
A Proof of Lemma 3.7

As discussed in Section 2, the privacy loss occurred at h̃(i) is lower bounded by the privacy loss occurred at
w̃

global. To keep our analysis general for all algorithms that fit in PriFedSync, we shall assume no knowledge
of Fi and analyze w̃

global.

Without sampling, we can write the update of w̃global as:

(1� ⌘)w̃global +
⌘

m

X

i2[m]

w̃
(i)(S(i)). (A.1)

This is fully invertible function of w̃(j), so that the privacy loss is of the updated w̃
global would be the same

w̃
(j), i.e.,

T

✓
H̃i(S), H̃i(S

0j)

◆
= T

✓
w̃

(j)(S(j)), w̃(j)(S
0(j))

◆
.

This lemma thus follows by the assumption.

B Proof of Lemma 3.8.

Let ! 2 [0, 1]m be the indicator vector of the Possion sampling outcome: !i = 1 if Client i is selected in
synchronization, i.e. i 2 ⌦. We use p! to denote the probability that ! appears, namely, p! = p

s(1� p)m�s

if ! has s nonzero entries.

Let E = {! : !i = !j = 1} denote that event that both Client i and j are selected, and let E
c denote

the complementary event that not both of them are selected. The output distribution of the subsampled
algorithm H̃ � Samplep on dataset S can be written as a mixture model

H̃i � Samplep(S) =
X

!2E

pwP! +
X

!2Ec

pwQ!, (B.1)

where we use P! to denote the output distribution associated with ! if ! 2 E, and use Q! for the other
case. It is easy to see that P! depends on dataset S(j) but Q! does not. With the neighboring dataset S

0j ,
the distribution H̃i � Samplep(S0) can also be written as a mixture, yet only the components corresponding
to cases where both i and j are selected will change. Specifically,

H̃i � Samplep(S
0j) =

X

!2E

pwP
0
! +

X

!2Ec

pwQ!. (B.2)

The following technical lemma helps us bound the trade-o↵ function between H̃i � Samplep(S) and H̃i �
Samplep(S

0j).

Lemma B.1. Let F be an event space and F = E [ E
c is a valid partition of F . Let ! denote an

arbitrary event in F , whose probability is pw. We have
P

w2F pw = 1. For each event ! 2 F , Pw,
P

0
w and Qw are distributions reside on a common sample space. Consider two mixture distributions A =X

!2E

p!P! +
X

!2Ec

p!Q! and B =
X

!2E

p!P
0
! +

X

!2Ec

p!Q!. If there exists a trade-o↵ function f such that

T (P!, P
0
!) � f for all !, it holds that

T (A,B)(↵) � max {f(↵), 1� ↵� pE} .

Under the context of our problem, it holds that P(E) = p
2 and P(Ec) = 1� p

2 due to the independence of
sampling Client i and j. Besides, for any fixed ! 2 E, using the same argument for Lemma 3.7, we have

T (P!, P
0
!) = T

�
H̃i(S⌦), H̃i(S

0j
⌦ )
�
� fj . This proofs our results.

B.1 Proof of Lemma B.1

Proof. Let pE = P(w 2 E). We can write

A = pE

X

!2E

p!|EP! + (1� pE)
X

!2Ec

p!|EcQ!
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and

B = pE

X

!2E

p!|EP
0
! + (1� pE)

X

!2Ec

p!|E2Q!.

Suppose a rejection rule � achieves type I error ↵:

↵ = EA[�] = pE

X

!2E

p!|E EP! [�] + (1� pE)
X

!2Ec

p!|Ec EQ! [�]. (B.3)

The type II error of � is

1� EB [�] = 1� pE

X

!2E

p!|E EP 0
!
[�]� (1� pE)

X

!2Ec

p!|Ec EQ! [�]

= 1� pE + pE

 
1�

X

!2E

p!|E EP 0
!
[�]

!
� (1� pE)

X

!2Ec

p!|Ec EQ! [�]

= pE

 
1�

X

!2E

p!|E EP 0
!
[�]

!
+ (1� pE)

 
1�

X

!2Ec

p!|Ec EQ! [�]

!

= pE

 
X

!2E

p!|E
�
1� EP 0

!
[�]
�
!

+ (1� pE)

 
1�

X

!2Ec

p!|Ec EQ! [�]

!

(i)
� pE

 
X

!2E

p!|Ef(EP! [�])

!
+ (1� pE)

 
1�

X

!2Ec

p!|Ec EQ! [�]

!

(ii)
� pE

 
X

!2E

p!|Ef(EP! [�])

!
+ (1� pE)f

 
X

!2Ec

p!|Ec EQ! [�]

!

(iii)
� pEf

 
X

!2E

p!|E EP! [�]

!
+ (1� pE)f

 
X

!2Ec

p!|Ec EQ! [�]

!

(iv)
� f

 
pE

X

!2E

p!|E EP! [�] + (1� pE)
X

!2Ec

p!|Ec EQ! [�]

!

= f(↵),

(B.4)

where

(i) follows from the definition of the trade-o↵ function: T (P!, P
0
!) � f implies 1� EP 0

!
[�] � f(EP! [�]),

(ii) follows from the property of trade-o↵ functions: f(↵)  1� ↵, 8↵ 2 [0, 1],

(iii) and (iv) follows from the Jensen’s inequality for convex functions (f is convex).
13



It also holds that

1� EB [�] = 1� pE

X

!2E

p!|E EP 0
!
[�]� (1� pE)

X

!2Ec

p!|Ec EQ! [�]

(v)
= 1� pE

X

!2E

p!|E EP 0
!
[�]�

(
↵� pE

X

!2E

p!|E EP! [�]

)

= 1� ↵� pE + pE

(
1�

X

!2E

p!|E EP 0
!
[�] +

X

!2E

p!|E EP! [�]

)

= 1� ↵� pE + pE

(
X

!2E

p!|E
�
1� EP 0

!
[�] + EP! [�]

�
)

(vi)
� 1� ↵� pE + pE

(
X

!2E

p!|E
�
1� TV(P 0

!, P!)
�
)

(vii)
� 1� ↵� pE .

(B.5)

The equality (v) follows from Equation (B.3). For (vi) and (vii), consider the rejection rule � for testing P!

versus P 0
!. The type I error is ↵! = EP! [�] and type II error is �! = 1� EP 0

!
[�]. It is well known that

↵! + �! � 1� TV(P!, P
0
!),

where TV(P!, P
0
!) is the total variation distance between P! and P

0
!, which takes value between 0 and 1.

C Proof of Theorem 1

Lemma 3.8 shows that for any i 2 [m],

T
�
H̃i � Samplep(S), H̃i � Samplep(S

0j)
�
� gp,j . (C.1)

Recall that Equation 3.2 established the equivalence between T
�
(H̃i�Samplep)⌦R(S), (H̃i�Samplep)⌦R(S

0j)
�

and T
�
Mi(S),Mi(S

0j)
�
. By the composition theorem of f -di↵erential privacy (Lemma 3.3), we have that

for any i 2 [m],

T
�
Mi(S),Mi(S

0j)
�

= T
�
(H̃i � Samplep)⌦R(S), (H̃i � Samplep)⌦R(S

0j)
�
� g

⌦R
p,j . (C.2)

The above result holds for a fixed Client j. Since the weak federated f -di↵erential privacy notion (Defini-
tion 3.5) is defined for any pairs of i, j such that i 6= j, we need to take the “least private” trade-o↵ function
as our lower bound. That is g⌦R

p,jmin
, where gp,jmin = min {gp,1, . . . , gp,m}.

Last, the strong federated privacy lower bound can be obtained by applying the composition theorem again:

T

✓Y

i 6=j

Mi(S),
Y

i 6=j

Mi(S
0j)

◆
=
O

i 6=j

T
�
Mi(S),Mi(S

0j)
�
� g

⌦(m�1)R
p,jmin

.

D Proof of Theorem 2

Let gp,j = max(fj , 1� ↵� p
2). By Theorem 1, it holds that

T
�
Mi(S),Mi(S

0j)
�
� g

⌦R
p,j , i 2 [m]. (D.1)

We can apply the CLT type of result in Dong et al. (2019, Theorem 3.5) to obtain the asymptotic convergence
of (D.1). Yet we found that taking the 1�↵�p

2 component into account will give rise to a trade-o↵ function
that does not have an explicit form. Nonetheless, we can still lower bound

T
�
Mi(S),Mi(S

0j)
�
� f

⌦R
j , i 2 [m]. (D.2)

We then utilize the following result from Dong et al. (2019) to obtain fj .14



Lemma D.1 (Dong et al. (2019)). Algorithm 2 is CBj/nj
(G1/�j

)⌦K-di↵erentially private.

Plugging fj = CBj/nj
(G1/�j

)⌦K into Equation (D.2), we obtain

T
�
Mi(S),Mi(S

0j)
�
� CBj/nj

(G1/�j
)⌦KR

, i 2 [m]. (D.3)

The asymptotic convergence then follows from Corollary 5.4 of Dong et al. (2019): CBj/nj
(G1/�j

)⌦KR ! Gµj

if Bj

nj

p
KR ! cj as

p
KR ! 1 where

µj =
p
2cj

q
e
��2
j �(1.5��1

j ) + 3�(�0.5��1
j )� 2.

Similar to the argument for Theorem 1, we take the “least private” Gµj as the lower bound for the weak
federated f -di↵erential privacy notion, which is Gµmax with µmax = max {µ1, . . . , µm}. Likewise, the trade-o↵
function for the strong federated privacy is Gp

m�1µmax
.

E Additional Plots

E.1 Trade-o↵ function Cp(f)

Figure E.1: The trade-o↵ function Cp(f) where f = G1.8, p = 0.35.

Figure E.1 plots an example trade-o↵ function Cp(f) where f is a GDP trade-o↵ function G1.8, and the
sampling rate p = 0.35.

E.2 Non-IID MNIST

Figure E.2: MNIST experiment: A larger sampling rate leads to faster convergence.
15



Figure E.2 plots the average test accuracy versus the number of synchronization rounds for 3 runs with
di↵erent client sampling rates in the MNIST epxeriment. It shows that the convergence is faster if we use a
larger sampling rate. The noise level is set to � = 0.75.

E.3 Non-IID CIFAR

(a) (b)

Figure E.3: (a) The label class proportion for 10 randomly selected clients in the CIFAR-10 experiments.
We use the Dirichlet prior with � = 0.5. (b) Average top-1 test accuracy vs synchronization rounds for the
CIFAR-10 experiments. The client sampling rate is p = 1.

To illustrate the the heterogeneity of client data distributions, Figure E.3a plots the class proportion of the
local data sets for 10 randomly selected clients. Figure E.3b plots the test accuracy curve for CIFAR-10
experiment when the client sampling rate is p = 1.
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