Appendix: Proofs and Supplementaries

A Proof for Theorem 1

For convenience of the reader, we report here our generalized model for momentum methods GM-ODE, motivated in the main paper.

$$
\left\{\begin{array}{l}
\dot{X}=-m \nabla f(X)-n V \tag{GM-ODE}\\
\dot{V}=\nabla f(X)-q V
\end{array}\right.
$$

Theorem 1 (Continuous-time stability). Let f be μ-strongly-convex and L-smooth. If $n, m, q \geq 0$ then, for any value of the strong-convexity modulus $\mu \geq 0$, the point $\left(x^{*}, 0\right) \in \mathbb{R}^{2 d}$ is globally asymptotically stable for GM-ODE, as

$$
\begin{equation*}
\mathcal{E}(X(t), V(t)) \leq e^{-\gamma_{1} t} \cdot \mathcal{E}(X(0), V(0)) \tag{2}
\end{equation*}
$$

where $\gamma_{1}:=\min \left(\frac{\mu(n+q m)}{2 q}, \frac{q}{2}\right)$.

Proof. We propose the Lyapunov function

$$
\begin{equation*}
\mathcal{E}(t)=\underbrace{(q m+n)}_{c_{1}}\left(f(X(t))-f\left(x^{*}\right)\right)+\underbrace{\frac{n(q m+n)}{4}}_{c_{2}}\|V(t)\|^{2}+\underbrace{\frac{1}{4}}_{c_{3}}\left\|q\left(X(t)-x^{*}\right)-n V(t)\right\|^{2} \tag{7}
\end{equation*}
$$

consisting of quadratic and mixing parts

$$
\begin{equation*}
\mathcal{E}_{1}(t)=f(X(t))-f\left(x^{*}\right), \quad \mathcal{E}_{2}(t)=\|V(t)\|^{2}, \quad \mathcal{E}_{3}(t)=\left\|-n V(t)+q\left(X(t)-x^{*}\right)\right\|^{2} . \tag{8}
\end{equation*}
$$

The derivatives of each quadratic part are

$$
\begin{equation*}
\frac{d}{d t} \mathcal{E}_{1}(t)=-m \| \nabla f\left(X(t) \|^{2}-n\langle\nabla f(X(t)), V(t)\rangle\right. \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d}{d t} \mathcal{E}_{2}(t)=-2 q\|V(t)\|^{2}+2\langle\nabla f(X(t)), V(t)\rangle \tag{10}
\end{equation*}
$$

along with that of the mixing term:

$$
\begin{align*}
\frac{d}{d t} \mathcal{E}_{3}(t)= & 2\left\langle-n \dot{V}(t)+q \dot{X}(t),-n V(t)+q\left(X(t)-x^{*}\right)\right\rangle \\
= & -2(q m+n)\left\langle\nabla f(X(t)),-n V(t)+q\left(X(t)-x^{*}\right)\right\rangle \\
= & -2 q(q m+n)\left\langle\nabla f(X(t)), X(t)-x^{*}\right\rangle+2 n(q m+n)\langle\nabla f(X(t)), V(t)\rangle \\
\leq & -2 q(q m+n)\left(f(X(t))-f\left(x^{*}\right)\right)-\mu q(q m+n)\left\|X(t)-x^{*}\right\|^{2} \\
& +2 n(q m+n)\langle\nabla f(X(t)), V(t)\rangle \tag{11}
\end{align*}
$$

where last inequality is due to the strong convexity. Plugging the value of c_{1}, c_{2} and c_{3}, we have

$$
\begin{equation*}
\frac{d}{d t} \mathcal{E}(t) \leq-\frac{q(n+q m)}{2}\left(\left(f(X(t))-f\left(x^{*}\right)\right)+\frac{\mu}{2}\left\|X(t)-x^{*}\right\|^{2}+n\|V(t)\|^{2}\right) \tag{12}
\end{equation*}
$$

Besides, the mixing term can be upper-bounded by

$$
\begin{equation*}
\mathcal{E}_{3}(t) \leq 2 q^{2}\left\|X(t)-x^{*}\right\|^{2}+2 n^{2}\|V(t)\|^{2} \tag{13}
\end{equation*}
$$

Therefore we have $\mathcal{E}(t)$ satisfying

$$
\begin{equation*}
\mathcal{E}(t) \leq(q m+n)\left(f(X(t))-f\left(x^{*}\right)\right)+q^{2}\left\|X(t)-x^{*}\right\|^{2} / 2+\left(n^{2} / 2+\frac{n(n+q m)}{4}\right)\|V(t)\|^{2} \tag{14}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\frac{d}{d t} \mathcal{E}(t) \leq-\min \left\{\frac{\mu(n+q m)}{2 q}, \frac{q}{2}\right\} \cdot \mathcal{E}(t) \tag{15}
\end{equation*}
$$

We then conclude using Gronwall's lemma (Khalil and Grizzle, 2002).

B Proof for Theorem 3

For convenience of the reader, we repeat here the semi-implicit integrator of GM-ODE we seek to study:

$$
(\mathrm{SIE}):\left\{\begin{array}{l}
x_{k+1}-x_{k}=-m \sqrt{s} \nabla f\left(x_{k}\right)-n \sqrt{s} v_{k} \\
v_{k+1}-v_{k}=\sqrt{s} \nabla f\left(x_{k+1}\right)-q \sqrt{s} v_{k}
\end{array}\right.
$$

In compact notation, the second iteration can be written as

$$
\begin{equation*}
r_{1}\left(v_{k+1}-v_{k}\right)=\sqrt{s} \nabla f\left(x_{k+1}\right)-q \sqrt{s} v_{k+1} \tag{16}
\end{equation*}
$$

or

$$
\begin{equation*}
r_{1} v_{k}=v_{k+1}-\sqrt{s} \nabla f\left(x_{k+1}\right) \tag{17}
\end{equation*}
$$

where $r_{1}=1-q \sqrt{s}$.
Theorem 3 (Convergence of SIE). Assume $f L$-smooth and μ-strongly-convex. Let $\left(x_{k}\right)_{k=1}^{\infty}$ be the sequence obtained from semi-implicit discretization of GM-ODE with step \sqrt{s}. Let

$$
\begin{equation*}
0<m \sqrt{s} \leq \frac{1}{2 L}, 0<n s \leq m \sqrt{s}, 0<q \sqrt{s} \leq \frac{1}{2} \tag{3}
\end{equation*}
$$

There exists a constant $C>0$ such that, for any $k \in \mathbb{N}$, it holds that

$$
f\left(x_{k}\right)-f\left(x^{*}\right) \leq\left(1+\gamma_{2} \sqrt{s}\right)^{-k} C
$$

where $\gamma_{2}:=\frac{1}{5} \min \left(\frac{n \mu}{q}, \frac{q}{1+q^{2} /(n L)}\right)$.

Proof. We propose the discrete Lyapunov function defined as

$$
\begin{equation*}
\mathcal{E}(k)=r_{1} r_{2}\left(f\left(x_{k}\right)-f\left(x^{*}\right)\right)+\frac{1}{4}\left\|q\left(x_{k+1}-x^{*}\right)-n r_{1} v_{k}\right\|^{2}+\frac{n r_{1}^{2} r_{2}}{4}\left\|v_{k}\right\|^{2}-\frac{r_{1} r_{2} m \sqrt{s}}{2}\left\|\nabla f\left(x_{k}\right)\right\|^{2} . \tag{18}
\end{equation*}
$$

We use colors for different parts to keep track of related terms in the derivation. As the first step, thanks to L-Lipshitz smoothness, we have

$$
\begin{align*}
f\left(x_{k+1}\right)-f\left(x_{k}\right) \leq & \left\langle\nabla f\left(x_{k+1}\right), x_{k+1}-x_{k}\right\rangle-\frac{1}{2 L}\left\|\nabla f\left(x_{k+1}\right)-\nabla f\left(x_{k}\right)\right\|^{2} \\
= & -m \sqrt{s}\left\langle\nabla f\left(x_{k}\right), \nabla f\left(x_{k+1}\right)\right\rangle-n \sqrt{s}\left\langle v_{k}, \nabla f\left(x_{k+1}\right)\right\rangle \\
& -\frac{1}{2 L}\left\|\nabla f\left(x_{k+1}\right)-\nabla f\left(x_{k}\right)\right\|^{2} \tag{19}
\end{align*}
$$

We proceed by computing the difference in \mathcal{E} in two subsequent iterations. Denote $r_{2}=n+m q$, we have

$$
\mathcal{E}(k+1)-\mathcal{E}(k) \stackrel{(A)}{\leq}-r_{1} r_{2} m \sqrt{s}\left\langle\nabla f\left(x_{k}\right), \nabla f\left(x_{k+1}\right)\right\rangle-r_{1} r_{2} n \sqrt{s}\left\langle v_{k}, \nabla f\left(x_{k+1}\right)\right\rangle
$$

$$
\begin{align*}
&-\frac{r_{1} r_{2}}{2 L}\left\|\nabla f\left(x_{k+1}\right)-\nabla f\left(x_{k}\right)\right\|^{2}+\frac{1}{4}\left\|q\left(x_{k+2}-x_{k+1}\right)-n r_{1}\left(v_{k+1}-v_{k}\right)\right\|^{2} \\
&+\frac{1}{2}\left\langle q\left(x_{k+2}-x_{k+1}\right)-n r_{1}\left(v_{k+1}-v_{k}\right), q\left(x_{k+1}-x^{*}\right)-n v_{k+1}+n \sqrt{s} \nabla f\left(x_{k+1}\right)\right\rangle \\
&+\frac{n r_{1}^{2} r_{2}}{4}\left\|v_{k+1}\right\|^{2}-\frac{n r_{2}}{4}\left\|v_{k+1}-\sqrt{s} \nabla f\left(x_{k+1}\right)\right\|^{2} \\
&-\frac{r_{1} r_{2} m \sqrt{s}}{2}\left(\left\|\nabla f\left(x_{k+1}\right)\right\|^{2}-\left\|\nabla f\left(x_{k}\right)\right\|^{2}\right) \\
& \stackrel{(B)}{=}- r_{1} r_{2} m \sqrt{s}\left\langle\nabla f\left(x_{k}\right), \nabla f\left(x_{k+1}\right)\right\rangle-r_{1} r_{2} n \sqrt{s}\left\langle v_{k}, \nabla f\left(x_{k+1}\right)\right\rangle \\
&-\frac{r_{1} r_{2}}{2 L}\left\|\nabla f\left(x_{k+1}\right)-\nabla f\left(x_{k}\right)\right\|^{2}-\frac{r_{2}\left(2 n-r_{2}\right)}{4} s\left\|\nabla f\left(x_{k+1}\right)\right\|^{2} \\
&-\frac{r_{2}}{2} \sqrt{s}\left\langle\nabla f\left(x_{k+1}\right), q\left(x_{k+1}-x^{*}\right)-n v_{k+1}\right\rangle \\
&-\frac{n r_{2}\left(1-r_{1}^{2}\right)}{4}\left\|v_{k+1}\right\|^{2}-\frac{n r_{2}}{4} s\left\|\nabla f\left(x_{k+1}\right)\right\|^{2}+\frac{n r_{2}}{2} \sqrt{s}\left\langle\nabla f\left(x_{k+1}\right), v_{k+1}\right\rangle \\
&-\frac{r_{1} r_{2} m \sqrt{s}}{2}\left(\left\|\nabla f\left(x_{k+1}\right)\right\|^{2}-\left\|\nabla f\left(x_{k}\right)\right\|^{2}\right) \\
& \text { (C) } \xlongequal[=]{n} r_{2} \sqrt{s}\left\langle\nabla f\left(x_{k+1}\right), v_{k+1} / 2+v_{k+1} / 2-r_{1} v_{k}\right\rangle \\
&+\frac{r_{1} r_{2}}{2} m \sqrt{s}\left(\left\|\nabla f\left(x_{k+1}\right)\right\|^{2}-2\left\langle\nabla f\left(x_{k+1}\right), \nabla f\left(x_{k}\right)\right\rangle+\left\|\nabla f\left(x_{k}\right)\right\|^{2}\right) \\
&-\left(\frac{r_{2}\left(2 n-r_{2}\right)}{4} s+\frac{n r_{2}}{4} s+r_{1} r_{2} m \sqrt{s}\right)\left\|\nabla f\left(x_{k+1}\right)\right\|^{2}-\frac{n r_{2}\left(1-r_{1}^{2}\right)}{4}\left\|v_{k+1}\right\|^{2} \\
&-\frac{r_{1} r_{2}}{2 L}\left\|\nabla f\left(x_{k+1}\right)-\nabla f\left(x_{k}\right)\right\|^{2}-\frac{r_{2}}{2} q \sqrt{s}\left\langle\nabla f\left(x_{k+1}\right), x_{k+1}-x^{*}\right\rangle . \tag{20}
\end{align*}
$$

In step (A), we use smoothness of f as stated in Eq. 19 for the blue term. Also, we used the inequality $\|a\|^{2}-\|b\|^{2}=\|a-b\|^{2}+2\langle a-b, b\rangle$ where $a=q\left(x_{k+2}-x^{*}\right)-n r_{1} v_{k}$ and $b=q\left(x_{k+1}-x^{*}\right)-n r_{1} v_{k}$ to obtain the red term. In particular,

$$
\begin{align*}
a-b & =q\left(x_{k+2}-x_{k+1}\right)-n r_{1}\left(v_{k+1}-v_{k}\right) \\
& =-m q \sqrt{s} \nabla f\left(x_{k+1}\right)-n q \sqrt{s} v_{k+1}-n \sqrt{s} \nabla f\left(x_{k+1}\right)+n q \sqrt{s} v_{k+1} \\
& =-r_{2} \sqrt{s} \nabla f\left(x_{k+1}\right) . \tag{21}
\end{align*}
$$

In step (B), we incorporate the recurrence of SIE. Step (C) is a simple re-arrangement of terms.
We can easily verify the following identities:

$$
\begin{equation*}
\sqrt{s}\left\langle\nabla f\left(x_{k+1}\right), v_{k+1}-r_{1} v_{k}\right\rangle=s\left\|\nabla f\left(x_{k+1}\right)\right\|^{2} \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\nabla f\left(x_{k+1}\right)\right\|^{2}-2\left\langle\nabla f\left(x_{k+1}\right), \nabla f\left(x_{k}\right)\right\rangle+\left\|\nabla f\left(x_{k}\right)\right\|^{2}=\left\|\nabla f\left(x_{k+1}\right)-\nabla f\left(x_{k}\right)\right\|^{2} \tag{23}
\end{equation*}
$$

We have

$$
\begin{align*}
\mathcal{E}(k+1)-\mathcal{E}(k) \leq & n r_{2} s\left\|\nabla f\left(x_{k+1}\right)\right\|^{2}+\frac{r_{1} r_{2}}{2} m \sqrt{s}\left\|\nabla f\left(x_{k+1}\right)-\nabla f\left(x_{k}\right)\right\|^{2} \\
& -r_{2} s\left(\frac{2 n-r_{2}}{4}+\frac{n}{4}+\frac{r_{1} m}{\sqrt{s}}\right)\left\|\nabla f\left(x_{k+1}\right)\right\|^{2}-\frac{n r_{2}\left(1-r_{1}^{2}\right)}{4}\left\|v_{k+1}\right\|^{2} \\
& -\frac{r_{1} r_{2}}{2 L}\left\|\nabla f\left(x_{k+1}\right)-\nabla f\left(x_{k}\right)\right\|^{2}-\frac{r_{2}}{2} q \sqrt{s}\left\langle\nabla f\left(x_{k+1}\right), x_{k+1}-x^{*}\right\rangle \tag{24}
\end{align*}
$$

We leverage μ-strong convexity of f to get

$$
\begin{equation*}
\left\langle\nabla f\left(x_{k+1}\right), x_{k+1}-x^{*}\right\rangle \geq f\left(x_{k+1}\right)-f\left(x^{*}\right)+\frac{\mu}{2}\left\|x_{k+1}-x^{*}\right\|^{2} \tag{25}
\end{equation*}
$$

Applying the above inequality to the last term of Eq. 24, we obtain

$$
\mathcal{E}(k+1)-\mathcal{E}(k) \leq-\frac{r_{2}}{2} q \sqrt{s}\left(f\left(x_{k+1}\right)-f\left(x^{*}\right)\right)-\frac{r_{2} \mu}{4} q \sqrt{s}\left\|x_{k+1}-x^{*}\right\|^{2}
$$

$$
\begin{align*}
& -\frac{r_{1} r_{2}}{2}(1 / L-m \sqrt{s})\left\|\nabla f\left(x_{k+1}\right)-\nabla f\left(x_{k}\right)\right\|^{2}-\frac{n r_{2}\left(1-r_{1}^{2}\right)}{4}\left\|v_{k+1}\right\|^{2} \\
& -r_{2} s\left(\frac{2 n-r_{2}}{4}+\frac{n}{4}+\frac{r_{1} m}{\sqrt{s}}-n\right)\left\|\nabla f\left(x_{k+1}\right)\right\|^{2} \tag{26}
\end{align*}
$$

Now we plug in the the value of r_{1}, r_{2} and calculate

$$
\begin{equation*}
1-r_{1}^{2}=1-(1-q \sqrt{s})^{2}=q \sqrt{s}(2-q \sqrt{s}) \geq q \sqrt{s} \tag{27}
\end{equation*}
$$

where we used the condition $q \sqrt{s} \leq 1 / 2$. Next, since $m \sqrt{s} \leq 1 /(2 L), n \leq m / \sqrt{s}$ and $r_{1}=1-q \sqrt{s} \geq 1 / 2$, it holds that

$$
\begin{equation*}
\frac{2 n-r_{2}}{4}+\frac{r_{1} m}{\sqrt{s}}-\frac{3 n}{4}=\frac{n-m q}{4}+\frac{r_{1} m}{\sqrt{s}}-\frac{3 n}{4}=\frac{r_{1} m}{\sqrt{s}}-\frac{n}{2}-\frac{m q}{4} \geq-\frac{m q}{4} \tag{28}
\end{equation*}
$$

Hence, the difference between two iterations can be upper-bounded as follows:

$$
\begin{align*}
\mathcal{E}(k+1)-\mathcal{E}(k) \leq- & \frac{r_{2} q \sqrt{s}}{2}\left(f\left(x_{k+1}\right)-f\left(x^{*}\right)+\frac{\mu}{2}\left\|x_{k+1}-x^{*}\right\|^{2}+n\left\|v_{k+1}\right\|^{2} / 2-\frac{m \sqrt{s}}{2}\left\|\nabla f\left(x_{k+1}\right)\right\|^{2}\right) \\
=- & \frac{r_{2} q \sqrt{s}}{2}\left(\left(1-r_{3}\right)\left[f\left(x_{k+1}\right)-f\left(x^{*}\right)\right]+\frac{\mu}{2}\left\|x_{k+1}-x^{*}\right\|^{2}\right. \\
& \left.\quad+n\left\|v_{k+1}\right\|^{2} / 2+r_{3}\left[f\left(x_{k+1}\right)-f\left(x^{*}\right)-\frac{1}{2 L}\left\|\nabla f\left(x_{k+1}\right)\right\|^{2}\right]\right), \tag{29}
\end{align*}
$$

where $r_{3}=L m \sqrt{s} \leq 1 / 2$ and the bound remains legal since $1-r_{3} \geq 1 / 2$.
On the other hand, our candidate Lyapunov function at iteration k itself can be upper-bounded as

$$
\begin{align*}
\mathcal{E}(k)= & r_{1} r_{2}\left(f\left(x_{k}\right)-f\left(x^{*}\right)+\frac{1}{4}\left\|q\left(x_{k+1}-x^{*}\right)-n r_{1} v_{k}\right\|^{2}+\frac{n r_{1}^{2} r_{2}}{4}\left\|v_{k}\right\|^{2}-\frac{r_{1} r_{2} m \sqrt{s}}{2}\left\|\nabla f\left(x_{k}\right)\right\|^{2}\right. \\
\stackrel{(A)}{=} & r_{1} r_{2}\left(f\left(x_{k}\right)-f\left(x^{*}\right)\right)+\frac{1}{4}\left\|q\left(x_{k}-x^{*}\right)-n v_{k}-m q \sqrt{s} \nabla f\left(x_{k}\right)\right\|^{2}+\frac{n r_{1}^{2} r_{2}}{4}\left\|v_{k}\right\|^{2} \\
& -r_{1} r_{2} m \sqrt{s}\left\|\nabla f\left(x_{k}\right)\right\|^{2} / 2 \\
\stackrel{(B)}{\leq} & r_{1} r_{2}\left(f\left(x_{k}\right)-f\left(x^{*}\right)\right)+q^{2}\left\|x_{k}-x^{*}\right\|^{2}+n^{2}\left\|v_{k}\right\|^{2}+\frac{q^{2} m^{2} s}{2}\left\|\nabla f\left(x_{k}\right)\right\|^{2}+\frac{n r_{1}^{2} r_{2}}{4}\left\|v_{k}\right\|^{2} \\
& -r_{1} r_{2} m \sqrt{s}\left\|\nabla f\left(x_{k}\right)\right\|^{2} / 2 \\
= & r_{1} r_{2}\left(1-r_{3}+r_{4}\right)\left(f\left(x_{k}\right)-f\left(x^{*}\right)\right)+q^{2}\left\|x_{k}-x^{*}\right\|^{2}+\left(n^{2}+n r_{1}^{2} r_{2} / 4\right)\left\|v_{k}\right\|^{2} \\
& +r_{1} r_{2}\left(r_{3}-r_{4}\right)\left[f\left(x_{k}\right)-f\left(x^{*}\right)-\frac{1}{2 L}\left\|\nabla f\left(x_{k}\right)\right\|^{2}\right], \tag{30}
\end{align*}
$$

with $r_{4}=L q^{2} m^{2} s /\left(r_{1} r_{2}\right)$. Precisely, step (A) is obtained by replacing SIE update for the term x_{k+1}. (B) is obtained by repeatedly using the inequality $\|a+b\|^{2} \leq 2\|a\|^{2}+2\|b\|^{2}$. Finally, noting that $f\left(x_{k}\right)-f\left(x^{*}\right) \geq \frac{1}{2 L}\left\|\nabla f\left(x_{k}\right)\right\|^{2}$, we have

$$
\begin{align*}
\mathcal{E}(k) \leq r_{2}\left(r_{1}\left(1-r_{3}+r_{4}\right)\left[f\left(x_{k}\right)-f\left(x^{*}\right)\right]+\frac{q^{2}}{n}\left\|x_{k}-x^{*}\right\|^{2}\right. & +5 n\left\|v_{k}\right\|^{2} / 4 \\
& \left.+r_{1}\left(r_{3}-r_{4}\right)\left[f\left(x_{k}\right)-f\left(x^{*}\right)-\frac{1}{2 L}\left\|\nabla f\left(x_{k}\right)\right\|^{2}\right]\right) \tag{31}
\end{align*}
$$

since $r_{2}=n+m q \geq n$. It is reckoned that $\mathcal{E}(k+1)-\mathcal{E}(k)$ and $\mathcal{E}(k)$ share identical parts except for different coefficients. Now we aim at obtaining following inequality

$$
\begin{equation*}
\mathcal{E}(k+1)-\mathcal{E}(k) \leq-\gamma_{2} \sqrt{s} \mathcal{E}(k+1) \tag{32}
\end{equation*}
$$

To achieve this, γ_{2} should be the minimal ratio for coefficients of each parts of $\mathcal{E}(k+1)-\mathcal{E}(k)$ to those of $\mathcal{E}(k)$. It is easy then to notice that γ_{2} should be smaller than $q / 5$ and $n \mu /(4 q)$. Besides it should also hold that

$$
\begin{equation*}
\frac{r_{2} q}{2 r_{1} r_{2}} \frac{r_{3}}{r_{3}-r_{4}} \geq \frac{q}{2} \frac{1-r_{3}}{1-\left(r_{3}-r_{4}\right)}=\frac{q}{2} \frac{1-r_{3}}{1-r_{3}\left(1-r_{4} / r_{3}\right)} \geq \frac{q}{2} \frac{1-1 / 2}{1-1 / 2\left(1-\frac{q^{2}}{n L}\right)} \geq \frac{q}{2} \frac{1}{1+\frac{q^{2}}{n L}} \geq \gamma_{2} \tag{33}
\end{equation*}
$$

due to the fact $\frac{r_{4}}{r_{3}}=\frac{q^{2} m \sqrt{s}}{r_{1} r_{2}} \leq \frac{q^{2}}{n L}$ and $r_{3} \leq 1 / 2$. Therefore $\gamma_{2}=\frac{1}{5} \min \left\{\frac{q}{1+\frac{q^{2}}{n L}}, \frac{n \mu}{q}\right\}$ satisfies the above inequality and completes the proof.

We now use the above result to prove the convergence of QHM iterations (see Sec. 4).
Corollary 5 (Convergence of QHM). Let f be L-smooth and μ-strongly-convex with $L / \mu \geq 9$. The iterates of enjoy a linear convergence rate for $s \leq \frac{1}{4 L}$ and $a \leq 1 / 2$. In particular, also enjoys convergence rate $O\left((1-\sqrt{\mu / L})^{k}\right)$ for $b=1-2 \sqrt{\mu s}$. Namely, $\exists C>0$ such that

$$
f\left(x_{k}\right)-f\left(x^{*}\right) \leq(1+a \sqrt{\mu s} / 10)^{-k} C
$$

Proof. First, we show how one can alternatively write QHM as one-line scheme. The original QHM algorithm is reported here for convenience of the reader

$$
\left\{\begin{array}{l}
x_{k+1}=x_{k}-s\left((1-a) \nabla f\left(x_{k}\right)+a g_{k+1}\right) \tag{QHM}\\
g_{k+1}=b g_{k}+\nabla f\left(x_{k}\right)
\end{array}\right.
$$

We replace the second line of QHM into the first one :

$$
\begin{equation*}
x_{k+1}=x_{k}-s(1-a) \nabla f\left(x_{k}\right)-s \cdot b \cdot a \cdot g_{k}-a s \nabla f\left(x_{k}\right) \tag{34}
\end{equation*}
$$

Using the first iterate we get:

$$
\begin{equation*}
-\left(x_{k}-x_{k-1}\right) / s-(1-\alpha) \nabla f\left(x_{k-1}\right)=a g_{k} \tag{35}
\end{equation*}
$$

Replacing this into the result of first equation, we get:

$$
\begin{equation*}
x_{k+1}=x_{k}-s(1-a) \nabla f\left(x_{k}\right)+b\left(\left(x_{k}-x_{k-1}\right)+s(1-a) \nabla f\left(x_{k-1}\right)\right)-a s \nabla f\left(x_{k}\right) \tag{36}
\end{equation*}
$$

By rearrangment, we finally obtain

$$
\begin{equation*}
x_{k+1}=x_{k}+b\left(x_{k}-x_{k-1}\right)-s \nabla f\left(x_{k}\right)+s b(1-a) \nabla f\left(x_{k-1}\right) \tag{37}
\end{equation*}
$$

The above iterates can be viewed as SIE discretization of GM-ODE with the following specific choice of parameters (see the single sequence of iterates of SIE in the last section):

$$
\begin{equation*}
m=(1-a) \sqrt{s}, \quad n=a, \quad q=\frac{1-b}{\sqrt{s}} \tag{38}
\end{equation*}
$$

Invoking Thm. 3. we get the convergence rate for QHM. More precisely, choosing $b=1-2 \sqrt{\mu s}$ we obtain

$$
\begin{equation*}
q=2 \sqrt{\mu} \tag{39}
\end{equation*}
$$

The above choice of parameters obeys the constraints in Thm. 3 .

$$
\begin{equation*}
m \sqrt{s}=(1-a) s<s \leq \frac{1}{4 L}, \quad n=a \leq(1-a)=\frac{m}{\sqrt{s}} \tag{40}
\end{equation*}
$$

and

$$
\begin{equation*}
q \sqrt{s}=2 \sqrt{\mu s} \leq 2 \sqrt{s L / 9} \leq 1 / 3 \tag{41}
\end{equation*}
$$

since we assumed $s \leq 1 /(4 L), a \leq 1 / 2$ and $L / \mu \geq 9$. The rate - thanks to Thm. 3 - is determined by $\left.\gamma_{2}=\frac{1}{5} \min \left\{\frac{n \mu}{q}, \frac{q}{1+q^{2} /(n L)}\right)\right\}$. We conclude the proof by showing that $\gamma_{2}=a \sqrt{\mu} / 8$ in the case of QHM. First, one can readily check that $(n \mu) /(5 q)=a \mu /(10 \sqrt{\mu})$ holds due to the choice of parameters. Second, with some patience, one can check that the following chain of inequality holds:

$$
\frac{1}{5} \cdot \frac{q}{1+\frac{q^{2}}{n L}}=\frac{2 \sqrt{\mu}}{5+\frac{20 \mu}{a L}} \geq \frac{2 a \sqrt{\mu}}{5 a+20 / 9} \geq \frac{a \sqrt{\mu}}{10}
$$

C Proofs for Section 5

As stated in the main paper, we consider the following discretization errors:

$$
\begin{aligned}
\Delta_{k}^{(\mathrm{EE})} & :=\left\|X(k \sqrt{s})-x_{k}\right\|, \quad x_{k} \text { obtained by EE } \\
\Delta_{k}^{(\mathrm{SIE})} & :=\left\|X(k \sqrt{s})-x_{k+1}\right\|, \quad x_{k} \text { obtained by SIE. }
\end{aligned}
$$

We define $w_{k}:=x_{k}$ for EE and $w_{k}:=x_{k+1}$ for SIE. We compare the error $\Delta_{k}=\left\|X(k \sqrt{s})-w_{k}\right\|$ for $k=1$ in the next lemma, assuming $\Delta_{0}=0$ and $v_{0}=V(0)$. This is also called local (or one-step) integration error.

Lemma 7. Let f be L-smooth and of class C^{2}. If $m=O(\sqrt{s})$, then $\Delta_{1}^{(S I E)}=O\left(s^{3 / 2}\right)$ and $\Delta_{1}^{(E E)}=O(s)$.

Proof. We introduce the notation $X_{k}:=X(k \sqrt{s}), V_{k}:=V(k \sqrt{s})$. Our problem setting requires $w_{0}=X_{0}$ and $v_{0}=V_{0}$. For SIE, $w_{k}=x_{k+1}$ and we begin from Taylor expansion of X as

$$
\begin{equation*}
X_{1}-X_{0}=\sqrt{s} \dot{X}_{0}+s \ddot{X}_{0}+O\left(s^{3 / 2}\right) \tag{42}
\end{equation*}
$$

and therefore

$$
\begin{align*}
X_{1}-w_{1}= & X_{1}-X_{0}-\left(w_{1}-w_{0}\right)+X_{0}-w_{0} \\
= & X_{1}-X_{0}-\left(x_{2}-x_{1}\right)+X_{0}-x_{1} \\
= & \sqrt{s} \dot{X}_{0}+s \ddot{X}_{0}+m \sqrt{s} \nabla f\left(x_{1}\right)+n \sqrt{s} v_{1}+O\left(s^{3 / 2}\right) \\
= & \sqrt{s}\left(-m \nabla f\left(X_{0}\right)-n V_{0}\right)+s \frac{d}{d t}\left(-m \nabla f\left(X_{0}\right)-n V_{0}\right) \\
& \quad+m \sqrt{s} \nabla f\left(x_{1}\right)+n \sqrt{s}\left(\sqrt{s} \nabla f\left(x_{1}\right)+(1-q \sqrt{s}) v_{0}\right)+O\left(s^{3 / 2}\right) . \tag{43}
\end{align*}
$$

where in the third equality we used the fact that, by hypothesis, $X_{0}-x_{1}=0$. And in particular, since $\frac{d \nabla f(X)}{d t}=\nabla^{2} f(X) \dot{X}$,

$$
\begin{align*}
s \frac{d}{d t}\left(-m \nabla f\left(X_{0}\right)-n V_{0}\right) & =-s m \nabla^{2} f\left(X_{0}\right) \dot{X}_{0}-s n \dot{V}_{0} \\
& =-s n \nabla f\left(X_{0}\right)+s n q V_{0}+s m^{2} \nabla^{2} f\left(X_{0}\right) \nabla f\left(X_{0}\right)+s m n \nabla^{2} f\left(X_{0}\right) V_{0} \tag{44}
\end{align*}
$$

Then it holds that

$$
\begin{equation*}
X_{1}-w_{1}=-(m \sqrt{s}+n s)\left(\nabla f\left(X_{0}\right)-\nabla f\left(x_{1}\right)\right)-n \sqrt{s}\left(V_{0}-v_{0}\right)+s n q\left(V_{0}-v_{0}\right)+O\left(s^{3 / 2}\right) \leq O\left(s^{3 / 2}\right) \tag{45}
\end{equation*}
$$

and $\Delta_{1}^{(\mathrm{SIE})} \leq O\left(s^{3 / 2}\right)$.
We proceed with the EE iterations (remember: $w_{k}=x_{k}$). We expand $\Delta_{1}^{(\mathrm{EE})}$ as

$$
\begin{align*}
X_{1}-w_{1}= & X_{1}-X_{0}-\left(w_{1}-w_{0}\right)+X_{0}-x_{0}+O\left(s^{3 / 2}\right) \\
= & X_{1}-X_{0}-\left(x_{1}-x_{0}\right)+X_{0}-x_{0}+O\left(s^{3 / 2}\right) \\
= & \sqrt{s} \dot{X}_{0}+s \ddot{X}_{0}+m \sqrt{s} \nabla f\left(x_{0}\right)+n \sqrt{s} v_{0}+O\left(s^{3 / 2}\right) \\
= & \sqrt{s}\left(-m \nabla f\left(X_{0}\right)-n V_{k}\right)+m \sqrt{s} \nabla f\left(x_{0}\right)+n \sqrt{s} v_{0} \\
& \quad+\operatorname{sm}\left(m \nabla^{2} f\left(X_{0}\right) \nabla f\left(X_{0}\right)+n \nabla^{2} f\left(X_{k}\right) V_{0}\right) \\
& \quad-\operatorname{sn}\left(\nabla f\left(X_{0}\right)-q V_{0}\right)+O\left(s^{3 / 2}\right) \\
= & m \sqrt{s}\left(\nabla f\left(X_{0}\right)-\nabla f\left(x_{0}\right)\right)-n \sqrt{s}\left(V_{0}-v_{0}\right)+O(s) . \tag{46}
\end{align*}
$$

Therefore, we conclude that $\Delta_{1}^{(\mathrm{EE})} \leq O(s)$.

Lemma 8. Let f be μ-strongly-convex and L-smooth. For EE discretization of GM-ODE obeying Eq. 4, the discretization error decays as $\Delta_{k}^{(E E)}=O\left(\left(1+\gamma_{3} \sqrt{s}\right)^{-k}\right)$ where γ_{3} is defined in Thm. 6. Furthermore, SIE also enjoys $\Delta_{k}^{(S I E)}=O\left(\left(1+\gamma_{2} \sqrt{s}\right)^{-k}\right)$ where γ_{2} is defined in Thm. 3 as long as conditions in Eq. 3 are satisfied.

Proof. The proof is based on the following consequence of strong convexity

$$
\begin{equation*}
\mu\left\|x-x^{*}\right\|^{2} / 2 \leq f(x)-f\left(x^{*}\right) \tag{47}
\end{equation*}
$$

Using the above inequality together with a straightforward application of triangular inequality we complete the proof:

$$
\begin{align*}
\left\|X(k \sqrt{s})-x_{k}\right\| & =\left\|X(k \sqrt{s})-x^{*}+x^{*}-x_{k}\right\| \\
& \leq\left\|X(k \sqrt{s})-x^{*}\right\|+\left\|x_{k}-x^{*}\right\| \\
& \leq \sqrt{2} \mu^{-1 / 2}\left(\left(f(X(k \sqrt{s}))-f\left(x^{*}\right)\right)^{1 / 2}+\left(f\left(x_{k}\right)-f\left(x^{*}\right)\right)^{1 / 2}\right) \tag{48}
\end{align*}
$$

Replacing the convergence results in Thm. 1, 3, and 6 into the the above bound concludes the proof.

