A Mechanism Design Alternative to Individual Calibration

A Additional Results

A.1 Multiclass Prediction

For multiclass prediction, we suppose that Y can take K distinct values. We denote AKX as the K-
dimensional probability simplex. For notational convenience we represent Y as a one-hot vector in R¥, so

Y= {(170’...),(0,17...),...}'
Protocol 3: Decision Making with Bets, Multiclass At timet=1,---,T

. Nature reveals 7, € X and chooses u; € AX without revealing it

. Forecaster reveals p; € AE and ¢ € Rf

1
2
3. Agent t has loss [; : J x A — R and chooses action a; and g, € R¥
4. Sample y; ~ Categorical(u;) and reveal y;

)

. Agent total loss is I;(ys, at) — (9¢, v+ — i) + {|gt|, ct), forecaster loss is (g, yr — pe) — (| g¢e], ct)

As before we require the regularity condition that u. + ¢, € [0,1]% and pu; — ¢; € [0,1]% (even though these are
no longer on AX | hence not probabilities.

Similar to Section 3 we can denote the agent’s maximum / minimum expected loss under the forecasted proba-
bility as

L = max Ey~alli(ar, Y
! REAR peuite, alle(a, V)]

i — min Evzlle(ar, Y
t GEAK fimter Y H[t( ty )]

and true expected loss as L} = Ey,:[l:(as,Y)]. As before denote
LP™ = L + Ep[(ge, e = V) + (e, )]
Proposition 3. If g; = I(-,a;) — infyer(cy, |l — 71|) then LY™ = Lirax

Proof of Proposition[3 As anotation shorthand we denote l¢(at,Y) with the vector [, such that I; = l;(a;, Y = 1).
We first show a closed form solution for L}"** which can be written as

Linax — sup ]EYN[L [lt(a’t7 Y)]
peEAK ficpitcet

= sup (i, 1) Notation Change
REAK ficpuiEey

= (u, 1) + sup (Op, 1) Algebric Manipulation
SpE[—ce,ce],{6p,1)=0

=(u, )+ sup  inf (dp,l) — v{dp, 1) Lagrangian
SpE[—ct,ci] vER

= (g, 1) + inf  sup  (Ou,l) —y(0u,1) Sion Minimax Theorem
VER Sp€l—ce,ct]

= l) + inf l—~1
(he, 1) 716R<Cta| 1))
Similarly we have

L™ = (g, ) — inf (cr, |1 = ~1])

inf
vER
Denote the « that achieves the infimum as v*. Comparing with LP* we have
LYY = Li + Ep[(ge, e = Y) + (9e], c0)]
= (u", 1) = (U= "L e — pg) + e, |1 = 71))
= (L pue) + (eas [l =771 (ut,1) = 0, (pz, 1) = 0

— [max
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A.2 Offline Calibration

For this section we restrict to the i.i.d. setup, where we assume there are random variables X,Y with some
distribution p%y- such that at each time step,

We also assume that the forecaster ’s choice py,c; and the agent’s choice by in Protocol 2 are computed by
functions of x;

Wixyr>py cixprep bixg by
In other words, given the input x; all the players choose their actions based on fixed functions of x;.

The following definition is the equivalent of asymptotic soundness in the i.i.d. setup

Definition 1. We say that the functions p,c : X — [0,1] are sound with respect to some set of functions
BC{X = [-M,M]} if

iggE[b(X)(u(X) —E[Y [ X]) = [b(X)[e(X)] <0

If ¢(x) = 0 we say p is B-calibrated.

Intuitively if u,c are sound with respect to B then if the decision making agents chooses a strategy in b € B
we can guarantee that the forecaster will not lose (on average). In other words, if p,c¢ are sound according to
Deﬁnition and if by = b(z;) for some b € B, then the forecaster is almost surely asymptotically sound as defined

in Eq..

A.2.1 Examples and Special Cases

Standard Calibration Standard calibration is defined as: for any u € [0, 1], among the X where u(X) = u
it is indeed true that Y is 1 with u probability. Formally this can be written as

EY | p(X) =u] =u,Vu € [0,1]
Deviation from this ideal situation is measured by the maximum calibration error (MCE).

MCE(p) = max [E[Y | u(X) = u] — ul
u€l0,1]

Note that the MCE may be ill-defined if there is an interval (ug,u;) C [0,1] such that p(X) € (ug,u;) with
zero probability. We are going to avoid the technical subtlety by assuming that this does not happen, i.e. the
distribution of (X)) is supported on the entire set [0, 1].

When B is the set of all possible functions p(z) — R (i.e. it only depends on the probability forecast p(x) but
not x itself), we obtain the standard definition of calibration (Dawid [1985; |Guo et all [2017), as shown by the
following proposition

Proposition 4. The forecaster function p: X — [0,1],¢: & — cq is sound with respect to B = {x + b(u(x)),b :
R — R} if and only if the MCE error of u is less than cy.

Proof. See Appendix O

We remark that this proposition (intentionally) does not involve the upper bound M on b; it holds even when
M — oo.

Multi-Calibration Multi-calibration (Hébert-Johnson et al., [2017)) achieves standard calibration for all sub-
sets S in some collection of sets S. The following proposition shows that a forecaster that’s sound with respect
to any function that only depends on u(x) and takes zero value whenever x ¢ S is also multicalibrated.

Proposition 5. Let S C 2%, If a forecaster function p : X — [0,1],¢c : x = co is sound with respect to
B={xw— b(p(x)I(zeS),S eS,b:R— R}, then it is (S, co)-multicalibrated.
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Figure 4: This plot extends Figure|ll We compare with additional Alternatives to Algorithm

B Experiment Details and Additional Results

B.1 Airline Delay

Negative ¢; In Protocol 2 ¢; must be non-negative for its interpretation as a probability interval [p; —ct, i +c].

However if we only consider the flight delay insurance interpretation: airline pay passenger b} if flight delays and

. 1. bi
passenger pays airline b) := %

and negative c;; the passenger utility (with insurance) can be computed as r#iP — cticket _ (1 ¢)cdelay which
is also meaningful for both positive and negative c¢;. We find that allowing negative ¢; improves the stability of
the algorithm.

if flight doesn’t delay. These payments are meaningful for both positive

Passenger Model We sample r!* as Uniform(0, 200) and sample 7" from Uniform(0,400). We assume the
cost of delay can be more varied, so we sample it from the following process: z ~ Uniform(4,9) and ¢4 = (0.2¢%.
This gives us a cost of delay between [10, 1600], but large values are less likely.

Additional Results We show additional comparison with other alternatives to Algorithm [3]in Figure @l For
details about these alternatives see Section

B.2 Additional Experiments

Decision Loss For each data point we associate an extra feature z used to define decision loss. For MNIST
this is the digit label and for UCI Adult this is the age (binned by quantile into 10 bins). We simulate three
kinds of decision losses; for each type of decision loss we randomly sample a few instantiations.

1. One-sided: we assume that a € [0,1] and each decision loss I(z,y,a) is large if y # a and small if y = a. For
different values of z there are different stakes (i.e. how much does the loss when y = a differ from y # a).

2. Different Stakes: Each value of the decision loss I(z,y, a) is a draw from N (0, z), which is used to capture the
feature that certain groups of people have larger stakes

3. Random. Each value of the decision loss I(z,y, a) is a draw from A(0,10) but clipped to be within [-10, 10].

Forecasted Loss vs. True Loss In Figure [6] we plot the relationship between the expected loss under the
forecasted probability and the expected loss under the true probability (we can compute this for the MNIST
dataset because the true probability is known as explained in Section . Even if we apply histogram binning
recalibration (explained in Section , the individual probabilities are almost always incorrect.
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Figure 5: This plot is identical to Figure [2[ but for the Adult dataset
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Figure 6: The expected loss under the forecaster utility vs. expected loss under the true probability. Each dot
represents an individual probability forecast with a particular choice of loss function. We use histogram binning
on the entire validation set to recalibrate the forecaster. Even though the forecaster is calibrated, the individual
probabilities are often incorrect. Therefore, the expected loss under the forecasted probability often differs from
the expected loss under the true probability (blue dots). On other hand, with additional payment from the bets,
the expected total loss under true probability is always bounded between the minimum loss under the forecasted
probability, and the maximum loss under the forecasted probability.

Asymptotic Exactness In Figure [2] and Figure [b| we plot the average betting loss of the forecaster. Algo-
rithm [T] consistently achieve better asymptotic exactness compared to alternatives.

Average Interval Size In Figure [3 we plot the interval size ¢;. A small ¢; satisfies desideratum 2 in Section
3 and makes the guarantee in Proposition [2| useful for decision makers. We observe that most interval sizes are
small, and larger intervals are exponentially unlikely.

C Proof of Theorem [1

Algorithm [3]is the core reason why our forecasting algorithm achieves Theorem [I} so before we prove Theorem I]
we first understand Algorithm [3] The goal of Algorithm [3]is to select a sequence of \; to minimize the loss

ZtT:1(7"t + s¢A¢)? for any choice of 7, s; € R. More specifically the goal is to minimize the swap regret defined
by

T

Z(Tt + St)\t)z

t=1

swap _ . inf
By verio11] (7)

T
Z(Tt + 8t7/1(>\t))2

t=1

Loss incurred by Algorithm Loss incurred by “alternative” w(A¢)

where L'[—1,1] denotes the set of 1-Lipshitz functions R — [~1,1]. Intuitively, Y1, (r; + s;9(A\))? is the loss
of an alternative algorithm: whenever Algorithm [3| selects A, select ¥();) instead. Swap regret measures the
additional loss compared to the best alternative algorithm. We remark that if instead Algorithm [3| minimizes the
standard regret, we can no longer guarantee Theorem [I} For intuition on the reason we refer interested readers
to a counter-example in (Cesa-Bianchi and Lugosi, 2006) Section 4.5 (for a related calibration problem).

We now prove that Algorithm [3] indeed achieve its goal of minimizing the swap regret.



A Mechanism Design Alternative to Individual Calibration

Theorem 2. If there exists My, Ms such that Vt,|s;| < My, |ri/s:| < Ma, then there exists a constant
C(My, M) > 0, such that for any choice of K > 1, the regret of Algom'thm@ is bounded by

R < C(My, My)K?log T el Z 52

In particular, if we choose K? = /T /logT then the swap regret R is bounded by O(y/T logT).

Before we prove Theorem 2] we show how to use it to prove Theorem [I] restated below.

Theorem 1. Suppose there is a constant M > 0 such that Vt, |by| < M, there exists an algorithm to output g, ¢
in Protocol 2 that is asymptotically exact for uy, b, generated by any strategy of nature and agent. In particular,

Algorithm [1] satisfies
T 2
1 logT
(ngbt(m —Yt) — |bt|Ct> =0 ( T ) (6)
t—

Proof of Theorem[1. To prove this theorem we need the following inequality that relates the LHS in Eq.@ to
the swap regret R

Lemma 2. For any choice of 14, $¢, A\t,t =1,--+ T we have

swap 1
R 2

T 2

1

(TE St(’l"t+8t)\t)> S ;:2 S
t=1

t=1

Because at each iteration Algorithm |1|selects ry = \/IZT —/|bt|é: and sy = —4/|b¢| we can plug this into

Lemma [2| and conclude that for any sequence of A (Whlch includes any A; chosen by Algorithm , Algorithm
must satisfy

2
waap 1 MRSW'dP
< th — i) + [be|ér + |bt|)\t> <=z Z|bt| <—"_

In addition we have

Tt

_ ‘_bt(
|bt| 1243

— )+ ¢
St

So the conditions of Theorem [2]is satisfied (i.e. |s¢| and |r;/s¢| are bounded), and we can apply Theorem [2| to
conclude R = O(y/T'logT). Combined we have

(; S bulpe — w0) — Ibel(er + m) = O(My/TIogT/T) = O(+/1og T/T)

Now we proceed to prove Theorem

Proof of Theorem |2 To prove this theorem we first need the following Lemma, which bounds the standard regret
(rather than swap regret)

Lemma 3. If there exists some My, Ms > 0 such that Vt, |8y < M; and |ai/Bi| < Ma, choosing Ay =
arginfcr Zi;ll (ar + B, N)? satisfies for some constant C(My, My) > 0

T T
D e+ Bid)? < if;fZ(Oét + B N)? + C(My, M) log T
=1 =1
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To prove Theorem [2| we first bound the discretized swap regret, defined as follows

T T

K
stap Z(’I“t + St)\t — Z n fz ]I Uk, Uk+1))(Tt + StA)Q
t=1

t=1 k=1

Intuitively, this is the regret with respect to the alternative algorithm: whenever the Algorithm [3] chooses some
A¢ that falls with in a bin [vg, vk11), choose a different .

To bound the discretized swap regret our proof strategy is similar to (Blum and Mansour, [2007): As a notation
shorthand we denote c!(\) = (ry+s;A\)? and Zj, = [vg, vx41). For each k, we apply Lemmawith oy = (M € Ty)
and B; = sI(\; € Zy) with the convention that 0/0 = 0. By the assumptions in Theorem [2[ we know that
|B¢] < My and |y /5| < Ms so we can guarantee by Lemma that

T T
DI € Tt (M) =D (o + BiAf
t=1 t=1
T
< inf Z(at + BN + C(My, My)log T = igf;mt € Ti.)ct(\) + C(My, Ma)log T

The total loss is given by

K K T
) =)D T € T (M) gz £ T\ € Tp)e (A) + C(My, M) K log T
k=1

t=1 t=1 k=1 t=1

We can conclude that

T

R S

t=1 k=1

Mw

T
lg\leH(/\t € T)ct(\) < O(My, My)K log T
t=1

Finally we conclude the proof of the theorem with the following Lemma that bounds the difference between the
discretized swap regret and the continuous swap regret.

Lemma 4. In Algorithm@ R < R 4 S0 | s vzt

O
Proof of Lemmalj Denote Zj, = [vj,vg41) and denote dv = maxy vk — vg. In addition denote \j =
arginf Zthl I(A: € Tp,) (1t + s:M)?
R;wap o R;wap
K T T
=) infY I(\ €T A)? — inf \))? Definiti
kzz:lu)\l ; (A ) (e + st ) wlélLIZ(Tt—‘,-Sﬂﬁ( ) efinition
T T
= inf I(A; € Zy) (¢ + $:A)° — inf I\ € Z)(re + s Decompose 2nd term
N tzzl ( t k)( t t wgp};; t K t fﬂ}( )) p

T
1an]I e € i) (e + s:0)? — 1nf I\ € Zk ) (ry + sep(Ae)) ) Jensen

t=1

IN

- 17

=
Il
—

I
M=

YpeLl

T T
(Z]I (At € Tp) (e + 8:A%)* — 5 inf I(At € Zi)(rs + se( N + 5¢(At)))2> Change of variable
t=1 t=1

>
Il
—

] >

Z]I At € Ty) 8252 1-Lipschitzness

1t=1

=
Il
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T
— E 252
- St 61;
t=1

For Algorithm (3| we know that jv = 50 because of the equal width partition. O

Lemma 3. If there exists some My, Ms > 0 such that Vt, |8y < My and |ai/Bi| < Ms, choosing Ay =
arg inf\cr Et;:ll (ar + B:)\)? satisfies for some constant C(My, My) > 0

T T
> (e Bid)* < iI;fZ(at + BN+ C(My, My) log T
t=1 t=1

Proof of Lemma@ The proof strategy is similar to Chapter 4 of (Cesa-Bianchi and Lugosi, 2006]). Define
A} = arginfy ZT 1(ar+B8:A )2 In words the only difference between A} and A; is that A} can look one step into
the future. Then by Lemma 3.1 of (Cesa-Bianchi and Lugosi, |2006|) we have

T

T
Ry = Z(at + Bt>\t Hlfz ar + B ) 2 < t_zl o + 5:&)\15 — (ay + 6t/\2‘)2 (8)

t=1

We introduce simplified notation r¢(\) = 23:1(047 + B:-A)2. So with the new notation \; = infy r;_1()\) and
Af = infy r4(\). We can compute

roa) =0, () =282, (N =0 (9)

Also denote 0A\; = Aj — A\ we have
0N\ = arg i(g\f re(Ae + 0A)
= arg igl)\f re—1 (A + 0N) + (o + Behe + Bté)\)z By definition

1
= arginf reo1( M) F 7 (M) + Erg’,l()\t)é)?—&—

(s + Bede)® + 2(ap + Bide) BeON + BEON? Taylor expansion
t—1
= arg i(gf Z B2ON2 + 2(a + Bide) BeON + BEON? Apply Eq.@ and remove irrelevant terms
=1
2(a + BAe) B (a¢ + Bee)Be

= _ = _ Minimizer of quadratic

250, B2 4232 S, B2

Applying the new result to Eq. we have

Ry < (oq + 5t>\t)2 — (g + 59\?)2

M=

~
Il
-

(200 + BiAe + BiAL) (Beds — BeAy) By (a +b)(a — b) = a* — b?

I
M=

o~
Il
-

Il
N

(lae + Bede] + |ae + BeAT]) | Bed ] Cauchy schwarz

o~
Il
N

T
= Z 2|Olt + Bt)\tHBté)\t‘ By (Olt + Bt)\:)Q S (Oét =+ ﬁt)\t)Z
=1
- (o + Bihe)B
= Z 20ay + Behel | B Insert expression for 6\

S B2

~
I
=
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T 32
Z 2(ay + ﬂt>\t = ¢ Cauchy schwarz
t=1 Z‘r:l 672'
T
B¢
= 2(cu/B + M)?
; Y82
T 54
< (mtax 2(ou /B + /\t)Q) Z ﬁ Holder inequality
t=1 T= T

< 8M§Z

|\ < My
t=1 'r 162

Finally we apply the Lemma [f] to conclude that

Ry < 8MZM}log(T + 1)

Lemma 5. For any sequence Bi,t =1,--- ,T such that || < M,Vt we have Zt 1 Ztﬂ < M?log(T +1)

Finally we prove the remaining unproved Lemmas

Lemma 2. For any choice of 14, S¢, e, t =1, T we have

stap T

T 2

1

(TE st(rt—kst/\t)) < ZTQ g 57
t=1 t=1

Proof of Lemma[4 Without loss of generality assume 4 Zthl s¢(re + s¢A) > 0, find some € > 0 such that

T T
E St re + StAt = E S €
t=1 t=1

Such an e can always be found because the range of the RHS is [0,400) as € € [0,+00) (unless all the s; are
zero, in which case the Lemma is trivially true). Therefore, there must be a solution to the equality. Because
the function A\; — A\; + A is 1-Lipshitz, we have

T T
R > Z(Tt + i) mfz e+ 5:(A + N))? Choose a particular v
t=1 t=1
T T
> Z(” + 5:he)? — Z(Tt + s:(A\ — €))? Choose a particular A
t=1 t=1

M=

T
(2’f't + 2St)\t StE St€ = 2 (Z St e + St)\t ) Z 5562 = Z 8362
t=1 t t

Therefore we have

Lemma 5. For any sequence B, t =1,--- ,T such that |5:| < M,Vt we have Zt 1S5 - 7 < M?log(T + 1)

t

Il
-

Nl

T 2 T 2
1 2 2 T 2
tzzl si(re +seh) | = T2 Z s; | €< T2 Z Eh

O
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Proof of Lemma[3 First observe that for any j if we fix the values of §;,¢ # j, then choosing 8; = M always

4
maximizes Zt 1 Ztﬁ . Therefore, we have

:*\l—\

T+1 1
/ — = M?log(T + 1)
=1 U

Z ﬁtfﬂgi M2 i

O

Corollary 1. Under the assumptions of Theorem[1]if additionally by > 0,Vt, there exists an algorithm to output
e in Protocol 2 with ¢, = 0 that is asymptotically exact for py, by generated by any strategy of nature and agent.

Proof of Corollary[]. We make a small modification in Algorithm Originally line 5 of Algorithm [I| outputs
pe = fir and ¢ = é + Ay instead we output pp = iy — (& + At) and ¢; = 0.

This modified algorithm can achieve asymptotic exactness because

T T
Z — [bele; = Z be (k1 — ye) ¢} is zero
t=1 T

1
=7 Z be(pe — co — yt) Definition of s}

T
1
=7 > bl —yi) — b

t=1

T
1
= 7 D belp = we) = [biler by 20
t=1
The final expression goes to 0 by Theorem O

D Additional Proofs

Proposition 1. For any p,ce, pi € (0,1) where (g — ¢, e + ¢¢) C (0,1)
1. If pf € [1e — ¢ i + i) then Vi : Y x A — R we have L} € [LMn, [Max]
2. If i & (e — ¢y pu + ] then VI, : Y x A — R, ifVa € A, l(a,0) # (a, 1), then L} ¢ [LM", Linax)

Proof of Proposition[d Part I: without loss of generality assume l;(a¢, 1) > l;(at,0), denote Ly = E,[li(at,Y))
and we also use the notation shorthand I;(y) to denote I;(as,y). Since p* € [us — ct, pit + ¢¢] we have

[Le = Lil < sup By, [l:(Y)] = By [ (V)]

prEpgEe

= sup pele(1) 4+ (1 = )16 (0) = ple(1) = (1 — 7)1 (0)]
prEpsEe

= sup |(pe — pg)(e(1) = 1(0))]
prEpsEcy

< e (le(1) — 1:(0))

by similar algebra as above we also have

Ly — L™ = ¢, (1(1) — 11(0))
L;‘ﬂax — Lt = Ct(lt(l) — lt(O))

therefore it must be that L; > L and L} < Lex,
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Part II: Choose ¢;(at,y) = ay + 8 where a # 0; by choosing «, 8 this can represent any loss function ¢ where
£(at,0) # £(at, 1). We prove the case where o > 0 and the case where o < 0 can be similarly proven. Suppose

By < pt — Ct

Li =Eyop-[aY + 8] = api + B < ape —ct) + B
L= min EyzlaY + 8]l =Eyep—c[0Y + 8] = oy — cr) + B

fA€ptEet
but this would imply that L; < Lmin,
Suppose p; > p + ¢
Ly =E,-[aY + 8] =au; + 8> a(p+c) + 8
L = max Byogla¥ + 8] = EyopreaY + 6] = a(ue+ ) + 8

but this would imply that Ly > L**. O

Lemma 1. Let p,c € (0,1) such that [u—c, p+c] C [0,1], then a function f : Y — R satisfies Vi € [u—c, p+c],
Eyulf(Y)] <0 if and only if for some b € R and Yy € {0,1}, f(y) < by — p) — |ble.

Proof of Lemmal[d] If: if for some b € R we have f(y) < b(y — p) — |b|c then for any i such that i € [ —c, 1+ ]
or equivalently |z — p| < ¢ we have

Eyalf(Y)] < Eyna[b(Y — p) — [ble] = b(f — p) — [ble < [bl|f2 — | = [ble <0

Only if: If u = 1 or p = 0 then the proof is trivial; we consider the case where p € (0,1). Suppose for any
fo € [ —c,p+c] we have Ey ;[ f(Y)] < 0 we have (by instantiating a few concrete values for fi)

fWp =)+ fO)A —p+e) <
fWp+e)+ O -p—c) <

Choose some b such that f(1) = b(1 — ) — |ble. Such a b must exist because the range of b — b(1 — p) — [b|c is
R. If b < 0 then by Eq. we have

b~ it ) — )+ FO)(1—p+e) <0, F(0) < bl —¢) = b0 — ) — e
Conversely if b > 0 by Eq. we have
b1~ =) — )+ FO)1—p+c) <0, F(0) < —blu+ ) = b0 — ) — [ble
In either cases this is equivalent to Vy € {0,1}, f(y) < by — ) — |b|e. O

Proposition 2. If the stake b, = l;(a;,1) — l;(at,0) then LY™ € [LMin, [max]

Proof of Proposition[3 For convenience denote (Y) := (Y, a;). Without loss of generality assume (1) > 1(0)
Ly = min Ezl(Y)] = (e — co)l(1) + (1 = e +¢)1(0) = puel (1) + (1 = ) 1(0) — (I(1) = 1(0))e
1)

AEptEet
il (1) + (e = p)U(1) + (L= p)1(0) — (e 1(0) = (I(1) = 1(0))cx

= By 1(Y)] = (1(1) = L) Ey; [Y — ] = (101 ) —10))er] < LYY

and

Ly = win Ball(Y)] = (ue + c)l(1) + (1= e = e)1(0) = pel (1) + (1 = p)1(0) + (1) — 1(0))ey
= L1 A+ (e = )1 A+ (1= p)10) = (g2 = p)1(0) + (U(1) = L(0))es

= B [(Y)] = (U(1) = UO)Ey; [Y — p] + (I( ) - 1(0)) cp = L™
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Proposition 4. The forecaster function p: X — [0,1],¢: x — ¢o is sound with respect to B = {x — b(u(x)),b :
R — R} if and only if the MCE error of u is less than co.

Proof. If the MCE error of 4 is less than ¢, denote U = p(X) by definition we have, for every U € [0, 1]
|[U—-E[Y |U]| <co (12)

For any b € B, denote b(X) := b(u(X)) = b(U) we have

E[b(X)(u(X) - Y) — [b(X)]e(X)] = E [E[B(U)(M(X) —Y) — [B(U)]eo | U]] Tterated Expectation
= ED(U)E[u(X) ~Y | U]~ [b(U)|eo] E[UZ | U] =UE[Z | U]
=EBU)U —E[Y | U]) — [b(U)|co] Linearity
< E[b(U)||U —E[Y | U]| — |b(U)|co] Cauchy Schwarz
=E[bU)| (|U —E[Y | U]l = )] <0 By Eq.(12)

which shows that pu, ¢ is sound.

Conversely suppose there is some interval (ug,u1) such that whenever U € (ug, u1)
U—-E[Y |U]>co

we can choose b(X) := b(U) = I(U € [ug, u1]) we have

&=

[B(X) (u(X) = Y) = [6(X)[e(X)] = E[b(U)| (IU ~E[Y | U]| = co)] > 0
so the forecaster is not sound. We can show a similar proof when
U—-E[Y|U]< —c
O

Proposition 5. Let S C v, If a forecaster function p : X — [0,1],¢c : @ = co is sound with respect to
B={zw— bu(x)l(xes),SeSb:R— R}, then it is (S, co)-multicalibrated.

Proof. Denote U = u(X). Suppose u, ¢ is not multi-calibrated, then there exists S € S and there exists some
interval (ug,u1) such that whenever U € (ug, u1)

(X € S)(U -E[Y [U])] > co
Suppose I[(X € S)(U —E[Y | U]) > ¢o we can choose b(X) :=I(U € [ug,u1] N X € S) we have
E[b(X)(1(X) =) = [6(X)|e(X)] = E[[6(X)[ (U = E[Y [ U]| = c0)] > 0

We can show a similar proof when I(X € S)(U — E[Y | U]) < —cp. O
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