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Abstract

Animal pose estimation from video data is
an important step in many biological stud-
ies, but current methods struggle in complex
environments where occlusions are common
and training data is scarce. Recent work has
demonstrated improved accuracy with deep
neural networks, but these methods often
do not incorporate prior distributions that
could improve localization. Here we present
GIMBAL: a hierarchical von Mises-Fisher-
Gaussian model that improves upon deep net-
works’ estimates by leveraging spatiotempo-
ral constraints. The spatial constraints come
from the animal’s skeleton, which induces a
curved manifold of keypoint configurations.
The temporal constraints come from the pos-
tural dynamics, which govern how angles be-
tween keypoints change over time. Impor-
tantly, the conditional conjugacy of the model
permits simple and efficient Bayesian infer-
ence algorithms. We assess the model on a
unique experimental dataset with video of
a freely-behaving rodent from multiple view-
points and ground-truth motion capture data
for 20 keypoints. GIMBAL extends existing
techniques, and in doing so offers more accu-
rate estimates of keypoint positions, especially
in challenging contexts.

1 Introduction

Studies of animal behavior are foundational to a wide
range of disciplines, from psychology and neuroscience
to drug discovery, ecology, and biomechanics (Dell et al.,
2014; Krakauer et al., 2017; Brown and Bolivar, 2018;
Musall et al., 2019). Despite its importance, obtaining
precise, quantitative descriptions of animal behavior re-
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mains a challenge. Some techniques extract kinematic
summary statistics from video, like the position and
velocity of an animal’s centroid (Jhuang et al., 2010;
Gomez-Marin et al., 2012); others model the tempo-
ral dynamics of image features (Berman et al., 2014;
Wiltschko et al., 2015). Advances in computer vision
and human pose estimation have translated into new
tools for automated, markerless, animal pose estima-
tion (Mathis et al., 2018; Pereira et al., 2019; Graving
et al., 2019; Wu et al., 2020).

While human pose estimation provides an important
point of reference, studies of animal pose estimation in
laboratory settings differ in important ways. Scientists
have more control over the camera placement, calibra-
tion and visual environment and work with a relatively
small number of similar individuals. However, scientific
studies have lower tolerance for measurement error and
a greater need for robustness than proof-of-principle
studies in machine vision. Making reproducible in-
ferences about animal behavior and simultaneously
measured biological covariates requires 3D and tempo-
rally continuous measurements of pose, across diverse
naturalistic behaviors. Furthermore, unlike in humans,
large databases of annotated animal keypoints, espe-
cially in 3D, are only beginning to emerge (e.g. Bala
et al., 2020).

In light of these constraints, effective tools for 3D mark-
erless pose estimation in laboratory animals should
possess high accuracy and spatiotemporal continuity,
and be highly sample efficient with training data. Deep
learning methods for pose estimation will help meet
these goals, but the dual challenges of more stringent
constraints and reduced availability of training data
are likely to require statistical models that incorporate
physical constraints of animal pose and leverage the
stereotypy of animal behavior.

Recent work has made progress toward these goals.
One line of work uses standard computer vision meth-
ods (Hartley and Zisserman, 2003) to produce 3D es-
timates from 2D keypoint estimates. For example,
Nath et al. (2019) extended DeepLabCut—a popu-
lar 2D markerless tracking software package—to tri-
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angulate multiple 2D markerless pose estimates, and
Karashchuk et al. (2020) explored methods to make
these estimates more robust. Other approaches incor-
porate 3D-awareness into their models, with varying
degrees of model capacity and complexity. For ex-
ample, Giinel et al. (2019) used graphical models to
enforce geometric consistency; Dunn et al. (2020) de-
signed a volumetric convolutional neural network that
enforces 3D geometric constraints; and Biggs et al.
(2018) and Kearney et al. (2020) leveraged silhouette
and 3D skinned-meshes to improve their model predic-
tions. Kearney et al. (2020) incorporated a prior on
3D pose in the form of a hierarchical Gaussian process
latent variable model, which learned joint rotations,
heading, and locations. We develop a simpler and more
explicit model of 3D pose that directly captures geomet-
ric constraints for animals with rigid skeletons.

We call this model GIMBAL: Geometrlc Manifolds for
Body Articulation and Localization. GIMBAL uses re-
cent advances in spherical manifold learning to capture
the spatiotemporal constraints of body posture, and
then leverages these constraints to accurately triangu-
late 3D keypoint locations from multiple 2D estimates.
The central component of GIMBAL is a hierarchical
von Mises-Fisher-Gaussian model, which lends itself to
efficient Bayesian inference.

2 Background

Triangulating 3D location from 2D estimates
Triangulation is a classic computer vision prob-
lem (Hartley and Zisserman, 2003). Consider a collec-
tion of videos from C' calibrated cameras (fig. 1A).
For each camera ¢ we know the projective map-
ping f.:R? — R?, which maps positions in 3D world-
coordinates (in millimeters from a chosen origin) to
locations on the camera image (in pixels from the image
origin). The mapping amounts to an affine transform
followed by a projective transformation, which we sim-
plify as

fo(x) = L(u,v) " where (u,v,w)" = Acx +b., (1)

T w

where A. and b, are known parameters of camera c.
The affine transformation maps x into homogeneous
coordinates of camera ¢; the nonlinear operation (divid-
ing by w) converts the homogeneous coordinates into
2D positions in the image frame.

We will take a Bayesian approach to triangulation,
assuming a prior distribution on the 3D locations and
a noise model for the 2D estimates. Let K denote
the number of keypoints, let z;, € R® denote the
location at time ¢ of keypoint & in world coordinates (in
millimeters), and let y; . € R? denote the estimated
location (in pixels) at time ¢ of keypoint k in camera c.
In general, let bold symbols denote sets of variables;

€.g T = {{xt,k}£(=1}tT:1 and y = {{yt,k,c}gzl}fﬂ}tzl'
The posterior distribution on 3D locations is,

T K C

p(@ | y) o« p@) [ T[] T] pvene | folaen)), (@)

t=1k=1c=1

assuming the 2D estimates in each camera are condi-
tionally independent given the 3D location.

This formulation allows for many different choices about
the prior and likelihood. When both are assumed to
be Gaussian, solving for the posterior mode amounts
to solving a nonlinear least squares problem. How-
ever, outliers in the 2D estimates can have a large
effect on the 3D inferences, so heavy-tailed noise mod-
els and other robust estimation techniques are recom-
mended (Hartley and Zisserman, 2003).

Incorporating spatiotemporal constraints An-
other way to improve 3D estimation is to incorporate
constraints and inductive biases into the prior distri-
bution. For example, it is reasonable to assume that
keypoints cannot move too far between consecutive
frames. Such constraints can be encoded with a prior
of the form,

T K
p(x) o H H/\/(ft,k | xt—l,kvnl%I)v (3)
t=2k=1

where N denotes the Gaussian density and 7; specifies
the conditional variance of keypoint k.

Likewise, geometric constraints based on the physical
distance between joints are common in pose estima-
tion (Felzenszwalb and Huttenlocher, 2005; Yang and
Ramanan, 2011; Amin et al., 2013; Burenius et al.,
2013; Belagiannis et al., 2014; Pavlakos et al., 2017).
These models, often called pictorial structures or de-
formable mixture of parts, penalize squared errors of
estimated versus expected distances between keypoints.
These penalties are equivalent to the prior,

T
p) o [[ TT Nz —2ella | pjks05s) s (4)

t=1(j,k)€G

where G is a undirected graph on the K keypoints, p;
is the expected distance between keypoints j and k,
and o7, is its variance.

Prior distributions like these can be combined and
elaborated upon in various ways. We will construct a
hierarchical generative model of 3D pose by extending
recent methods for modeling curved manifolds, which
naturally arise from geometric constraints.

The von Mises-Fisher-Gaussian distribution
Mukhopadhyay et al. (2019) proposed an elegant ap-
proach to modeling data that lie near a curved mani-
fold. Their method uses the von Mises-Fisher-Gaussian
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Figure 1: GIMBAL estimates 3D pose from multiple 2D videos with a hierarchical von Mises-Fisher-Gaussian model.
a. The data consists of 2D keypoint estimates (colored dots) from multiple calibrated video streams. b. In each frame, a
tracking algorithm estimates the 2D locations of visible keypoints. ¢. GIMBAL estimates the 3D keypoint locations x by
incorporating geometric constraints in the form of a prior distribution that models directions u and distances pj from
one keypoint to another. d. The complete graphical model consists of a sequence of rotationally-invariant pose states,
which, together with the heading direction, specify von Mises-Fisher distributions on directions between the K keypoints.
The directions, together with past keypoint locations, parameterize a Gaussian model on the time series of 3D keypoint
locations. The observed 2D locations are modeled as noisy projections of the 3D positions onto C calibrated cameras, and
an outlier model affords robustness to misestimated 2D locations.

(vVMFG) distribution, a compound distribution arising
from a von Mises-Fisher mixture of Gaussians,

u ~ vMF (v, k) (5)
x| un~N(u+ pu,o?I) (6)

where vMF (v, k) denotes a von Mises-Fisher distribu-
tion with mean direction v and concentration x. The
marginal distribution of z is a continuous mixture of
Gaussians with means on the surface of a sphere cen-
tered at p and radius p. Samples of = are thus concen-
trated around the surface of the sphere with variance
set by o2 and direction governed by v and .

Note that when the concentration & is zero, the vMF
reduces to a uniform distribution on the sphere. In that
case, the marginal probability of = is only a function
of the distance || — p||2, just as in eq. (4), so a special
case of this model yields a distribution on distances.
The general formulation allows for directional priors as
well, which GIMBAL will exploit.

Mukhopadhyay et al. (2019) showed that the von Mises-
Fisher and Gaussian densities are conjugate in the sense
that the conditional distribution of u given x is also a
vMF, and the marginal probability of z has a closed-
form expression in terms of normalizing constants of

n this case, however, the distance distribution is not
Gaussian. See Section S1 in the supplementary materials.

the vMF distribution. We build on these insights to
develop a hierarchical von Mises-Fisher-Gaussian model
for animal pose estimation and a simple algorithm for
posterior inference.

3 Model

GIMBAL is a robust model for Bayesian triangulation
of articulated body poses. The central component is a
hierarchical von Mises-Fisher Gaussian model. We in-
troduce models of postural dynamics, heading, and out-
liers in the 2D keypoints around this focal point.

Hierarchical von Mises-Fisher Gaussian model
In many animal pose estimation tasks, keypoints of in-
terest are connected to one another by rigid bones,
which constrain the distances between them. We
capture these dependencies with a tree-structured
graph G = {(m(k),k)}H<, where the keypoints are
ordered such that keypoint 1 is the root node
and each subsequent keypoint k > 1 has one par-
ent m(k) € {1,...,k —1}. Roughly, the tree reflects
the animal’s skeleton (fig. 1b,c). We associate each
edge (m(k), k) with a length pi, > 0 specifying the av-
erage distance between those keypoints in 3D. Actual
distances will vary since keypoints do not directly corre-
spond to endpoints of rigid bones, but rather to points
on the animal’s skin. The von Mises-Fisher-Gaussian
distribution is well-suited to modeling these skeletal
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constraints while allowing some flexibility in precise
distances.

We place a hierarchical prior on the 3D key-
point positions that leverages the skeleton struc-
ture. The root node is modeled as a random
walk, z; 1 ~ N (z¢—1.1,m71), where 17 controls the vari-
ance of movement between frames, as in (3) above.
For keypoints k£ > 1, we combine temporal information
from past locations and spatial information from parent
locations to obtain the conditional distribution,

p(xt,k | xt—l,kaxt,w(k)vut,k)
X N(@eg | o140 ) N @k | Tom(y + PrUes, o)
~ =2
= N(#t,m Ut,k)a (7)
where
it e = g - 21k + (1 — an) - (T4 ) + Prls,r)
ar =7 (0" + 0 7)
~ -2 —2
G =1/~ +0,.7).
The conditional mean is a convex combination of the
past location and the offset from the parent node, and
the weight of these two pieces of information is deter-
mined by their variances. Compare this model to the
vMFG model above, and note that marginalizing over
the direction vector under a uniform prior yields a con-
ditional distribution proportional to a vMFG centered
on the parent, tilted by a Gaussian centered on the
preceding location. Hence, we call this a hierarchical
von Mises-Fisher-Gaussian model.

Pose states and directional priors. Next, we
specify a prior distribution on the direction vectors w
in terms of a sequence of discrete pose states s =
$1,...,81, where s; € {1,...,S}. The direction vec-
tors are highly correlated with one another because
the animal’s range of motion is limited. For example,
sitting down is characterized by a stereotyped collec-
tion of joint angles, and rearing up on the hind legs
corresponds to another. Of all possible collections of
direction vectors, however, only a small subset are
realizable due to physical constraints.

One important degree of freedom remains: poses should
be invariant to the direction the animal is facing.
Thus, we introduce a latent variable, h = (hq,..., hr)
where h; € [—7,7), to denote the animal’s heading
direction in the xy-plane. We model the direction vec-
tors w as conditionally independent given the pose state
and the heading direction,

Utk | s¢,he ~ VMF(R(ht)ZSt,kWst,k), (8)

where R(h;) denotes a rotation matrix by angle h; in the
xy-plane, and Vg and K denote the mean direction
and concentration of a vMF distribution in canonical
orientation (i.e. when the heading h; is zero).

Pose and heading dynamics. Pose states and head-
ings vary over time as well. For simplicity, we treat
the headings as independent and uniformly distributed
on the circle under the prior. We use a simple Markov
model for pose states,

St | St—1 )\51,—1’ (9)

where A; € Ag denotes the s-th row of transition
matrix A € [0, 1]5%5.

Robust observation model. Finally, we propose a
model of 2D keypoint locations that allows for outliers
in the 2D estimates. Let z; . € {0,1} denote whether
observation y; . is an outlier (with 1 denoting an out-
lier). We allow for different outlier probabilities for each
keypoint and camera using the following model,

2t ke ~ Bern(By.,c) (10)
et,k,c | Zt,k:,c ~ N(M’%Qh,k,& w%c,zt,k,cl) (11)
Yt,k,e = fc(xt,k:) + €t,k,cs (12)

where i . denotes the probability that keypoint k& will
be an outlier on camera c, and € ;. denotes the error
between the projected 3D position and the observed
2D keypoint. The outlier variables determine the con-
ditional mean and variance of the error, with outliers
having higher variance, w,%,ql > w,iqo.

The complete model shown in Figure 1d consists of
latent variables (x,u, s, h, z) and data y. The model
parameters are summarized in Table S1. Next we
develop an MCMC algorithm to sample the posterior
distribution of latent variables given the 2D position
data and parameters, leveraging the conjugacy of this
hierarchical model.

4 Algorithm

GIMBAL inherits many of the conjugacy properties of
the vMFG model and admits a simple MCMC algo-
rithm for approximate Bayesian inference. Here we de-
velop an MCMC algorithm that combines hybrid Monte
Carlo (HMC) (Neal, 2011) and Gibbs updates to target
the posterior distribution of latent variables.

Sampling positions First, we sample the 3D po-
sitions &. These variables do not have a closed form
conditional distribution due to the nonlinear projec-
tions fe(2¢x), but the unnormalized conditional den-
sity p(x | vy, z,u) and its gradients are straightforward
to calculate. We use HMC (Neal, 2011) to obtain a
transition operator that leaves conditional distribution
invariant. Our implementation uses JAX (Bradbury
et al., 2018) for automatic differentiation and compila-
tion to CPU, GPU, or TPU. We use 10 leap-frog steps
per iteration and adapt the step size during burn-in,
following Andrieu and Thoms (2008, eq. 19).
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Sampling direction vectors The vMF prior on
the mean parameter is conjugate with the Gaussian
distribution on positions, just as in the vMFG model
of Mukhopadhyay et al. (2019). With direction vector
samples proportional to z¢, — ¢ k) for k=2,..., K,
and given heading h; and state s;, the conditional
distribution is vMF with parameters

Utk | Ty, 5, hy ~ VMF(ﬂt,kﬂ%t,k’)a (13)
where

/'i}t k= HK‘St kR(ht) Ve, k + (mtJC - xtﬂ'r(k)) H2

ﬁt,k = (Fést kR(ht) Vs, k + —= P (xt,k - xtm(k)) ) /Fﬂt,]v
k

Since the direction vectors are conditionally indepen-
dent given the pose state and heading, these parameters
can be updated in parallel.

Sampling headings Let <, (v) and <.y (v) denote
the azimuthal and polar angles, respectively, of a unit
vector v € S3. Under a uniform prior, the conditional
distribution of h; is,

ht | u, 8¢ ~ vMF (arctan(z ) \/ 72 —l—xt) (14)
t

where
K
U = Zsin(<1xz(ut,k)) Sin(<te (v, 1)) sin(A k)
k=2
K
Ty = Zsin(<1xz(ut7k)) Sin(<XZ(Zst,k)) cos(Ay k)
k=2

Apk = ey (Ut ) — <XY(HSt,k)’

Intuitively, Ay is the angular difference between
the given direction u;j; and the canonical prior di-
rection v, ;. in the xy-plane. These differences are
weighted by the azimuthal angles to determine the con-
ditional distribution of the heading. See Section S3 for
a complete derivation.

Sampling pose states Given the direction vectors
and headings, the sequence of pose states s is condi-
tionally distributed as,

T K
p(s | u,h) x p(s HH MF Utk | R(h’t)fstk:?"ﬁ:‘?t;k)

p(8) = Unif(sy) Ag, 1 s, (15)

u,’:]ﬂ'

This is a standard hidden Markov model, and we use
a standard forward filtering-backward sampling algo-
rithm to sample the conditional distribution.

Sampling outlier indicators
from the conditional distribution,

Finally, we sample

Zt.k,c | Yt k,cr Ttk ™~ Bern(Bt,k:,c)a (16)
for
Bike= U(U_l(ﬂm) + log N (€, c | Mk,hwi,c,l)
—log N (€t ke | Mk,o,wz,c,o)>7
where o(z) = (1+e~*)~! denotes the logistic function

and o~ 1(B) = log% denotes its inverse, the logit
function.

Setting model parameters GIMBAL’s parameters
could also be treated in a Bayesian fashion, but we
recommend setting them based on a small dataset of

“ground truth” 3D positions obtained from triangulation

of expert-labeled 2D frames. The direction parame-
ters, v, and ks, and the transition matrix, A, can
be found by fitting a hidden Markov model to the
ground truth directions, and the observation model
parameters Sy ¢, fi,c,z, and wk ., can be found with a
mixture of Gaussian model. We descrlbe thls process
in Section S4.3. The temporal variances n; can be
estimated from ground truth 3D trajectories We set
the paramters p; and variances ak by fitting a Gaus-
sian distribution to the distances || — 24 ()| in the
training data.

5 Results

We evaluated GIMBAL’s performance on a dataset
consisting of six simultaneously recorded video streams
of a freely behaving rodent in an open arena (fig. 1a).
The subject was affixed with retroreflective markers at
20 keypoints of interest (fig. 1b, ¢ and fig. S2) to collect
corresponding ground truth data using 12 infrared
motion capture (MOCAP) cameras.

GIMBAL reduces estimation errors We com-
pared GIMBAL to DeepLabCut-3D (DLC-3D) (Nath
et al., 2019) and DANNCE (Dunn et al., 2020). DLC-
3D uses the median stereo triangulation of 2D keypoints
detected by DeepLabCut (DLC), while DANNCE is
a volumetric convolutional network that makes 3D
predictions from raw video. GIMBAL takes 2D DLC
predictions as input, and the model is initialized with
the DLC-3D predictions.

We quantified performance with the distance between
predicted positions and ground truth MOCAP data,
averaged over time. We call this the mean position
error (MPE). We calculate MPE both from raw predic-
tions (raw MPE) and from predictions that have been
optimally translated and rotated via a rigid Procrustes
analysis (RPA-MPE). Note that RPA does not allow
scaling, reflection, and other deformations.
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Figure 2: GIMBAL produces a posterior distribution on
3D pose. a. Log joint probability and b. mean position
error (MPE) vs. MCMC iterations. Dashed lines indi-
cate burn-in period of ¢ = 1000. c. Coordinate traces
for keypoint 15 from ground truth data (blue), DLC-3D
predictions (orange), and GIMBAL predictions +2 stdv
(green). Bottom plot shows the number of inferred outlier
observations. d. pose heading (true and GIMBAL only)
and centroid location in the xy-plane. Dashed lines in ¢
and d indicate time step ¢ = 5500. e. 3D pose at time step
t = 5500 based on MOCAP data (circular markers, black
outline) and GIMBAL posterior (point clouds, n = 2000). f.
Corresponding 2D keypoint observations (square markers).
Red outlines indicate > 0.70 likelihood of being an outlier.
Skeleton segments based on MoCAP positions projected
into respective camera plane. Units: px. Marker colors for
e and f correspond to individual keypoints (K = 20); see
supplementary materials for complete legend. Units for 3D
coordinates xg, x1, and x2 axes are in mm.

Table 1: Mean position error (MPE) averaged over all
keypoints, for different pose estimation models. Calculated
with unmodified predictions (raw) and after applying rigid
Procrustes analysis (RPA). Units: mm.

‘DLC-3D DANNCE GIMBAL

Raw ‘
RPA |

11.41 9.25
11.17 7.38

7.16
5.77

Table 2: Same as Table 1, with results for special submodels
of GIMBAL.

\ MO M1 M2 GIMBAL
Raw \ 16.00 10.71 9.29 7.16
RPA | 1540 1042 8.38 5.77

Following convergence (fig. 2a and b), GIMBAL ef-
fectively reported individual keypoint positions and
outliers (fig. 2¢), and subject heading and location
(fig. 2d). Figure 2e and f show the predicted 3D pose
at a single timestep and corresponding 2D data.

Quantitative results are summarized in Table 1. GIM-
BAL outperforms DLC-3D by both error measures.
On average over all keypoints, the error is close to the
5mm retroreflective marker sized used in collecting the
ground truth motion. Since GIMBAL uses the same set
of 2D keypoint observations and states with DLC-3D
predictions but leverages more structured, prior infor-
mation, it is expected that GIMBAL achieves higher
accuracy. DANNCE can achieve geometric consistency
through its 3D convolutional neural network and vol-
umetric representations. Still, GIMBAL achieves an
22.6% improvement in raw MPE and a 21.8% improve-
ment in RPA-MPE over DANNCE.

Figure 3a shows the distribution of the average pre-
diction errors over all keypoints, and Figure 3b shows
the errors for four selected keypoints. The methods
have similarly high accuracy performance on some key-
points, such as SpineM. Frequently occluded keypoints,
however, like ArmR, ElbowL, and Kneel, consistently
result in poor DLC-3D performance (fig. 3b). In some
cases, such as ArmR, all methods yield poor estimates.
GIMBAL is unable to improve the estimation because
of more limited training data for this keypoint (see
Section S4.3 and Figure S3 in the supplementary ma-
terials). In other cases, such as Kneel, GIMBAL infers
that, for example, an asymmetric knock-kneed stance
is improbable, and leverages its prior distribution on
likely directions from the hip to the knee to reduce
prediction error by up to 50mm.
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Figure 3: Directional priors make significant contribution to GIMBAL performance. Distribution of a. mean position
error, averaged across all keypoints, and b. per-keypoint mean position error of representative keypoints, for DLC-3D
(orange, left), DANNCE (purple, center), and GIMBAL (green, right) predictions. On the right, distribution of ¢. mean
position error, averaged across all keypoints, and d. per-keypoint mean position error of representative keypoints, for
special cases of GIMBAL (i.e. M0, M1, M2). All errors calculated on rigid Procrustes-aligned predictions. Interior lines
of violin plot patches indicate respective data quartiles. Median is denote by a solid black line. All means taken over

T = 1000 timesteps. Units: mm.

Directional priors inform pose estimation In
order to elucidate the contribution of directional priors
to model performance, we evaluate the performance
of special cases of GIMBAL with subsets of latent
variables. We refer to these special cases as

e MO: Bayesian nonlinear triangulation model. (In-
cludes x only.)

e M1: MO + robust triangulation via a mixture of
Gaussians model. (Includes x and z.)

e M2: M1 + temporal smoothing and distance con-
straints via a uniform prior on directions. (Includes
x, z, and u.)

Parameter settings to implement these special cases
are listed in Table S1.

Figure 3c shows the distribution of errors in these
nested models. GIMBAL removes a second error mode
above 20mm that, upon investigation, was due to cer-
tain joints that are commonly mislabeled, like ElbowlL
and KneeL. While robust observations, distance con-
straints and temporal smoothing each provide a mea-
sure of improvement over their preceding models (e.g.
for KneelL, MO: 48.15 4+ 4.15 std; M1: 43.12 4+ 7.39 std;
M2: 36.24 +4.40 std), pose priors provide the most sig-
nificant reduction (GIMBAL: 9.51 +3.45 std). Average
MPE results are found in Table 2.

Pose state dynamics offer lens into behavioral
modeling. GIMBAL'’s structured prior distributions
improved pose estimation, but animal behavior consists
of sequences of poses. We conclude by studying how
GIMBAL’s pose state dynamics offer views into animal
behavior.

Figure 4a shows the posterior probability of each state
over time frame. The sequences of pose states shown in
the insets reflect rearing up on the hind legs and peram-
bulation (i.e. walking). No states in the range [0, 20]
were exhibited in this 33 second window. These pose dy-
namics and their connection to behavior emerged after
permuting states based on physical positioning. Specif-
ically, pose states were grouped into coarse categories
and then sorting based on uprightness. Figure 4b pro-
vides an example mean pose from each category.

The transition matrix (fig. 4c) captures some of these
pose state dynamics. For example, rearing up consists
of a serial transition from states in the range [21, 62]
through [63,84] to [85,119], and reversed for rearing
down. This can be seen in the blocks composing the
lower quadrant of Figure 4c and d. Perambulation is a
periodic sequence of pose states in the range [21,62].
Since this transition matrix encodes the probabilities
for all possible pose state dynamics, the matrix struc-
ture associated with a weakly cyclical Markov chain
is diffuse, but this structure is roughly observable in
Figure 4d.
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6 Discussion

We presented GIMBAL, a hierarchical von Mises-
Fisher-Gaussian model for animal pose estimation.
Our model improves 3D pose estimation results from
multiview keypoint observations over two existing ani-
mal pose estimation methods. GIMBAL additionally
provides statistically- and geometrically-relevant un-
certainty estimates that are lacking in current deep
learning-based approaches.

We systematically examined the contributions of each
model component, and showed that the hierarchical
von Mises-Fisher-Gaussian model provided a significant
source of improvement in keypoint prediction accuracy.
This model reduction (M0, M1, and M2) also provides
a convenient framework in which to compare GIM-
BAL to other recent works. For example, state-of-art
methods incorporating temporal smoothing and dis-
tance constraints (e.g. Giinel et al. (2019), Karashchuk
et al. (2020)) are analogous to M2. GIMBAL concisely
captures the manifold constraints on skeletal keypoint
positions, leading to better performance with a simple
MCMC algorithm.

GIMBAL’s can be readily adapted to observations
other than 2D keypoint detections—for example, image
features or network heatmaps with multiple candidates.
The hierarchical von Mises-Fisher-Gaussian model is
agnostic to the choice of likelihood, as long as it is
amenable to automatic differentiation for HMC.

Finally, we examined how behavior is captured by the
sequence of inferred pose states. Previous methods
relied on states derived from imprecise sources such as
image features (Wiltschko et al., 2015). Our represen-
tation consists of a collection of joint angles, which can
accurately recover individual keypoint positions. Addi-
tionally, this representation provides a basis for sharing
pretrained pose states and dynamics across animals
with similar biomechanics and behaviors.

Future work could also explore continuous represen-
tations of pose states and dynamics — in the spirit
of hierarchical GP-LVMs (Kearney et al., 2020), but
with spherical manifold constraints—to enable better
action recognition and behavioral modeling. Likewise,
we expect modular representations of pose, which cap-
ture the configurations of subsets of keypoints and the
relationships between those subsets, could lead to new
understanding of postural dynamics.

GIMBAL leverages recent advances in spherical man-
ifold learning with hierarchical von Mises-Fisher-
Gaussian models to improve upon existing techniques
in animal pose estimation. Its latent state representa-
tions of pose and postural dynamics offer promising new
building blocks for animal behavioral modeling.

a. Rearing
— — Walking
. — 0.5s
= | 1= 1= —
state N\
| \\\\
0 200 400 600 800 1000

timestep

b. — States 63 - 84 — States 85 - 119

50 O 50

== States 21 - 62

Figure 4: Pose state dynamics are descriptive of observed be-
haviors. a. Inferred state trajectory over time, for 7 = 1000
time bins and S = 120 discrete pose states. Magnified sec-
tions draw attention to stereotyped behaviors evident in the
state trajectory, such as rearing up and walking. No states
in range [0, 20] (green) were exhibited during this data se-
quence. Latent pose states were permuted into four coarse
categories, and then sorted within category by z-coordinate
of HeadB keypoint. b. Example pose for each of the state
ranges. Each pose is drawn using mean direction under the
prior. c. Empirical transition matrix A € [0,1]°*5. Light
blue lines delineate category boundaries. d. Summary of
category-level transitions based on c. All frequencies plot-
ted on a logarithmic scale and normalized to the minimum
and maximum values of the matrix.



Libby Zhang, Timothy Dunn, Jesse Marshall, Bence f)lveczky, Scott Linderman

References

S. Amin, M. Andriluka, M. Rohrbach, and B. Schiele.
Multi-view pictorial structures for 3d human pose
estimation. In The British Machine Vision Conference
(BMVC), volume 1, 2013.

C. Andrieu and J. Thoms. A tutorial on adaptive
MCMC. Statistics and Computing, 18(4):343-373,
2008.

P. C. Bala, B. R. Eisenreich, S. B. M. Yoo, B. Y.
Hayden, H. S. Park, and J. Zimmermann. Automated
markerless pose estimation in freely moving macaques

with openmonkeystudio. Nature Communications, 11
(1):1-12, 2020.

V. Belagiannis, S. Amin, M. Andriluka, B. Schiele,
N. Navab, and S. Ilic. 3d pictorial structures for
multiple human pose estimation. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1669-1676, 2014.

G. J. Berman, D. M. Choi, W. Bialek, and J. W.
Shaevitz. Mapping the stereotyped behaviour of freely
moving fruit flies. J. R. Soc. Interface, 11(99), Oct.
2014.

B. Biggs, T. Roddick, A. Fitzgibbon, and R. Cipolla.
Creatures great and SMAL: Recovering the shape and
motion of animals from video. Nov. 2018.

J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson,
C. Leary, D. Maclaurin, and S. Wanderman-Milne.
JAX: composable transformations of Python+NumPy
programs, 2018. URL http://github.com/google/
jax.

R. E. Brown and S. Bolivar. The importance of
behavioural bioassays in neuroscience. J. Neurosci.
Methods, 300:68-76, Apr. 2018.

M. Burenius, J. Sullivan, and S. Carlsson. 3d pic-
torial structures for multiple view articulated pose
estimation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages
3618-3625, 2013.

A. 1. Dell, J. A. Bender, K. Branson, I. D. Couzin,
G. G. de Polavieja, L. P. J. J. Noldus, A. Pérez-
Escudero, P. Perona, A. D. Straw, M. Wikelski, and
U. Brose. Automated image-based tracking and its
application in ecology. Trends Ecol. Evol., 29(7):417—
428, July 2014.

T. Dunn, J. Marshall, K. Severson, D. Aldarondo,
D. Hildebrand, S. Chettih, W. Wang, A. Gellis,
D. Carlson, D. Aronov, W. Freiwald, F. Wang, and
B. Olveczky. DANNCE: 3-dimensional aligned neural
network for computational ethology. Nature Methods,
(In press), 2020.

P. F. Felzenszwalb and D. P. Huttenlocher. Pictorial
structures for object recognition. Int. J. Comput. Vis.,
61(1):55-79, 2005.

A. Gomez-Marin, N. Partoune, G. J. Stephens, and
M. Louis. Automated tracking of animal posture and

movement during exploration and sensory orientation
behaviors. PLoS One, 7(8):e41642, Aug. 2012.

J. M. Graving, D. Chae, H. Naik, L. Li, B. Koger, B. R.
Costelloe, and I. D. Couzin. DeepPoseKit, a software
toolkit for fast and robust animal pose estimation
using deep learning. Sept. 2019.

S. Gunel, H. Rhodin, D. Morales, J. Campagnolo,
P. Ramdya, and P. Fua. DeepFly3D, a deep learning-
based approach for 3D limb and appendage tracking
in tethered, adult drosophila. FElife, 8, Oct. 2019.

R. Hartley and A. Zisserman. Multiple View Geometry
in Computer Vision. Cambridge University Press,
2003.

K. Hornik and B. Griin. On maximum likelihood
estimation of the concentration parameter of von
mises—fisher distributions. Computational Statistics,
29:945-957, 2014.

H. Jhuang, E. Garrote, J. Mutch, X. Yu, V. Khilnani,
T. Poggio, A. D. Steele, and T. Serre. Automated
home-cage behavioural phenotyping of mice. Nat.
Commun., 1:68, Sept. 2010.

P. Karashchuk, K. L. Rupp, E. S. Dickinson,
E. Sanders, E. Azim, B. W. Brunton, and J. C. Tuthill.
Anipose: a toolkit for robust markerless 3D pose esti-
mation. May 2020.

S. Kearney, W. Li, M. Parsons, K. I. Kim, and
D. Cosker. Rgbd-dog: Predicting canine pose from
rgbd sensors. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages
8336-8345, 2020.

J. W. Krakauer, A. A. Ghazanfar, A. Gomez-Marin,
M. A. Maclver, and D. Poeppel. Neuroscience needs
behavior: Correcting a reductionist bias. Neuron, 93
(3):480—490, Feb. 2017.

A. Mathis, P. Mamidanna, K. M. Cury, T. Abe, V. N.
Murthy, M. W. Mathis, and M. Bethge. DeepLabCut:
markerless pose estimation of user-defined body parts
with deep learning. Nat. Neurosci., 21(9):1281-1289,
Sept. 2018.

M. Mukhopadhyay, D. Li, and D. B. Dunson. Esti-
mating densities with nonlinear support using Fisher-
Gaussian kernels. arXiv preprint arXiv:1907.05918,
2019.

S. Musall, A. E. Urai, D. Sussillo, and A. K. Church-


http://github.com/google/jax
http://github.com/google/jax

GIMBAL: A hierarchical von Mises-Fisher-Gaussian model

land. Harnessing behavioral diversity to understand
neural computations for cognition. Curr. Opin. Neu-
robiol., 58:229-238, Oct. 2019.

T. Nath, A. Mathis, A. C. Chen, A. Patel, M. Bethge,
and M. W. Mathis. Using DeepLabCut for 3D mark-
erless pose estimation across species and behaviors.
Nat. Protoc., 14(7):2152-2176, July 2019.

R. Neal. MCMC using Hamiltonian dynamics. In
S. Brooks, A. Gelman, G. Jones, and X.-L. Meng, ed-
itors, Handbook of Markov Chain Monte Carlo, pages
113-162. CRC Press, May 2011.

G. Pavlakos, X. Zhou, K. G. Derpanis, and K. Dani-
ilidis. Harvesting multiple views for marker-less 3D
human pose annotations. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion, pages 6988-6997, 2017.

T. D. Pereira, D. E. Aldarondo, L. Willmore,
M. Kislin, S. S.-H. Wang, M. Murthy, and J. W.
Shaevitz. Fast animal pose estimation using deep
neural networks. Nat. Methods, 16(1):117-125, Jan.
2019.

A. B. Wiltschko, M. J. Johnson, G. Iurilli, R. E.
Peterson, J. M. Katon, S. L. Pashkovski, V. E. Abraira,
R. P. Adams, and S. R. Datta. Mapping Sub-Second
structure in mouse behavior. Neuron, 88(6):1121-1135,
Dec. 2015.

A. Wu, E. Kelly Buchanan, M. Whiteway, M. Schart-
ner, G. Meijer, J.-P. Noel, E. Rodriguez, C. Everett,
A. Norovich, E. Schaffer, N. Mishra, C. Daniel Salz-
man, D. Angelaki, A. Bendesky, The International
Brain Laboratory, J. Cunningham, and L. Paninski.
Deep graph pose: a semi-supervised deep graphical
model for improved animal pose tracking. Aug. 2020.

Y. Yang and D. Ramanan. Articulated pose estimation
with flexible mixtures-of-parts. In Proceedings of the
IEEFE Conference on Computer Vision and Pattern
Recognition, pages 1385-1392, 2011.



