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S1 Marginal distribution under uniform direction prior

The von Mises-Fisher-Gaussian distribution is a compound distribution

u ∼ vMF(ν, κ)

x | u ∼ N (µ+ ρu, σ2I),

with the probability density function given by (Mukhopadhyay et al., 2019)

fvMFG(x | µ, σ, ρ, ν, κ) = (2πσ2)−d/2
Cd(κ)

Cd(‖κν + ρ(x− µ)/σ2‖2)
exp
{
− 1

2σ2

(
‖x− µ‖22 + ρ2

)}
, (1)

where Cd(κ) = (2π)−d/2 κd/2−1

Id/2−1(κ)
is the normalizing constant of a vMF distribution of dimension d with concen-

tration κ, and Ip denotes the modified Bessel function of the first kind and order p and is defined as
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When d = 3, as in this work, the modified Bessel function and the normalizing constant simplify to
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(
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2
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κ
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=

κ
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.

The marginal distribution of x is a continuous mixture of Gaussians with means on the surface of a sphere
centered at µ and radius ρ. Samples of x are thus concentrated around the surface of the sphere with variance set
by σ2 and direction governed by ν and κ.

A special special case of the vMFG distribution arises when κ = 0, yielding a distribution on distances r := ‖x−µ‖2.
The vMF distribution reduces to the uniform distribution on the sphere, and the vMFG distribution becomes
only a function of µ, σ, and ρ,

fvMFG(x | µ, σ, ρ, ν, κ = 0) = (2πσ2)−3/2
C3(0)

C3

(
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σ2

) exp
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2σ2

(
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=
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(
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where C3(0) = (4π)−1 because κ
sinh(κ) → 1 as κ→ 0.
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Since this is a spherically symmetric distribution on x ∈ R3, we can derive the distribution on distances
r = ‖x− µ‖2 ∈ R+ by integrating over the spherical shell of points with thickness dr and distance r:

f(r | σ, ρ) dr = fvMFG(x | ‖x− µ‖2 = r;µ, σ, ρ, ν, κ = 0) · 4πr2 dr

=
1

4πρr

(
1− e−2

ρr

σ2

)
N (r | ρ, σ2) · 4πr2 dr

=
r

ρ

(
1− e−2

ρr

σ2

)
N (r | ρ, σ2) dr. (2)

This function describes a proper distribution on distances r. For example, note that f(r = 0) | ·) = 0 always
holds true, as would be desired of such a distribution. When variance is small, relative to mean distance, this
results in high concentration of samples about the mean. Distances from the origin are then distributed as a
normal distribution (i.e. first row of Figure S1). As variance increases, however, the normal distribution becomes
increasingly inappropriate (i.e. subsequent rows of Figure S1), because high variance samples result in a positive
bias away from the mean distance. These results are demonstrated empirically in Figure S1. In each case, the
vMFG distribution under the uniform directional prior (eq. (2)) exactly fits the empirical histogram.

Figure S1: Left. Scatterplot of random position samples that lie ρ = 1 from the origin and with varying standard deviation
σ. Black wireframe sphere with radius 1 is plotted for reference. Right. Histogram of distance of sampled positions
from the origin (25 bins), versus probability density functions of the normal distribution (light grey, dashed-dotted line)
evaluated for r ≥ 0, the truncated normal distribution with lower bound 0 (darker grey, dotted line), and the vMFG
distribution under a uniform direction prior (black, solid line).
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S2 Conditional distribution of hierarchical von Mises-Fisher-Gaussian model

We strip away temporal considerations and observation models to consider just the hierarchical von Mises-Fisher-
Gaussian distribution of our model. Recall that we define a tree-structured graph G = {(π(k), k)}Kk=2 where the
keypoints are ordered such that keypoint 1 is the root node and each subsequent keypoint k > 1 has one parent
π(k) ∈ {1, . . . , k − 1}. The marginal distribution of each keypoint xk ∈ R3, given direction vector from parent
uk ∈ S2, for k = 2, . . . ,K is generated by

uk ∼ vMF(νk, κk) (3)

xk | uk, xπ(k) ∼ N (xπ(k) + ρkut,k, σ
2I), (4)

for fixed parameters length ρk > 0 on edge (π(k), k), variance σ2, mean direction νk, and concentration κk. The
marginal distribution of the root node is given by

x1 ∼ N (µ1, σ
2
k,1I), (5)

with hyperparameters root location µ1 and root variance σ1. In the animal pose estimation task, set σ1 � σk if
the root node position µ1 is known a priori and fixed (e.g. subject is restrained); set σ1 � σk if the root location
is to be inferred (e.g. subject is allowed to behave freely).

Given uk, the mean of xk is linear in the position of its parent. Therefore, the keypoint positions x = {xk}k=1K

are jointly Gaussian distributed when conditioned on u = {uk}k=2K ,

p(x | u) ∼ N (µ,Σ). (6)

In the following, we derive expressions for the parameters of this distribution.

p(x |u) = N (x1 |µ1, σ
2
1I)

K∏
k=2

N (xk |xπ(k) + ρkuk, σ
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. (7)

Aside from the trouble of careful accounting of interacting terms between keypoints and their parents, the
conditional expression contains a quadratic term in uk. However, since we define uk ∈ S2, uTkuk = 1. Therefore,
there remain no uk’s and the term simplifies

K∑
k=2

ρ2ku
T
kuk
σ2
k

=

K∑
k=2

ρ2k
σ2
k

,

and we are left with a distribution that is simply Gaussian distributed. The mean parameters of this distribution
are Σ = L−1 ∈ R3K×3K and µ = L−1h ∈ R3K , where

h1 =
µ1

σ2
1

−
∑

`:π(`)=k

ρ`
σ2
`

u` (8)

hk =
ρk
σ2
k

uk −
∑

`:π(`)=k

ρ`
σ2
`

u` for k = 2, . . . ,K (9)

Ljk =

{
σ−2k +

∑
`:π(`)=k σ

−2
` for j = k

−σ−2k for j = π(k)
for k = 1, . . . ,K. (10)

Note that the precision matrix L takes the form of a graph Laplacian matrix with 3× 3 blcoks, with diagonal
elements weighted by the sum of the covariances of the keypoint and its children, and off-diagonal elements weight
by the child covariance.
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S3 Conditional distribution of heading angles

Here, we derive the conditional distribution of ht given ut, st under a uniform prior. Since there is no temporal
component, we omit the subscript t in the following. Our generative model is

h ∼ vM(0, 0)

u | h ∼
J∏
j

vMF(R(h)µj , κj)

where h ∈ [−π, π], u ∈ S2. Note that we parametrize the von Mises (vM) with a trignometric (angular) parameter
and the von Mises-Fisher (vMF) distributions with unit vector parameters. R(·) is the 3-dimensional rotation
matrix that performs a rotation in the xy-plane. We will show that the posterior of h is also distributed according
to a von Mises distribution

p(h | u) ∝ vM(0, 0) ·
J∏
k

vMF(R(h)µk, κk)

∝
K∏
k

exp
{
κk (R(h)µk)

T
uk
}

∝ 1

2πI0(τ)
exp{τ cos(θ − h)} = vM(θ, τ).

We will make heavy use of cosine angle sum identity in this derivation,

cos(α± β) = cos(α) cos(β)∓ sin(α) sin(β).

We begin by writing our unit vectors µk and uk in their trigonometric forms. Let ^xz(v) and ^xy(v) denote the
azimuthal and polar angles, respectively, of a unit vector v ∈ S2. Then,

µk =

sin(^xz(µk)) cos(^xy(µk)
sin(^xz(µk)) sin(^xy(µk)

cos(^xz(µk))

 , uk =

sin(^xz(uk)) cos(^xy(µk)
sin(^xz(uk)) sin(^xy(µk)

cos(^xz(uk))

 .
For a single joint, we calculate

(R(h)µk)
T
uk =

cos(h) − sin(h) 0
sin(h) cos(h) 0

0 0 1

  sin(φj) cos(^xy(µk))
sin(^xz(µk)) sin(^xy(µk))

cos(^xz(µk))

T sin(^xz(uk)) cos(^xy(uk))
sin(^xz(uk)) sin(^xy(uk))

cos(^xz(uk))


= cos(h) sin(^xz(µk)) cos(^xy(µk)) sin(^xz(uk)) cos(^xy(uk))

− sin(h) sin(^xz(µk)) sin(^xy(µk)) sin(^xz(uk)) cos(^xy(uk))

+ sin(h) sin(^xz(µk)) cos(^xy(µk)) sin(^xz(uk)) sin(^xy(uk))

+ cos(h) sin(^xz(µk)) sin(^xy(µk)) sin(^xz(uk)) sin(^xy(uk))

+ cos(^xz(µk)) cos(^xz(uk))

= sin(^xz(µk)) sin(^xz(uk))
(

cos(h)
(

cos(^xy(µk)) cos(^xy(uk)) + sin(^xy(µk)) sin(^xy(uk))
)

+ sin(h)
(

cos(^xy(µk)) sin(^xy(uk))− sin(^xy(µk)) cos(^xy(uk))
))

+ cos(^xz(µk)) cos(^xz(uk))

= sin(^xz(µk)) sin(^xz(uk))
(

cos(h) cos(^xy(µk)− ^xy(uk)) + sin(h) sin(^xy(uk)− ^xy(µk))
)

+ cos(^xz(µk)) cos(^xz(uk))

= sin(^xz(µk)) sin(^xz(uk))
(

cos(h) cos(^xy(uk)− ^xy(µk)) + sin(h) sin(^xy(uk)− ^xy(µk))
)

+ cos(^xz(µk)) cos(^xz(uk))

= sin(^xz(µk)) sin(^xz(uk)) cos(h− (^xy(uk)− ^xy(µk))) + cos(^xz(µk)) cos(^xz(uk))

= sin(^xz(µk)) sin(^xz(uk)) cos(h− (^xy(uk)− ^xy(µk))) + cos(^xz(µk)) cos(^xz(uk)).
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Figure S2: Legend of keypoint marker colors (used in both 2D and 3D plots).

Then, summing over all joints,∑
k

(R(h)µk)
T
uk =

∑
k

sin(^xz(µk)) sin(^xz(uk)) cos
(
h− (^xy(uk)− ^xy(µk))

)
+ const

= cos(h)
∑
j

sin(^xz(µk)) sin(^xz(uk)) cos(^xy(uk)− ^xy(µk))

+ sin(h)
∑
j

sin(^xz(µk)) sin(^xz(uk)) sin(^xy(uk)− ^xy(µk)) + const

= cos(h) τ cos(θ) + sin(h) τ sin(θ) + const

= τ cos(h− θ) + const.

We have the equalities

τ sin(θ) =
∑
j

sin(^xz(ut,k)) sin(^xz(µk)) sin(^xy(uk)− ^xy(µk)),

τ cos(θ) =
∑
j

sin(^xz(ut,k)) sin(^xz(µk)) cos(^xy(uk)− ^xy(µk)),

which we use to solve for θ and τ , as in eq. (14).

S4 Implementation details

S4.1 Dataset

We collected 6 hours of data onat 30 Hz from 6 color video cameras and 12 motion capture cameras. The subject
was affixed with 20 retroflective markers to collect ground truth 3D data via the motion capture system. 30
minutes of data were withheld for evaluation. The same 192000 unique images were used for all three methods. 2D
targets for DeepLabCut were generated by projecting motion capture coordinates into the images as targets.

S4.2 DANNCE

Volumetric representations were constructed from individual images using projective geometry (eq. (1)). Voxels
are represented by the RGB values of all pixels whose rays trace to that location. Volums were concatenated
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Figure S3: Distances between keypoints used to filter out outlier measurements in MOCAP data. a. Number of frames with
a valid measurement by keypoint, in the raw dataset (black, left) and after filtering (blue, right). b. Selected plots of
distances between keypoints that are known to be roughly fixed, with distances calculated from the filtered dataset (blue)
plotted on top of the distances from the raw dataset (black). Visible black points therefore indicate outlier distances and
that one or both of the keypoint measurements were removed in the filtered dataset. c. Selected traces of keypoints from
the resulting filtered dataset (blue), plotted on top of the raw measurements (black). d. Example of a frame removed
because not enough adjacent keypoints were detected (connected by light grey lines). Here, 10 keypoints are adjacent
to at least one other keypoint, out of 12 detected keypoints and 20 total keypoints. Keypoints colored as in Figure S2.
e. Example of a frame where left elbow marker (medium purple) was removed because distance between elbow markers
(medium purple and medium green) is too close and caused by outlier measurement of left elbow marker. Forelimb
keypoints colored as in Figure S2; non-forelimb markers are colored in grey for clarity.
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along the color axis for K total views and then inputted into a 3D U-net. The network was implemented in
Tensorflow and Keras, and trained using the Adam optimizer. No specific hyperparameter search was performed
over the architecture, but deeper networks were found to have higher performance. This method is described in
greater detail by Dunn et al. (2020).

S4.3 GIMBAL

We use a subset of the MOCAP ground truth training data to train our model. We choose to filter the training
data after observing some consistently poor measurements that are not uncommon in this type of measurement
system. For example, when only a subset of keypoints are detected, as in Figure S3d, the measurement system is
susceptible to misassignment. Elbow* and Arm* markers frequently fail to be detected (fig. S3a), likely due to
self-occlusion and infrared camera positioning. When they are detected, they are prone to being misassigned, as
shown in Figure S3b by the large number of frames where raw distances between assigned ElbowL and ElbowR
keypoints are much smaller than physically possible. An instance of this is visualized in Figure S3e, where the
assigned ElbowL (medium purple) can visually be identified as incorrect.

First, frames with fewer than 50% edges detected are discarded. Then, frames where the distance between elbow
keypoints was less than the average distance between shoulder keypoints minus one standard deviation. A similar
criteria was applied to the knee keypoints, using the average and standard deviation of the distance between
hip keypoints, although Figure S3b shows that this was not necessary for these keypoints. Next, z-scores of the
distance between parent and child keypoints were calculated based on the inter-99th percentile of measurements,
and measurements that had an absolute z-score greater than 3 were denoted as outliers and removed from the
dataset.

Table S1: Prior parameter values used in GIMBAL and its special cases (see main text for description of M0, M1, and M2.
Shaded values are used to indicate uninformative priors. moG indicates parameters learned from performing expectation
maximization (EM) on mixture of Gaussians; SS indicates parameters learned from summary statistics; movMF indicates
parameters learned from performing EM on mixture of vMFs.

M0 M1 M2 GIMBAL

temporal variance η2k 100 100 50 50
outlier probability βc,k 0 moG moG moG

outlier variance ω2
1,c,k 1e6 moG moG moG

“inlier” variance ω2
0,c,k 1e3 moG moG moG

root node spatial variance σ2
1 1e3 1e3 1e3 1e3

spatial variance σ2
k>1 1e3 1e3 SS SS

distance ρk 0 0 SS SS

direction concentration κ 0 0 0 movMF

mean direction ν [1,0,0] [1,0,0] [1,0,0] movMF

Robust observation parameters We first calculate the Euclidean error between all 2D observations and the
3D MOCAP measurements projected into their respective plane. Then, we fit a two-mixture Gaussian mixture
model to this error data using expectation maximization. The algorithm is initialized with means centered at
the origins, inlier covariance ω2

0 = 1, outlier covariance ω2
1 = 1002, and weight β1,c,k based on the frequency of

errors greater than a roughly picked threshold of 15 px. Figure S4 displays the results of the fitted GMMs for all
keypoints for a single camera.

Skeletal parameters After defining a tree-ordering of keypoints, ρk is the mean Euclidean distance between
a keypoint k and its parent π(k), and spatial variance σ2

k is the empircal standard deviation of this difference.
Summary plots of keypoint distance means and variances from the training data are shown in Figure S5.

Directional priors We perform expectation maximization to fit S mixture of vMFs to observ poses in the
the training data. Then at each timestep t, we infer the postural state st ∈ {1, . . . , S}, and their corresponding
directional means and concentrations for the set of joint, {µst,k}Kk=1, {κst,k}Kk=1. Conditioned on this state st, we
assume that the distribution of the joint direction vectors are conditionally independent of each other.
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Figure S4: Error distributions of 2D DLC observations from training data for all keypoints from a representative camera.
In the color plots on the left, circles denote 2 standard deviation boundary of fitted Gaussian distributions (inlier: cyan,
outlier: red). Opacity of line is proportional to the fitted weight of the respective distribution. In the histograms on
the right, orange density represents the empirical error distribution. Purple density represents samples from the fitted
Gaussian mixture model.
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Figure S5: Skeletal parameters summarized from training data. Violin plots of distances between keypoints k and their
parent π(k), as defined by graph G. The profile of the violin plots indicate that in many cases, the error is not strictly
Gaussian, or unimodal. The large variance in the distances between Head* and SpineF markers is due to a violation in our
approximate rigidty assumption. Variance can be reduced by inferring an (unobserved) keypoint situated at the base of
the head, which would serve as an auxiliary joint between the Head* and SpineF markers. Annotations denote the mean ±
standard deviation.

st,s ∼ Categorical(π) for s = 1, . . . , S

ut,k ∼ vMF(µst,k, κst,k) for k = 1, . . . ,K

Our expectation step involves a product over all the vMF distributions,

E[sts] =
πs
∏K
k=1 vMF(utk | νstk, κstk)∑

k′ πk′ vMF(utk | µk′k, κk′k)
(11)

Our maximization step

πk =
1

N

∑
i

E[sts] (12)

µsk =
Rskj
‖Rsk‖

where Rsk =
∑
t

E[sts]utk (13)

κsk = A−1p (r̄sk) r̄sk =
1∑

i E[sts]
‖Rsk‖ (14)

We estimate the concentration parameter using an Amos-type bound (Hornik and Grün, 2014).


