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A Introduction to MMSE AMP

We firstly introduce the procedure for general AMP procedure.

s(t+1) = X>Z(t) + β(t)

β(t+1) = η(t+1)(s(t+1))

Z(t+1) = y −Xβ(t+1) +
1

n
Z(t)[∇η(t)(s(t))]

(A.1)

Different η functions give different AMP, e.g. the soft-thresholding η gives the Lasso AMP; the SLOPE proximal
operator η gives the SLOPE AMP.

The MMSE AMP adopts the following denoiser η(t) [1]

η
(t)
i (s) = E[β|β + τtz = si] i = 1, . . . , p

with z ∼ N (0, 1). In above, using the state evolution [6], τ2
t can be calculated iteratively as:

τ2
t = σ2

ω +
1

δ
E[(η(t−1)(β + τt−1z)− β)2]

Assume that the measurement matrix X has i.i.d. N (0, 1/n) entries. In many scenarios, the denoiser η(t) might
be hard to calculate. Here we provide a derivation about calculating η(t) in the Bernoulli-Gaussian case: we

assume that true signal β
i.i.d.∼ B where B is a Bernoulli-Gaussian distribution, i.e. βi = 0 with probability

e ∈ [0, 1], otherwise βi ∼ N (0, σ2
B).

E[β|β + τtz = si] = E[β|β 6= 0,β + τtz = si]P(β 6= 0|β + τtz = si) (A.2)

It’s straightforward to see that, with f denoting the corresponding probability density function,

P(β 6= 0|β + τtz = si) =
f(β + τtz = si|β ∼ N (0, σ2

B))(1− e)
f(β + τtz = si|β ∼ N (0, σ2

B))(1− e) + f(τtz = si)e
(A.3)

Meanwhile. we have
E[β|β 6= 0,β + τtz = si] = E[β|β ∼ N (0, σ2

B),β + τtz = si]

since β + τtz ∼ N (0, σ2
B + τ2

t ), conditional expectation on joint normal distribution yields

E[β|β ∼ N (0, σ2
B),β + τtz = si] =

σ2
B

σ2
B + τ2

t

si (A.4)

(A.3) and (A.4) give a simple way to calculate the denoiser using (A.2).
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B Analysis of Gradient in PGD for α

Proof of Theorem 1. Minimizing the estimation error is equivalent to minimizing τ . Since the AMP algorithms
are working on the finite dimension, we analyze the finite-size approximation of the state evolution [6, Equation
(2.5)]:

τ2 = σ2
w +

1

δp
E
∥∥proxJατ (β + τZ)− β

∥∥2

In finite dimensions, the expectation is taken with respect to Z. Differentiating both sides of the state evolution
with respect to αi and denoting τ ′ = ∂τ

∂αi
gives:

2ττ ′ =
∂

∂αi

(
σ2
w +

1

δp
E‖ proxJατ (β + τZ)− β‖2

)
=

1

n

∂

∂αi

p∑
j=1

E
(
[proxJατ (β + τZ)]j − βj

)2
(B.1)

Recall ηj represents the j-th element of η := proxJατ (β + τZ). By chain rule

2ττ ′ =
2

n

p∑
j=1

E(ηj − βj)
∂ηj
∂αi

=
2

n

p∑
j=1

E(ηj − βj)

[
p∑
k=1

dηj
dak

∂ak
∂αi

+
dηj
dbk

∂bk
∂αi

]
where we define ak := βk + τZk, bk := αkτ . To calculate the derivatives, we pause to discuss forms of general
derivatives of η(a, b). Define

∂1η(a, b) := diag
[ ∂

∂a1
,
∂

∂a2
, . . . ,

∂

∂ap

]
η(a, b) (B.2)

∂2η(a, b) := diag
[ ∂

∂b1
,
∂

∂b2
, . . . ,

∂

∂bp

]
η(a, b). (B.3)

According to [17, Proof of Fact 3.4] and [6, Proof of Theorem 1], we have

[∂1η(a, b)]j =
1

#{1 ≤ k ≤ p : |[η(a, b)]k| = |[η(a, b)]j |}

and that

d

dak
[η(a, b)]j =I{|η(a, b)|j = |η(a, b)|k} sign(ηjηk)[∂1η(a, b)]j

for the derivative regardng the first variable. Recall that the permutation σ : {1, . . . , p} → {1, . . . , p} is the
inverse mapping for ranking of indices such that |η|(i) = |[η]σ(i)|. Similarly, according to [6, Proof of Theorem
1]:

d

dbk
[η(a, b)]j = − sign([η(a, b)]σ(k))

d

daσ(k)
[η(a, b)]j

= I
{
|η(a, b)|j = |η(a, b)|σ(k)

}
sign

(
ηj
)[
∂1η(a, b)

]
j
. (B.4)

In addition to Ij defined in Section 2, we let Kj := {k : |ησ(k)| = |ηj |}, which is the set of ranking indices whose
corresponding entries share the same absolute value with ηj . This notion will be used to replace the indicator
term I

{
|η(a, b)|j = |η(a, b)|σ(k)

}
above. We can rewrite (B.2) as

2ττ ′ =
2

n

p∑
j=1

E(ηj − βj)

∑
k∈Ij

dηj
dak

∂ak
∂αi

+
∑
k∈Kj

dηj
dbk

∂bk
∂αi


=

2

n

p∑
j=1

E(ηj − βj) sign(ηj)

[
1

|Ij |
∑
k∈Ij

sign(ηk)
∂ak
∂αi
− 1

|Kj |
∑
k∈Kj

∂bk
∂αi

]

=
2

n

p∑
j=1

E(ηj − βj) sign(ηj)

[
1

|Ij |
∑
k∈Ij

sign(ηk)Zkτ
′ − 1

|Kj |
∑
k∈Kj

(αkτ
′ + I{k = i}τ)

]
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Merging the terms containing the derivative τ ′ on one side gives

1

n

∑
j∈Iσ(i)

E(ηj − βj) sign(ηj)/|Kj |

=
1

n

p∑
j=1

E(ηj − βj) sign(ηj)

[
1

|Ij |
∑
k∈Ij

sign(ηk)Zkτ
′ − 1

|Kj |
∑
k∈Kj

αkτ
′

]
− ττ ′

Notice that |Ij | = |Kj | due to σ being a permutation, we can simplify above as

∂τ

∂αi
= E

1

|Iσ(i)|D(α, τ)

∑
j∈Iσ(i)

(ηj − βj) sign(ηj)τ (B.5)

where D(α, τ) in the denominator is

D(α, τ) = −nτ +

p∑
j=1

E
1

|Ij |
(ηj − βj) sign(ηj)

∑
k∈Ij

(sign(ηk)Zk − ασ−1(k))

We next show that D(α, τ) is always negative. Firstly observe from (2.3) that

τ2 >
1

n

p∑
j=1

E(ηj − βj)2 (B.6)

Now for the set Ii with a fixed index i,∑
j∈Ii

(ηj − βj)2 ≥ 1

|Ii|
(
∑
j∈Ii

|ηj − βj |)2 (B.7)

≥ 1

|Ii|
(
∑
j∈Ii

(ηj − βj) sign(ηj))
2 (B.8)

=
1

|Ii|
∑
j∈Ii

(ηj − βj) sign(ηj)
∑
k∈Ii

τZk sign(ηk)− ασ−1(k)τ (B.9)

≥ τ

|Ii|
∑
j∈Ii

(ηj − βj) sign(ηj)
∑
k∈Ij

Zk sign(ηk)− ασ−1(k) (B.10)

This in turn implies that

p∑
j=1

(ηj − βj)2 =

p∑
j=1

1

|Ij |
∑
k∈Ij

(ηk − βk)2 ≥
p∑
j=1

τ

|Ij |
(ηj − βj) sign(ηj)

∑
k∈Ij

Zk sign(ηk)− ασ−1(k) (B.11)

Combining with (B.6) yields D < 0.

C Analysis of Projection in PGD for α

C.1 Characterization of projection on S

We firstly prove that Algorithm 1 indeed finds the projection. To do so we firstly provide a detailed character-
ization of the projection, then prove that the output of Algorithm 1 matches the form of projection. We start
by defining blocks and segmentation blocks, upon which our proof highly relies. Suppose γ = {γ1, . . . , γp}, blocks
are subsequences defined as B(γ, u) := {γu, . . . , γu+L(γ,u)−1} where length L(γ, u) is defined as

L(γ, u) =

{
L∗ if L∗ 6= ∅
p otherwise

(C.1)
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where

L∗
∆
= min

{
1 ≤ L ≤ p− u

∣∣∣∀0 ≤ k ≤ p− u− L, 1

k + 1

k∑
i=0

γu+L+i <
1

L

L−1∑
i=0

γu+i

}
Roughly speaking, L(γ, u) is the minimum value of a finite set (truncated at p when the set is empty). For each
element L in this set, the average value in sequence {γu, . . . , γu+L−1} is always larger than that of arbitrary
sequence {γu+L, . . . , γu+L+k} whose left start is γu+L. With such definition of blocks, we can now segment γ
into q ≤ p blocks:

γ = {B(γ, 1), B(γ, L(γ, 1) + 1), B(γ, L(γ, L(γ, 1) + 1) + L(γ, 1) + 1), . . . } ∆
= {B1, . . . , Bq}

We call B1, . . . , Bq segmentation blocks for vector γ. It’s straightforward to see that Bk = B(γ, Lk) where Lk
satisfies L1 = L(γ, 1) and

Lk = L(γ,

k−1∑
i=1

Li + 1)

Our result shows that for input vector γ, its projection vector ΠS(γ) takes identical values inside each of the
segmentation blocks. Before formally stating the theorem, We first highlight the following fact that will be
frequently used in the proof of the theorem.

Fact C.1. For two sequences of length p: {ai} and {bi}, if
∑
ai =

∑
bi, then function g(C) :=

∑
(bi− ai +C)2

is monotonically increasing with respect to |C|.

Proof. Notice that∑
(bi − ai + C)2 =

∑
(bi − ai)2 +

∑
2C(bi − ai) + pC2 = pC2 +

∑
(bi − ai)2

Hence g(C) is is monotonically increasing with respect to |C|.

Theorem 3. Let B denote the segmentation block that contains γi, then

(ΠS(γ))i = max

 1

|B|
∑
γj∈B

γj , 0


Proof. The proof consists of two steps. In the first step, we prove that for each segmentation block B, the
projection of each coordinates share the same value. That is, (ΠS(γ))i = C(B) as long as γi ∈ B. In the second

step, we show that this constant is the mean of the block truncated at 0: C(B) = max
{

1
|B|
∑
γj∈B γj , 0

}
.

Step 1 Without loss of generality, we consider B = B(γ, u). We know from definition of blocks that ∀1 ≤ l ≤
L − 1, ∃kl s.t. 1

kl

∑kl
i=1 γu+l−1+i ≥ 1

l

∑l
i=1 γu+i−1. We use induction to prove that (ΠS(γ))u = (ΠS(γ))u+l,

∀1 ≤ l ≤ L(γ, u) − 1. For l = 1, assume (ΠS(γ))u > (ΠS(γ))u+1. Consider two cases: (i) (ΠS(γ))u > γu. (ii)
(ΠS(γ))u ≤ γu. We now show that both cases lead to contradiction and hence do not hold. In case (i), we
consider

(Π̃S(γ))i =

{
max{γu, (ΠS(γ))u+1} if i = u

(ΠS(γ))i otherwise

then obviously, ∣∣∣(Π̃S(γ))u − γu
∣∣∣ < |(ΠS(γ))u − γu|

which leads to that 1
2‖(Π̃S(γ)) − γ‖22 < 1

2‖(ΠS(γ)) − γ‖22. This contradicts to the definition of projection. In

case (ii), from definition of blocks we have that ∃k0 ≥ 1 s.t. 1
k0

∑k0
i=1 γu+i ≥ γu. Consider

(Π̃S(γ))i =

{
(ΠS(γ))u if i ∈ {u+ 1, . . . , u+ k0}
(ΠS(γ))i otherwise
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Notice that 1
k0

∑k0
i=1 γu+i ≥ γu ≥ (ΠS(γ))u > (ΠS(γ))u+1, we have for i ∈ {u + 1, . . . , u + k0},∣∣∣(Π̃S(γ))i − (ΠS(γ))i

∣∣∣ is a constant independent of i and that∣∣∣∣∣(Π̃S(γ))i −
1

k0

k0∑
i=1

γu+i

∣∣∣∣∣ <
∣∣∣∣∣(ΠS(γ))i −

1

k0

k0∑
i=1

γu+i

∣∣∣∣∣
According to Fact C.1, we define substitution for i ∈ {u + 1, . . . , u + k0}: bi = 1

k0

∑k0
i=1 γu+i, ai = γu+i,

bi+C1 = (Π̃S(γ))i and bi+C2 = (ΠS(γ))i. Then since |C1 < C2|, we have 1
2‖(Π̃S(γ))−γ‖22 < 1

2‖(ΠS(γ))−γ‖22,
which contradicts to the definition of projection.

Now assume the statement holds for 1 ≤ l ≤ l0−1, that is (ΠS(γ))u = · · · = (ΠS(γ))u+l0−1, we want to prove that
(ΠS(γ))u = (ΠS(γ))u+l0 . Since the projection is on S, by definition we know (ΠS(γ))u can never be smaller than

(ΠS(γ))u+l0 . We now assume (ΠS(γ))u > (ΠS(γ))u+l0 and consider two cases: (i) (ΠS(γ))u >
1
l0

∑l0−1
i=0 γu+i.

(ii) (ΠS(γ))u ≤ 1
l0

∑l0−1
i=0 γu+i. To complete the proof, it suffices for us to show that neither of the cases can

hold without contradictions. In case (i), we consider

(Π̃S(γ))i =


max{ 1

l0

∑l0−1
j=0 γu+j , (ΠS(γ))u+l0}

if i ∈ {u, . . . , u+ l0 − 1}
(ΠS(γ))i otherwise

then obviously for i ∈ {u, . . . , u+ l0 − 1},
∣∣∣(Π̃S(γ))i − (ΠS(γ))i

∣∣∣ is a constant independent of i and that∣∣∣∣∣(Π̃S(γ))i −
1

l0

l0−1∑
i=0

γu+i

∣∣∣∣∣ <
∣∣∣∣∣(ΠS(γ))i −

1

l0

l0−1∑
i=0

γu+i

∣∣∣∣∣
According to Fact C.1, using the same substitution as that in analysis of l = 1, we have that 1

2‖(Π̃S(γ))−γ‖22 <
1
2‖(ΠS(γ))−γ‖22, which makes contradiction to the definition of projection. In case (ii), from definition of blocks

we have that ∃k0 ≥ 1 s.t. 1
k0

∑k0
i=1 γu+l0−1+i ≥ 1

l0

∑l0−1
i=0 γu+i. Now we consider

(Π̃S(γ))i =

{
(ΠS(γ))u if i ∈ {u+ l0, . . . , u+ l0 − 1 + k0}
(ΠS(γ))i otherwise

Notice that 1
k0

∑k0
i=1 γu+l0−1+i ≥ 1

l0

∑l0−1
i=0 γu+i ≥ (ΠS(γ))u > (ΠS(γ))u+l0 , we have for i ∈ {u+ l0, . . . , u+ l0 −

1 + k0},
∣∣∣(Π̃S(γ))i − (ΠS(γ))i

∣∣∣ is a constant independent of i and that∣∣∣∣∣(Π̃S(γ))i −
1

k0

k0−1∑
i=0

γu+l0+i

∣∣∣∣∣ <
∣∣∣∣∣(ΠS(γ))i −

1

k0

k0−1∑
i=0

γu+l0+i

∣∣∣∣∣
Again according to Fact C.1, we have 1

2‖(Π̃S(γ))−γ‖22 < 1
2‖(ΠS(γ))−γ‖22, which contradicts to the definition of

projection. This implies that it can never happen that (ΠS(γ))u > (ΠS(γ))u+l0 , which completes the induction.

We have proved that (ΠS(γ))u = · · · = (ΠS(γ))u+L(γ,u)−1
∆
= C(B(u)) for each segmentation block B(u) of vector

γ.

Step 2 Now we already know that inside each segmentation block, the projection of each coordinate is a constant
C(B), we now optimize the sequence {C(Bi)}qi=1. According to Fact C.1, inside each Bi, the optimal constant

(i.e. constant gives smallest `2 error argminC≥0
1
2

∑
γj∈Bi(γj − C)2) is : max

{
1
|Bi|

∑
γj∈Bi γj , 0

}
. Meanwhile,

it’s feasible to set

(ΠS(γ))i = max

 1

|B|
∑
γj∈B

γj , 0


since we have that max

{
1
|Bi|

∑
γj∈Bi γj , 0

}
≥ max

{
1

|Bi+1|
∑
γj∈Bi+1

γj , 0
}

by definition of blocks. This wraps

up the proof.
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C.2 Proof of Theorem 2

We next prove the validity of Algorithm 1.

Proof. Suppose γ has segmentation blocks B1, . . . , Bq, we firstly prove that (ΛS(γ))i = (ΠS(γ))i for i ≤ |B1|.
We let γj(t) denote the value of γj at the moment i was assigned from t to t + 1 in Algorithm 1 (i.e. the time
when first t iterations are finished). We also let γj(0) denote the initial value of γj in the input. Then clearly
(ΛS(γ))j = max{γj(p), 0}. During the value-averaging step, the algorithm is constantly transporting values from
elements with larger index to those with smaller. Hence it’s straightforward to see that

J∑
j=1

γj(t) ≥
J∑
j=1

γj(t− 1) (C.2)

for arbitrary J, t ∈ {1, . . . , p}. First assume γ1(p) = · · · = γL̃1
(p) > γL̃1+1(p). Since Algorithm 1 only involves

averaging values among subsequences, we have that
∑p
j=1 γj(p) =

∑p
j=1 γj . Moreover since γL̃1

(p) > γL̃1+1(p),

there’s no value-averaging steps between any one of the first L̃1 elements and one of the rest elements. This
implies

L̃1∑
j=1

γj(p) =

L̃1∑
j=1

γj (C.3)

By definition of blocks, we know that ∃k such that 1
k

∑k
i=1 γL̃1+i ≥

1

L̃1

∑L̃1

i=1 γi = γ1(p). By (C.2) we have that

1

k

k∑
i=1

γL̃1+i ≤
1

k

k∑
i=1

γL̃1+i(p) ≤ γL̃1+1(p)

Together with above, this implies that γ1(p) ≤ γL̃1+1(p), which contradicts to the assumption. Hence we have

that L̃1 ≥ L1.

On the other hand, if L̃1 > L1, then at the moment i is assigned to be L̃1 + 1 in the algorithm (i.e. the time

when first L̃1 iterations are finished), we must have that∑L̃1

j=1 γj(L̃1 − 1)

L̃1

≥
∑L1

j=1 γj(L̃1 − 1)

L1

This implies that ∑L̃1

j=L1+1 γj(L̃1 − 1)

L̃1 − L1

≥
∑L1

j=1 γj(L̃1 − 1)

L1
(C.4)

By (C.2) we have ∑L1

j=1 γj

L1
≤
∑L1

j=1 γj(L̃1 − 1)

L1
(C.5)

Meanwhile at t = L̃1 − 1, the sum of first L1 terms is the same as that in γ. This implies

L̃1∑
j=L1+1

γj(L̃1 − 1) =

L1∑
j=1

γj +

L̃1∑
j=L1+1

γj −
L1∑
j=1

γj(L̃1 − 1)

≤
L̃1∑

j=L1+1

γj

(C.6)

where the last inequality is given by (C.2). Combining (C.4), (C.5) and ((C.6)) yields∑L̃1

j=L1+1 γj

L̃1 − L1

≥
∑L1

j=1 γj

L1
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This contradicts to definition of L1 in (C.1). Hence we have that L̃1 = L1. This means γ1(p) = · · · = γL1(p) >
γL1+1(p). Recall that (ΛS(γ))j = max{γj(p), 0}, this together with (C.3) yields

(ΠS(γ))1 = max

 1

|B1|

L1∑
j=1

γj , 0

 = (ΛS(γ))1

= · · · = (ΛS(γ))L1 > (ΛS(γ))L1+1

Now we have prove that (ΠS(γ))i = (ΛS(γ))i for i ≤ |B1| and that there is no interaction between element
in B1 and that outside B1. This implies that the existence of B1 does not affect the rest of output values
(ΛS(γ))i>|B1|. Hence we can ignore B1 and repeat exactly the same procedure to prove that (ΠS(γ))i = (ΛS(γ))i
when |B1|+1 ≤ i ≤ |B2| and that there is no interactions between element in B2 and that outside B2. Iteratively
we can prove ΠS(γ) = ΛS(γ)
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