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Abstract

Decision makers often need to rely on imper-
fect probabilistic forecasts. While average
performance metrics are typically available,
it is difficult to assess the quality of individual
forecasts and the corresponding utilities. To
convey confidence about individual predic-
tions to decision-makers, we propose a com-
pensation mechanism ensuring that the fore-
casted utility matches the actually accrued
utility. While a naive scheme to compensate
decision-makers for prediction errors can be
exploited and might not be sustainable in the
long run, we propose a mechanism based on
fair bets and online learning that provably
cannot be exploited. We demonstrate an ap-
plication showing how passengers could confi-
dently optimize individual travel plans based
on flight delay probabilities estimated by an
airline.

1 Introduction

People and algorithms constantly rely on probabilistic
forecasts (about medical treatments, weather, trans-
portation times, etc.) and make potentially high-stake
decisions based on them. In most cases, forecasts are
not perfect, e.g., the forecasted chance that it will rain
tomorrow does not match the true probability exactly.
While average performance statistics might be avail-
able (accuracy, calibration, etc), it is generally impos-
sible to tell whether any individual prediction is reli-
able (individually calibrated), e.g., about the medical
condition of an specific patient or the delay of a par-
ticular flight (Vovk et al., 2005; Barber et al., 2019;
Zhao et al., 2020). Intuitively, this is because multiple
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identical datapoints are needed to confidently estimate
a probability from empirical frequencies, but identical
datapoints are rare in real world applications (e.g. two
patients are always different). Given these limitations,
we study alternative mechanisms to convey confidence
about individual predictions to decision-makers.

We consider settings where a single forecaster provides
predictions to many decision makers, each facing a po-
tentially different decision making problem. For ex-
ample, a personalized medicine service could predict
whether a product is effective for thousands of indi-
vidual patients (Ng et al., 2009; Pulley et al., 2012;
Bielinski et al., 2014). If the prediction is accurate for
70% of patients, it could be accurate for Alice but not
Bob, or vice-versa. Therefore, Alice might be hesitant
to make decisions based on the 70% average accuracy.
In this setting, we propose an insurance-like mecha-
nism that 1) enables each decision maker to confidently
make decisions as if the advertised probabilities were
individually correct, and 2) is implementable by the
forecaster with provably vanishing costs in the long
run.

To achieve this, we turn to the classic idea (De Finetti,
1931; Jaynes, 1996) that a probabilistic belief is equiv-
alent to a willingness to take bets. We use the previous
example to illustrate that if the forecaster is willing to
take bets, a decision maker can bet with the forecaster
as an “insurance” against mis-prediction. Suppose Al-
ice is trying to decide whether or not to use a product.
If she uses the product, she gains $10 if the product
is effective and loses $2 otherwise. The personalized
medicine service (forecaster) predicts that the prod-
uct is effective with 50% chance for Alice. Under this
probability Alice expects to gain $4 if she decides to
use the product, but she is worried the probability is
incorrect. Alice proposes a bet: Alice pays the fore-
caster $6 if the product is effective, and the forecaster
pays Alice $6 otherwise. The forecaster should accept
the bet because under its own forecasted probability
the bet is fair (i.e., the expectation is zero if the fore-
casted probabilities are true for Alice). Alice gets the
guarantee that if she decides to use the product, ef-
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fective or not, she gains $4 — equal to her expected
utility under the forecasted (and possibly incorrect)
probability. In general, we show that Alice has a way
of choosing bets for any utility function and forecasted
probability, such that her true gain equals her expected
gain under the forecasted probability.

From the forecaster’s perspective, if the true probabil-
ity that Alice’s treatment is effective is actually 10%,
then the forecaster will lose $4.8 from this bet in ex-
pectation. However, in our setup, the forecaster makes
probabilistic forecasts for many different decision mak-
ers, each selecting some bet based on their utility func-
tion and forecasted probability. The forecaster might
gain or lose on individual bets, but it only needs to
not lose on the entire set of bets on average for the
approach to be sustainable. Intuitively, our mecha-
nism averages individual decision maker’s difference
between forecasted gain and true gain so the difficult
requirement that each difference should be negative
has been reduced to an easier requirement that the
average difference should be negative.

However, this protocol leaves the forecaster vulnerable
to exploitation. For example, if Alice already knows
that the product will be ineffective; she could still
bet with the forecaster for the malicious purpose of
gaining $6. Surprisingly we show that in the online
setup (Cesa-Bianchi and Lugosi, 2006), the forecaster
has an algorithm to adapt its forecasts and guaran-
tee vanishing loss in the long run, even in the pres-
ence of malicious decision makers. This is achieved
by first using any existing online prediction algorithm
to predict the probabilities, then applying a post pro-
cessing algorithm to fine-tune these probabilities based
on past gains/losses (similar to the idea of recalibra-
tion (Kuleshov and Ermon, 2017; Guo et al., 2017)).

As a concrete application of our approach, we simulate
the interaction between an airline and passengers with
real flight delay data. Risk averse passengers might
want to avoid a flight if there is possibility of delay
and their loss in case of delay is high. We show if
an airline offers to accept bets based on the predicted
probability of delay, it can help risk-averse passengers
make better decisions, and increase both the airline’s
revenue (due to increased demand for the flight) and
the total utility (airline revenue plus passenger utility).

We further verify our theory with large scale simula-
tions on several datasets and a diverse benchmark of
decision tasks. We show that forecasters based on our
post-processing algorithm consistently achieve close to
zero betting loss (on average) within a small number of
time steps. On the other hand, several seemingly rea-
sonable alternative algorithms not only lack theoreti-
cal guarantees, but often suffer from positive average

betting loss in practice.

2 Background

2.1 Decision Making with Forecasts

This section defines the basic setup of the paper. We
represent the decision making process as a multi-player
game between nature, a forecaster and a set of (deci-
sion making) agents. At every step t nature reveals
an input observation xt to the forecaster (e.g. pa-
tient medical records) and selects the hidden proba-
bility µ∗t ∈ [0, 1] that Pr[yt = 1] = µ∗t (e.g. probability
treatment is successful), We only consider binary vari-
ables (yt ∈ {0, 1} = Y) and defer the general case to
Appendix B.

The forecaster chooses a forecasted probability µt ∈
[0, 1] to approximate µ∗t . We also allow the forecaster
to represent the lack of knowledge about µ∗t , i.e. the
forecaster outputs a confidence ct ∈ [0, 1] where the
hope is that µ∗t ∈ [µt − ct, µt + ct].

At each time step, one or more agents can use the
forecast µt and ct to make decisions, i.e. to select an
action at ∈ A. However, for simplicity we assume that
different agents make decisions at different time steps,
so at each time step there is only a single agent, and we
can uniquely index the agent by the time step t. The
agent knows its own loss (negative utility) function
lt : A×Y → [−M,M ] (the forecaster does not have to
know this) where M ∈ R+ is the maximum possible
loss. This protocol is formalized below.

Protocol 1: Decision Making with Forecasts
For t = 1, · · · , T

1. Nature reveals xt ∈ X to forecaster and chooses
µ∗t ∈ [0, 1] without revealing it

2. Forecaster reveals µt, ct ∈ (0, 1) where (µt −
ct, µt + ct) ⊂ (0, 1)

3. Agent t has loss function lt : A × Y → R and
reveals at selected according to µt, ct and lt

4. Nature samples yt ∼ Bernoulli(µ∗t ) and reveals yt;
Agent incurs loss lt(at, yt)

We make no assumptions on nature, forecaster, or the
agents. They can choose any strategy to generate their
actions, as long as they do not look into the future (i.e.
their action only depends on variables that have al-
ready been revealed). In particular, we make no i.i.d.
assumptions on how nature selects yt and µ∗t ; for ex-
ample, nature could even select them adversarially to
maximize the agent’s loss.
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2.2 Individual Coverage

Ideally in Protocol 1 the forecaster’s prediction µt, ct
should satisfy µ∗t ∈ [µt−ct, µt+ct]) for each individual
t (this is often called individual coverage or individual
calibration in the literature). However, many exist-
ing results show that learning individually calibrated
probabilities from past data is often impossible (Vovk
et al., 2005; Barber et al., 2019; Zhao et al., 2020) un-
less the forecast is trivial (i.e. [µt−ct, µt+ct] = [0, 1]).

One intuitive reason for this impossibility result is that
in many practical scenarios for each xt we only observe
a single sample yt ∼ µ∗t . The forecaster cannot infer µ∗t
from a single sample yt without relying on unverifiable
assumptions.

2.3 Probability as Willingness to Bet

A major justification for probability theory has
been that probability can represent willingness to
bet (De Finetti, 1931; Halpern, 2017). For example,
if you truly believe that a coin is fair, then it would
be inconsistent if you are not willing to win $1 for
heads, and lose $1 for tails (assuming you only care
about average gain rather than risk). More specifically
a forecaster that holds a probabilistic belief should be
willing to accept any bet where it gains a non-negative
amount in expectation.

For binary variables, we consider the case where a fore-
caster believes that a binary event Y ∈ {0, 1} hap-
pens with some probability µ∗ but does not know the
exact value of µ∗. The forecaster only believes that
µ∗ ∈ [µ − c, µ + c] ⊂ [0, 1]. The forecaster should be
willing to accept any bet with non-negative expected
return under every µ∗ ∈ [µ − c, µ + c]. For exam-
ple, assume the forecaster believes that a coin comes
up heads with at least 40% chance and at most 60%
chance. The forecaster should be willing to win $6 for
heads, and lose $4 for tails; similarly the forecaster
should be willing to lose $4 for heads, and win $6 for
tails.

More generally, according to Lemma 1 (proved in Ap-
pendix D), a forecaster believes that the probability of
success Pr[Y = 1] = µ∗ of the binary event Y satisfies
µ∗ ∈ [µ− c, µ+ c] if and only if she is willing to accept
bets where she loses b(Y − µ)− |b|c,∀b ∈ R.

Lemma 1. Let µ, c ∈ (0, 1) such that [µ− c, µ+ c] ⊂
[0, 1], then a function f : Y → R satisfies ∀µ̃ ∈ [µ −
c, µ+c], EY∼µ̃[f(Y )] ≤ 0 if and only if for some b ∈ R
and ∀y ∈ {0, 1}, f(y) ≤ b(y − µ)− |b|c.

In words, a forecaster is willing to lose f(Y ) if f has
non-positive expectation under every probability the
forecaster considers possible. However, every such

function f are smaller (i.e. forecaster loses less) than
b(Y − µ) − |b|c for some b ∈ R. Therefore, we only
have to consider whether a forecaster is willing to ac-
cept bets of the form b(Y − µ)− |b|c.

3 Decisions with Unreliable Forecasts

In Protocol 1, agents could make decisions based on
the forecasted probability µt, ct and the agent’s loss lt.
For example, the agent could choose

at := arg min
a∈A

EY∼µt lt(a, Y ) (1)

to minimize the expected loss under the forecasted
probability.

However, how can the agent know that this decision
has low expected loss under the true probability µ∗t ?
This can be achieved with two desiderata, which we
formalize below:

We denote the agent’s maximum / average / minimum
expected loss under the forecasted probability as

Lmax
t = max

µ̃∈µt±ct
EY∼µ̃[lt(at, Y )]

Lavg
t = EY∼µt [lt(at, Y )]

Lmin
t = min

µ̃∈µt±ct
EY∼µ̃[lt(at, Y )]

and true expected loss as L∗t = EY∼µ∗
t
[lt(at, Y )]. If the

agent knows that

Desideratum 1 L∗t ∈ [Lmin
t , Lmax

t ]
Desideratum 2 The interval size ct is close to 0.

then the agent can infer that the true expected loss
L∗t is not too far off from the forecasted expected loss
Lavg
t . This is because if ct is small then Lmin

t will be
close to Lmax

t . Both L∗t and Lavg
t will be sandwiched

in the small interval [Lmin
t , Lmax

t ].

However, we show that desiderata 1 and 2 often can-
not be achieved simultaneously. To guarantee L∗t ∈
[Lmin
t , Lmax

t ] the forecaster in general must output in-
dividually correct probabilities (i.e. µ∗t ∈ [µt− ct, µt +
ct]), as shown by the following proposition (proof in
Appendix D).

Proposition 1. For any µt, ct, µ
∗
t ∈ (0, 1) where (µt−

ct, µt + ct) ⊂ (0, 1)

1. If µ∗t ∈ [µt − ct, µt + ct] then ∀lt : Y × A → R we
have L∗t ∈ [Lmin

t , Lmax
t ]

2. If µ∗t 6∈ [µt − ct, µt + ct] then ∀lt : Y × A → R, if
∀a ∈ A, `t(a, 0) 6= `t(a, 1), then L∗t 6∈ [Lmin

t , Lmax
t ]

In words, if µ∗t 6∈ [µt−ct, µt+ct], we cannot guarantee
that L∗t ∈ [Lmin

t , Lmax
t ] unless the agent’s loss function

is trivial (e.g. it is a constant function). However, in
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Section 2.2 we argued that it is usually impossible to
achieve µ∗t ∈ [µt − ct, µt + ct] unless ct is very large
(i.e. [µt − ct, µt + ct] = [0, 1]). If ct is too large, the
interval [Lmin

t , Lmax
t ] will be large, and the guarantee

that L∗t ∈ [Lmin
t , Lmax

t ] would be practically useless
even if it were true. This means the forecaster cannot
convey confidence in individual predictions it makes,
and as a result the agent can’t be very confident about
the expected loss it will incur.

3.1 Insuring against unreliable forecasts

Since it is difficult to satisfy desiderata 1 and 2 si-
multaneously, we consider relaxing desideratum 1. In
particular, we study what guarantees are possible for
each individual decision maker even when µ∗t 6∈ [µt −
ct, µt + ct], i.e., the prediction is wrong.

We consider the setup where each agent can receive
some side payment (a form of ”insurance” which could
depend on the outcome Y , and could be positive or
negative) from the forecaster, and we would like to
guarantee

Desideratum 1’

L∗t − EY∼µ∗
t
[payment(Y )]︸ ︷︷ ︸

True expected loss w. side payment

∈ [Lmin
t , Lmax

t ]︸ ︷︷ ︸
Forecasted expected loss range

In other words, we would like the expected loss under
the true distribution to be predictable once we incor-
porate the side payment.

Note that desideratum 1’ can be trivially satisfied if
the forecaster is willing to pay any side payment to
the decision agent. For example, an agent can choose
payment(Y ) := EY∼µt [lt(at, Y )] − lt(at, Y ) to satisfy
desideratum 1’. However, if the forecaster offers any
side payment, it could be subject to exploitation. For
example, decision agents could request the forecaster
to pay $1 under any outcome yt. Such a mechanism
cannot be sustainable for the forecaster.

3.2 Insuring with fair bets

Even though the forecaster cannot offer arbitrary pay-
ments to the decision agent, we show that the fore-
caster can offer a sufficiently large set of payments,
such that [i] each decision agent can select a payment
to satisfy Desideratum 1’ and [ii] the forecaster has
an algorithm to guarantee vanishing loss in the long
run, even when the decision agents tries to exploit the
forecaster.

In fact, the “fair bets” in Section 2.3 satisfy our re-
quirement. Specifically, the forecaster can offer the set

{payment(Y ) := b(Y − µt)− |b|ct,∀b ∈ [−M,M ]}

as available side payment options. The constant M ∈
R+ caps the maximum payment each decision agent
can request (in our setup lt is also upper bounded by
M). This set of payments satisfy both [i] (which we
show in this section) and [ii] (which we show in the
next section).

Before we proceed to show [i] and [ii], for convenience,
we formally write down the new protocol. Compared
to Protocol 1, the decision agent selects some “stake”
bt ∈ [−M,M ], and receive side payment bt(Y − µt)−
|bt|ct from the forecaster.

Protocol 2: Decision Making with Bets For t =
1, · · · , T

1. Nature reveals observation xt ∈ X and chooses
µ∗t ∈ [0, 1] without revealing it

2. Forecaster reveals µt, ct ∈ (0, 1) where (µt −
ct, µt + ct) ⊂ (0, 1)

3. Agent t has loss function lt : A × Y → R and
reveals action at ∈ A and stake bt ∈ [−M,M ]
selected according to µt, ct and lt

4. Nature samples yt ∼ Bernoulli(µ∗t ) and reveals yt

5. Agent incurs loss lt(at, yt) − bt(yt − µt) + |bt|ct;
forecaster incurs loss bt(yt − µt)− |bt|ct

Denote the agent’s true expected loss with side pay-
ment as (i.e. the LHS in Desideratum 1’)

Lpay
t := L∗t︸︷︷︸

decision loss

−EY∼µ∗
t
[bt(Y − µt) + |bt|ct]︸ ︷︷ ︸

payment from forecaster

(2)

then we have the following guarantee1 for any choice
of µt, ct, µ

∗
t , at and lt

Proposition 2. If the stake bt = lt(at, 1) − lt(at, 0)
then Lpay

t ∈ [Lmin
t , Lmax

t ]

In words, the agent has a choice of stake bt that only
depends on variables known to the agent (lt and at)
and does not depend on variables unknown to the
agent (µ∗t , yt). If the agent chooses this bt, she can
be certain that desideratum 1’ is satisfied, regardless
of what the forecaster or nature does (they can choose
any µt, ct, µ

∗
t ).

This mechanism allows the agent to make decisions
as if the forecasted probability is correct, i.e.
as if µ∗t ∈ [µt − ct, µt + ct]. This is because Proposi-
tion 2 is true for any choice of action at (as long as
the agent chooses bt according to Proposition 2 after
selecting at). Intuitively, for any action at the agent
selects, she can guarantee to achieve a total loss close
to EY∼µt lt(at, Y ) (assuming ct is small). This is the
same guarantee she would get as if µ∗t ∈ [µt−ct, µt+ct].

1For the more general version of the proposition in the
multi-class setup, see Appendix A.1.
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In addition, if [ii] is satisfied (i.e. the forecaster has
vanishing loss), the forecaster also doesn’t lose any-
thing, so should have no incentive to avoid offering
these payments. We discuss this in the next section.

Algorithm 1: Post-Processing for Exactness

Invoke Algorithm 2 and 3 with K = (T/ log T )1/4

for t = 1, · · · , T do
Receive µ̂t and ĉt from Algorithm 2
Receive λt from Algorithm 3
Output µt = µ̂t, ct = ĉt + λt
Input yt and bt
Set rt = (bt/

√
|bt|)(µt − yt)−

√
|bt|ĉt,

st = −
√
|bt|, Send (rt, st) to Algorithm 3

Algorithm 2: Online Prediction

Choose any initial value for θ1, φ1

for t = 1, · · · , T do
Input xt and output µ̂t = µθt(xt), ĉt = cφt(xt)
Input yt and bt
θt+1 = θt − η ∂

∂θ (µθt(xt)− yt)2

φt+1 = φt − η ∂
∂φ (bt(µ̂t − yt)− |bt|cφt(xt))

2

4 Probability Forecaster Strategy

In this section we study the forecaster’s strategy. As
motivated in the previous section, the goal of the fore-
caster (in Protocol 2) is to:

1) have non-positive cumulative loss when T is large,
so that the side payments are sustainable
2) output the smallest ct compatible with 1), so that
forecasts are as sharp as possible

Specifically, the forecaster’s average cumulative loss
(up to time T ) in Protocol 2 is

1

T

T∑
t=1

bt(µt − yt)− |bt|ct (3)

Whether Eq.(3) is non-positive or not depends on the
actions of all the players: forecaster µt, ct, nature yt
and agent bt. Our focus is on the forecaster, so we
say that a sequence of forecasts µt, ct, t = 1, 2, · · · is
asymptotically sound relative to y1, b1, y2, b2, · · · if
the forecaster loss in Protocol 2 is non-positive, i.e.

lim sup
T→∞

1

T

T∑
t=1

bt(µt − yt)− |bt|ct ≤ 0 (4)

In subsequent development we will use a stronger defi-
nition than Eq.(4). We say that a sequence of forecasts

µt, ct, t = 1, 2, · · · is asymptotically exact relative to
y1, b1, y2, b2, · · · if the forecaster loss in Protocol 2 is
exactly zero, i.e.

lim sup
T→∞

1

T

T∑
t=1

bt(µt − yt)− |bt|ct = 0 (5)

Intuitively asymptotic soundness requires that the
forecaster should not lose in the long run; asymptotic
exactness requires that the forecaster should neither
lose nor win in the long run — a stronger require-
ment.2

The reason we focus on asymptotic exactness is be-
cause the forecaster should output the smallest possi-
ble ct to achieve sharp forecasts. Observe that the left
hand side of Eq.(4) is increasing if ct decreases. There-
fore, whenever the forecaster is asymptotically sound
but not asymptotically exact (i.e. the left hand side
in Eq.(4) is strictly negative), there is some room to
decrease ct without violating asymptotic soundness.

Algorithm 3: Swap Regret Minimization

Input: number of discrete interval K
Partition [−1, 1] into equal intervals [−1 = v0, v1),
· · · , [vK−1, vK = 1]

For each interval init an empty set Dk, set v0 = 0
for t = 1, · · · , T do

Initialize an empty ordered list Vt
Initialize vt = vt−1 and while vt 6∈ Vt do

λv
t

t = arg inf
λ∈[−1,1)

1
|Dvt |

∑
rt,st∈Dvt

(rt + stλ)2

Append vt to Vt
Set vt as the k that satisfies
λv

t

t ∈ [vk, vk+1)

Remove all elements before vt from Vt
Select vt uniform randomly from Vt

Choose λt = λv
t

t and send λt to Algorithm 1
Receive (rt, st) from Algorithm 1, add to Dvt

4.1 Online Forecasting Algorithm

We aim to achieve asymptotic exactness with mini-
mal assumptions on yt, bt, t = 1, 2, · · · (we only as-
sume boundedness). This is challenging for two rea-
sons: an adversary could select yt, bt, t = 1, 2, · · · to
violate asymptotic exactness as much as possible (e.g.
decision agents could try to profit on the forecaster’s
loss); in Protocol 2 the agent’s action bt is selected
after the forecaster’s prediction µt, ct are revealed, so
the agent has last-move advantage.

2In mechanism design literature, Eq.(4) and Eq.(5) are
typically referred to as weak and strong budget balanced.
Here we use the terminology in probability forecasting lit-
erature.
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Nevertheless asymptotic exactness can be achieved as
shown in Theorem 1 (proof in Appendix C). In fact,
we design a post-processing algorithm that modifies
the prediction of a base algorithm (similar to recalibra-
tion (Kuleshov and Ermon, 2017; Guo et al., 2017)).
Algorithm 1 can modify any base algorithm (as long as
the base algorithm outputs some µt, ct at every time
step) to achieve asymptotic exactness, even though the
finite time performance could be hurt by a poor base
prediction algorithm.

Theorem 1. Suppose there is a constant M > 0 such
that ∀t, |bt| ≤ M , there exists an algorithm to out-
put µt, ct in Protocol 2 that is asymptotically exact for
µ∗t , bt generated by any strategy of nature and agent.
In particular, Algorithm 1 satisfies(

1

T

T∑
t=1

bt(µt − yt)− |bt|ct

)2

= O

(√
log T

T

)
(6)

For this paper we use as our base algorithm a sim-
ple online gradient descent algorithm (Zinkevich, 2003)
shown in Algorithm 2. Specifically Algorithm 2 learns
two regression models (such as neural networks with
a single real number as output) µθ and cφ. µθ
is trained to predict µ∗t by minimizing the stan-
dard L2 loss minθ

∑t
τ=1(µθ(xτ ) − yτ )2 while cφ is

trained to to minimize the squared payoff of each bet
minφ

∑t
τ=1(bτ (µ̂τ − yτ )− |bτ |cφ(xτ ))2

Based on Algorithm 2, Algorithm 1 learns an addi-
tional “correction” parameter λt ∈ R by invoking Al-
gorithm 3. Intuitively, up to time t, if the forecaster
has positive cumulative loss in Protocol 2, then the
cts have been too small in the past, Algorithm 1 will
select a larger λt to increase ct; conversely if the fore-
caster has negative cumulative loss, then the cts have
been too large in the past, and Algorithm 1 will select
a smaller λt to decrease ct.

Despite the straight-forward intuition, the difficulty
comes from ensuring Theorem 1 for any sequence of
yt, bt, t = 1, · · · . In fact, Algorithm 3 needs to be a
swap regret minimization algorithm (Blum and Man-
sour, 2007). Appendix C provides a detailed explana-
tion and proof.

Special Case: Monotonic Loss In general, the
forecaster selects ct carefully to achieve asymptotic ex-
actness and protect itself from exploitation. However,
there are special cases where the ct is not necessary
(i.e. the forecaster can always output ct ≡ 0).

In particular, ct is not necessary whenever the loss
function satisfies ∀t, lt(1, at) ≥ lt(0, at). Intuitively,
yt = 1 is never better (incurs equal or higher loss) than
yt = 0. For example, ineffective treatment is never bet-

ter than effective treatment; delayed flight is never bet-
ter than on-time flights. Under this assumption and
according to Proposition 2, decision makers can choose
a non-negative stake 0 ≤ bt := lt(1, at)−lt(0, at) to en-
sure Lpay

t ∈ [Lmin
t , Lmax

t ]. In other words, in Protocol
2 we can restrict bt ≥ 0 without losing the guarantee
of Proposition 2. In this situation the forecaster can
achieve asymptotic exactness even when ct ≡ 0

Corollary 1. Under the assumptions of Theorem 1
if additionally bt ≥ 0,∀t, there exists an algorithm to
output µt in Protocol 2 with ct ≡ 0 that is asymp-
totically exact for µ∗t , bt generated by any strategy of
nature and agent.

4.2 Offline Forecasting

Our new definition of asymptotic soundness in Eq.(4)
can be extended to the offline setup, where nature’s ac-
tion in Protocol 2 is i.i.d. sampled from random vari-
ables X,Y , i.e. xt ∼ X,µ∗t = E[Y | xt]. In addition,
the agent’s action bt in Protocol 2 is a (fixed) func-
tion of xt i.e. bt = b(xt) for some b : X → [−M,M ].
In this setup, the forecaster can also select its actions
µt, ct based on fixed functions of xt.

In Appendix A.2 we formally define soundness in the
offline setup, and show that for certain choices of
agent’s action b we can recover existing notions of
calibration (Dawid, 1985; Guo et al., 2017; Klein-
berg et al., 2016; Kumar et al., 2019) or multicali-
bration (Hébert-Johnson et al., 2017). In other words,
if a forecaster satisfies the existing notions of calibra-
tion, there are some functions b : X → [−M,M ]: as
long as the decision making agents limit their actions
to bt = b(xt), the forecaster will be asymptotically
sound. The benefit is that once deployed, the fore-
caster does not have to be updated (compared to the
online setup where the forecaster must continually up-
date via Algorithm 1). However, the short-coming is
that we make strong assumptions on how the agents
choose bets to insure themselves.

5 Related Work

Calibration: A forecaster is calibrated if among the
times the forecaster predicts that an event happens
with α probability, the event indeed happens α frac-
tion of the times (Brier, 1950; Murphy, 1973; Dawid,
1984; Platt et al., 1999; Zadrozny and Elkan, 2001;
Guo et al., 2017). Calibration can be achieved even
when the data is not i.i.d. (Cesa-Bianchi and Lugosi,
2006; Kuleshov and Ermon, 2016). However, calibra-
tion is an average performance measurement and pro-
vides no guarantee on the correctness of individual
probability predictions.



Shengjia Zhao, Stefano Ermon

Scoring rule: a (proper) scoring rule is a function
s(y, pY ) that measures the “quality” of a probability
forecast pY if the outcome y is observed (Brier, 1950;
Savage, 1971; Gneiting and Raftery, 2007; Dawid and
Musio, 2014). However, achieving a high score only
reflects high average quality, rather than the quality
of individual predictions.

Conformal prediction: Many applications only re-
quire a confidence interval (i.e. a subset of Y) instead
of the joint probability. A confidence interval fore-
caster (or conformal forecaster) is δ-exact if 1− δ pro-
portion of the predicted intervals contain the observed
outcome. There are algorithms that guarantee exact-
ness for exchangeable data (Vovk et al., 2005; Shafer
and Vovk, 2008). However, exactness guarantees the
proportion of predictions that contain the observed
outcome, rather than any individual prediction.

The above approaches provide no guarantees on the
correctness of individual predictions. The classic
method that can guarantee individual predictions
is non-parametric learning. Algorithms such as
nearest neighbor or Gaussian processes can produce
correct individual probabilities with infinite training
data (Bishop, 2006), but have no guarantees when
training data is finite or not i.i.d.

In the finite data regime, a notable research direction
is individual calibration, i.e. calibration on every
data sample. Individual calibration is sometimes pos-
sible with a randomized forecaster (Zhao et al., 2020).
However, for randomized forecasts, calibration can-
not be interpreted as forecasting correct probabilities.
Without randomization, individual calibration is often
impossible (Vovk et al., 2005; Vovk, 2012; Zhao et al.,
2020; Barber et al., 2019).

Individual calibration can be relaxed to group cal-
ibration, i.e. calibration on pre-specified subsets of
the data (Kleinberg et al., 2016). Notably, (Hébert-
Johnson et al., 2017) achieve calibration for a paramet-
ric set of subsets. Several impossibility results (Klein-
berg et al., 2016; Pleiss et al., 2017) show that often
group calibration cannot be meaningfully achieved.

Our contribution Our approach has the main de-
sired effect of individual calibration (decision makers
can confidently use the forecasted probability ”as if”
it is correct) without actually achieving individual cal-
ibration, hence are not limited by the impossibility re-
sults above. The key difference that makes our guar-
antees possible (without i.i.d. assumptions, well spec-
ification assumptions, infinite data, or randomization)
is that the forecasts depend on downstream decision
tasks. Rather than predicting perfect probabilities, we
aim for the attainable objective of achieving exactness
for actually encountered decision tasks.

6 Case Study on Flight Delays

In this section we study a practical application that
could benefit from our proposed mechanism. Com-
pared to other means of transport, flights are often
the fastest, but usually the least punctual. Different
passengers may have different losses in case of delay.
For example, if a passenger needs to attend an im-
portant event on-time, the loss from a delay can be
very large, and the passenger might want to choose an
alternative transportation method. The airline com-
pany could predict the probability of delay, and each
passenger could use the probability to compute their
expected loss before deciding to fly or not. However,
as argued in Section 2.2, there is in general no good
way to know that these probabilities are correct. Even
worse, the airline may have the incentive to under-
report the probability of delay to attract passengers.

Instead the airline can use Protocol 2 to convey con-
fidence to the passengers that the delay probability is
accurate. In this case, Protocol 2 has a simple form
that can be easily explained to passengers as a “de-
lay insurance”. In particular, if a passenger buys a
ticket, he can choose to insure himself against delay by
specifying the amount b1t he would like to get paid if
the airplane is delayed. The airlines provides a quote
on the cost b0t of the insurance (i.e. the passenger
pays b0t if the flight is not delayed). Note that this
would be equivalent to Protocol 2 if the airline first
predicts the probability of delay µt, ct and then quotes

b0t :=
b1t (µt+ct)
1−µt−ct .

If a passenger buys the right insurance according to
Proposition 2, their expected utility (or negative loss)
will be fixed — she does not need to worry that the
predicted delay probability might be incorrect. In ad-
dition, if the airline follows Algorithm 1 the airline
is also guaranteed to not lose money from the “de-
lay insurance” in the long run (no matter what the
passengers do), so the airline should be incentivized
to implement the insurance mechanism to benefit its
passengers “for free”.

Passenger Model Since the passengers’ utility
functions are unknown, we model three types of pas-
sengers that differ by their assumptions on µ∗t when
they make their decision:

1. Naive passengers don’t care about delays and as-
sume the airline doesn’t delay.

2. Trustful passengers assume the delay probability
forecasted by the airline is correct.

3. Cautious passengers assume the worst (i.e. they
choose actions that maximizes their worst case
utility)
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Figure 1: The airline’s revenue (Top) and total utility (of both airline and passenger, Bottom) with and without
the betting mechanism. Different colors represent the percentage of cautious passengers. The x-axis represents
the number of flights that has happened, and the y-axis represents the average utility per passenger across all
past flights. Left: Without the betting mechanism that insure passengers against delay Middle and Right:
With the betting mechanism, the airline revenue increases (because it is able to charge a higher ticket price due
to increased demand) and the total utility increases. The middle panel is the utility with both Algorithm 1 and
Algorithm 3, while the right panel only uses Algorithm 1 (i.e. it always sets λt = 0). In general the middle panel
achieves faster convergence, so with fewer iterations, the utility is better than the right panel.

In this experiment we will vary the proportion of cau-
tious passengers, and equally split the remaining pas-
sengers between naive and trustful. The naive and
trustful passengers do not care about the risk of mis-
prediction, so they do not buy the delay insurance (i.e.
they always choose b1t = 0), while cautious passengers
always buy insurance that maximize worst case utility.

6.1 Simulation Setup

Dataset We use the flight delay and cancellation
dataset (DoT, 2017) from the year 2015, and use flight
records of the single biggest airline (WN). As input
feature, we convert the source airport, target airport,
and scheduled time into one-hot vectors, and binarize
the arrival delay into 1 (delay > 20min) and 0 (delay
< 20min). We use a two layer neural network with
the leaky ReLU activation for prediction.

Passenger Utility Let y ∈ {0, 1} denote whether
a delay happens, and a ∈ {0, 1} denote whether the
passenger chooses to ride the plane. We model the
passenger utility (negative loss) as

−l(y, a) =

 y = ∗, a = 0 ralt

y = 0, a = 1 rtrip − cticket

y = 1, a = 1 rtrip − cticket − cdelay

where ralt is the utility of the alternative option (e.g.
taking another transportation or cancelling the trip).

Code is available at
https://github.com/ShengjiaZhao/ForecastingWithBets

For simplicity we assume that this is a single real num-
ber. rtrip is the reward of the trip, cticket is the cost
of the ticket, and cdelay is the cost of a delayed flight.
For each flight we sample 1000 potential passengers by
randomly drawing the values ralt, rtrip and cdelay (for
details see appendix).

Airline Pricing Based on the passenger type
(naive, trustful, cautious) and passenger parameter
ralt, rtrip and cdelay, each passenger will have a max-
imum they are willing to pay for the flight. For sim-
plicity we assume the airline will choose cticket at the
highest price for which it can sell 300 tickets. The pas-
sengers who are willing to pay more than cticket will
choose a = 1, and other passengers will choose a = 0.

6.2 Delay Insurance Improves Total Utility

The simulation results are shown in Figure 1. Using
the betting mechanism is strictly better for both the
airline’s revenue (i.e. ticket price * number of tickets)
and the total utility (airline revenue + passenger util-
ity). This is because the cautious passengers always
make decisions to maximize their worst case utility.
With the betting mechanism, their worst case utility
becomes closer to their actual true utility, so their de-
cision (a = 1 or a = 0) will better maximize their true
utility. The airline also benefits because it can charge
a higher ticket price due to increased demand (more
cautious passengers will choose a = 1).

We also consider several alternatives to Algorithm 3.
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Figure 2: Comparing forecaster loss in Protocol 2 for different forecaster algorithms on MNIST (results for Adult
dataset are in appendix B.2). Each plot is an average performance across 20 different decision tasks, where we
plot the top 10%, 25%, 50%, 75%, 90% quantile in forecaster loss. If the forecaster achieves asymptotic exactness
defined in Eq.(5), then the loss should be close to 0. Left panel is Algorithm 1, and the rest are other seemingly
reasonable algorithms explained in Section 7. The loss of a forecaster that use Algorithm 1 typically converges
to 0 faster, while alternative algorithms often fail to converge.

Figure 3: Histogram of the interval size ct produced by the forecaster algorithm across all the tasks. There is no
noticeable difference between the different algorithms. Notably the interval sizes are typically quite small, and
big interval size is exponentially less common.

The alternative algorithms do not provide theoretical
guarantees; in practice, they also achieve worse conver-
gence to the final utility. This is be a reason to prefer
Algorithm 3 if the number of iterations T is small.

7 Additional Experiments

We further verify our theory with simulations a di-
verse benchmark of decision tasks. We also do ablation
study to show that Algorithm 3 is necessary. Several
simpler alternatives often fail to achieve asymptotic
exactness and have worse empirical performance.

Dataset and Decision Tasks We use the MNIST
and UCI Adult (Dua and Graff, 2017) datasets.
MNIST is a multi-class classification dataset; we con-
vert it to binary classification by choosing Pr[Y = 1 |
l(x) = i] = (i + 1)/11 where the l(x) ∈ {0, 1, · · · , 9}
is the digit category. We also generate a benchmark
consisting of 20 different decision tasks. For details see
Appendix B.2.

Comparison We compare several forecaster algo-
rithms that differ in whether they use Algorithm 3 to
adjust the parameter λt. In particular, swap regret
refers to Algorithm 3; none does not use λt and simply
set it to 0; standard regret minimizes the standard
regret rather than the swap regret; naive best re-
sponse chooses the λt that would have been optimal
were it counter-factually applied to the past iterations.

Forecaster Model As in the previous experiment,
we use a two layer neural network as the forecaster µθ
and cφ. For the results shown in Figure 6 we also use
histogram binning (Naeini et al., 2015) on the entire
validation set to recalibrate µθ, such that µθ satisfies
standard calibration (Guo et al., 2017).

Results The results are plotted in Figure 2,3 in the
main paper and Figure 5,6 in Appendix B.2. There are
three main observations: 1) Even when a forecaster
is calibrated, for individual decision makers, the ex-
pected loss under the forecaster probability is almost
always incorrect. 2) Algorithm 1 has good empirical
performance. In particular, the guarantees of Theo-
rem 1 can be achieved within a reasonable number of
time steps, and the interval size ct is usually small.
3) Seemingly reasonable alternatives to Algorithm 1
often empirically fail to be asymptotically exact.

8 Conclusion

In this paper, we propose an alternative solution to ad-
dress the impossibility of individual calibration based
on an insurance between the forecaster and decision
makers. Each decision maker can make decisions as
if the forecasted probability is correct, while the fore-
caster can also guarantee not losing in the long run.
Future work can explore social issues that arise, such
as honesty (Foreh and Grier, 2003), fairness (Dwork
et al., 2012), and moral/legal implications.
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