara et al., 2014;
Maclaurin & Adams, 2015), and consensus methods for
MCMC (Srivastava et al., 2015; Rabinovich et al., 2015;
Scott et al., 2016). These algorithms are motivated
by empirical performance and come with few or no
theoretical optimization-based guarantees on the infer-
ence quality, and often do not scale to larger datasets.
Bayesian coresets could be used as part of these ap-
proaches, thus resulting into a universal tool for ap-
proximate MCMC and variational inference. Recently,
Bayesian coresets have been applied to complex models
and data. For example, Pinsler et al. (2019) apply
Bayesian coresets to batch active learning on Bayesian
neural networks with real-world image datasets.

There have been few studies that study convergence
properties of approximate inference algorithms. Camp-
bell & Beronov (2019) presented a linear convergence
rate, but the assumptions they make are non-standard
as the rate of convergence depends on the how well
individual samples correlate with the overall loss. Ap-
proximation guarantees in terms of KL-divergence are
provided (Koyejo et al., 2014; Khanna et al., 2017) for
structured sparse posterior inference using the greedy
forward selection procedure. Locatello et al. (2017,
2018) study convergence rates for a boosting based
algorithm for iteratively refined variational inference.
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Figure 1: (a): Bayesian coresets for synthetic Gaussian posterior inference. (b): Experiments on Bayesian radial
basis function regression, with the difference between true posterior and coreset posterior measured in both
forward KL and reverse KL. For both (a) and (b), k is the sparsity setting, and the solid lines are the median KL
divergence between the constructed coreset posterior and true posterior over 10 trials. The shaded area is the KL
divergence between 25th and 75th percentiles.

Thresholding based optimization algorithms have been
attractive alternatives to relaxing the constraint to a
convex one or to greedy selection. Bahmani et al. (2013)
provide a gradient thresholding algorithm that general-
izes pursuit approaches for compressed sensing to more
general losses. Yuan et al. (2018) study convergence
of gradient thresholding algorithms for general losses.
Jain et al. (2014) consider several variants of thresh-
olding based algorithms for high dimensional sparse
estimation. Additional related works are discussed in
Section D in the appendix.

5 Experiments

We empirically examine the performance of our al-
gorithms to construct coresets for Bayesian posterior
approximation. Three sets of experiments are pre-
sented: Gaussian posterior inference, Bayesian radial
basis function regression, and Bayesian logistic and
Poisson regression using real-world datasets.

Besides the Automated Accelerated IHT (Algorithm 2),
we propose Automated Accelerated IHT - II (Algo-
rithm 3 in section A of appendix), that adds a de-bias
step that further improves Algorithm 2 in practice.
We refer to the appendix for detailed explanation and
discussion of Algorithm 3 due to space limitation.

The proposed algorithms, Automated Accelerated IHT
(A-IHT) and Automated Accelerated IHT II (A-IHT
II), are compared with three baseline algorithms, i.e.,
Random (Uniform), Greedy Iterative Geodesic Ascent
(GIGA) (Campbell & Broderick, 2018) and Sparse Vari-
ational Inference (SparseVI) (Campbell & Beronov,
2019). We use the public Github resources of GIGA
and SparseVI for their implementation, where details

are provided in our Github repository (link on page 2).
We note that the Frank-Wolfe (FW) method proposed
in (Campbell & Broderick, 2019) has been shown to be
inferior to GIGA and SparseVI in the two correspond-
ing articles, and thus we believe that comparing with
GIGA and SparseVI is sufficient.

We calculate the Kullback–Leibler (KL) divergence
between the constructed coresets posterior πw and
the true posterior π. We measure both the forward
KL divergence DKL(π‖πw) and reverse KL divergence
DKL(πw‖π). Both A-IHT and A-IHT II require mini-
mal tuning, i.e., only the stoping criterion is required:
‖wt−wt−1‖ ≤ 10−5‖wt‖, or number of iterations > 300
for both A-IHT and A-IHT II .

5.1 Synthetic Gaussian posterior inference

We examine the algorithms in this experiment where
we have closed-form exact expressions. Specifically, we
compare each of these algorithms in terms of optimiza-
tion accuracy without errors from sampling.

For the D-dimensional Gaussian distribution, we set
the parameter θ ∼ N (µ0,Σ0) and draw N i.i.d. sam-
ples xn∼N (θ,Σ), which results in a Gaussian posterior
distribution with closed-form parameters, as shown in
(Campbell & Beronov, 2019). We set the dimension
D = 200, number of samples N = 600, and maximal
sparsity k is set to be 1, . . . , 300. The initial mean
µ0 = 0, and the initial covariance matrix is set to be
Σ0 = Σ = I. The learning rate for SparseVI is γt = 1/t,
and the number of weight update iterations for Sparse
VI is 100, as suggested by their paper.

Comparison among all the 5 algorithms measuring
the reverse KL divergence between the true posterior
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A-IHT II Corset Posterior Coreset size: 300 True Posterior SparseVI Corset Posterior Coreset size: 300

A-IHT II Corset Posterior Coreset size: 220 A-IHT II Corset Posterior Coreset size: 260 SparseVI Corset Posterior Coreset size: 260 SparseVI Corset Posterior Coreset size: 220

Figure 2: Experiments on Bayesian radial basis function regression, where coreset sparsity setting k = 220, 260, 300.
Coreset points are presented as black dots, with their radius indicating assigned weights. When k = 300, posterior
constructed by Accelerated IHT II (top left) shows almost exact contours as the true posterior (top middle),
while posterior constructed by SparseVI (top right) shows deviated contours from the true posterior distribution.

and the coreset posterior is presented in Figure 1 (a),
which shows that IHT outperforms SparseVI and GIGA,
achieving nearly optimal results. We observe that Spar-
seVI stops improving once it hits certain sparsity level,
which we suspect is due to the limitations of its greedy
nature. It can also be observed that A-IHT II converges
faster than A-IHT. Additional results are put in the
section E in appendix.

5.2 Bayesian Radial Basis Function
Regression

In this subsection, we explore the performance of pro-
posed methods versus the baselines in terms of the both
forward KL and reverse KL divergence. The SparseVI
algorithm optimizes reverse KL; we show this does not
always imply reduction in the forward KL. Indeed se-
lecting more points to greedily optimizing the reverse
KL can cause an increase in the forward KL.

We aim to infer the posterior for Bayesian radial basis
function regression. Given the dataset2 {(xn, yn) ∈
R2 × R}Nn=1, where xn is the latitude/longitude coor-
dinates and yn is house-sale log-price in the United

2The task is to predict housing prices from the UK
land registry data (https://www.gov.uk/government/
statistical-data-sets/price-paid-data-downloads)
using latitude/longitude coordinates from the Geonames
postal code data (http://download.geonames.org/
export/zip/) as features.

Kingdom, the goal is to infer coefficients α ∈ RD for
D radial basis functions bd(x) = exp(− 1

2σ2
d
(x − µd)2)

for d ∈ [D]. The model is yn = b>nα+ εn, where εn ∼
N (0, σ2) with σ2 be the variance of {yn}, and bn =
[b1(xn), . . . , bD(xn)]>. We set prior α ∼ N (µ0, σ

2
0I),

where µ0, σ
2
0 are empirical mean and second moment

of the data. We subsampled the dataset uniformly at
random to N = 1000 records for the experiments, and
generated 50 basis functions for each of the 6 scales
σd ∈ {0.2, 0.4, 0.8, 1.2, 1.6, 2.0} by generating means µd
for each basis uniformly from data. Except for the
300 basis functions, an additional near-constant basis
of scale 100, with mean corresponding to the mean
latitude and longitude of the data, is added. Therefore,
D = 301 basis functions are considered. Each of the
algorithms has access to the closed-form of posterior
distribution and covariance (see (Campbell & Beronov,
2019) for detailed derivation).

Specific settings for the algorithms are as follows. For
SparseVI, the exact covariance can be obtained, and the
weight update step can be done without Monte Carlo
estimation. For IHT and GIGA, we use true posterior
for constructing the `2 loss function. The learning rate
for SparseVI is set to be γt = 1/t, and iteration number
T = 100, which is the setting SparseVI uses for the
experiment (Campbell & Beronov, 2019).

IHT’s objective indicates both bounded forward KL
and reverse KL. However, SparseVI, which optimizes

https://www.gov.uk/government/statistical-data-sets/price-paid-data-downloads
https://www.gov.uk/government/statistical-data-sets/price-paid-data-downloads
http://download.geonames.org/export/zip/
http://download.geonames.org/export/zip/
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Figure 3: Bayesian coreset construction for logistic regression (LR) using the synthetic dataset (top row) and
the phishing dataset (bottom row). All the algorithms are run 20 times, and the median as well as the interval
of 35th and 65th percentile, indicated as the shaded area, are reported. Different maximal coreset size k is tested
from 1 to 100. Forward KL (left column) and reverse KL (middle column) divergence between estimated true
posterior and coreset posterior indicate the quality of the constructed coreset. The smaller the KL divergence,
the better the coreset is. The running time for each algorithms is also recorded (right column).

the reverse KL, offers no guarantee for the forward
KL. As shown in Figure 1 (b), SparseVI increasingly
deviates from the true distribution in forward KL as
the coreset growths. However, IHT methods offers
consistently better coresets in both the metrics.

The reverse KL divergence alone is not enough to indi-
cate good approximation, as shown in Figure 2. We plot
the posterior contours for both the true posterior and
coreset posterior at a random trial when sparsity level
k = 220, 260, 300. The coreset posterior constructed
by our Algorithm 3 recovers the true posterior almost
exactly at k = 300, unlike SparseVI. The results for
other trials are provided in section F in the appendix.

5.3 Bayesian logistic and Poisson regression

We consider how IHT performs when used in real appli-
cations where the closed-form expressions are unattain-
able. Moreover, large-scale datasets are considered to
test running time of each algorithm. As the true pos-
terior is unknown, a Laplace approximation is used

for GIGA and IHT to derive the finite projection of
the distribution, i.e., ĝi. Further, Monte Carlo sam-
pling is used to derive gradients of DKL for SparseVI.
We compare different algorithms estimating the pos-
terior distribution for logistic regression and Poisson
regression. The reverse KL and forward KL between
the coreset posterior and true posterior are estimated
using another Laplace approximation. The mode of
the Laplace approximation is derived by maximizing
the corresponding posterior density. The experiment
was proposed by Campbell & Broderick (2019), and
is used in (Campbell & Broderick, 2018) and (Camp-
bell & Beronov, 2019). Due to space limitations, we
refer to section G in the appendix for details of the
experimental setup, and extensive additional results.

For logistic regression, given a dataset {(xn, yn) ∈
RD × {1,−1} | n ∈ [N ]}, we aim to infer θ ∈ RD+1

based on the model:

yn | xn, θ ∼ Bern
(

1

1 + e−z
>
n θ

)
,

where zn = [x>n , 1]>. We set N = 500 by uniformly
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Figure 4: Bayesian coreset construction for logistic
regression (LR) using the large synthetic dataset
(top row) and the original phishing dataset (bot-
tom row). All the algorithms are run 10 times, and
the median as well as the interval of 35th and 65th

percentile, indicated as the shaded area, are reported.
Different maximal coreset size k is tested. Symmetrized
KL divergence between estimated true posterior and
coreset posterior indicate the quality of the constructed
coreset (left column). The running time for each algo-
rithms is also recorded (right column).

sub-sampling from datasets due to the high compu-
tation cost of SparseVI. Three datasets are used for
logistic regression. Two of them are: the synthetic
dataset consists of xn sampled i.i.d. from normal dis-
tribution N (0, I), and label yn sampled from Bernoulli
distribution conditioned on xn and θ = [3, 3, 0]>.
The phishing dataset3 is preprocessed (Campbell
& Beronov, 2019) via PCA to dimension of D = 10 to
mitigate high computation by SparseVI.

We present two sets of experiments, i.e., logistic regres-
sion using the synthetic dataset and the phishing
dataset, in Figure 3. One other set of experiments
on logistic regression, and three sets of experiments
on Poisson regression are deferred to section G in ap-
pendix.

It is observed that A-IHT and A-IHT II achieve state-of-
the-art performance. The IHT algorithms often obtain

3https://www.csie.ntu.edu.tw/~cjlin/
libsvmtools/datasets/binary.html

coresets with smaller KL between the coreset posterior
and true posterior than GIGA and SparseVI, with
computing time comparable to GIGA and significantly
less than SparseVI. We conjecture that GIGA and
SparseVI perform worse than our methods due to their
greedy nature: they can be "short-sighted" and do not
rectify past decisions. The experiments indicate that
IHT outperforms the previous methods, improving the
trade-off between accuracy and performance.

Large-scale Datasets. Two large datasets are con-
sidered: i) the large synthetic dataset for logistic
regression is generated following the same procedure
as before, but with dataset size N = 9000; ii) the
original phishing dataset has size N = 11055 and
dimension D = 68. The maximal iteration number of
the two IHT algorithms is 500. Symmetrized KL, i.e.,
the sum of forward and reverse KL, is reported.

Results are shown in Figure 4. We have to omit Spar-
seVI due to its prohibitively high cost (e.g., as shown
in Figure 3, SparseVI needs ×104 more time than IHT
and GIGA). As our complexity analysis of the algo-
rithms in subsection 3.2, the running time of GIGA
grows linearly with respect to the coreset size k, while
that is almost free for IHT. GIGA begins to cost more
time than IHT at k ≈ 200, i.e., about only 2% of the
dataset.

Additional evaluation. For large-scale datasets, it
is often necessary to "batch" the algorithms. We test
the performance of IHT using a stochastic gradient
estimator. The gradient estimator is calculated with
random batches in each iteration, where we use a batch
size of 20% of the full dataset size. Results on six
datasets are defer to section G in appendix.

Moreover, as an alternative evaluation of the quality of
constructed coresets, we test the `2-distance between
the maximum-a-posteriori (MAP) estimation of the
full-dataset posterior and coreset posterior. Results on
six datasets are deferred to section G in appendix.

6 Conclusion

In this paper, we consider the Bayesian coreset construc-
tion problem from a sparse optimization perspective,
through which we propose a new algorithm that incor-
porates the paradigms of sparse as well as accelerated
optimization. We provide theoretical analysis for our
method, showing linear convergence under standard as-
sumptions. Finally, numerical results demonstrate the
improvement in both accuracy and efficiency when com-
pared to the state of the art methods. Our viewpoint
of using sparse optimization for Bayesian coresets can
potentially help to consider more complex structured
sparsity, which is left as future work.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
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