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Abstract

To achieve label efficiency for training su-
pervised learning models, pool-based active
learning sequentially selects samples from a
set of candidates as queries to label by op-
timizing an acquisition function. One cat-
egory of existing methods adopts one-step-
look-ahead strategies based on acquisition
functions tailored with the learning objec-
tives, for example based on the expected loss
reduction (ELR) or the mean objective cost
of uncertainty (MOCU) proposed recently.
These active learning methods are optimal
with the maximum classification error reduc-
tion when one considers a single query. How-
ever, it is well-known that there is no perfor-
mance guarantee in the long run for these
myopic methods. In this paper, we show
that these methods are not guaranteed to
converge to the optimal classifier of the true
model because MOCU is not strictly concave.
Moreover, we suggest a strictly concave ap-
proximation of MOCU—Soft MOCU—that
can be used to define an acquisition function
to guide Bayesian active learning with the-
oretical convergence guarantee. For train-
ing Bayesian classifiers with both synthetic
and real-world data, our experiments demon-
strate the superior performance of active
learning by Soft MOCU compared to other
existing methods.
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1 INTRODUCTION

Active learning has been one of effective learning
strategies for training supervised learning models when
collecting or labeling data is difficult or expensive (Gal
et al., 2017; Tran et al., 2019; Sinha et al., 2019). Ac-
tive learning methods sequentially collect data in the
input feature space and acquire their corresponding la-
bels to improve model predictions based on different
objective functions. The goal is to derive generalizable
supervised models with less labeled data compared to
the traditional blind training data collection approach
that does not explicitly consider the cost incurred by
collecting or labeling data.

In this paper, we focus on learning optimal Bayesian
classifiers with limited training data. To achieve sam-
ple and label efficiency, we study pool-based Bayesian
active learning. It starts with a prior of an uncertain
model and collects training data in a sequential man-
ner by optimizing an acquisition function measuring
the benefit to our learning objective from querying la-
bels for corresponding candidates. By reducing model
uncertainty through the active learning procedure, we
aim to approach the optimal classifier of the unknown
true model, which has the minimum prediction error.

Several notable Bayesian active learning methods have
been proposed using different acquisition functions.
Maximum Entropy Search (MES) or Uncertainty Sam-
pling selects the candidate with the maximum pre-
dictive probability entropy (Sebastiani and Wynn,
2000; Mussmann and Liang, 2018). However, ob-
serving the most uncertain candidate may not pro-
vide the most useful model information if the ob-
servation itself is noisy. Another Shannon entropy
based method, Bayesian Active Learning by Disagree-
ment (BALD) (Houlsby et al., 2011; Kirsch et al.,
2019), selects the candidate to minimize the entropy
of the uncertain model parameters. The Equivalence
Class Edge Cutting algorithm (EC2) targeting at ac-
tive learning with finite possible models, chooses the
candidate that maximally reduces the version space
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probability mass (Golovin et al., 2010). Based on the
policy Gibbs error, a generalization of the Shannon
entropy, Cuong et al. (2013) proposed the maximum
Gibbs error criterion (maxGEC) to query the candi-
date that has the maximum Gibbs error so that the
remaining posterior entropy is minimized. While var-
ious different acquisition functions are used, most of
the existing active learning methods focus on reduc-
ing the model uncertainty instead of directly reducing
the classification error, despite this being the ultimate
learning objective. To rectify this shortcoming, in this
paper, we focus on active learning that directly fo-
cuses on reducing the model uncertainty that impacts
the classification accuracy of the resulting classifier.
While the reduction of model uncertainty often results
in the decrease in classification error, it is important
to note that not all model uncertainty affects classifi-
cation error. Rather than reducing uncertainty in gen-
eral, an active learning scheme that aims at reducing
the model uncertainty that critically impacts the ob-
jective (i.e., classification accuracy) can significantly
improve its label efficiency.

There is one category of methods based on Expected
Loss Reduction (ELR) that aims to maximize the re-
duction in classification error directly in a one-step-
look-ahead manner (Roy and McCallum, 2001; Zhu
et al., 2003; Kapoor et al., 2007). They directly target
at reducing the classification error and can achieve the
expected optimal performance that is achievable with
one single query (Roy and McCallum, 2001). How-
ever, these methods do not have any theoretical con-
vergence guarantee, and empirically, they suffer from
myopic behavior with degraded efficiency in the long
run. Yoon et al. (2013) proposed a metric, Mean Ob-
jective Cost of Uncertainty (MOCU), which enables
model uncertainty quantification by estimating the ex-
pected classification performance loss compared with
the optimal classifier due to the uncertainty. MOCU
is equivalent to ELR when applied to active learning
and provides a tool to analyze the convergence of ac-
tive learning methods to the true optimal classifier.

In this paper, we first analyze why ELR- or MOCU-
based active learning methods may get stuck before
collecting enough data to identify the true optimal
classifier—despite their efficacy in identifying optimal
one-step queries. We further propose a novel acqui-
sition function based on a strictly concave approxi-
mation of MOCU, referred to as Soft MOCU, to ad-
dress this problem. Thanks to the strict concavity
of Soft MOCU, the resulting acquisition function can
capture the continuous change in model uncertainty.
As a result, one-step-look-ahead active learning guided
by this acquisition function alleviates the limitations
due to its myopic nature and is guaranteed to converge

to the optimal classifier. We provide theoretical proof
of the convergence of the Soft-MOCU-based method.
Last but not least, we demonstrate the expected sam-
ple efficiency of Soft-MOCU-based active learning with
both synthetic and real-world datasets.

2 BACKGROUND

We first review the basic concepts in Bayesian active
learning for classification, focusing on the acquisition
function targeting directly at the learning objective.

2.1 Mean Objective Cost of Uncertainty

Mean Objective Cost of Uncertainty (MOCU) is a met-
ric measuring the direct influence on the performance
with respect to the learning objective due to model un-
certainty (Yoon et al., 2013, 2020). We here provide a
review in the context of learning Bayesian classifiers.

Consider the classification problem in the input fea-
ture space x ∈ X and output label space y ∈ Y =
{0, 1, . . . ,M − 1} with a probabilistic model charac-
terized by θ as p(y|x, θ). The aim is to find a classi-
fier ψ : X → Y to estimate the label given a testing
feature vector x∗ ∈ X as ψ(x∗). In this paper we fo-
cus on the 0-1 loss to measure the performance of a
classifier, which directly reflects the classification er-
ror. Denote the expected classification error of ψ on
x as Cθ(ψ,x) = Ep(y|x,θ)[1(ψ(x) �= y)] = 1 − p(y =
ψ(x)|x, θ). The optimal classifier of θ, denoted as ψθ,
is defined as the classifier that minimizes the error
ψθ := argminψ Cθ(ψ,x) = argmaxy p(y|x, θ).
In the practical situations with model uncertainty
where the true model parameter θr is unknown, we of-
ten assume that based on prior knowledge or observed
data, we can derive a distribution π(θ) over the uncer-
tain model parameter set θ ∈ Θ. As we do not know
the true model, the learning objective is to train an
Optimal Bayesian Classifier (OBC) ψπ(θ) that mini-
mizes the expected classification error over π(θ) (Dal-
ton and Dougherty, 2013):

ψπ(θ) = argmin
ψ

Eπ(θ)[Cθ(ψ,x)] = argmax
y

p(y|x),
(1)

where p(y|x) = Eπ(θ)[p(y|x, θ)] is the predictive dis-
tribution. OBC is the optimal classifier based on the
current knowledge. If we can observe enough data to
update our model knowledge π(θ) with reduced model
uncertainty, OBC will converge to the true optimal
classifier based on the true model θr .

In Bayesian classification, MOCU can be defined as the
expected difference between the expected error of OBC
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and the optimal classifier due to model uncertainty:

M(π(θ)) = Ex[Eπ(θ)[Cθ(ψπ(θ),x)− Cθ(ψθ,x)]], (2)

where Ex stands for averaging over the feature space
X . The first term is the OBC error. Since ψθ is the
optimal classifier with a specific θ, for the terms inside
the expectation, Cθ(ψπ(θ),x)− Cθ(ψθ,x) ≥ 0. So the
second term is a lower bound of the OBC error. De-
note supp(π) as the support of π(θ). If M(π(θ)) = 0,
then ∀x ∈ X , ∀θ ∈ supp(π), ψπ(θ) = ψθ, i.e.
argmaxy p(y|x) = argmaxy p(y|x, θ), indicating that
OBC is the true optimal classifier. Note that MOCU
does not capture all the model uncertainty as we only
require argmaxy p(y|x, θ) = argmaxy p(y|x) instead
of p(y|x, θ) = p(y|x) to make MOCU= 0. But with
MOCU= 0, we have found the true optimal classifier
and there is no need to further reduce the model un-
certainty considering our learning objective.

2.2 Pool-based Bayesian Active Learning

Bayesian active learning sequentially searches for can-
didates in X as queries to acquire their labels by op-
timizing an acquisition function. Then by including
the new observed data into the training dataset D,
the learning algorithm updates the posterior distribu-
tion π(θ|D), with which the acquisition function will
be computed to guide active learning in each iteration.
In the following discussion, to simplify the notations,
we use π(θ) and p(y|x) for the posterior and predic-
tive distribution conditioned on D by omitting D in
the notations. When a new observation pair (x∗, y∗)
is collected, the posterior and the predictive distribu-

tion are updated by π(θ|x∗, y∗) = π(θ)p(y∗|x∗,θ)
p(y∗|x∗) and

p(y|x;x∗, y∗) = Eπ(θ|x∗,y∗)[p(y|x, θ)].
We can define the acquisition function based on
MOCU in a one-step-look-ahead manner:

UM(x;π(θ)) = M(π(θ))− Ep(y|x)M(π(θ|x, y)), (3)

which is the expected reduction of MOCU if observing
the new pair (x, y). As y is not known at the current
iteration to acquire the label, it is averaged over all
possible values of y.

We can show that Cθ(ψθ,x
′) in the MOCU definition

(2) can be cancelled in two MOCUs in (3). Since
π(θ) = Ep(y|x)[π(θ|x, y)] (x is often assumed to be
independent of θ so π(θ|x) = π(θ)), we can rewrite
the first term in (3) as:

M(π(θ)) =

Ex′{Ep(y|x)[Eπ(θ|x,y)[Cθ(ψπ(θ),x′)− Cθ(ψθ,x
′)]]} (4)

while the second term in (3) can be expanded as:

Ep(y|x)M(π(θ|x, y)) = Ex′{Ep(y|x)[Eπ(θ|x,y)[
Cθ(ψπ(θ|x,y),x′)− Cθ(ψθ,x

′)]]}. (5)

So the term Cθ(ψθ,x
′) can be cancelled out. The ac-

quisition function is just the OBC prediction error re-
duction after observing the new pair (x, y):

UM(x;π(θ)) = Ex′{Eπ(θ)[Cθ(ψπ(θ),x′)]} (6)

− Ex′{Ep(y|x)[Eπ(θ|x,y)[Cθ(ψπ(θ|x,y),x′)]]},

which is the same acquisition function as Error Loss
Reduction (ELR) (Roy and McCallum, 2001).

In this paper, we focus on MOCU-based active learn-
ing with the OBC as the classifier. As shown in (6),
MOCU-based active learning queries the candidate to
achieve the maximum expected reduction in OBC clas-
sification error in each iteration. Hence, the MOCU-
based method is the optimal strategy for active learn-
ing of the OBC with a single query.

3 METHODS

In this section, we first show that MOCU-based active
learning based on a one-step-look-ahead strategy may
get stuck before MOCU converges to 0 with the corre-
sponding OBC converging to the true optimal classi-
fier. We then propose a new acquisition function that
has the guarantee that the OBC converges to the true
optimal classifier.

3.1 Analysis of MOCU-based Active
Learning

We discuss the myopic behavior of MOCU-based
Bayesian active learning due to the inherent limita-
tions of the one-step-look-ahead setup. As we have
shown, MOCU-based active learning is an example of
one-step-look-ahead strategies, which are only optimal
for the current single iteration. Practically, MOCU-
based active learning usually performs well in the first
several iterations of active learning but there is no
guarantee of good performance in the long run.

We now analyze why MOCU-based active learning
may get stuck before the OBC converges to the true
optimal classifier. In other words, when the acquisi-
tion function for all the candidates in the pool is 0,
i.e. ∀x ∈ X , UM(x;π(θ)) = 0, the active learning will
degenerate to random sampling and keep selecting the
candidate based on the adopted tie-breaking strategy.
When that happens, we say that active learning gets
stuck without converging to the true optimal classifier
if MOCU is still larger than 0.

We first show that the MOCU (2) is a concave func-
tion of π(θ), but it is not strictly concave every-
where with nonzero curvature to guide active learn-
ing. From the definition of ψθ and ψπ(θ) in Sec-
tion 2.1, we have Cθ(ψθ,x) = 1 − maxy p(y|x, θ)
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and Eπ(θ)[Cθ(ψπ(θ),x)] = Eπ(θ)[1−p(ψπ(θ)(x)|x, θ)] =
1−maxy Eπ(θ)[p(y|x, θ)]. Substituting them in (2),

M(π(θ)) =

Ex{Eπ(θ)[max
y

p(y|x, θ)]−max
y

Eπ(θ)[p(y|x, θ)]},(7)
= Ex{Eπ(θ)[max

y
p(y|x, θ)]− p(ψπ(θ)(x)|x, θ)]} (8)

In (7), the first term Eπ(θ)[maxy p(y|x, θ)] is a lin-
ear function of π(θ). While the second term
maxy Eπ(θ)[p(y|x, θ)] is the maximum over M linear
functions and thus is a convex piecewise linear func-
tion. As a result, (7) equals to a linear function sub-
tracting a convex function and therefore it is con-
cave and also piecewise linear. It is thus not strictly
concave everywhere. Within each piece of the linear
functions in (8), the OBC classifier ψπ(θ)(x),x ∈ X
takes the same label for different π(θ). To gain the
intuition, assume a three-class classification problem
with the uncertainty class of two models Θ = {θ1, θ2}
and the pool with only one candidate X = {x}. Let
the probabilistic model p(y|x, θ1) = (0.5, 0.4, 0.1) and
p(y|x, θ2) = (0.15, 0.4, 0.45). Since π(θ2) = 1 − π(θ1)
in this setup, the MOCU can be expressed as a func-
tion of π(θ1) as shown in Fig. 1. As we explained,
it is a piecewise linear function. Within the three
intervals corresponding to the linear function pieces,
argmaxy p(y|x) is 2, 1, and 0 from left to right, re-
spectively.

In (3), we observe that π(θ) = Ep(y|x)[π(θ|x, y)]. Since
MOCU is a concave function, based on Jensen’s In-
equality, we have UM(x;π(θ)) ≥ 0. While MOCU is
not a strictly concave function as explained, we can
find two conditions that make the equality to hold:
first, ∀y ∈ Y, π(θ|x, y) = π(θ), which means observing
x does not help change the knowledge about θ; second,
π(θ|x, y) changes but the change of π(θ|x, y), ∀y ∈ Y,
is within the same linear piece of MOCU. In the second
condition, observing x one time only provides little in-
formation of θ, and that information will not change
the OBC classifier. If MOCU is larger than 0 but all
the x cannot provide enough information to update
the OBC classifier, the acquisition function can then
be 0 for all the candidates, with which MOCU-based
active learning will get stuck before converging to the
true optimal classifier. Appendix B provides such a
synthetic example and Appendix E explicitly shows
that MOCU-based active learning can get stuck. From
the discussion above, we can see that MOCU-based
active learning may get stuck because MOCU is not
strictly concave.

In the next section, we propose a strictly concave
function to approximate MOCU and an one-step-look-
ahead acquisition function based on it. The approx-
imation makes the corresponding active learning to
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Figure 1: Comparison between MOCU and Soft
MOCU with different k values

have similar short-term optimality for single iterations
as in MOCU-based active learning. More importantly,
the imposed strictly concavity leads to the theoreti-
cal guarantee that the OBC will converge to the true
optimal classifier without getting stuck.

3.2 Soft-MOCU-based Active Learning

As we discussed, the myopic behavior that MOCU-
based active learning has is due to the linear function
pieces causing the acquisition function for active learn-
ing to lose the guiding capability when the update of
π(θ|x, y) is not significant enough. To address this
problem, we propose a new acquisition function based
on modified MOCU, which has the theoretical conver-
gence guarantee to the true optimal classifier.

In this paper, We approximate the maximum operator
in (2) by the log-sum-exp function:

max
y

p(y|x) ≈ 1

k
log[

∑

y

exp(k · p(y|x))], (9)

where k is a parameter controlling the approximation.
Using a larger k in log-sum-exp gives a better approx-
imation to the maximum operator. Note that other
functions can also be used. With this approximation,
we can define the following Soft MOCU (SMOCU) as:

Ms(π(θ)) = Ex{Eπ(θ)[max
y

p(y|x, θ)]−
1

k
log[

∑

y

exp(k · p(y|x))]}, (10)

which is now a strictly concave function instead of be-
ing piecewise linear. Similarly, as with larger k, Soft
MOCU gets closer to MOCU. We illustrate the mod-
ified MOCU with different k values in Fig. 1 for the
example described in Section 3.1.

We now define an acquisition function by the reduction
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of Soft MOCU to guide active learning in the one-step-
look-ahead manner:

Us(x;π(θ)) = Ms(π(θ))− Ep(y|x)[Ms(π(θ|x, y))].(11)

As shown in the example, Soft MOCU can provide a
good approximation to MOCU. More critically, it also
has large curvature on the changing points of MOCU
so that the above acquisition function has large values
when the update of π(θ|x, y) is significant causing the
change of OBC. While when the update of π(θ|x, y) is
not significant (falling within intervals of linear pieces
in the original MOCU), Soft MOCU still has small
curvature so that the acquisition function has small
positive values instead of being zero as in (3). With
these properties of the Soft-MOCU-based acquisition
function, when the model has high uncertainty with
large MOCU values, the approximation by Soft MOCU
will not affect the choice of candidates and the cor-
responding active learning performs similarly as the
original MOCU-based method to achieve short-term
optimality. On the other hand, when the model has
low uncertainty and a single query will not be able to
change π(θ|x, y) significantly, for example when π(θ1)
is close to 0 or 1 in Fig. 1, the MOCU-based method
will get stuck. However, our Soft-MOCU-based acqui-
sition function can still guide active learning out of the
myopic behavior. Please refer to Appendix A for the
pseudo-code of our Soft-MOCU-based active learning
and the complexity analysis.

3.3 Theoretical Convergence Guarantee

We now first prove that Soft MOCU (10) is a strictly
concave function. If active learning is guided by the
acquisition function (11) based on Soft MOCU, MOCU
will converge to 0. This means that we can learn the
optimal classifier of the true model without getting
stuck with the theoretical convergence guarantee.

We assume that both X and Θ are discrete with finite
elements, and the true model parameter θr ∈ Θ with
π0(θr) > 0 for the prior π0(θ).

Lemma 1 Ms(π(θ)) is a strictly concave function of
π(θ).

Proof. It is known that log-sum-exp is a convex
function (page 74, Sec. 3.1 in Boyd and Vanden-
berghe (2004)). We now prove that f(p(y|x)) =
1
k log[

∑
y exp(k ·p(y|x))] is a strictly convex function of

p(y|x) conditioning on
∑
y p(y|x) = 1. In the follow-

ing proof, we denote p(y|x) for y ∈ Y as the vector z
for simplicity. From Boyd and Vandenberghe (2004),

∇2f(z) = k(diag(g)− ggT ), g :=
exp(z)

1T exp(z)
, (12)

where exp(z) = (ez1 , . . . , ezM ). Note that in the ex-
pression of ∇2f(z), diag(g) is a full-rank matrix and
rank(ggT ) is 1. Therefore, rank(∇2f) = n − 1 and
f(z) is affine (being a linear function) along only one
direction. Apparently that direction is along the all-
ones vector 1, as can be verified by: 1T∇2f(z)1 = 0,
and f is strictly convex along any other directions.
In addition, since z denotes a probability mass func-
tion, it is constrained on the hyperplane 1Tz = 1.
On the hyperplane, no vector is parallel to 1, as
1T (z + α1) �= 1 forα �= 0. Hence, within the hyper-
plane f is a strictly convex function.

Since f(p(y|x)) is a strictly concave function and
p(y|x) is a linear function of π(θ), log[

∑
y exp(k ·

p(y|x))] is therefore a strictly convex function of π(θ).
Ms(π(θ)) is equal to a linear function subtracting a
strictly convex function and hence is a strictly concave
function of π(θ). �

Lemma 2 ∀x ∈ X , Us(x;π(θ)) ≥ 0; the equality only
holds for the case π(θ) = π(θ|x, y), ∀y ∈ Y.

Proof. Since Soft MOCU is a strictly concave func-
tion and Ep(y|x)[π(θ|x, y))] = π(θ), by Jensen’s in-
equality, we have

Us(x;π(θ)) = Ms(π(θ))−Ep(y|x)[Ms(π(θ|x, y))] ≥ 0.
(13)

and the equality only holds if π(θ) = π(θ|x, y), ∀y ∈
Y. �

Lemma 3 If Us(x;π(θ)) = 0, ∀x ∈ X , then
M(π(θ)) = 0.

This lemma states that if the acquisition function val-
ues of all the candidates are 0, then we can conclude
that MOCU is 0. This means that the OBC of π(θ) has
converged to the true optimal classifier ψθr . MOCU-
based active learning does not have such a property.
Because of that, it may get stuck before converging to
the true optimal classifier.

Proof. We will show that the lemma holds by prov-
ing the contraposition: if M(π(θ)) > 0, ∃x ∈
X s.t. Us(x;π(θ)) > 0.

Based on (2), M(π(θ)) > 0 indicating ∃x∗ ∈ X ∃θ∗ ∈
supp(π) s.t. ψπ(θ)(x

∗) �= ψθ∗(x
∗), i.e. maxy p(y|x∗) �=

maxy p(y|x∗, θ∗), where supp(π) is the support of π(θ).
So ∃y∗ ∈ Y s.t. p(y∗|x∗, θ∗) �= p(y∗|x∗). Now we
assume that we observe (x∗, y∗), then the update of
π(θ∗) can be written as:

π(θ∗|x∗, y∗) =
π(θ∗)p(y|x∗, θ∗)

p(y∗|x∗)
. (14)

Since p(y∗|x∗, θ∗) �= p(y∗|x∗), we have π(θ∗|x∗, y∗) �=
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π(θ∗). With Lemma 2, we can have Us(x∗;π(θ)) > 0.
That concludes our proof. �

Lemma 4 If a candidate x is measured infinitely of-
ten almost surely (a.s.), Us(x;πn(θ))

a.s.−−→ 0 as n →
∞.

Intuitively, if a candidate has been measured many
times, there is no benefit to measure it again.

Proof. For a candidate x, define a set of θ as Θx =
{θ ∈ Θ : p(y|x, θ) = p(y|x, θr)}. At the n-th iteration,
assume that the candidate x has been observed Nx(n)
times and limn→∞Nx(n) = ∞. Based on the poste-

rior consistency theory we have
∑
θ∈Θx

πn(θ)
a.s.−−→ 1

as n → ∞ (Gelman et al., 2013). Since pn(y|x) =∑
θ∈Θ π

n(θ)p(y|x, θ), we have pn(y|x) a.s.−−→ p(y|x, θr).
By Bayes’ rule, πn(θ|x, y) = πn(θ)p(y|x,θ)

pn(y|x) , and hence

we have πn(θ|x, y)−πn(θ) a.s.−−→ 0. With Lemma 2, we

can conclude that Us(xn;π
n(θ))

a.s.−−→ 0 as n→ ∞. �

Theorem 1 Assume that both X and Θ are discrete
with finite elements, the true model parameter θr ∈ Θ
and π0(θr) > 0; then for the active learning algo-
rithm defined by the acquisition function (11), we have

M(πn(θ))
a.s.−−→ 0 as n→ ∞.

Proof. As the number of active learning iterations
n → ∞, some of the candidates will be measured
infinitely often. Following the Soft-MOCU-based
method by the acquisition function (11), denote the
set of candidates being measured infinitely often as
XI = {x ∈ X : limn→∞Nx(n) = ∞}. With
the query sequence of the candidates as {xn}, we
have ∃N, s.t. ∀n > N,xn ∈ XI , which means that
after N iterations, we can only observe candidates
from the set XI . Based on Lemma 4, this indicates
Us(xn;π

n(θ))
a.s.−−→ 0.

On the other hand, as Soft-MOCU-based active learn-
ing maximizes the acquisition function in each itera-
tion, we have Us(xn;π

n(θ)) = maxx∈X Us(x;πn(θ)).
Then the maximum value Us(xn;π

n(θ)) converging to
0 means that Us(x;πn(θ)), x ∈ X converges to 0 uni-

formly. Based on Lemma 3, we have M(πn(θ))
a.s.−−→ 0

and we can conclude the proof. �
We should emphasize that the inverse of Lemma 3 is
not true. When MOCU is 0, the acquisition function
of some candidate x’s can still be positive. To under-
stand this, as we have shown in Section 2.1, MOCU
does not capture all the model uncertainty. On the
other hand, based on Lemma 2, the acquisition func-
tion based on Soft MOCU can only be 0 when there is
no model uncertainty.

4 EMPIRICAL RESULTS

We first investigate the influence of the parameter
k on the performance of our Soft-MOCU-based ac-
tive learning (SMOCU). We then benchmark SMOCU
with other active learning methods, including random
sampling, MES (Sebastiani and Wynn, 2000), BALD
(Houlsby et al., 2011) and MOCU, on both simu-
lated and real-world classification datasets. The code
is made available at https://github.com/QianLab/

Soft_MOCU.

4.1 Performance of Soft-MOCU with
Different k Values

Here we compare the performance of SMOCU with
different k values together with MOCU and BALD on
a binary classification problem with one feature x ∈
[−4, 4]. The underlying probabilistic model is:

p(y = 1|x, α, β) = S(x) + ε(x, α, β)

S(x) = 0.6
exp (x)

1 + exp (x)
+ 0.2

ε(x, α, β) = α exp(−x2)+
β[exp(−(x− 4)2) + exp(−(x+ 4)2)], (15)

where θ = (α, β)T is the uncertain parameter vec-
tor with α and β independently uniformly distributed
in the intervals [−0.1, 0.1] and [−0.2, 0.2] respectively.
Fig. 2a illustrates the uncertain probabilistic model
with red lines indicating the upper and lower bounds of
the predictive probability. The probabilistic model has
higher uncertainty near x = ±4 depending on β than
the uncertainty near x = 0 depending on α. Observ-
ing data near x = ±4 can reduce model uncertainty
significantly and is preferred by BALD, but it cannot
help on the label prediction since the optimal classi-
fier will always label x = ±4 as 1 or 0. On the other
hand, as the optimal labels of the points in the middle
are uncertain given the prior knowledge, MOCU-based
active learning will query these points first to better
reduce the classification error at the beginning.

We randomly sample the true parameters from the
prior and perform different active learning methods
for 300 iterations. We compare different methods by
the error regret, which is defined as the error differ-
ence between the OBC and the true optimal classifier.
We repeat the simulations for 500 runs and plot the
average performance with standard deviation bars in
Fig. 2b. From the figure, not surprisingly, BALD per-
forms inefficiently at the beginning since it queries the
candidates on both sides. MOCU performs well at the
beginning but becomes inefficient after about 100 it-
erations, indicating some of the 500 simulations get
stuck as we analyzed in Section 3.1.
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(a) Predictive probability of class 1

(b) Error regret comparison among methods

Figure 2: (a) Predictive probability of class 1 under
uncertainty: the red lines indicate the upper and lower
bounds of the predictive probability; the blue dashed
line is the mean of the predictive probability; the green
dashed line indicates that the probability is equal to
0.5. (b) Active learning performance.

For Soft MOCU with different k values, as we shown
in Fig. 1, Soft MOCU gets closer to MOCU with
increasing k. As a result, Soft-MOCU-based active
learning should perform more similar to the MOCU-
based method as k increases. We can see from the
figure that, when k is small (k = 1), the performance
is close to BALD that aims to reduce the total model
uncertainty. With increasing k (= 10 or 100), the
performance of Soft-MOCU-based active learning at
the beginning gets closer to MOCU and more impor-
tantly, in the long run it performs better than both
BALD and MOCU, demonstrating Soft-MOCU-based
active learning can converge to the optimal classifier
with fewer iterations. As expected, when k is really
large (k = 10000), Soft MOCU can get really close to
MOCU with very small curvature with respect to π(θ)
as illustrated in Fig. 1, which leads to similar perfor-
mance degradation as shown in Fig. 2b.

We next benchmark Soft-MOCU-based active learning
for more simulated experiments and real-world exper-
iments, for which we compare active learning methods
based on random sampling, MES, BALD, MOCU, and
our Soft MOCU with k = 10 and 100.

Figure 3: Comparison of different active learning
methods based on the expected OBC error regret for
binary classification.

4.2 Simulated Experiments

We test these active learning methods on a simulated
experiment similar as the block in the center dataset
in Houlsby et al. (2011). The experiment includes a
binary classification problem with candidates from 2-
d feature space [−4, 4]2. The simulated data are de-
scribed by a Bayesian logistic regression model:

p(y = 1|x,w, b) = 1

1 + exp(−wTx− b)
, (16)

with a uniform parameter prior w1 ∼ U(0.3, 0.8), w2 ∼
U(−0.1, 0.1) and b ∼ U(−0.25, 0.25); w1, w2 and b are
independent. With this prior setting, the uncertainty
of p(y|x,w, b) is low in the region near the x2 axis
where the decision boundary lies and the uncertainty
is high in the region far away from the x2 axis. Within
the block region of [−1, 1]2, the observed labels are
flipped with the probability 0.3.

We randomly sample 100 particles from the parame-
ter prior as the uncertain parameter set, and randomly
choose one of them as the true parameter. We also uni-
formly sample 100 candidates from the feature space
as the candidate pool. Then we perform these differ-
ent methods for 500 iterations and calculate the error
regret. We repeat the simulation for 500 times and
plot the performance comparison with standard devi-
ations in Fig. 3. From the figure, MES has quite poor
performance as it simply queries the candidates with
the predictive probability close to 0.5. It may sample
many noisy observations from the noisy block region.
BALD performs poorly at the beginning since it can-
not identify which uncertainty is related to the learning
objective. MOCU performs well in the first several it-
erations, but poorly in the long run. As expected, our
Soft-MOCU-based methods perform better than other
competing methods with k = 100 performing the best.

We also compare these different methods on a multi-
class classification setup. We assume the fea-
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Figure 4: Comparison of different active learning
methods based on the expected OBC error regret for
three-class classification

ture space X = [−2, 2]2 and label space Y =
{0, 1, 2} with the probabilistic model p(y|x, σ2

y) =
fy(x, σ

2
y)/

∑
y′ f(x, σ

2
y′), where fy(x, σ

2
y) = exp(−(x−

my)
2/2σ2

y), y ∈ Y. We setmy to be (0, 0), (1, 0), (0, 1)
for y = 0, 1, 2 respectively; and independent uncertain
parameters σ2

y ∼ U(1, 5), y ∈ Y. Similar as the pre-
vious binary classification experiment, we perform the
five methods for 500 times and plot the average error
regret with standard deviations in Fig. 4. From the
figure, MES performs poorly as it samples the candi-
dates with maximal predictive entropy, while querying
these candidates provides little information to improve
classification. We again observe that MOCU performs
poorly in the long run while both Soft-MOCU-based
methods have better empirical performance on a par
with BALD.

4.3 Real-world Benchmark Experiments

We compare different active learning methods on the
UCI User Knowledge dataset (Kahraman et al., 2013).
The dataset assigns the knowledge status of 403 stu-
dents into four levels (High, Medium, Low, Very Low)
based on five input features in [0, 1]5, which reflect the
degree of study or exam performance. Here we use the
1st and 5th features as inputs for classification and
equally separate the 2-d feature space into 4× 4 bins.
Within the ith bin we assume a categorical distribution
for the knowledge levels p(y|x ∈ i-th bin) = p(i), 1 ≤
i ≤ 16 with parameters p(i) = (p

(i)
0 , p

(i)
1 , p

(i)
2 , p

(i)
3 ).

Assume that each parameter independently follows a
Dirichlet distribution p(i) ∼ Dir(α(i)) with α(i) as the
hyperparameters. We randomly choose 8 bins and set
uniform priors on them with α(i) = 1. For the other

8 bins, we set the prior by setting α
(i)
j = 1 if j is the

true label, and α
(i)
j = 10 for other labels. To obtain a

balanced classification problem, we randomly sample
50 samples from each class to test the five different

Figure 5: Classification error comparison on UCI User
Knowledge dataset

methods. We repeat the active learning procedures
for 150 times and compare the average classification
error in Fig. 5. From the figure, we can clearly ob-
serve two stages in the active learning procedures: the
first stage has about 20 iterations, in which all the
methods learn the optimal classification rules in the
8 bins with the uniform prior; while in the following
iterations as the second stage, different methods per-
form differently based on their acquisition functions.
BALD keeps choosing candidates from the bins with
the uniform prior in the second stage as those bins still
have larger model uncertainty. However, they cannot
help improve the classification. MOCU performs well
at the beginning, and then converges slowly. Our Soft-
MOCU-based method with k = 100 is again demon-
strated to converge faster than other methods.

More experiments with similar performance trends and
detailed discussions can be found in Appendix C & D.

5 CONCLUSIONS

Although the existing ELR- or MOCU-based meth-
ods are optimal for active learning when considering
single queries, we investigated why they may perform
poorly in the long run—both theoretically and empir-
ically. Based on the analysis, we proposed a Bayesian
active learning method with a new acquisition function
for learning optimal Bayesian classifiers. This acqui-
sition function is defined based on a strictly concave
approximation of MOCU, which we refer to as Soft
MOCU. Our new Soft-MOCU-based active learning is
efficient for the initial iterations as it approximates the
original MOCU-based active learning scheme. A crit-
ical feature of Soft MOCU is that its strict concavity
enables the resulting acquisition function to capture
small model uncertainty reduction and thus guaran-
tees the OBC to converge to the true optimal classi-
fier even when the myopic one-step-look-ahead queries
may not provide significant changes to the model pos-
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terior π(θ|x, y). Consequently, our proposed active
learning method can be efficient both at the beginning
as well as in the long run. In addition to the theoreti-
cal guarantee, our empirical results also demonstrated
the superior performance of our Soft-MOCU-based
method. Finally, as analyzed and observed in our ex-
periments, Soft MOCU with larger k performs bet-
ter at the beginning as it closely approximates MOCU
with local optimality whereas Soft MOCU with smaller
k performs better in the long run. Adaptively updat-
ing the value of k during the active learning procedure
is an interesting research direction.
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