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Appendix: Proofs and Supplementaries

A Proof for Theorem [1I

For convenience of the reader, we report here our generalized model for momentum methods (GM-ODE]), motivated

in the main paper.

X = -mVf(X)-nV
V=Vf(X)-qV.

(GM-ODE)

Theorem 1 (Continuous-time stability). Let f be p-strongly-convex and L-smooth. If n,m,q > 0 then, for any
value of the strong-convezity modulus p > 0, the point (x*,0) € R2? is globally asymptotically stable for|GM-ODH

as

E(X(t), V(1) < e™ M- £(X(0),V(0)),

: (u(n+qm) q)
where y; :=min | ————, = |.
2q 2

Proof. We propose the Lyapunov function

(1) = (am +n) (X)) — F@) + "I i o L g(x(@) — o)~ nv ()P,
\TJ N -
consisting of quadratic and mixing parts
Eut) = F(X(1) = f(z), &) =VOI?, &) = —nV(t) +a(X(t) — 2|

The derivatives of each quadratic part are
d
&) = ~m||[VF(X@)|* = n(V (X)), V(1))

and

S6:(0) = 2|V O + 2T X0). V),

along with that of the mixing term:

9 e5(t) =2V (1) + aX (1), ~nV (1) + (X (1) — )

== 2(gm +n)(VF(X(?), —nV (1) + ¢(X(t) — 27))
= —2q(gm +n)(Vf(X(?)), X (t) = %) + 2n(gm + n)(Vf(X (1)), V(1))
)

< —2q(qm+n) (F(X(1) = f(z")) = palam + )| X (1) — 2"
+2n(gm +n)(Vf(X(1)),V (1)),
where last inequality is due to the strong convexity. Plugging the value of ¢y, co and c3, we have

Dy <~ DI ((x (1))~ pa) + E1x) - o2 4 IV OI?).

Besides, the mixing term can be upper-bounded by

Es(t) < 2071 X () — ™ ||* + 20°([V (1) ||*.

(2)

(7)



Zhang, Orvieto, Daneshmand, Hofmann, Smith

Therefore we have £(t) satisfying

* * n(n +gm
£(8) < (am + m) (FX(0) — F) + @IX0) — 2" 2/2+ (w2724 "I Yy )
which implies
d _ funtqm) g
- < — 24 .
dtg(t) < mm{ on '3 E(t) (15)
We then conclude using Gronwall’s lemma (Khalil and Grizzle, 2002). O

B Proof for Theorem [3

For convenience of the reader, we repeat here the semi-implicit integrator of [GM-ODE] we seek to study:

Vky1 — Uk = SV f(Trq1) — qy/50k.

In compact notation, the second iteration can be written as

1 (Vkg1 — k) = VsV f(@p41) — ¢V50k 41 (16)

(SIE) {$k+1 — 1z = —m/sV f(xg) — n/svg

or
10k = Vg1 — VSV f(Tpy1), (17)
where r; =1 — g/s.

Theorem 3 (Convergence of SIE). Assume f L-smooth and p-strongly-convex. Let (x)72, be the sequence

obtained from semi-implicit discretization of|GM-ODE| with step /s. Let

1 1
0<m\/§§ﬁ,0<ns§m\/§,0<q\/§§§. (3)

There exists a constant C' > 0 such that, for any k € N, it holds that
@ —k
flae) = f(@*) < (1+m7vs) O,

where 5 := + min LR
T q ' 14+¢*/(nL))
Proof. We propose the discrete Lyapunov function defined as

nriry r1TomA/s
SR YL L LVETL JTPRTCRNCE

E(K) = rira(f(an) = F@")) + 4 laCas = a) = nrvn]* +

We use colors for different parts to keep track of related terms in the derivation. As the first step, thanks to
L-Lipshitz smoothness, we have

Flensn) = Fon) SV fnn) zin — o) = 57 IVFGrnr) = V)l
= —mv/s(Vf(zr), VI(Tri1)) — nvs(ok, Vf(2ri1))
~ 519 @) — Vi@ (19)

We proceed by computing the difference in £ in two subsequent iterations. Denote 7o = n 4 mgq, we have

E(k+1) - E(k) (g) —r1ramy/s(V f(zr), V f(x41)) — rirany/s(vg, V f(@r41))
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T1T2

2
nriry
4

- TS (19 f ) 2~ [V F0)]?)
(2)—r1r2m\/§<Vf(xk)7 Vf(@kr1)) = riran/s(ok, VF (@h41))

. nr .
vps1® — JH’UICH — VsV f(zps1)]?

9 f ) - V)l — 2 )
- 5 s(Vf(zrt1), q(@p41 — %) — nuga)
T 12 = TR )P+ A £ ) i)
- TS (19 () H2 IV £@0)l?)
© nroy/s(V f(@g41), Vir1/2 + Vg1 /2 — T10k)
+ 22 m5 (I (@) 2 = 209 (@), V) + V()1

(21, — 1 e 1_,.2
(BRI T B) 9 F ) 2 - P

4 4 4
SNV @) = VE@OIP = SavVs(V(@asn)anes — ).

T1T2

1 .
o7 IV F@ken) = VE@I? + Jlla(@nre = wria) = nrn (e — o)

1 . .
+ *<(1(1L‘k+2 - lL‘k+1) - Tl’f‘l(”b'k+1 - 'Uk)-, q(éL‘k+1 - ) — NVky1 + TL\/;vf(warl»

(20)

In step (A), we use smoothness of f as stated in Eq. [L9] - 9| for the blue term. Also, we used the inequality
llal|? = ||6]]? = ||la — b]|? + 2{a — b, b) where a = q(x)1o — %) — nrivx and b = g(xp11 — *) — nrivg to obtain the

red term. In particular,
a—b=q(@kt2 — Tpt1) — nr1(Vk+1 — vk)

= —mqV/sV f(xp41) — ngV/s0k41 — NSV f(Tg1) + ngy/s0k41

= —12VsV f(2p41).
In step (B), we incorporate the recurrence of SIE. Step (C) is a simple re-arrangement of terms.
We can easily verify the following identities:

V(Y f(@p41), vk — 110k) = 8[|V f (@) ||
and
IV f(@re) I = 2V f(@rg1), VI (@r)) + IV i) |? = 1V F(@r1) = V(@)
We have
E(k +1) — E(k) <nras||V f(zre1) | + wm\/gllvf(mkﬂ) = Vf(aw)?

nra(1 —7r?)

2n — n
—ras(T ) IV ) = S P

> IV (@es) = V(2 WII? — *q\f<vf(93k+1) Tpy1 — 7).

TlrQ

We leverage p-strong convexity of f to get
* * M *
(VI(@rsa),wipn —27) = flonpn) = f@) + S low — 2"
Applying the above inequality to the last term of Eq.[24] we obtain

E(k+1) = E(k) < =2 qVs(f(wi) = F(@") = Zoqv/slziss — |

(22)

(23)
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mr nro(1 — 72
= (1)L = myB)IV S ) - V)P - P2 e
2n—ry n rim 9
rs(Fp =) IV )P (26)
Now we plug in the the value of r1, ro and calculate
1—r=1-(1-qv5)?=qV/s2—qV/s) > qV/s, (27)

where we used the condition gv/s < 1/2. Next, since my/s < 1/(2L), n <m/+/s and 1y =1 —q+/s > 1/2, it holds
that
2n—re  rym 3n nm—mq rm 3n  rm n  mgq mq
= -z 2 s T 2
r Y51 r s T dT T s 217 (28)

Hence, the difference between two iterations can be upper-bounded as follows:

7’2(1\/g
2

Y (0 ) — £+ - o2

tlloal?/2 4 sl (onn) = F@) = 52 IV F @) 7). (29)

where r3 = Lm+/s < 1/2 and the bound remains legal since 1 —r3 > 1/2.

(o) = 1) + Bl =212+ nlloeal/2 = X219 ) 1?)

Ek+1)—Ek) < —

On the other hand, our candidate Lyapunov function at iteration k itself can be upper-bounded as

. 1 N nrir T1T2MA/S
E(F) = raral(f(as) — F@*) 4 lalaer - a%) — meywg 2+ 02 oy 2 TS g g2
nriry

4

D s en) — 1) + {latan - 2%) — no — maVEYF )+ T oy

— rirem/s||V f ()] /2
52 2 2, .2 2 a°m?’s
< rire(f(zn) = f(27) + ¢ llaw — 27|17 + n7llon]|” + —5
= riramy/s||V f (zi) [ /2
= rira(1 —rs +ra)(f(zg) —
raralrs = r)[f (@) - £ = 57 IV FR)I), (30)

with ry = Lg*>m?®s/(r172). Precisely, step (A) is obtained by replacing SIE update for the term x4 1. (B) is obtained
by repeatedly using the inequality |la + b]|? < 2||a||? + 2||b||>. Finally, noting that f(zy) — f(z*) > 5= |V f(z)|?,
we have

’I’l’l"2’f‘2
IV @el* + == lloxll®

F@*) + @l = 2% + (n® + nrira/4)||ve ]|
T

2
E(k) < (7’1(1 — 3+ ra)[f(er) = f(@7)] + %Hmk — @*||* + 5nllux|* /4

(s =)l (n) — £ — 5 IV FEIR), (31

since ro = n 4+ mq > n. It is reckoned that £(k + 1) — £(k) and £(k) share identical parts except for different
coefficients. Now we aim at obtaining following inequality

E(k+1)—Ek) < —yo/sE(k+1). (32)
To achieve this, v2 should be the minimal ratio for coefficients of each parts of E(k + 1) — £(k) to those of E(k).
It is easy then to notice that v2 should be smaller than ¢/5 and nu/(4q). Besides it should also hold that

1
2 > Y2, (33)
1+

rq T3 4 1—r3 q 1—r3 q 1-1/2

2rirgry —ry 21— (rz3—ry) 21 —r3(1—ry4/r3) — 21—1/2(1_%) -

N

2 2
due to the fact :—‘; = qurz ® < 4 and r3 < 1/2. Therefore v, = émin{ 1+q rag T;—“} satisfies the above inequality

and completes the proof. O

S
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We now use the above result to prove the convergence of QHM iterations (see Sec. .

Corollary 5 (Convergence of [QHM]|). Let f be L-smooth and p-strongly-convex with L/u > 9. The iterates of
enjoy a linear convergence rate for s < ﬁ and a < 1/2. In particular, also enjoys convergence rate O((1—+/u/L)*)
forb=1—2,/ps. Namely, 3C > 0 such that

—k
Flaw) — f@*) < (1+a\/m/10) C.

Proof. First, we show how one can alternatively write QHM as one-line scheme. The original QHM algorithm is
reported here for convenience of the reader

{xkﬂ = i~ s((1— )V f(zx) + ages) QH)
g1 = bgi + V f(zp).
We replace the second line of QHM into the first one :
Tpp1 =2k — (1 —a)Vf(zk) —s-b-a-gr —asVf(wk). (34)
Using the first iterate we get:
—(zk —xk—1)/s — (1 — )V f(xr-1) = ag. (35)
Replacing this into the result of first equation, we get:
Tpt1 =2 — (1 —a)Vf(zr) + 0((zr — 2x—1) + s(1 — a)Vf(ag_1)) — asV f(zy). (36)
By rearrangment, we finally obtain
Tpy1 = xp + 0(x — 1) — sV f(x) + sb(1 — a)Vf(xp—1). (37)

The above iterates can be viewed as SIE discretization of[GM-ODE] with the following specific choice of parameters
(see the single sequence of iterates of SIE in the last section):

1o
Invoking Thm. [3] we get the convergence rate for More precisely, choosing b = 1 — 2, /5 we obtain
q =2y (39)

The above choice of parameters obeys the constraints in Thm.

m:(l_a)\/gv n=a,

(38)

m\/E:(lfa)s<5§ﬁ, n:ag(lfa):%, (40)

and

av/s = 2155 < 2y/5LJ9 < 1/3, (41)

since we assumed s < 1/(4L), a < 1/2 and L/p > 9. The rate — thanks to Thm. [3| — is determined by
Yo = %min{%, W)} We conclude the proof by showing that v, = a,/1/8 in the case of QHM. First,
one can readily check that (nu)/(5¢) = ap/(10,/1z) holds due to the choice of parameters. Second, with some
patience, one can check that the following chain of inequality holds:

g 2/ /i _ ayi

1+ 2 542 = 5a+20/9° 10

G| =
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C Proofs for Section [5]

As stated in the main paper, we consider the following discretization errors:
A,(CEE) = || X (kv/s) — z1|l, xx obtained by EE
AB™) = || X (kv/5) — 241, @k obtained by SIE.

We define wy, := zy, for EE and wy, := xy4; for SIE. We compare the error A, = || X (ky/s) — wg]|| for K =1 in the
next lemma, assuming Ag = 0 and vp = V(0). This is also called local (or one-step) integration error.

Lemma 7. Let f be L-smooth and of class C?. If m = O(y/s), then Agsw) = 0(s*) and A(lEE) = O(s).

Proof. We introduce the notation X := X (kv/s), Vi := V(k+y/s). Our problem setting requires wy = Xy and
vg = V. For SIE, wy, = 2441 and we begin from Taylor expansion of X as

X —Xo= \/EX(] + sXo + 0(33/2)7 (42)
and therefore

lewl :leXof(w17w0)+Xofwo
=X; —Xo—(z2—21) + Xo — 24
=V5X0 + 5Xo + m\/sVf(xz1) + nysv + O(s™?)
d
=\/§( — mVf(Xo) — nVo) + si(— mV f(Xo) — nVO)

+my/5V f () + /5 (VEV (@) + (1= av/s)u) + O(s7). (43)
where in the third equality we used the fact that, by hypothesis, Xo — ;1 = 0. And in particular, since
VI - y2p(x)X,

d ) . )
S%( —mV f(Xo) — nV0> =—smV*f(Xp)Xo — snVp
= — snV f(Xo) + sngVy + sm*V2 f(Xo)Vf(Xo) + smnV2f(Xo)Vo. (44)
Then it holds that

X, —wy = — (m/s + ns) (Vf(Xo) —~ Vf(xl)) —ny/5(Vo — vo) + sng(Vo — vo) + O(s%) < O(s)  (45)

and A(lsm) < O(s*?).

We proceed with the EE iterations (remember: wy, = xp). We expand A:(LEE) as

X1 — w1 :Xl - XO - (w1 - ’LUO) + XQ — g+ 0(83/2)
=X; — Xy — (.1‘1 — 3;‘0) + Xo —x0 + 0(83/2)
=V/5Xo + 5Xo + m/sV f(x0) + ny/sv + O(s7?)
—V5( = mVf(Xo) = nVi) + m/5V f (o) + n/5to
+ sm (V2 (Xo) Vf(Xo) +nV2f (Xi)Vo )
—sn(Vf(Xo) = q¥% ) + O(s™")

O
:_m\/g(vf(xo) —Vf(xo)) -n s(Vo—vo> + O(s). (46)

Therefore, we conclude that AgEE) < O(s). O
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Lemma 8. Let f be p-strongly-convex and L-smooth. For FE discretization of obeying Eq.[], the
discretization error decays as A,(iEE) = O((1 + y3/3) %) where 3 is defined in Thm.|6. Furthermore, SIE also
enjoys A,(CSIE) = O((1 + v2+/5) %) where v, is defined in Thm.|3 as long as conditions in Eq. H are satisfied.

Proof. The proof is based on the following consequence of strong convexity
plle —z*|?/2 < f(x) — f(z*). (47)

Using the above inequality together with a straightforward application of triangular inequality we complete the
proof:

X (k/s) =zl = | X (kv/s) — 2" + 2" —
< X (BVs) = ™[] + [lox — 2|

< Vo (FX(3) = F@) " 4 (flaw) = F@) ) (48)

Replacing the convergence results in Thm. [T} 3] and [f] into the the above bound concludes the proof. O



