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Abstract

Variational inference (VI) plays an essential
role in approximate Bayesian inference due
to its computational efficiency and broad ap-
plicability. Crucial to the performance of VI
is the selection of the associated divergence
measure, as VI approximates the intractable
distribution by minimizing this divergence. In
this paper we propose a meta-learning algo-
rithm to learn the divergence metric suited
for the task of interest, automating the de-
sign of VI methods. In addition, we learn
the initialization of the variational parame-
ters without additional cost when our method
is deployed in the few-shot learning scenarios.
We demonstrate our approach outperforms
standard VI on Gaussian mixture distribu-
tion approximation, Bayesian neural network
regression, image generation with variational
autoencoders and recommender systems with
a partial variational autoencoder.

1 Introduction

Approximate inference is a powerful tool for probabilis-
tic modelling of complex data. Among these inference
methods, variational inference (VI) (Jordan et al., 1999;
Zhang et al., 2018) approximates the intractable target
distribution through optimizing a tractable distribution.
This optimization-based inference makes VI computa-
tionally efficient, thus suitable to large-scale models in
deep learning, such as Bayesian neural networks (Blun-
dell et al., 2015) and deep generative models (Kingma
and Welling, 2014). The objective function in VI is a
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divergence which measures the discrepancy between the
approximate distribution and the target distribution.
As an objective function, this divergence significantly
affects the inductive bias of the VI algorithm. By se-
lecting a divergence, we encode our preference to the
approximate distribution, such as whether it should be
mass-covering or mode-seeking. The Kullback-Leibler
(KL) divergence is one of the most widely used di-
vergence metrics. However, it has been criticized for
under-estimating uncertainty, leading to poor results
when uncertainty estimation is essential (Bishop, 2006;
Blei et al., 2017; Wang et al., 2018a). Many alternative
divergences have been proposed to alleviate this issue
(Bamler et al., 2017; Csiszár et al., 2004; Hernández-
Lobato et al., 2016; Li and Turner, 2016; Minka et al.,
2005; Wang et al., 2018a).

Although prior work has enriched the divergence fam-
ily, the optimal divergence metric usually depends on
tasks (Minka et al., 2005; Li and Turner, 2016). As
illustrated by Figure 1, different divergence metrics can
lead to very different inference results. Unfortunately,
choosing a divergence for a specific task is challenging
as it requires a thorough understanding of (i) the shape
of the target distribution; (ii) the desirable properties of
the approximate distribution; and (iii) the bias-variance
trade-off of the variational bound. A crucial question
remains to be addressed in order to make VI a success:
how can we automatically choose a suitable divergence
tailored to specific types of task?

To answer this question, we propose meta-learning
divergences of variational inference which utilizes meta-
learning, or learning to learn, to refine VI’s divergence
automatically. In a nutshell, we leverage the fact that
various real-world applications consist of many small
tasks (e.g. personalized recommendations for different
user groups in recommender systems), and it is impor-
tant to design a meta-learning algorithm to learn a
good inference algorithm for new tasks from previous
tasks. We summarize our contributions as follows:
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(a) ↵ = 3.0 (b) ↵ = 1.0 (c) ↵ = 0.1

Figure 1: An illustration of approximate distributions on a Gaussian mixture by different ↵-divergences (defined
in Eq.(3)). “std” is the standard deviation of the Gaussian approximation.

• We develop a general framework for meta-learning
variational inference’s divergence (Section 3.2),
which chooses the desired divergence objective
automatically given a type of tasks. In this way,
we meta-learn the VI algorithm.

• Besides meta-learning the divergence objective, we
further meta-learn the parameters for the varia-
tional distribution without additional cost (Section
3.3), enabling meta-learning VI in few-shot setting.

• We demonstrate VI with meta-learned divergences
outperforms standard VI on Gaussian mixture
distribution approximation, Bayesian neural net-
work regression, image generation with variational
autoencoders, and recommender systems with a
partial variational autoencoder (Section 4).

2 Preliminaries

Consider a dataset D = {xn}Nn=1 and a probabilistic
model with parameters ✓. Bayesian inference requires
computing the posterior over ✓ given the dataset D:
p(✓|D) = p(D|✓)p(✓)/p(D). The exact posterior is gen-
erally intractable, so it needs to be approximated with
a tractable posterior q�(✓) ⇡ p(✓|D). Typically the
approximate posterior q�(✓) is obtained by minimizing
a divergence, e.g. variational inference (VI) often mini-
mizes KL(q�(✓)kp(✓|D)). This turns Bayesian inference
into an optimization task (divergence minimization).
In practice, due to the intractability of p(D), VI alter-
natively maximizes an equivalent objective called the
variational lower bound :

LVI = E✓⇠q�


log

p(D, ✓)

q�(✓)

�
= log p(D)�KL(q�kp). (1)

Renyi’s ↵-divergence ↵-divergence is a generaliza-
tion of KL divergence (Hernández-Lobato et al., 2016;
Li and Turner, 2016; Minka, 2001). There are different
definitions of ↵-divergence and their equivalences are
shown in Cichocki and Amari (2010). Here we focus on
Renyi’s definition (Li and Turner, 2016; Rényi et al.,
1961) instead of others (Amari, 2012; Tsallis, 1988) as it

allows our meta-learning framework to be differentiable
in ↵ (Section 3.2). Renyi’s ↵-divergence is defined on
↵ > 0,↵ 6= 1

D↵(pkq) =
1

↵� 1
log

Z
p(✓)↵q(✓)1�↵d✓, (2)

and for ↵ = 1 it is defined by continuity: D1(pkq) =
lim↵!1 D↵(pkq) = KL(pkq). Similar to the variational
lower bound, one can maximize the variational Renyi
bound (VR bound) (Li and Turner, 2016):

L↵(q�;D) =
1

1� ↵
logE✓⇠q�

"✓
p(✓,D)

q�(✓)

◆1�↵
#

(3)

= log p(D)�D↵(q�kp).

The expectation is usually computed by Monte Carlo
(MC) approximation. To allow gradient backpropaga-
tion, the VR bound uses the reparameterization trick
(Kingma and Welling, 2014; Salimans et al., 2013),
where sampling ✓ ⇠ q�(✓) is conducted by first sam-
pling ✏ ⇠ p(✏) from a simple distribution independent
with the variational distribution (e.g. Gaussian) then
parameterizing ✓ = r�(✏). It follows that the gradient
of the VR bound w.r.t. the variational parameter �
after MC approximation with K particles is

r�L↵(q�;x) =
KX

k=1


w↵,kr� log

p(r�(✏k), x)

q(r�(✏k))

�
, (4)

where w↵,k =
⇣

p(r�(✏k),x)

q(r�(✏k))

⌘1�↵
�PK

k=1

⇣
p(r�(✏k),x)

q(r�(✏k))

⌘1�↵
�
.

When ↵ = 1 the weights w↵,k = 1/K and the gradient
Eq.(4) becomes an unbiased estimate of the gradient
of the variational lower bound Eq.(1).

As shown in Figure 1, approximate inference with dif-
ferent ↵-divergences results in distinct variational dis-
tributions. Prior work (Li and Turner, 2016; Minka
et al., 2005) also showed the optimal ↵-divergence varies
for different tasks and datasets, and in practice it is
difficult to choose an optimal ↵-divergence a priori.
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f-divergence f -divergence defines a more general
family of divergences (Csiszár et al., 2004; Minka et al.,
2005). Given a twice differentiable convex function
f : R+ ! R, the f -divergence is defined as (Csiszár
et al., 2004):

Df (pkq�) = E✓⇠q� [f (p(✓)/q�(✓))� f(1)] . (5)

This family includes KL-divergences in both directions,
by taking f(t) = � log t for KL(qkp) and f(t) = t log t
for KL(pkq). It also includes ↵-divergences by setting
f(t) = t↵/(↵(↵ � 1)) for ↵ 2 R\{0, 1}. Although the
f -divergence family is very rich due to its parame-
terization by an arbitrary twice-differentiable convex
function, it requires significant expertise to design a
suitable f function for a specific task. Thus the poten-
tial of f -divergence has not been fully leveraged.

3 Meta-Learning Divergences of

Variational Inference

3.1 Problem Set-Up

The goal of meta-learning VI algorithm is to learn,
from a set of tasks, a VI algorithm that produces an
approximate distribution with desired properties on
new similar tasks. We approach this goal by learning
the divergence in use for VI. We formalize the problem
setups as follows.

Assume we have a task distribution p(T ). Each task
Ti ⇠ p(T ) has its own dataset DTi and its own proba-
bilistic model pTi(✓i,DTi). Let D⌘(·k·) denote a learn-
able divergence parameterized by ⌘; then for each task
Ti the approximate posterior q�i(✓i) is computed by
minimizing D⌘(pTi(✓i|DTi)kq�i(✓i)). In the rest of the
paper we write D⌘(q�i , Ti) = D⌘(pTi(✓i|DTi)kq�i(✓i))
for brevity. To do meta-training, in each step we first
sample a minibatch of tasks Ti, i = 1, . . . ,M from p(T ).
Then we define a meta-loss function J (q�i , Ti), and
optimize the total meta-loss across all training tasks
in the minibatch

PM
i=1 J (q�i , Ti) over the divergence

parameter ⌘. This meta-loss function is designed to
evaluate the desired properties of the approximate dis-
tribution for these tasks, e.g. negative log-likelihood.
During meta-testing, a new task is sampled from p(T ),
and the learned divergence D⌘ is used to optimize the
variational distribution q�.

We also consider (in Section 3.3) a few-shot learn-
ing setup similar to the model-agnostic meta-learning
(MAML) framework (Finn et al., 2017). In this case,
each task only has a few training data, therefore it is
crucial to learn a good model initialization to avoid
overfitting and adapt fast on unseen tasks. The goal of
meta-learning VI algorithm in this setting is to obtain a
divergence as well as an initialization of the variational

parameters � for unseen tasks. During meta-testing,
we will train the model with the learned divergence
and the learned initialization of variational parameters
on new tasks.

The above two meta-learning settings are practical as
demonstrated in many previous works (Finn et al., 2017,
2018; Gong et al., 2019; Kim et al., 2018), showing that
attaining common knowledge from previous tasks is
valuable for future tasks.

3.2 Meta-Learning Divergences (meta-D)

We consider the first setting of learning a divergence.
We assume for now D⌘ is given in some parametric
form; later on we will provide the details of parameteri-
zation of two divergence families (↵- and f -divergence)
and show how they fit in this framework. The general
idea is to first optimize the approximate posterior by
minimizing the current divergence, then update the
divergence using the feedback from the meta-loss. Con-
cretely, for each task Ti we perform B gradient descent
steps on the variational parameters �i using VI with
the current divergence D⌘:

�i  �i � �r�iD⌘(q�i , Ti). (6)

By doing so the updated variational parameters �i are
a function of the divergence parameter ⌘, which we
then update by one-step gradient descent using the
meta-loss J :

⌘  ⌘ � �r⌘
1

M

X

i

J (q�i , Ti). (7)

We call this algorithm meta-D for meta-learning diver-
gences, which is outlined in Algorithm 1. Our algorithm
is different from MAML in that MAML’s inner and
outer loop losses are designed to be the same, prohibit-
ing it to meta-learn the inner loop loss function which
is the divergence in VI. The key insight of our approach
is that the updated variational parameters are depen-
dant on the inner loop divergence. This dependency
enables meta-D to update the divergence by descend-
ing the meta-loss with back-propagation through the
variational parameters.

Meta-learning within ↵-divergence family To
make ↵-divergence learnable by the meta-D framework
(in this case ⌘ = ↵), it requires the inner-loop updates
(Eq.(6)) to be continuous in ↵. This means a naive
solution which relies on automatic differentiation of ex-
isting ↵-divergences will fail, due to the fact that these
↵-divergences are not twice differentiable everywhere
(Li and Turner, 2016; Minka et al., 2005). Instead, we
propose to manually compute the gradient of Renyi’s ↵-
divergence (Eq.(4)) which is continuous in ↵ 2 (0,+1).
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Algorithm 1 Meta-D
Input: p(T ): distribution over tasks; �, �: learning
rate hyperparameters; initialize ⌘
loop

Sample M tasks Ti ⇠ p(T )
for all Ti do

if �i does not exist then

initialize �i (can have different architectures)
end if

Update �i with the current divergence:
for b = 1 : B do

�i  �i � �r�iD⌘(q�i , Ti)
end for

end for

Update ⌘  ⌘ � �r⌘
1
M

P
i J (q�i , Ti)

end loop

Output: ⌘

Algorithm 2 Meta-D&�

Input: p(T ): distribution over tasks; �, �, ⌧ : learn-
ing rate hyperparameters
Initialize �, ⌘
loop

Sample M tasks Ti ⇠ p(T )
for all Ti do

Update �i with the current divergence:
for b = 1 : B do

�i  �� �r�D⌘(q�, Ti)
end for

end for

Update � �� ⌧r�
1
M

P
i J (q�i , Ti);

⌘  ⌘ � �r⌘
1
M

P
i J (q�i , Ti)

end loop

Output: ⌘, �

Specifically we parameterize ↵-divergence by parame-
terizing its gradient (Eq.(4)) and setr�iD⌘ = �r�iL↵

in Algorithm 1. We denote meta-learning a divergence
within ↵-divergences family as meta-↵.

Meta-learning within f-divergence family We
wish to parameterize the f -divergence Eq.(5) by param-
eterizing the convex function f using a neural network,
since neural networks are known to be universal ap-
proximators and thus can cover diverse f -divergences.
However, it is less straightforward to specify the con-
vexity constraint for neural networks. Fortunately,
Proposition 1 below indicates that the f -divergence
and its gradient can be specified through its second
derivative f 00 (Wang et al., 2018a).

Proposition 1 If r✓ log
⇣

p(✓)
q�(✓)

⌘
exists, then by set-

ting gf (t) = t2 · f 00(t), we have (with ✓ = r�(✏))

r�Df (pkq�)

= �E✏⇠p(✏)


gf

✓
p(✓)

q�(✓)

◆
r�r�(✏)r✓ log

✓
p(✓)

q�(✓)

◆�
.

(8)

Therefore it remains to specify g (or f 00), and the follow-
ing Proposition 2 guarantees that using non-negative
functions as g is sufficient for parameterizing the f -
divergence family.

Proposition 2 For any non-negative function g on
R+, there exists a function f such that g(t) = gf (t) =
t2 · f 00(t). If gf (1) > 0, then Df (pkq�) = 0 implies
p = q�.

See Wang et al. (2018a) for the proofs. Given these
guarantees, we propose to parameterize f implicitly
by parameterizing g(t) = gf (t) which can be any non-
negative function. We turn the problem into using a
neural network to express a non-negative function that
is strictly positive at t = 1. For convenience, we further
restrict the form of the function to be

g(t) = exp(h⌘(t)) (9)

where h⌘(t) is a neural network with parameter ⌘. This
definition of g is strictly positive for all t, satisfying
the assumption of Proposition 2. By doing so, the
f -divergence is now learnable through Algorithm 1, by
computing the gradient r�iD⌘ = r�iDf⌘ with Eq. (8).

With dataset D, the density ratio in Eq. (8) becomes
p(✓|D)
q�(✓)

= p(D|✓)p(✓)
q�(✓)p(D) . We estimate p(D) through im-

portance sampling and MC approximation. After do-

ing this, p(✓k|D)
q�(✓k)

= p(D|✓k)p(✓k)
q�(✓k)

�
1
K

PK
k=1

p(D|✓k)p(✓k)
q�(✓k)

which can be regarded as a self-normalized estimator
(see Appendix A for details).

Our method is different from Wang et al. (2018a) in the
way that we use deep neural networks parameterization
and enable learning the f -divergence through standard
optimization. We denote meta-learning a divergence
within f -divergences family as meta-f .

3.3 Meta-Learning Divergences and

Variational Parameters (meta-D&�)

In addition to learning the divergence objective, we
also consider the few-shot setting where fast adap-
tation of the variational parameters to new tasks is
desirable. Similar to MAML, the probabilistic models
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{pTi(✓i,DTi)} share the same architecture, and the goal
is to learn an initialization of variational parameters
�i  �. On a specific task, � is adapted to be �i

according to the learnable divergence D⌘ (which can
be �L↵ or Df⌘ ):

�i  �� �r�D⌘(q�, Ti). (10)

The updated �i is a function of both ⌘ and �. For
meta-update, besides updating divergence parameter ⌘
with Eq.(7), we also use the same meta-loss to update

� �� ⌧r�
1

M

X

i

J (q�i , Ti). (11)

We call this algorithm meta-D&� which meta-learns
both the divergence objective and variational param-
eters’ initialization. It is summarized in Algorithm 2.
Similar to the previous section, the divergence families
in consideration are ↵- and f -divergence (denoted as
meta-↵&� and meta-f&� respectively).

4 Experiments

We evaluate the proposed approaches on a variety of
tasks. For the mixture of Gaussians task, we perform
distribution approximation (no data) and use differ-
ent meta-losses to directly demonstrate the ability of
meta-D (meta-learning divergences) and meta-D&�
(meta-learning divergences and variational parameters)
to learn the optimal divergence. For all other experi-
ments, we use negative log-likelihood as the meta-loss.
For meta-D, we use standard VI (KL divergence) and
VI with ↵ = 0.5 divergence which is a comonly used
↵-divergence (Li et al., 2015; Wang et al., 2018a) as
baselines. For meta-D&�, we test it in few-shot setup
(i.e. few training data), and compare it to learning
� only which is obtained by Algorithm 2 without up-
dating ⌘. During meta-testing, we test this learned
� with KL divergence (denoted by VI&�). We also
include results of VI without learning initialization in
the few-shot setup as a reference to show the gain of
meta-learning initialization. Unless otherwise specified,
we set B = 1. We discussed the effect of this hyperpa-
rameter in Appendix B and put details of experimental
setting in Appendix C.

4.1 Approximate Mixture of Gaussians

(MoG)

We first verify the ability of our methods on learning
good divergences using a 1-d distribution approxima-
tion problem. Each task includes approximating a mix-
ture of two Gaussians p by a Gaussian distribution q�⇤

attained from min� D⌘(pkq�). The mixture of Gaussian
distribution p(✓) = 0.5N (✓;µ1,�2

1) + 0.5N (✓;µ2,�2
2) is

Table 1: Meta-D on MoG: learned value of ↵. BO (8
iters) has similar runtime as meta-↵.

Methods ↵ = 0.5 TV

meta-↵ 0.52±0.01 0.31±0.01

BO (8 iters) 0.81±0.03 0.69±0.08

BO (16 iters) 0.54±0.07 0.32±0.03

Table 2: Meta-D on MoG: rank of meta-loss over 10
test tasks.

Methods ↵ = 0.5 TV

meta-↵ 2.10±0.70 2.10±0.30

meta-f 2.10±1.37 1.00±0.00

BO (8 iters) 3.50±0.67 4.00±0.00

BO (16 iters) 2.30±0.90 2.90±0.30

generated by

µ1 ⇠ Unif[0, 3], �1 ⇠ Unif[0.5, 1.0];
µ2 = µ1 + 3, �2 = �1 ⇤ 2.

Therefore each task has a different target distribution
but with similar properties (the same µ2 � µ1 and
�2/�1). As shown in Figure 1, the divergence choice
has significant impact on the approximation.

We test our methods with two types of meta-loss J :
D0.5(qkp) and total variation (TV). If D0.5(qkp) is
the metric we care about when evaluating the quality
of approximation q, then a good divergence will be
D0.5(qkp) itself. This case is to verify our method
is able to learn the preferred divergence given a rich
enough family {D⌘}. In practice, the desired evaluation
metric for approximation quality (e.g. log-likelihood)
typically does not belong to ↵- or f -divergence family;
to test this scenario we use the total variation distance
(TV) to evaluate the performance of our method when
meta-loss is beyond the divergence family.

We first test meta-D (meta-learning the divergences,
Algorithm 1). As a baseline, we treat ↵ as a hyper-
prameter and use Bayesian optimization (BO) (Snoek
et al., 2012) to optimize it. Note that BO is not ap-
plicable when the divergence set is f -divergence which
is parameterized by a neural network, therefore BO is
only used as a baseline for meta-↵.

We report the learned values of ↵ from meta-↵ and BO
in Table 1. When the meta-loss is D0.5, the learned ↵
from meta-↵ is very close to 0.5, confirming that our
method can pick up a desired divergence. Note that BO
is less computationally efficient, as it needs to train a
model from scratch every single time when evaluating a
new value of ↵, while our method can update ↵ based on
the current model.1 We test learning f -divergence and
visualize the learned h⌘(t) (Eq.(9)) in Figure 2(a)&(b).

1
We also considered BO in later sections but found it
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Table 3: Meta-D&� on MoG: rank of meta-loss over
10 test tasks.

Method ↵ = 0.5 TV ↵ = 0.5 TV
(20 iters) (20 iters) (100 iters) (100 iters)

VI&� 2.70±0.46 2.70±0.46 2.40±0.49 2.50±0.50
meta-↵&� 2.10±0.54 1.80±0.60 2.20±0.75 1.40±0.66
meta-f&� 1.20±0.60 1.50±0.81 1.40±0.80 2.10±0.83

When the meta-loss is D0.5(qkp), the corresponding
h0.5(t) for D0.5 is analytical (Appendix C.5), and we see
from Figure 2(a) that the learned h⌘(t) ⇡ h0.5(t)+1.25.
This means meta-D has learned the optimal divergence
D0.5, since f(t) and af(t) define the same divergence
for 8a > 0.

When the meta-loss is TV, the optimal divergence is
not analytic. Therefore, we instead report the averaged
rank of meta-losses on 10 test tasks in Table 2 (see
Table 8 in Appendix for averaged value of meta-losses).
It clearly shows that meta-↵ and meta-f are superior
over BO. Moreover, meta-f outperforms meta-↵ when
the meta-loss is TV. From Figure 2(b), we can see that
the learned f -divergence is not inside ↵-divergence,
showing the benefit of using a larger divergence family.
It also indicates that our f -divergence parameterization
using a neural network is flexible and can lead to new
f -divergences that are not used before.

Next we test meta-D&� (meta-learning divergences and
variational parameters, Algorithm 2). During train-
ing, we perform B = 20 inner loop gradient updates.
The learned ↵ is 0.88 and 0.77 for meta-loss D0.5 and
TV respectively, which is different from those reported
in Table 1. We conjecture that this is related to the
learned � and B (the horizon length). During meta-
testing, we start from the learned � and train the
variational parameters with the learned divergence for
20 and 100 iterations, corresponding to short and long
horizons respectively. Table 3 summarizes the rankings.
Our methods are better than VI&� (which uses KL
and only meta-learns �) in all cases, demonstrating
the benefit of learning a task-specific divergence in-
stead of using the conventional VI for all. To further
elaborate, we visualize in Figure 2(c)&(d) the approxi-
mate distributions after 20 steps. The q distributions
obtained by meta-D&� tend to fit the MoG more glob-
ally (mass-covering), resulting in better meta-losses
when compared with VI&�. Compared to Algorithm
1, Algorithm 2 helps shorten the training time on new
tasks (100 v.s. 2000 iterations). Notably, meta-D&� is
able to provide this initialization along with divergence
learning without extra cost.

very inefficient (e.g. on the experiment in Section 4.2, BO

can only conduct two searches given similar runtime as our

methods) thus omitted the results.

4.2 Regression Tasks with Bayesian Neural

Networks

The second test considers Bayesian neural network re-
gression. The distribution of ground truth regression
function is defined by a sinusoid function with het-
eroskedastic noise (which is a function of x, see Figure
3(a)): y = A sin(x+ b) +A/2 |cos((x+ b)/2)| ✏, where
the amplitude A 2 [5, 10], the phase b 2 [0, 1] and
✏ ⇠ N (0, 1). The heteroskedastic noise makes the un-
certainty estimate more crucial comparing with the
sinusoid function fitting task in prior work (Finn et al.,
2017; Kim et al., 2018).

For Meta-D (meta-learning divergences, Algorithm 1),
the quantitative results are summarized in Table 4.
We can see that the test log-likelihood (LL) of both
meta-↵ and meta-f are significantly better than VI
and VI (↵ = 0.5), while the root mean square error
(RMSE) are similar for all methods. We visualize the
predictive distribution on an example sinusoid function
in Figure 3. All methods fit the mean well which is
consistent with the RMSE results. Meta-↵ and meta-f
can reason about the heteroskedastic noise whereas VI
and VI (↵ = 0.5) used homoskedastic noise to fit the
data resulting in bad test LL.

For Meta-D&� (meta-learning divergences and varia-
tional parameters, Algorithm 2), during meta-testing,
we fine-tune the learned � with learned divergence on
40 datapoints for 300 epochs. Again meta-↵&� and
meta-f&� are able to model heteroskedastic predic-
tive distribution while VI&� cannot. The quantitative
results are reported in Table 5, and an example of
predictive distribution is visualised in Figure 7 (see Ap-
pendix). Meta-D&� achieves similar results as meta-D
with only 40 training data and 300 epochs. Methods
without learning initialization for this setup signifi-
cantly under-perform, indicating that learning model
initialization is essential when data is scarce.

4.3 Image Generation with Variational

Auto-encoders

We also evaluate the image generation task with vari-
ational auto-encoders (VAEs). Specifically, we train
VAEs to generate MNIST digits with different diver-
gences. Generating each digit is regarded as a task and
we use the first 5 digits (0-4) as the training tasks and
the last 5 digits (5-9) as the test tasks.

We report the test marginal log-likelihood for each test
digit in Table 6 and 7. Overall, these results align with
other experiments that the meta-D and meta-D&� are
both better than their counterparts. Meta-D and meta-
D&� are better than VAE with common divergences
on all 5 test tasks, indicating our methods have learned
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(a) Meta-loss: ↵ = 0.5 (b) Meta-loss: TV (c) Meta-loss: ↵ = 0.5 (d) Meta-loss: TV

Figure 2: Visualization of (a)-(b) learned h⌘ and (c)-(d) approximate distribution after 20 updates. Meta-f refers
to meta-learning divergences (Algorithm 1) within f -divergences. Meta-↵&� and Meta-f&� refer to meta-learning
divergences and variational parameters (Algorithm 2) within ↵- and f -divergences respectively. VI&� refers to
meta-learning varitional parameters only.

(a) Ground Truth (b) VI (c) VI (↵ = 0.5) (d) meta-↵ (e) meta-f

Figure 3: Meta-D for BNN regression: visualizing the predictive distributions on sinusoid data. With our proposed
method to meta-learn the divergence (panels (d) and (e)), the learned distribution can accurately capture the
uncertainty in different regions while with vanilla VI (panel (b)) or VI with typical ↵ = 0.5 fails to capture the
varying uncertainty in different regions.

Table 4: Meta-D on sin: 10 test tasks and each task
has 1000 training data (1000 epochs).

Test LL RMSE

VI -0.59±0.01 0.44±0.01

VI (↵ = 0.5) -0.57±0.02 0.43±0.01

meta-↵ -0.39±0.04 0.43±0.00

meta-f -0.40±0.04 0.42±0.02

Table 5: Meta-D&� on sin: 10 test tasks and each task
has 40 training data (300 epochs).

Test LL RMSE

VI -3.94±0.18 0.51±0.02

VI&� -0.69±0.04 0.44±0.02

meta-↵&� -0.43±0.05 0.42±0.03

meta-f&� -0.46±0.04 0.43±0.02

a suitable divergence.

4.4 Recommender System with a Partial

Variational Autoencoder

We test our method on recommender systems with a
Partial Variational Auto-encoder (p-VAE) (Ma et al.,
2019). P-VAE is proposed to deal with partially ob-
served data and has been shown to achieve state-of-

(a) Meta-D (b) Meta-D&�

Figure 4: Test log-likelihood on MovieLens. Panel (a)
shows the results of meta-learning divergences only
(Meta-D), and panel (b) shows the results of meta-
learning both divergences and variational parameters
(Meta-D&�).

the-art level performance on user rating prediction in
recommender system (Ma et al., 2018). We consider
MovieLens 1M dataset (Harper and Konstan, 2016)
which contains 1,000,206 ratings of 3,952 movies from
6,040 users. We select four age groups as training
tasks, and use the remaining three groups as test tasks.
During meta-testing, we use 90%/10% and 60%/40%
training-test split for Meta-D and Meta-D&�, respec-
tively. From Figure 4(a), we see that when applied
to learning p-VAEs, meta-D outperforms standard VI
(KL divergence) and VI with ↵ = 0.5 divergence in
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Table 6: Meta-D (meta-learning divergences) on MNIST: marginal log-likelihood on 5 test tasks. Each task has
6000 training data. We train the model for 1000 epochs during meta-testing.

Digit 5 6 7 8 9

VI -133.69± 0.23 -121.80±0.15 -92.25±0.40 -145.14±0.19 -119.64±0.23
VI (↵ = 0.5) -133.24±0.16 -121.90±0.71 -91.52±0.72 -144.90±0.31 -119.59±0.90

meta-↵ -132.74±0.33 -120.67±0.36 -90.62 ±0.45 -145.13±0.96 -119.42±0.36
meta-f -133.21±0.44 -121.10± 0.20 -91.80±0.28 -144.85±0.31 -119.42±0.15

Table 7: Meta-D&� (meta-learning divergences and variational parameters) on MNIST: marginal log-likelihood
on 5 test tasks. Each task has 100 training data. We train the model for 200 epochs during meta-testing.

Digit 5 6 7 8 9

VI -177.92±0.46 -182.93±0.06 -125.57±0.41 -182.63±0.55 -161.68±0.27
VI&� -174.32±0.18 -176.17±0.26 -123.20±0.12 -177.96±0.23 -147.25±0.32

meta-↵&� -163.31±0.61 -163.19±0.36 -115.52±0.16 -173.35±0.38 -142.76±0.33
meta-f&� -160.16±0.16 -154.16±0.67 -122.61±0.43 -165.83±0.48 -138.90±0.10

terms of test LL, showing that meta-D has learned
a suitable divergence that leads to better test perfor-
mance. Figure 4(b) implies that all methods with
learned � can converge quickly on the new task with
only 100 iterations. Both meta-↵&� and meta-f&�
learn faster than VI&� in meta-test time, indicating
that the learned divergence can help fast adaptation.

5 Related Work

Variational Inference Variational inference (VI)
has advanced rapidly in recent years (Zhang et al.,
2018). These advances can be grouped into three cat-
egories: (1) introduction of new divergences for VI
(Bamler et al., 2017; Hernández-Lobato et al., 2016;
Li and Turner, 2016); (2) introduction of more expres-
sive approximate families (e.g. Rezende and Mohamed,
2015; Ranganath et al., 2016); (3) improvement of
sampling estimates for model evidence (Burda et al.,
2015) and gradient (Rainforth et al., 2018); (4) stochas-
tic optimization to scale VI (Dehaene and Barthelmé,
2018; Hoffman et al., 2013; Li et al., 2015). Our work
is related to the work that improves the variational
objective with alternative divergence measures; the dif-
ference is that our divergence measure is learnable and
can be selected in an automatic fashion for a certain
type of tasks.

Meta-Learning/few-shot learning Recent work
has applied Bayesian modelling techniques to enhance
uncertainty estimate for meta-learning/few-shot learn-
ing (Finn et al., 2018; Grant et al., 2018; Kim et al.,
2018; Ravi and Beatson, 2019). They view the frame-
work of MAML (Finn et al., 2017) as hierarchical Bayes
and conduct Bayesian inference on meta-parameters
and/or task-specific parameters. Grant et al. (2018)
and Kim et al. (2018) applied approximate Bayesian

inference to task-specific parameters, while Finn et al.
(2018) kept point estimate for task-specific parameters
and conducted variational inference over the meta-
parameters instead. Ravi and Beatson (2019) obtained
posteriors over both meta and task-specific parameters
with variational inference. Our focus is distinct from
this line of work in that our research is in the opposite
direction: leveraging the idea of meta-learning to ad-
vance Bayesian inference. Additionally, our meta-D&�
without learning divergence (VI&�) can be viewed as
a different Bayesian MAML method other than hier-
archical Bayes, which directly trains the variational
parameters so that it can quickly adapt to new tasks.

Meta-Learning for loss functions Our meta-
learning method is also related to meta-learning a loss
function. In reinforcement learning, Houthooft et al.
(2018) meta-learned the loss function for policy gra-
dients where the parameters of the loss function is
updated using evolutionary strategies. Xu et al. (2018)
meta-learned the hyperparameters of the loss functions
in TD(�) and IMPALA. Our work extends the idea of
a learnable loss function to Bayesian inference.

Meta-Learning for Bayesian inference algo-

rithms A recent attempt to meta-learning stochastic
gradient MCMC (SG-MCMC) is presented by Gong
et al. (2019), which proposed to meta-learn the dif-
fusion and curl matrices of the SG-MCMC’s underly-
ing stochastic differential equation. Also Wang et al.
(2018b) applied meta-learning to build efficient and
generalizable block-Gibbs sampling proposals. Our
work is distinct from previous work in that we apply
meta-learning to improve VI, which is a more scal-
able inference method than MCMC. To the best of
our knowledge, we are the first to study the automatic
choice and design of VI algorithms.
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6 Conclusion

We propose meta-learning divergences of VI which au-
tomates the selection of divergence objective in VI
via meta-learning. It further allows meta-learning of
variational parameter initialization for fast adaptation
on new tasks. Within our meta-learning divergences
framework, we consider two divergence families, ↵- and
f -divergence, and design parameterizations of diver-
gences to enable learning via gradient descent. Exper-
imental results on Gaussian mixture approximation,
regression with Bayesian neural networks, generative
modeling and recommender systems demonstrate the
superior performance of meta-learned divergences over
standard divergences.
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