
A Mechanism Design Alternative to Individual Calibration

A Additional Results

A.1 Multiclass Prediction

For multiclass prediction, we suppose that Y can take K distinct values. We denote ∆K as the K-
dimensional probability simplex. For notational convenience we represent Y as a one-hot vector in RK , so
Y = {(1, 0, · · ·), (0, 1, · · ·), · · · }.

Protocol 3: Decision Making with Bets, Multiclass At time t = 1, · · · , T

1. Nature reveals xt ∈ X and chooses µ∗t ∈ ∆K without revealing it

2. Forecaster reveals µt ∈ ∆K and ct ∈ RK+
3. Agent t has loss lt : Y ×A → R and chooses action at and gt ∈ RK

4. Sample yt ∼ Categorical(µ∗t) and reveal yt

5. Agent total loss is lt(yt, at)− 〈gt, yt − µt〉+ 〈|gt|, ct〉, forecaster loss is 〈gt, yt − µt〉 − 〈|gt|, ct〉

As before we require the regularity condition that µc + ct ∈ [0, 1]K and µt − ct ∈ [0, 1]K (even though these are
no longer on ∆K , hence not probabilities.

Similar to Section 3 we can denote the agent’s maximum / minimum expected loss under the forecasted proba-
bility as

Lmax
t = max

µ̃∈∆K ,µ̃∈µt±ct
EY∼µ̃[lt(at, Y)]

Lmin
t = min

µ̃∈∆K ,µ̃∈µt±ct
EY∼µ̃[lt(at, Y)]

and true expected loss as L∗t = EY∼µ∗
t
[lt(at, Y)]. As before denote

Lpay
t = L∗t + Eµ∗ [〈gt, µt − Y 〉+ 〈|gt|, ct〉]

Proposition 3. If gt = l(·, at)− infγ∈R〈ct, |l − γ1|〉 then Lpay
t = Lmax

t

Proof of Proposition 3. As a notation shorthand we denote lt(at, Y) with the vector l, such that li = lt(at, Y = i).
We first show a closed form solution for Lmax

t which can be written as

Lmax
t = sup

µ̃∈∆K ,µ̃∈µt±ct
EY∼µ̃[lt(at, Y)]

= sup
µ̃∈∆K ,µ̃∈µt±ct

〈µ̃, l〉 Notation Change

= 〈µt, l〉+ sup
δµ∈[−ct,ct],〈δµ,1〉=0

〈δµ, l〉 Algebric Manipulation

= 〈µt, l〉+ sup
δµ∈[−ct,ct]

inf
γ∈R
〈δµ, l〉 − γ〈δµ, 1〉 Lagrangian

= 〈µt, l〉+ inf
γ∈R

sup
δµ∈[−ct,ct]

〈δµ, l〉 − γ〈δµ, 1〉 Sion Minimax Theorem

= 〈µt, l〉+ inf
γ∈R
〈ct, |l − γ1|〉

Similarly we have

Lmin
t = 〈µt, l〉 − inf

γ∈R
〈ct, |l − γ1|〉

Denote the γ that achieves the infimum as γ∗. Comparing with Lpay
t we have

Lpay
t = L∗t + Eµ∗ [〈gt, µt − Y 〉+ 〈|gt|, ct〉]

= 〈µ∗, l〉 − 〈l − γ∗1, µt − µ∗t 〉+ 〈ct, |l − γ∗1|〉
= 〈l, µt〉+ 〈ct, |l − γ∗1|〉 〈µt, 1〉 = 0, 〈µ∗t , 1〉 = 0

= Lmax

Shengjia Zhao, Stefano Ermon

A.2 Offline Calibration

For this section we restrict to the i.i.d. setup, where we assume there are random variables X,Y with some
distribution p∗XY such that at each time step,

xt ∼ X µ∗t = E[Y | xt]

We also assume that the forecaster ’s choice µt, ct and the agent’s choice bt in Protocol 2 are computed by
functions of xt

µ : xt 7→ µt c : xt 7→ ct b : xt 7→ bt

In other words, given the input xt all the players choose their actions based on fixed functions of xt.

The following definition is the equivalent of asymptotic soundness in the i.i.d. setup

Definition 1. We say that the functions µ, c : X → [0, 1] are sound with respect to some set of functions
B ⊂ {X → [−M,M]} if

sup
b∈B

E[b(X)(µ(X)− E[Y | X])− |b(X)|c(X)] ≤ 0

If c(x) ≡ 0 we say µ is B-calibrated.

Intuitively if µ, c are sound with respect to B then if the decision making agents chooses a strategy in b ∈ B
we can guarantee that the forecaster will not lose (on average). In other words, if µ, c are sound according to
Definition 1, and if bt = b(xt) for some b ∈ B, then the forecaster is almost surely asymptotically sound as defined
in Eq.(4).

A.2.1 Examples and Special Cases

Standard Calibration Standard calibration is defined as: for any u ∈ [0, 1], among the X where µ(X) = u
it is indeed true that Y is 1 with u probability. Formally this can be written as

E[Y | µ(X) = u] = u,∀u ∈ [0, 1]

Deviation from this ideal situation is measured by the maximum calibration error (MCE).

MCE(µ) = max
u∈[0,1]

|E[Y | µ(X) = u]− u|

Note that the MCE may be ill-defined if there is an interval (u0, u1) ⊂ [0, 1] such that µ(X) ∈ (u0, u1) with
zero probability. We are going to avoid the technical subtlety by assuming that this does not happen, i.e. the
distribution of µ(X) is supported on the entire set [0, 1].

When B is the set of all possible functions µ(x) → R (i.e. it only depends on the probability forecast µ(x) but
not x itself), we obtain the standard definition of calibration (Dawid, 1985; Guo et al., 2017), as shown by the
following proposition

Proposition 4. The forecaster function µ : X → [0, 1], c : x 7→ c0 is sound with respect to B = {x 7→ b̃(µ(x)), b̃ :
R→ R} if and only if the MCE error of µ is less than c0.

Proof. See Appendix D

We remark that this proposition (intentionally) does not involve the upper bound M on b; it holds even when
M →∞.

Multi-Calibration Multi-calibration (Hébert-Johnson et al., 2017) achieves standard calibration for all sub-
sets S in some collection of sets S. The following proposition shows that a forecaster that’s sound with respect
to any function that only depends on µ(x) and takes zero value whenever x 6∈ S is also multicalibrated.

Proposition 5. Let S ⊂ 2X . If a forecaster function µ : X → [0, 1], c : x 7→ c0 is sound with respect to
B = {x 7→ b̃(µ(x))I(x ∈ S), S ∈ S, b̃ : R→ R}, then it is (S, c0)-multicalibrated.

A Mechanism Design Alternative to Individual Calibration

Figure 4: This plot extends Figure 1. We compare with additional Alternatives to Algorithm 3.

B Experiment Details and Additional Results

B.1 Airline Delay

Negative ct In Protocol 2 ct must be non-negative for its interpretation as a probability interval [µt−ct, µt+ct].
However if we only consider the flight delay insurance interpretation: airline pay passenger b1t if flight delays and

passenger pays airline b0t :=
b1t (µt+ct)
1−µt−ct if flight doesn’t delay. These payments are meaningful for both positive

and negative ct; the passenger utility (with insurance) can be computed as rtrip − cticket − (µt + ct)c
delay, which

is also meaningful for both positive and negative ct. We find that allowing negative ct improves the stability of
the algorithm.

Passenger Model We sample ralt as Uniform(0, 200) and sample rtrip from Uniform(0, 400). We assume the
cost of delay can be more varied, so we sample it from the following process: z ∼ Uniform(4, 9) and cdelay = 0.2ez.
This gives us a cost of delay between [10, 1600], but large values are less likely.

Additional Results We show additional comparison with other alternatives to Algorithm 3 in Figure 4. For
details about these alternatives see Section 7.

B.2 Additional Experiments

Decision Loss For each data point we associate an extra feature z used to define decision loss. For MNIST
this is the digit label and for UCI Adult this is the age (binned by quantile into 10 bins). We simulate three
kinds of decision losses; for each type of decision loss we randomly sample a few instantiations.

1. One-sided: we assume that a ∈ [0, 1] and each decision loss l(z, y, a) is large if y 6= a and small if y = a. For
different values of z there are different stakes (i.e. how much does the loss when y = a differ from y 6= a).

2. Different Stakes: Each value of the decision loss l(z, y, a) is a draw from N (0, z), which is used to capture the
feature that certain groups of people have larger stakes

3. Random. Each value of the decision loss l(z, y, a) is a draw from N (0, 10) but clipped to be within [−10, 10].

Forecasted Loss vs. True Loss In Figure 6 we plot the relationship between the expected loss under the
forecasted probability and the expected loss under the true probability (we can compute this for the MNIST
dataset because the true probability is known as explained in Section 7). Even if we apply histogram binning
recalibration (explained in Section 7), the individual probabilities are almost always incorrect.

Shengjia Zhao, Stefano Ermon

Figure 5: This plot is identical to Figure 2 but for the Adult dataset

Figure 6: The expected loss under the forecaster utility vs. expected loss under the true probability. Each dot
represents an individual probability forecast with a particular choice of loss function. We use histogram binning
on the entire validation set to recalibrate the forecaster. Even though the forecaster is calibrated, the individual
probabilities are often incorrect. Therefore, the expected loss under the forecasted probability often differs from
the expected loss under the true probability (blue dots). On other hand, with additional payment from the bets,
the expected total loss under true probability is always bounded between the minimum loss under the forecasted
probability, and the maximum loss under the forecasted probability.

Asymptotic Exactness In Figure 2 and Figure 5 we plot the average betting loss of the forecaster. Algo-
rithm 1 consistently achieve better asymptotic exactness compared to alternatives.

Average Interval Size In Figure 3 we plot the interval size ct. A small ct satisfies desideratum 2 in Section
3 and makes the guarantee in Proposition 2 useful for decision makers. We observe that most interval sizes are
small, and larger intervals are exponentially unlikely.

C Proof of Theorem 1

Algorithm 3 is the core reason why our forecasting algorithm achieves Theorem 1, so before we prove Theorem 1
we first understand Algorithm 3. The goal of Algorithm 3 is to select a sequence of λt to minimize the loss∑T
t=1(rt + stλt)

2 for any choice of rt, st ∈ R. More specifically the goal is to minimize the swap regret defined
by

Rswap
T =

T∑
t=1

(rt + stλt)
2

︸ ︷︷ ︸
Loss incurred by Algorithm 3

− inf
ψ∈L1[−1,1]

T∑
t=1

(rt + stψ(λt))
2

︸ ︷︷ ︸
Loss incurred by “alternative” ψ(λt)

(7)

where L1[−1, 1] denotes the set of 1-Lipshitz functions R→ [−1, 1]. Intuitively,
∑T
t=1(rt + stψ(λt))

2 is the loss
of an alternative algorithm: whenever Algorithm 3 selects λt, select ψ(λt) instead. Swap regret measures the
additional loss compared to the best alternative algorithm. We remark that if instead Algorithm 3 minimizes the
standard regret, we can no longer guarantee Theorem 1. For intuition on the reason we refer interested readers
to a counter-example in (Cesa-Bianchi and Lugosi, 2006) Section 4.5 (for a related calibration problem).

We now prove that Algorithm 3 indeed achieve its goal of minimizing the swap regret.

A Mechanism Design Alternative to Individual Calibration

Theorem 2. If there exists M1,M2 such that ∀t, |st| ≤ M1, |rt/st| ≤ M2, then there exists a constant
C(M1,M2) > 0, such that for any choice of K > 1, the regret of Algorithm 3 is bounded by

Rswap
T ≤ C(M1,M2)K2 log T +

1

K2

T∑
t=1

s2
t

In particular, if we choose K2 =
√
T/ log T then the swap regret Rswap

T is bounded by O(
√
T log T).

Before we prove Theorem 2 we show how to use it to prove Theorem 1 restated below.

Theorem 1. Suppose there is a constant M > 0 such that ∀t, |bt| ≤M , there exists an algorithm to output µt, ct
in Protocol 2 that is asymptotically exact for µ∗t , bt generated by any strategy of nature and agent. In particular,
Algorithm 1 satisfies (

1

T

T∑
t=1

bt(µt − yt)− |bt|ct

)2

= O

(√
log T

T

)
(6)

Proof of Theorem 1. To prove this theorem we need the following inequality that relates the LHS in Eq.(6) to
the swap regret Rswap

T

Lemma 2. For any choice of rt, st, λt, t = 1, · · · , T we have(
1

T

T∑
t=1

st(rt + stλt)

)2

≤
Rswap
T

T 2

T∑
t=1

s2
t

Because at each iteration Algorithm 1 selects rt = bt√
|bt|

(µt−yt)−
√
|bt|ĉt and st = −

√
|bt| we can plug this into

Lemma 2 and conclude that for any sequence of λt (which includes any λt chosen by Algorithm 3), Algorithm 1
must satisfy (

−1

T

T∑
t=1

bt(µt − yt) + |bt|ĉt + |bt|λt

)2

≤
Rswap
T

T

1

T

T∑
t=1

|bt| ≤
MRswap

T

T

In addition we have ∣∣∣∣rtst
∣∣∣∣ =

∣∣∣∣− bt
|bt|

(µt − yt) + ĉt

∣∣∣∣ ≤ 2

So the conditions of Theorem 2 is satisfied (i.e. |st| and |rt/st| are bounded), and we can apply Theorem 2 to
conclude Rswap

T = O(
√
T log T). Combined we have(

1

T

T∑
t=1

bt(µt − yt)− |bt|(ĉt + λt)

)2

= O(M
√
T log T/T) = O(

√
log T/T)

Now we proceed to prove Theorem 2

Proof of Theorem 2. To prove this theorem we first need the following Lemma, which bounds the standard regret
(rather than swap regret)

Lemma 3. If there exists some M1,M2 > 0 such that ∀t, |βt| ≤ M1 and |αt/βt| ≤ M2, choosing λt =

arg infλ∈R
∑t−1
τ=1(ατ + βτλ)2 satisfies for some constant C(M1,M2) > 0

T∑
t=1

(αt + βtλt)
2 ≤ inf

λ

T∑
t=1

(αt + βtλ)2 + C(M1,M2) log T

Shengjia Zhao, Stefano Ermon

To prove Theorem 2 we first bound the discretized swap regret, defined as follows

R̃swap
T =

T∑
t=1

(rt + stλt)
2 −

K∑
k=1

inf
λ

T∑
t=1

I(λt ∈ [vk, vk+1))(rt + stλ)2

Intuitively, this is the regret with respect to the alternative algorithm: whenever the Algorithm 3 chooses some
λt that falls with in a bin [vk, vk+1), choose a different λ.

To bound the discretized swap regret our proof strategy is similar to (Blum and Mansour, 2007): As a notation
shorthand we denote ct(λ) = (rt+stλ)2 and Ik = [vk, vk+1). For each k, we apply Lemma 3 with αt = rtI(λt ∈ Ik)
and βt = stI(λt ∈ Ik) with the convention that 0/0 = 0. By the assumptions in Theorem 2 we know that
|βt| ≤M1 and |αt/βt| ≤M2 so we can guarantee by Lemma 3 that

T∑
t=1

I(λt ∈ Ik)ct(λkt) =

T∑
t=1

(αt + βtλ
k
t)2

≤ inf
λ

T∑
t=1

(αt + βtλ)2 + C(M1,M2) log T = inf
λ

T∑
t=1

I(λt ∈ Ik)ct(λ) + C(M1,M2) log T

The total loss is given by

T∑
t=1

ct(λt) =

T∑
t=1

K∑
k=1

I(λt ∈ Ik)ct(λkt) ≤
K∑
k=1

inf
λ

T∑
t=1

I(λt ∈ Ik)ct(λ) + C(M1,M2)K log T

We can conclude that

R̃swap
T :=

T∑
t=1

ct(λt)−
K∑
k=1

inf
λ

T∑
t=1

I(λt ∈ Ik)ct(λ) ≤ C(M1,M2)K log T

Finally we conclude the proof of the theorem with the following Lemma that bounds the difference between the
discretized swap regret and the continuous swap regret.

Lemma 4. In Algorithm 3, Rswap
T ≤ R̃swap

T +
∑T
t=1 s

2
t
vK−v0
K

Proof of Lemma 4. Denote Ik = [vk, vk+1) and denote δv = maxk vk+1 − vk. In addition denote λ∗k =

arg infλ
∑T
t=1 I(λt ∈ Ik)(rt + stλ)2

Rswap
T − R̃swap

T

=

K∑
k=1

inf
λ

T∑
t=1

I(λt ∈ Ik)(rt + stλ)2 − inf
ψ∈L1

T∑
t=1

(rt + stψ(λt))
2 Definition

=

K∑
k=1

inf
λ

T∑
t=1

I(λt ∈ Ik)(rt + stλ)2 − inf
ψ∈L1

K∑
k=1

T∑
t=1

I(λt ∈ IK)(rt + stψ(λt))
2 Decompose 2nd term

≤
K∑
k=1

(
inf
λ

T∑
t=1

I(λt ∈ Ik)(rt + stλ)2 − inf
ψ∈L1

T∑
t=1

I(λt ∈ IK)(rt + stψ(λt))
2

)
Jensen

=

K∑
k=1

(
T∑
t=1

I(λt ∈ Ik)(rt + stλ
∗
k)2 − inf

δψ∈L1

T∑
t=1

I(λt ∈ IK)(rt + st(λ
∗
k + δψ(λt)))

2

)
Change of variable

≤
K∑
k=1

T∑
t=1

I(λt ∈ Ik)s2
t δ

2
v 1-Lipschitzness

A Mechanism Design Alternative to Individual Calibration

=

T∑
t=1

s2
t δ

2
v

For Algorithm 3 we know that δv = vK−v0
K because of the equal width partition.

Lemma 3. If there exists some M1,M2 > 0 such that ∀t, |βt| ≤ M1 and |αt/βt| ≤ M2, choosing λt =

arg infλ∈R
∑t−1
τ=1(ατ + βτλ)2 satisfies for some constant C(M1,M2) > 0

T∑
t=1

(αt + βtλt)
2 ≤ inf

λ

T∑
t=1

(αt + βtλ)2 + C(M1,M2) log T

Proof of Lemma 3. The proof strategy is similar to Chapter 4 of (Cesa-Bianchi and Lugosi, 2006). Define
λ∗t = arg infλ

∑t
τ=1(ατ +βτλ)2. In words the only difference between λ∗t and λt is that λ∗t can look one step into

the future. Then by Lemma 3.1 of (Cesa-Bianchi and Lugosi, 2006) we have

RT :=

T∑
t=1

(αt + βtλt)
2 − inf

λ

T∑
t=1

(αt + βtλ)2 ≤
T∑
t=1

(αt + βtλt)
2 − (αt + βtλ

∗
t)

2 (8)

We introduce simplified notation rt(λ) =
∑t
τ=1(ατ + βτλ)2. So with the new notation λt = infλ rt−1(λ) and

λ∗t = infλ rt(λ). We can compute

r′t−1(λt) = 0, r′′t−1(λt) = 2

t−1∑
τ=1

β2
τ , r′′′t−1(λ) = 0 (9)

Also denote δλt = λ∗t − λt we have

δλt = arg inf
δλ
rt(λt + δλ)

= arg inf
δλ
rt−1(λt + δλ) + (αt + βtλt + βtδλ)2 By definition

= arg inf
δλ
rt−1(λt) + r′t−1(λt)δλ+

1

2
r′′t−1(λt)δλ

2+

(αt + βtλt)
2 + 2(αt + βtλt)βtδλ+ β2

t δλ
2 Taylor expansion

= arg inf
δλ

t−1∑
τ=1

β2
τδλ

2 + 2(αt + βtλt)βtδλ+ β2
t δλ

2 Apply Eq.(9) and remove irrelevant terms

= − 2(αt + βtλt)βt

2
∑t−1
τ=1 β

2
τ + 2β2

t

= − (αt + βtλt)βt∑t
τ=1 β

2
τ

Minimizer of quadratic

Applying the new result to Eq.(8) we have

RT ≤
T∑
t=1

(αt + βtλt)
2 − (αt + βtλ

∗
t)

2

=

T∑
t=1

(2αt + βtλt + βtλ
∗
t)(βtλt − βtλ∗t) By (a+ b)(a− b) = a2 − b2

=

T∑
t=1

(|αt + βtλt|+ |αt + βtλ
∗
t |) |βtδλt| Cauchy schwarz

=

T∑
t=1

2|αt + βtλt||βtδλt| By (αt + βtλ
∗
t)

2 ≤ (αt + βtλt)
2

=

T∑
t=1

2|αt + βtλt|

∣∣∣∣∣βt (αt + βtλt)βt∑t
τ=1 β

2
τ

∣∣∣∣∣ Insert expression for δλt

Shengjia Zhao, Stefano Ermon

≤
T∑
t=1

2(αt + βtλt)
2 β2

t∑t
τ=1 β

2
τ

Cauchy schwarz

=

T∑
t=1

2(αt/βt + λt)
2 β4

t∑t
τ=1 β

2
τ

≤
(

max
t

2(αt/βt + λt)
2
) T∑
t=1

β4
t∑t

τ=1 β
2
τ

Holder inequality

≤ 8M2
2

T∑
t=1

β4
t∑t

τ=1 β
2
τ

|λt| ≤M2

Finally we apply the Lemma 5 to conclude that

RT ≤ 8M2
2M

2
1 log(T + 1)

Lemma 5. For any sequence βt, t = 1, · · · , T such that |βt| ≤M,∀t we have
∑T
t=1

β4
t∑t

τ=1 β
2
τ
≤M2 log(T + 1)

Finally we prove the remaining unproved Lemmas

Lemma 2. For any choice of rt, st, λt, t = 1, · · · , T we have(
1

T

T∑
t=1

st(rt + stλt)

)2

≤
Rswap
T

T 2

T∑
t=1

s2
t

Proof of Lemma 2. Without loss of generality assume 1
T

∑T
t=1 st(rt + stλt) > 0, find some ε > 0 such that

T∑
t=1

st(rt + stλt) =

T∑
t=1

s2
t ε

Such an ε can always be found because the range of the RHS is [0,+∞) as ε ∈ [0,+∞) (unless all the st are
zero, in which case the Lemma is trivially true). Therefore, there must be a solution to the equality. Because
the function λt 7→ λt + λ is 1-Lipshitz, we have

Rswap
T ≥

T∑
t=1

(rt + stλt)
2 − inf

λ

T∑
t=1

(rt + st(λt + λ))2 Choose a particular ψ

≥
T∑
t=1

(rt + stλt)
2 −

T∑
t=1

(rt + st(λt − ε))2 Choose a particular λ

=

T∑
t=1

(2rt + 2stλt − stε)stε = 2

(
T∑
t=1

st(rt + stλt)

)
ε−

∑
t

s2
t ε

2 =
∑
t

s2
t ε

2

Therefore we have (
1

T

T∑
t=1

st(rt + stλt)

)2

=
1

T 2

(
T∑
t=1

s2
t

)2

ε2 ≤
Rswap
T

T 2

T∑
t=1

s2
t

Lemma 5. For any sequence βt, t = 1, · · · , T such that |βt| ≤M,∀t we have
∑T
t=1

β4
t∑t

τ=1 β
2
τ
≤M2 log(T + 1)

A Mechanism Design Alternative to Individual Calibration

Proof of Lemma 5. First observe that for any j if we fix the values of βt, t 6= j, then choosing βj = M always

maximizes
∑T
t=1

β4
t∑t

τ=1 β
2
τ

. Therefore, we have

T∑
t=1

β4
t∑t

τ=1 β
2
τ

≤
T∑
t=1

M4∑t
τ=1M

2
= M2

T∑
t=1

1

t
≤M2

∫ T+1

t=1

1

t
= M2 log(T + 1)

Corollary 1. Under the assumptions of Theorem 1 if additionally bt ≥ 0,∀t, there exists an algorithm to output
µt in Protocol 2 with ct ≡ 0 that is asymptotically exact for µ∗t , bt generated by any strategy of nature and agent.

Proof of Corollary 1. We make a small modification in Algorithm 1. Originally line 5 of Algorithm 1 outputs
µt = µ̂t and ct = ĉt + λt; instead we output µ′t = µ̂t − (ĉt + λt) and c′t = 0.

This modified algorithm can achieve asymptotic exactness because

1

T

T∑
t=1

bt(µ
′
t − yt)− |bt|c′t =

1

T

T∑
t=1

bt(µ
′
t − yt) c′t is zero

=
1

T

T∑
t=1

bt(µt − ct − yt) Definition of µ′t

=
1

T

T∑
t=1

bt(µt − yt)− btct

=
1

T

T∑
t=1

bt(µt − yt)− |bt|ct bt ≥ 0

The final expression goes to 0 by Theorem 1.

D Additional Proofs

Proposition 1. For any µt, ct, µ
∗
t ∈ (0, 1) where (µt − ct, µt + ct) ⊂ (0, 1)

1. If µ∗t ∈ [µt − ct, µt + ct] then ∀lt : Y ×A → R we have L∗t ∈ [Lmin
t , Lmax

t]

2. If µ∗t 6∈ [µt − ct, µt + ct] then ∀lt : Y ×A → R, if ∀a ∈ A, `t(a, 0) 6= `t(a, 1), then L∗t 6∈ [Lmin
t , Lmax

t]

Proof of Proposition 1. Part I: without loss of generality assume lt(at, 1) > lt(at, 0), denote Lt = Eµ[lt(at, Y)]
and we also use the notation shorthand lt(y) to denote lt(at, y). Since µ∗ ∈ [µt − ct, µt + ct] we have

|Lt − L∗t | ≤ sup
µ∗∈µt±ct

|EY∼µt [lt(Y)]− EY∼µ∗ [lt(Y)]|

= sup
µ∗∈µt±ct

|µtlt(1) + (1− µt)lt(0)− µ∗t lt(1)− (1− µ∗t)lt(0)|

= sup
µ∗∈µt±ct

|(µt − µ∗t)(lt(1)− lt(0))|

≤ ct(lt(1)− lt(0))

by similar algebra as above we also have

Lt − Lmin
t = ct(lt(1)− lt(0))

Lmax
t − Lt = ct(lt(1)− lt(0))

therefore it must be that L∗t ≥ Lmin
t and L∗t ≤ Lmax

t .

Shengjia Zhao, Stefano Ermon

Part II: Choose `t(at, y) = αy + β where α 6= 0; by choosing α, β this can represent any loss function ` where
`(at, 0) 6= `(at, 1). We prove the case where α > 0 and the case where α < 0 can be similarly proven. Suppose
µ∗t < µt − ct

L∗t = EY∼µ∗ [αY + β] = αµ∗t + β < α(µt − ct) + β

Lmin
t = min

µ̃∈µt±ct
EY∼µ̃[αY + β] = EY∼µt−ct [αY + β] = α(µt − ct) + β

but this would imply that L∗t < Lmin
t .

Suppose µ∗t > µt + ct

L∗t = Eµ∗ [αY + β] = αµ∗t + β > α(µt + ct) + β

Lmax
t = max

µ̃∈µt±ct
EY∼µ̃[αY + β] = EY∼µt+ct [αY + β] = α(µt + ct) + β

but this would imply that L∗t > Lmax
t .

Lemma 1. Let µ, c ∈ (0, 1) such that [µ−c, µ+c] ⊂ [0, 1], then a function f : Y → R satisfies ∀µ̃ ∈ [µ−c, µ+c],
EY∼µ̃[f(Y)] ≤ 0 if and only if for some b ∈ R and ∀y ∈ {0, 1}, f(y) ≤ b(y − µ)− |b|c.

Proof of Lemma 1. If: if for some b ∈ R we have f(y) ≤ b(y−µ)− |b|c then for any µ̃ such that µ̃ ∈ [µ− c, µ+ c]
or equivalently |µ̃− µ| ≤ c we have

EY∼µ̃[f(Y)] ≤ EY∼µ̃[b(Y − µ)− |b|c] = b(µ̃− µ)− |b|c ≤ |b||µ̃− µ| − |b|c ≤ 0

Only if: If µ = 1 or µ = 0 then the proof is trivial; we consider the case where µ ∈ (0, 1). Suppose for any
µ̃ ∈ [µ− c, µ+ c] we have EY∼µ̃[f(Y)] ≤ 0 we have (by instantiating a few concrete values for µ̃)

f(1)(µ− c) + f(0)(1− µ+ c) ≤ 0 (10)

f(1)(µ+ c) + f(0)(1− µ− c) ≤ 0 (11)

Choose some b such that f(1) = b(1− µ)− |b|c. Such a b must exist because the range of b 7→ b(1− µ)− |b|c is
R. If b < 0 then by Eq.(10) we have

b(1− µ+ c)(µ− c) + f(0)(1− µ+ c) ≤ 0, f(0) ≤ −b(µ− c) = b(0− µ)− |b|c

Conversely if b ≥ 0 by Eq.(11) we have

b(1− µ− c)(µ− c) + f(0)(1− µ+ c) ≤ 0, f(0) ≤ −b(µ+ c) = b(0− µ)− |b|c

In either cases this is equivalent to ∀y ∈ {0, 1}, f(y) ≤ b(y − µ)− |b|c.

Proposition 2. If the stake bt = lt(at, 1)− lt(at, 0) then Lpay
t ∈ [Lmin

t , Lmax
t]

Proof of Proposition 2. For convenience denote l(Y) := lt(Y, at). Without loss of generality assume l(1) > l(0)

Lmin
t = min

µ̃∈µt±ct
Eµ̃[l(Y)] = (µt − ct)l(1) + (1− µt + ct)l(0) = µtl(1) + (1− µt)l(0)− (l(1)− l(0))ct

= µ∗t l(1) + (µt − µ∗t)l(1) + (1− µ∗t)l(0)− (µt − µ∗t)l(0)− (l(1)− l(0))ct

= Eµ∗
t
[l(Y)]− (l(1)− l(0))Eµ∗

t
[Y − µ]− (l(1)− l(0))ct] ≤ Lpay

t

and

Lmax
t = min

µ̃∈µt±ct
Eµ̃[l(Y)] = (µt + ct)l(1) + (1− µt − ct)l(0) = µtl(1) + (1− µt)l(0) + (l(1)− l(0))ct

= µ∗t l(1) + (µt − µ∗t)l(1) + (1− µ∗t)l(0)− (µt − µ∗t)l(0) + (l(1)− l(0))ct

= Eµ∗
t
[l(Y)]− (l(1)− l(0))Eµ∗

t
[Y − µ] + (l(1)− l(0))ct = Lpay

t

A Mechanism Design Alternative to Individual Calibration

Proposition 4. The forecaster function µ : X → [0, 1], c : x 7→ c0 is sound with respect to B = {x 7→ b̃(µ(x)), b̃ :
R→ R} if and only if the MCE error of µ is less than c0.

Proof. If the MCE error of µ is less than c0, denote U = µ(X) by definition we have, for every U ∈ [0, 1]

|U − E[Y | U]| ≤ c0 (12)

For any b ∈ B, denote b(X) := b̃(µ(X)) = b̃(U) we have

E[b(X)(µ(X)− Y)− |b(X)|c(X)] = E
[
E[b̃(U)(µ(X)− Y)− |b̃(U)|c0 | U]

]
Iterated Expectation

= E[b̃(U)E[µ(X)− Y | U]− |b̃(U)|c0] E[UZ | U] = UE[Z | U]

= E[b̃(U)(U − E[Y | U])− |b̃(U)|c0] Linearity

≤ E[|b̃(U)||U − E[Y | U]| − |b̃(U)|c0] Cauchy Schwarz

= E[|b̃(U)| (|U − E[Y | U]| − c0)] ≤ 0 By Eq.(12)

which shows that µ, c is sound.

Conversely suppose there is some interval (u0, u1) such that whenever U ∈ (u0, u1)

U − E[Y | U] > c0

we can choose b(X) := b̃(U) = I(U ∈ [u0, u1]) we have

E[b(X)(µ(X)− Y)− |b(X)|c(X)] = E[|b̃(U)| (|U − E[Y | U]| − c0)] > 0

so the forecaster is not sound. We can show a similar proof when

U − E[Y | U] < −c0

Proposition 5. Let S ⊂ 2X . If a forecaster function µ : X → [0, 1], c : x 7→ c0 is sound with respect to
B = {x 7→ b̃(µ(x))I(x ∈ S), S ∈ S, b̃ : R→ R}, then it is (S, c0)-multicalibrated.

Proof. Denote U = µ(X). Suppose µ, c is not multi-calibrated, then there exists S ∈ S and there exists some
interval (u0, u1) such that whenever U ∈ (u0, u1)

|I(X ∈ S)(U − E[Y | U])| > c0

Suppose I(X ∈ S)(U − E[Y | U]) > c0 we can choose b(X) := I(U ∈ [u0, u1] ∩X ∈ S) we have

E[b(X)(µ(X)− Y)− |b(X)|c(X)] = E[|b(X)| (|U − E[Y | U]| − c0)] > 0

We can show a similar proof when I(X ∈ S)(U − E[Y | U]) < −c0.

	Introduction
	Background
	Decision Making with Forecasts
	Individual Coverage
	Probability as Willingness to Bet

	 Decisions with Unreliable Forecasts
	Insuring against unreliable forecasts
	Insuring with fair bets

	Probability Forecaster Strategy
	Online Forecasting Algorithm
	Offline Forecasting

	Related Work
	Case Study on Flight Delays
	Simulation Setup
	Delay Insurance Improves Total Utility

	Additional Experiments
	Conclusion
	Acknowledgements
	Additional Results
	Multiclass Prediction
	Offline Calibration
	Examples and Special Cases

	Experiment Details and Additional Results
	Airline Delay
	Additional Experiments

	Proof of Theorem 1
	Additional Proofs

