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Appendix: Proofs and Supplementaries

A Proof for Theorem 1

For convenience of the reader, we report here our generalized model for momentum methods (GM-ODE), motivated
in the main paper. {

Ẋ = −m∇f(X)− nV
V̇ = ∇f(X)− qV.

(GM-ODE)

Theorem 1 (Continuous-time stability). Let f be µ-strongly-convex and L-smooth. If n,m, q ≥ 0 then, for any
value of the strong-convexity modulus µ ≥ 0, the point (x∗, 0) ∈ R2d is globally asymptotically stable for GM-ODE,
as

E(X(t), V (t)) ≤ e−γ1t · E(X(0), V (0)), (2)

where γ1 := min

(
µ(n+ qm)

2q
,
q

2

)
.

Proof. We propose the Lyapunov function

E(t) = (qm+ n)︸ ︷︷ ︸
c1

(
f(X(t))− f(x∗)

)
+
n(qm+ n)

4︸ ︷︷ ︸
c2

‖V (t)‖2 +
1

4︸︷︷︸
c3

‖q(X(t)− x∗)− nV (t)‖2, (7)

consisting of quadratic and mixing parts

E1(t) = f(X(t))− f(x∗), E2(t) = ‖V (t)‖2, E3(t) = ‖ − nV (t) + q(X(t)− x∗)‖2. (8)

The derivatives of each quadratic part are

d

dt
E1(t) = −m‖∇f(X(t)‖2 − n〈∇f(X(t)), V (t)〉 (9)

and

d

dt
E2(t) = −2q‖V (t)‖2 + 2〈∇f(X(t)), V (t)〉, (10)

along with that of the mixing term:

d

dt
E3(t) =2〈−nV̇ (t) + qẊ(t),−nV (t) + q(X(t)− x∗)〉

=− 2(qm+ n)〈∇f(X(t)),−nV (t) + q(X(t)− x∗)〉
=− 2q(qm+ n)〈∇f(X(t)), X(t)− x∗〉+ 2n(qm+ n)〈∇f(X(t)), V (t)〉

≤ − 2q(qm+ n)
(
f(X(t))− f(x∗)

)
− µq(qm+ n)‖X(t)− x∗‖2

+ 2n(qm+ n)〈∇f(X(t)), V (t)〉, (11)

where last inequality is due to the strong convexity. Plugging the value of c1, c2 and c3, we have

d

dt
E(t) ≤− q(n+ qm)

2

((
f(X(t))− f(x∗)

)
+
µ

2
‖X(t)− x∗‖2 + n‖V (t)‖2

)
. (12)

Besides, the mixing term can be upper-bounded by

E3(t) ≤ 2q2‖X(t)− x∗‖2 + 2n2‖V (t)‖2. (13)
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Therefore we have E(t) satisfying

E(t) ≤ (qm+ n)
(
f(X(t))− f(x∗)

)
+ q2‖X(t)− x∗‖2/2 +

(
n2/2 +

n(n+ qm)

4

)
‖V (t)‖2, (14)

which implies

d

dt
E(t) ≤ −min

{
µ(n+ qm)

2q
,
q

2

}
· E(t). (15)

We then conclude using Gronwall’s lemma (Khalil and Grizzle, 2002).

B Proof for Theorem 3

For convenience of the reader, we repeat here the semi-implicit integrator of GM-ODE we seek to study:

(SIE) :

{
xk+1 − xk = −m

√
s∇f(xk)− n

√
svk

vk+1 − vk =
√
s∇f(xk+1)− q

√
svk.

In compact notation, the second iteration can be written as

r1(vk+1 − vk) =
√
s∇f(xk+1)− q

√
svk+1 (16)

or

r1vk = vk+1 −
√
s∇f(xk+1), (17)

where r1 = 1− q
√
s.

Theorem 3 (Convergence of SIE). Assume f L-smooth and µ-strongly-convex. Let (xk)∞k=1 be the sequence
obtained from semi-implicit discretization of GM-ODE with step

√
s. Let

0 < m
√
s ≤ 1

2L
, 0 < ns ≤ m

√
s, 0 < q

√
s ≤ 1

2
. (3)

There exists a constant C > 0 such that, for any k ∈ N, it holds that

f(xk)− f(x∗) ≤
(
1 + γ2

√
s
)−k

C,

where γ2 := 1
5 min

(
nµ

q
,

q

1 + q2/(nL)

)
.

Proof. We propose the discrete Lyapunov function defined as

E(k) = r1r2(f(xk)− f(x∗)) +
1

4
‖q(xk+1 − x∗)− nr1vk‖2 +

nr21r2
4
‖vk‖2 −

r1r2m
√
s

2
‖∇f(xk)‖2. (18)

We use colors for different parts to keep track of related terms in the derivation. As the first step, thanks to
L-Lipshitz smoothness, we have

f(xk+1)− f(xk) ≤〈∇f(xk+1), xk+1 − xk〉 −
1

2L
‖∇f(xk+1)−∇f(xk)‖2

=−m
√
s〈∇f(xk),∇f(xk+1)〉 − n

√
s〈vk,∇f(xk+1)〉

− 1

2L
‖∇f(xk+1)−∇f(xk)‖2. (19)

We proceed by computing the difference in E in two subsequent iterations. Denote r2 = n+mq, we have

E(k + 1)− E(k)
(A)

≤ − r1r2m
√
s〈∇f(xk),∇f(xk+1)〉 − r1r2n

√
s〈vk,∇f(xk+1)〉
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− r1r2
2L
‖∇f(xk+1)−∇f(xk)‖2 +

1

4
‖q(xk+2 − xk+1)− nr1(vk+1 − vk)‖2

+
1

2
〈q(xk+2 − xk+1)− nr1(vk+1 − vk), q(xk+1 − x∗)− nvk+1 + n

√
s∇f(xk+1)〉

+
nr21r2

4
‖vk+1‖2 −

nr2
4
‖vk+1 −

√
s∇f(xk+1)‖2

− r1r2m
√
s

2

(
‖∇f(xk+1)‖2 − ‖∇f(xk)‖2

)
(B)
= −r1r2m

√
s〈∇f(xk),∇f(xk+1)〉 − r1r2n

√
s〈vk,∇f(xk+1)〉

−r1r2
2L
‖∇f(xk+1)−∇f(xk)‖2 − r2(2n− r2)

4
s‖∇f(xk+1)‖2

− r2
2

√
s〈∇f(xk+1), q(xk+1 − x∗)− nvk+1〉

− nr2(1− r21)

4
‖vk+1‖2 −

nr2
4
s‖∇f(xk+1)‖2 +

nr2
2

√
s〈∇f(xk+1), vk+1〉

− r1r2m
√
s

2

(
‖∇f(xk+1)‖2 − ‖∇f(xk)‖2

)
(C)
= nr2

√
s〈∇f(xk+1), vk+1/2 + vk+1/2− r1vk〉

+
r1r2

2
m
√
s
(
‖∇f(xk+1)‖2 − 2〈∇f(xk+1),∇f(xk)〉+ ‖∇f(xk)‖2

)
−
(r2(2n− r2)

4
s+

nr2
4
s+ r1r2m

√
s
)
‖∇f(xk+1)‖2 − nr2(1− r21)

4
‖vk+1‖2

− r1r2
2L
‖∇f(xk+1)−∇f(xk)‖2 − r2

2
q
√
s〈∇f(xk+1), xk+1 − x∗〉. (20)

In step (A), we use smoothness of f as stated in Eq. 19 for the blue term. Also, we used the inequality
‖a‖2 − ‖b‖2 = ‖a− b‖2 + 2〈a− b, b〉 where a = q(xk+2 − x∗)− nr1vk and b = q(xk+1 − x∗)− nr1vk to obtain the
red term. In particular,

a− b = q(xk+2 − xk+1)− nr1(vk+1 − vk)

= −mq
√
s∇f(xk+1)− nq

√
svk+1 − n

√
s∇f(xk+1) + nq

√
svk+1

= −r2
√
s∇f(xk+1). (21)

In step (B), we incorporate the recurrence of SIE. Step (C) is a simple re-arrangement of terms.

We can easily verify the following identities:
√
s〈∇f(xk+1), vk+1 − r1vk〉 = s‖∇f(xk+1)‖2 (22)

and

‖∇f(xk+1)‖2 − 2〈∇f(xk+1),∇f(xk)〉+ ‖∇f(xk)‖2 = ‖∇f(xk+1)−∇f(xk)‖2. (23)

We have

E(k + 1)− E(k) ≤nr2s‖∇f(xk+1)‖2 +
r1r2

2
m
√
s‖∇f(xk+1)−∇f(xk)‖2

− r2s
(2n− r2

4
+
n

4
+
r1m√
s

)
‖∇f(xk+1)‖2 − nr2(1− r21)

4
‖vk+1‖2

− r1r2
2L
‖∇f(xk+1)−∇f(xk)‖2 − r2

2
q
√
s〈∇f(xk+1), xk+1 − x∗〉. (24)

We leverage µ-strong convexity of f to get

〈∇f(xk+1), xk+1 − x∗〉 ≥ f(xk+1)− f(x∗) +
µ

2
‖xk+1 − x∗‖2. (25)

Applying the above inequality to the last term of Eq. 24, we obtain

E(k + 1)− E(k) ≤ −r2
2
q
√
s(f(xk+1)− f(x∗))− r2µ

4
q
√
s‖xk+1 − x∗‖2
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− r1r2
2

(1/L−m
√
s)‖∇f(xk+1)−∇f(xk)‖2 − nr2(1− r21)

4
‖vk+1‖2

− r2s
(2n− r2

4
+
n

4
+
r1m√
s
− n

)
‖∇f(xk+1)‖2. (26)

Now we plug in the the value of r1, r2 and calculate

1− r21 = 1− (1− q
√
s)2 = q

√
s(2− q

√
s) ≥ q

√
s, (27)

where we used the condition q
√
s ≤ 1/2. Next, since m

√
s ≤ 1/(2L), n ≤ m/

√
s and r1 = 1− q

√
s ≥ 1/2, it holds

that
2n− r2

4
+
r1m√
s
− 3n

4
=
n−mq

4
+
r1m√
s
− 3n

4
=
r1m√
s
− n

2
− mq

4
≥ −mq

4
. (28)

Hence, the difference between two iterations can be upper-bounded as follows:

E(k + 1)− E(k) ≤− r2q
√
s

2

(
f(xk+1)− f(x∗) +

µ

2
‖xk+1 − x∗‖2 + n‖vk+1‖2/2−

m
√
s

2
‖∇f(xk+1)‖2

)
=− r2q

√
s

2

(
(1− r3)[f(xk+1)− f(x∗)] +

µ

2
‖xk+1 − x∗‖2

+ n‖vk+1‖2/2 + r3[f(xk+1)− f(x∗)− 1

2L
‖∇f(xk+1)‖2]

)
, (29)

where r3 = Lm
√
s ≤ 1/2 and the bound remains legal since 1− r3 ≥ 1/2.

On the other hand, our candidate Lyapunov function at iteration k itself can be upper-bounded as

E(k) = r1r2(f(xk)− f(x∗) +
1

4
‖q(xk+1 − x∗)− nr1vk‖2 +

nr21r2
4
‖vk‖2 −

r1r2m
√
s

2
‖∇f(xk)‖2

(A)
= r1r2(f(xk)− f(x∗)) +

1

4
‖q(xk − x∗)− nvk −mq

√
s∇f(xk)‖2 +

nr21r2
4
‖vk‖2

− r1r2m
√
s‖∇f(xk)‖2/2

(B)

≤ r1r2(f(xk)− f(x∗)) + q2‖xk − x∗‖2 + n2‖vk‖2 +
q2m2s

2
‖∇f(xk)‖2 +

nr21r2
4
‖vk‖2

− r1r2m
√
s‖∇f(xk)‖2/2

= r1r2(1− r3 + r4)(f(xk)− f(x∗)) + q2‖xk − x∗‖2 + (n2 + nr21r2/4)‖vk‖2

+ r1r2(r3 − r4)[f(xk)− f(x∗)− 1

2L
‖∇f(xk)‖2], (30)

with r4 = Lq2m2s/(r1r2). Precisely, step (A) is obtained by replacing SIE update for the term xk+1. (B) is obtained
by repeatedly using the inequality ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2. Finally, noting that f(xk)− f(x∗) ≥ 1

2L‖∇f(xk)‖2,
we have

E(k) ≤ r2
(
r1(1− r3 + r4)[f(xk)− f(x∗)] +

q2

n
‖xk − x∗‖2 + 5n‖vk‖2/4

+ r1(r3 − r4)[f(xk)− f(x∗)− 1

2L
‖∇f(xk)‖2]

)
, (31)

since r2 = n+mq ≥ n. It is reckoned that E(k + 1)− E(k) and E(k) share identical parts except for different
coefficients. Now we aim at obtaining following inequality

E(k + 1)− E(k) ≤ −γ2
√
sE(k + 1). (32)

To achieve this, γ2 should be the minimal ratio for coefficients of each parts of E(k + 1)− E(k) to those of E(k).
It is easy then to notice that γ2 should be smaller than q/5 and nµ/(4q). Besides it should also hold that

r2q

2r1r2

r3
r3 − r4

≥ q

2

1− r3
1− (r3 − r4)

=
q

2

1− r3
1− r3(1− r4/r3)

≥ q

2

1− 1/2

1− 1/2(1− q2

nL )
≥ q

2

1

1 + q2

nL

≥ γ2, (33)

due to the fact r4
r3

= q2m
√
s

r1r2
≤ q2

nL and r3 ≤ 1/2. Therefore γ2 = 1
5 min{ q

1+ q2

nL

, nµq } satisfies the above inequality

and completes the proof.
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We now use the above result to prove the convergence of QHM iterations (see Sec. 4).

Corollary 5 (Convergence of QHM). Let f be L-smooth and µ-strongly-convex with L/µ ≥ 9. The iterates of
enjoy a linear convergence rate for s ≤ 1

4L and a ≤ 1/2. In particular, also enjoys convergence rate O((1−
√
µ/L)k)

for b = 1− 2
√
µs. Namely, ∃C > 0 such that

f(xk)− f(x∗) ≤
(

1 + a
√
µs/10

)−k
C.

Proof. First, we show how one can alternatively write QHM as one-line scheme. The original QHM algorithm is
reported here for convenience of the reader{

xk+1 = xk − s((1− a)∇f(xk) + agk+1)

gk+1 = bgk +∇f(xk).
(QHM)

We replace the second line of QHM into the first one :

xk+1 = xk − s(1− a)∇f(xk)− s · b · a · gk − as∇f(xk). (34)

Using the first iterate we get:

−(xk − xk−1)/s− (1− α)∇f(xk−1) = agk. (35)

Replacing this into the result of first equation, we get:

xk+1 = xk − s(1− a)∇f(xk) + b((xk − xk−1) + s(1− a)∇f(xk−1))− as∇f(xk). (36)

By rearrangment, we finally obtain

xk+1 = xk + b(xk − xk−1)− s∇f(xk) + sb(1− a)∇f(xk−1). (37)

The above iterates can be viewed as SIE discretization of GM-ODE with the following specific choice of parameters
(see the single sequence of iterates of SIE in the last section):

m = (1− a)
√
s, n = a, q =

1− b√
s
. (38)

Invoking Thm. 3, we get the convergence rate for QHM. More precisely, choosing b = 1− 2
√
µs we obtain

q = 2
√
µ. (39)

The above choice of parameters obeys the constraints in Thm. 3:

m
√
s = (1− a)s < s ≤ 1

4L
, n = a ≤ (1− a) =

m√
s
, (40)

and

q
√
s = 2

√
µs ≤ 2

√
sL/9 ≤ 1/3, (41)

since we assumed s ≤ 1/(4L), a ≤ 1/2 and L/µ ≥ 9. The rate — thanks to Thm. 3 — is determined by
γ2 = 1

5 min{nµq ,
q

1+q2/(nL) )}. We conclude the proof by showing that γ2 = a
√
µ/8 in the case of QHM. First,

one can readily check that (nµ)/(5q) = aµ/(10
√
µ) holds due to the choice of parameters. Second, with some

patience, one can check that the following chain of inequality holds:

1

5
· q

1 + q2

nL

=
2
√
µ

5 + 20µ
aL

≥
2a
√
µ

5a+ 20/9
≥
a
√
µ

10
.
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C Proofs for Section 5

As stated in the main paper, we consider the following discretization errors:

∆
(EE)
k := ‖X(k

√
s)− xk‖, xk obtained by EE

∆
(SIE)
k := ‖X(k

√
s)− xk+1‖, xk obtained by SIE.

We define wk := xk for EE and wk := xk+1 for SIE. We compare the error ∆k = ‖X(k
√
s)−wk‖ for k = 1 in the

next lemma, assuming ∆0 = 0 and v0 = V (0). This is also called local (or one-step) integration error.

Lemma 7. Let f be L-smooth and of class C2. If m = O(
√
s), then ∆

(SIE)
1 = O(s

3/2) and ∆
(EE)
1 = O(s).

Proof. We introduce the notation Xk := X(k
√
s), Vk := V (k

√
s). Our problem setting requires w0 = X0 and

v0 = V0. For SIE, wk = xk+1 and we begin from Taylor expansion of X as

X1 −X0 =
√
sẊ0 + sẌ0 +O(s

3/2), (42)

and therefore

X1 − w1 =X1 −X0 − (w1 − w0) +X0 − w0

=X1 −X0 − (x2 − x1) +X0 − x1
=
√
sẊ0 + sẌ0 +m

√
s∇f(x1) + n

√
sv1 +O(s

3/2)

=
√
s
(
−m∇f(X0)− nV0

)
+ s

d

dt

(
−m∇f(X0)− nV0

)
+m
√
s∇f(x1) + n

√
s
(√

s∇f(x1) + (1− q
√
s)v0

)
+O(s

3/2). (43)

where in the third equality we used the fact that, by hypothesis, X0 − x1 = 0. And in particular, since
d∇f(X)

dt = ∇2f(X)Ẋ,

s
d

dt

(
−m∇f(X0)− nV0

)
=− sm∇2f(X0)Ẋ0 − snV̇0

=− sn∇f(X0) + snqV0 + sm2∇2f(X0)∇f(X0) + smn∇2f(X0)V0. (44)

Then it holds that

X1 − w1 =− (m
√
s+ ns)

(
∇f(X0)−∇f(x1)

)
− n
√
s(V0 − v0) + snq(V0 − v0) +O(s

3/2) ≤ O(s
3/2) (45)

and ∆
(SIE)
1 ≤ O(s

3/2).

We proceed with the EE iterations (remember: wk = xk). We expand ∆
(EE)
1 as

X1 − w1 =X1 −X0 − (w1 − w0) +X0 − x0 +O(s
3/2)

=X1 −X0 − (x1 − x0) +X0 − x0 +O(s
3/2)

=
√
sẊ0 + sẌ0 +m

√
s∇f(x0) + n

√
sv0 +O(s

3/2)

=
√
s
(
−m∇f(X0)− nVk

)
+m
√
s∇f(x0) + n

√
sv0

+ sm
(
m∇2f(X0)∇f(X0) + n∇2f(Xk)V0

)
− sn

(
∇f(X0)− qV0

)
+O(s

3/2)

=−m
√
s
(
∇f(X0)−∇f(x0)

)
− n
√
s
(
V0 − v0

)
+O(s). (46)

Therefore, we conclude that ∆
(EE)
1 ≤ O(s).
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Lemma 8. Let f be µ-strongly-convex and L-smooth. For EE discretization of GM-ODE obeying Eq. 4, the
discretization error decays as ∆

(EE)
k = O((1 + γ3

√
s)−k) where γ3 is defined in Thm. 6. Furthermore, SIE also

enjoys ∆
(SIE)
k = O((1 + γ2

√
s)−k) where γ2 is defined in Thm. 3 as long as conditions in Eq. 3 are satisfied.

Proof. The proof is based on the following consequence of strong convexity

µ‖x− x∗‖2/2 ≤ f(x)− f(x∗). (47)

Using the above inequality together with a straightforward application of triangular inequality we complete the
proof:

‖X(k
√
s)− xk‖ = ‖X(k

√
s)− x∗ + x∗ − xk‖

≤ ‖X(k
√
s)− x∗‖+ ‖xk − x∗‖

≤
√

2µ−
1/2
((
f(X(k

√
s))− f(x∗)

)1/2
+ (f(xk)− f(x∗))

1/2
)
. (48)

Replacing the convergence results in Thm. 1, 3, and 6 into the the above bound concludes the proof.


