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Abstract

Federated learning (FL) is a training
paradigm where the clients collaboratively
learn models by repeatedly sharing infor-
mation without compromising much on the
privacy of their local sensitive data. In this
paper, we introduce federated f -di↵erential
privacy, a new notion specifically tailored
to the federated setting, based on the
framework of Gaussian di↵erential privacy.
Federated f -di↵erential privacy operates
on record level : it provides the privacy
guarantee on each individual record of one
client’s data against adversaries. We then
propose a generic private federated learn-
ing framework PriFedSync that accommo-
dates a large family of state-of-the-art FL
algorithms, which provably achieves feder-
ated f -di↵erential privacy. Finally, we em-
pirically demonstrate the trade-o↵ between
privacy guarantee and prediction perfor-
mance for models trained by PriFedSync
in computer vision tasks.

1 Introduction

Federated learning (McMahan et al., 2017) is an
emerging paradigm that enables multiple clients to
collaboratively learn prediction models without ex-
plicitly sharing data. Unlike traditional distributed
training approaches that upload all the data to cen-
tral servers, federated learning performs on-device
training and only some summaries of local data or lo-
cal models are exchanged among clients. Typically,
the clients upload their local models to the server
and share the global averaging in a repeated manner.
This o↵ers plausible solutions to address the critical
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data privacy issue: sensitive information about in-
dividuals such as typing history, shopping transac-
tions, geographical locations, medical records, would
stay localized.

Nonetheless, a malicious client who participates in
the federated learning might still be able to learn in-
formation about the other clients’ data through the
shared model’s weights. This is because it is pos-
sible for an adversary to learn about or even iden-
tify certain individuals by simply tweaking the input
datasets and probing the output of the algorithm
(Fredrikson et al., 2015; Shokri et al., 2017). This
gives rise to a pressing call for privacy-preserving
federated learning algorithms. Accordingly, we ur-
gently need a rigorous and principled framework to
enhance data privacy, and to quantitatively answer
the important questions:

Can another client identify the presence or absence
of any individual record in my data in federated
learning? Worse, what if all the other clients ally

each other to attack my data?

A number of works have tried to answer simi-
lar questions from di↵erent perspectives (McMahan
et al., 2018; Geyer et al., 2017; Li et al., 2019; Singh
et al., 2020), and numerous privacy notions and as-
sociated approaches are proposed to address related
problems, yet none of them have answered these
questions fully and directly. To the best of our
knowledge, all existing works plainly generalize the
classical di↵erential privacy definition to the feder-
ated setting: an adversary can remove one client’s
whole dataset, and this type of attack would not
incur massive changes to the output of the algo-
rithm. The resulting privacy guarantee executes at
the user level: whether a client has participated in
the training can not be inferred by adversaries, and
the client’s whole dataset is private.

While the user level privacy has important appli-
cations in federated learning, it is complementary
and equally important to consider weaker privacy
notions at the record level. First, privacy is gener-
ally at odds with performance. A user level privacy



guarantee is usually too strong and one often seeks a
weaker notion that protects privacy from more prac-
tical attacks (Li et al., 2019). More importantly,
consider the case whee multiple hospitals in di↵erent
countries would like to collaboratively learn predic-
tion models for COVID-19. In this example, whether
a hospital participates in this collaboration is not a
sensitive information at all, and what really needs
to be protected is the privacy of each patient. This
is a regime that a record level privacy notion shines.

In this work, we introduce a fine-grained privacy
notion, called weak federated f -di↵erential privacy,
that protects each individual record of one client’s
data. We work on the attack model that an ad-
versary can manipulate one single record of the
client’s dataset and provide privacy guarantees for
this case. We propose a unified private federated
learning framework PriFedSync where a large fam-
ily of federated learning algorithms kick in. Be-
sides, we give an extended privacy notion, called
strong federated f -di↵erential privacy, to address the
case where multiple malicious clients jointly attack
a client, which has not been considered in any pre-
vious work. Our major contributions are as follows.

1. We introduce two privacy notions, weak feder-
ated f -di↵erential privacy and strong federated f -
di↵erential privacy, that describe the privacy guar-
antee against an individual adversary and against a
group of adversaries, respectively. Both notions are
of the finest resolution in the sense that they protect
individual records of one client’s data. The privacy
definition that we rely on is f -di↵erential privacy,
in particular its sub-family of Gaussian di↵erential
privacy (GDP) (Dong et al., 2019).

2. We propose a generic federated learning frame-
work PriFedSync that contains the state-of-the-art
federated learning algorithms. The framework does
not assume a trusted central aggregator. It can ac-
commodate both personalized or non-personalized
approaches. We exploit the composition theo-
rem of GDP to analyze the privacy guarantee of
PriFedSync and prove its asymptotic convergence.

3. We conduct numerical experiments to illustrate
our privacy notions and compare the performance
of private models with non-private counterparts.
When the data is heterogeneous across clients, our
personalized approach demonstrates significant im-
provement over the global model. We also demon-
strate the trade-o↵s between privacy and accuracy,
and privacy and computation, through our experi-
ments.

The rest of this paper is organized as follows. We
give a brief review of the research on federated learn-
ing and di↵erential privacy in Section 1.1. Sec-
tion 2 introduces our training framework. Section 3
presents the privacy notion and analysis. Section 4
presents the numerical experiments.

1.1 Related Work

There is a growing body of work that have looked at
privacy properties in the context of federated learn-
ing. McMahan et al. (2018) introduces two algo-
rithms, di↵erentially private federated stochastic gra-
dient descent (DP-FedSGD) and di↵erentially private
federated averaging (DP-FedAvg), and studies their
privacy properties. The privacy notion is defined on
user level. Namely, two datasets S and S

0 are said to
be neighboring if S0 can be obtained by completely
removing one client’s data from S. Such an at-
tack might be impractical for real world applications.
Algorithmically, DP-FedSGD is a direct extension of
“non-federated” DP-SGD (Abadi et al., 2016) to the
distributed optimization setting, where the gradients
of each client is clipped and aggregated in every it-
eration, whereas DP-FedAvg performs approximated
DP-SGD on the server. In essence, the di↵erences
of local models before and after local training are
treated as the surrogates of gradients and sent to the
server. A similar algorithm approximating DP-SGD is
proposed in Geyer et al. (2017). Singh et al. (2020)
uses an algorithm similar to DP-FedSGD for the ar-
chitecture search problem, and their privacy guar-
antee acts on user level too. Li et al. (2019) studies
the online transfer learning and introduces a notion
called task global privacy that works on record level.
However, the online setting assumes the client only
interacts with the server once and does not extend to
the federated setting. Truex et al. (2019) generalizes
the central di↵erential privacy into the distributed
setting, which can be considered as training a sin-
gle shared private model when the dataset is split
into several partitions on di↵erent machines. Even
though the authors consider privacy at record level,
this work does not have setups such as individual
clients have their own models, client sampling, etc.

One privacy notion that is related to the general
concept of privacy in federated learning is local
di↵erential privacy (Evfimievski et al., 2003; Ka-
siviswanathan et al., 2011). Local di↵erential pri-
vacy does not assume a trusted data aggregator.
Each data record is randomly perturbed before send-
ing to the data aggregator, and the aggregator build
models using the noisy data. The perturbation al-
gorithm is locally di↵erentially private if the out-
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puts of any pair of possible data records are indis-
tinguishable. Although conceptual connected, local
di↵erential privacy does not perfectly extend to the
general federated learning environment. Under the
local di↵erential privacy framework, the noisy data
are finally centralized in a central aggregator, where
all the training happens; whereas a general form of
federated learning allows the participants have their
own control of data and models. Besides, local di↵er-
ential privacy is a strong notion that often requires
a large amount of noise and thus leads to degraded
model performance.

Another related notion is joint di↵erential privacy,
proposed by Kearns et al. (2014) to study the behav-
ior of “recommender mechanisms” for large games.
It has been applied to the context of private convex
programming for problems whose solution can be di-
vided between di↵erent agents (Hsu et al., 2016a,b),
e.g. the multi-commodity flow problem. Informally,
joint di↵erential privacy ensures the joint distribu-
tion of the outputs for Agent j 6= i to be insensitive
to the input provided by Agent i. It is similar to the
our one-vs.-all notion strong federated f -di↵erential
privacy (see Definition 3.6), but acts on user level.

Despite the granularity and concrete notion of the
privacy guarantee, a formal privacy definition is
needed to precisely quantify the privacy loss. The
most popular statistical privacy definition to date
is (✏, �)-di↵erential privacy (Dwork et al., 2006a,b).
It is widely applied in industrial applications and
academic research, including some previous work on
private federated learning (McMahan et al., 2017;
Geyer et al., 2017; Li et al., 2019). Unfortunately,
this privacy definition does not well handle the cu-
mulative privacy loss under the composition of pri-
vate algorithms (Kairouz et al., 2017; Murtagh and
Vadhan, 2016), which is a fundamental problem
to address in privacy analysis, and also needed in
analyzing the federated learning algorithms. The
need for a better treatment of composition has mo-
tivated much work in proposing divergence-based
relaxations of (✏, �)-di↵erential privacy relaxations
(Dwork and Rothblum, 2016; Bun and Steinke, 2016;
Mironov, 2017; Bun et al., 2018). Meanwhile, an-
other line of research has established the connection
between di↵erential privacy and hypothesis testing
(Wasserman and Zhou, 2010; Kairouz et al., 2017;
Liu et al., 2019; Balle et al., 2019). Recently, Dong
et al. (2019) proposes a hypothesis testing-based pri-
vacy notion termed f -di↵erential privacy. This pri-
vacy definition characterizes the privacy guarantee
using the trade-o↵ between type I and type II errors
given via the associated hypothesis testing problem.

In the case of testing for normal distributions, f -
di↵erential privacy reduces to Gaussian di↵erential
privacy. Owing to its lossless reasoning about com-
position and privacy amplification by subsampling,
the use of f -di↵erential privacy gives sharp, analyti-
cally tractable expressions for the privacy guarantees
of training deep learning models (Bu et al., 2020)
(see also (Zheng et al., 2020)). Throughout this pa-
per, we use GDP as our privacy analysis framework.

2 Private Federated Learning

Let m denote the number of clients. Each Client
i has access to its local dataset S

(i), where the
data are i.i.d sampled from local distribution Di.
The classic federated learning algorithms (McMa-
han et al., 2017; Konečnỳ et al., 2016) aim at learn-
ing one global model w̃global that performs well over
all the clients. This implicitly makes an underly-
ing assumption that the data are homogeneous, i.e.,
D1 = · · · = Dm, yet in practice data might not be
identically distributed across clients. To take into
account of the heterogeneity of user data distribu-
tions, there is a surge of interest to assume non-
identical data distributions with the possibility of
Di 6= Dj , and learn personalized models (Dinh et al.,
2020; Huang et al., 2020; Hanzely and Richtárik,
2020; Deng et al., 2020).

We propose a unified framework PriFedSync that
addresses both heterogeneous and homogeneous set-
tings, see Algorithm 1. Each Client i will obtain a
specific model w̃(i), and a global model w̃global is still
formed and utilized. The homogeneous setting boils
down to a special case where w̃

(i) = w̃
global

, i 2 [m]
(we use [m] to denote {1, . . . ,m}). PriFedSync sub-
sumes a large family of existing federated learning al-
gorithms, including FedAvg (McMahan et al., 2017)
and many others (Li et al., 2018; Dinh et al., 2020;
Huang et al., 2020; Hanzely and Richtárik, 2020;
Deng et al., 2020).

In PriFedSync, all the clients start from the same
model w0. To mimic the practical behavior that not
all the clients sync with the server simultaneously,
in every synchronization round we sample a subset
of clients to perform local training and sync with
the server. If Client i is selected, it pulls a helper
model h̃(i) from the server and then performs local
private training for K iterations. The helper model
h̃
(i) can be the global aggregation w̃

global (McMahan
et al., 2017; Li et al., 2018), or personalized (Dinh
et al., 2020; Huang et al., 2020). Various ways have
been proposed to utilize h̃

(i) to improve local train-
ing, including initializing local models (Dinh et al.,
2020; Hanzely and Richtárik, 2020), regularizing lo-
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Algorithm 1: PriFedSync Framework

Input: initialization w0, number of local
iterations K, number of synchronization
rounds R, sync probability p

Initialization:w(i)
, h̃

(i)  w0

for r = 1, . . .R do
Poisson sample a subset of clients
⌦ ✓ {1, . . . ,m} with probability p

Client i 2 ⌦ do in parallel
// local training for K iterations

w̃
(i)  
LocalPrivateTraining(S(i)

, h̃
(i)
,K)

Send w̃
(i) to Server

Server do
w̃

global  (1� ⌘)w̃global + ⌘
1
|⌦|

P
i2⌦ w̃

(i)

h̃
(i)  Fi(w̃global), i 2 ⌦

Push noisy helper model h̃(i) to Client i,
i 2 ⌦

cal training (Li et al., 2018; Huang et al., 2020),
and iterative interpolating with local updates (Deng
et al., 2020).

The local private training can be carried out in dif-
ferent ways too. For instance, one can use noiseless
local training and perturb the model before synchro-
nization using Laplacian or Gaussian mechanism.
Alternatively, one can conduct DP-SGD (Abadi et al.,
2016) directly, where the gradient is perturbed in
each iteration. The disadvantage of DP-SGD is that
it is slow in computation, due to its need of clipping
the per-sample gradient at every iteration. However,
we observed that DP-SGD usually leads to better pre-
diction accuracy, therefore we shall use DP-SGD for
our analysis and experiments.

Next, Client i sends the private model w̃(i) to the
server. The server aggregates the received models
and then updates the corresponding helper mod-
els. There are plenty of ways of computing the
helper model. If the Fi function is the identity map
Fi(w) = w, i 2 [m], all the clients will receive the
same helper model w̃global. This is the setup used
in FedAvg (McMahan et al., 2017). Another simple
but e↵ective observation is that h̃(i) is a convex com-
bination of the noisy global model wglobal and local
model w(i) (Dinh et al., 2020; Hanzely and Richtárik,
2020):

Fi(w̃
global) = (1� ↵i)w

(i) + ↵iw̃
global

. (2.1)

There are more sophisticated constructions of per-
sonalized helper models that fit in our framework,

for example, an attention-based weighted averaging
(Huang et al., 2020).

We close this section with an overview discussion of
the privacy guarantee of PriFedSync.

1. It is easy to see that Client i can only probe
the dataset of Client j through the helper model
h̃
(i). This becomes the focal point for our analysis

throughout this paper.

2. Given a global model w̃global, the helper model
h̃
(i) is a transformation of w̃global through the map-

ping Fi. Regardless of the form of Fi, this step would
not cause additional privacy leakage since di↵eren-
tial privacy is immune to post-processing (Dwork
and Roth, 2014). It is then natural to ask the fol-
lowing questions:

(i) Why not just compute a noiseless global model
w

global and inject noise before or after the trans-
formation? For instance, on the server one can
conduct

w
global  (1� ⌘)wglobal + ⌘

1

|⌦|
X

i2⌦

w
(i)
,

h̃
(i)  Fi

�
w

global +N (0,�2
I)
�
, i 2 ⌦.

(ii) Is it equivalent to directly send w̃
global to the

clients and let them apply the transformation
Fi’s themselves?

The procedure in (i) indeed protects the privacy of
Client i and reduces the computational burden in-
curred by DP-SGD. However, computing a noiseless
global model will require all the clients send noise-
less local models to the server, which imposes an
extra assumption about a trustworthy server. The
answer to (ii) depends on the concrete form of Fi. If
the mapping Fi is free of other private local models,
deterministic, and invertible, the privacy cost before
and after applying Fi is the same. In this scenario,
there is no di↵erence between sending w̃

global or h̃(i).
Nevertheless, post-processing might be able to am-
plify the privacy. Consider a constant function Fi

that outputs the zero vector for any input. This
simple function achieves perfect privacy. For those
cases, sending w̃

global will be less private then send-
ing h̃

(i). To keep our analysis general for all algo-
rithms that fit in PriFedSync, we shall assume no
knowledge of Fi in our analysis. For a specific algo-
rithm, potential tighter bounds might be obtained
by taking prior knowledge of Fi.

3 Privacy Analysis

We first review Gaussian di↵erential privacy in Sec-
tion 3.1, which is the analysis tool we exploit. Next,
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we introduce our private notations in Section 3.2 and
analyze the privacy guarantee of PriFedSync in Sec-
tion 3.3.

3.1 Preliminaries

Let us start from the hypothesis testing interpre-
tation of di↵erential privacy, which is the founda-
tion of GDP. Let A denote a randomized algorithm
that takes a dataset S as input. S

0 is a neighbor-
ing dataset of S in the sense that S and S

0 di↵er
in only one individual. Let P and Q denote the
probability distribution of A(S) and A(S0), respec-
tively. Di↵erential privacy attempts to measure the
di�culty for an adversary to identify the presence
or absence of any individual in S via leveraging the
output of A. Equivalently, an adversary performs
the following hypothesis testing problem (Wasser-
man and Zhou, 2010):

H0 : output ⇠ P vs H1 : output ⇠ Q.

Intuitively, a privacy breach occurs if the adversary
makes the right decision, and the privacy guarantee
of A boils down to the di�culty for an adversary to
tell the two distributions apart. Dong et al. (2019)
proposes to use the trade-o↵ between type I and type
II errors of the optimal likelihood ratio tests at level
↵ as a measure of the privacy guarantee, where ↵

ranges from 0 to 1. Formally, let � be a rejection
rule for testing against H0 against H1. The type
I and type II error of � are EP (�) and 1 � EQ(�),
respectively. The trade-o↵ function T : [0, 1]! [0, 1]
between the two probability distributions P and Q

is defined as

T (P,Q)(↵) = inf
�

{1� EQ(�) : EP (�)  ↵} .

In short, for a fixed significance level ↵, T (P,Q)(↵)
is the minimum type II error that a test can achieve
at that level. The optimal tests are given by the
Neyman–Pearson lemma, and can be interpreted as
the most powerful adversaries. Let us define the re-
lation f � g if f(↵) � g(↵) for all 0  ↵  1. Intu-
itively speaking, a larger trade-o↵ function implies
the more private the associated algorithm is. A spe-
cial case of interest is when the two distributions are
the same and perfect privacy is attained. The cor-
responding trade-o↵ function is T (P, P )(↵) = 1�↵,
which we denote by Id(↵). With the above defi-
nitions in place, Dong et al. (2019) introduces the
following privacy definition, with a little abuse of
notation by using A(S) to denote the output distri-
bution of algorithm A on input dataset S.

Definition 3.1. Let f be a trade-o↵ func-
tion. An algorithm A is f -di↵erentially private if

T (A(S),A(S0)) � f for any pair of neighboring
datasets S and S

0.

When the trade-o↵ function is defined between two
Gaussian distributions, we obtain a subfamily of f -
di↵erential privacy guarantees called Gaussian dif-
ferential privacy.

Definition 3.2. Let � denote the cumulative dis-
tribution function of the standard normal distribu-
tion. For µ � 0, let Gµ := T (N (0, 1),N (µ, 1)) ⌘
�(��1(1 � ↵) � µ). An algorithm A is µ-GDP if
T (A(S),A(S0)) � Gµ for any pair of neighboring
datasets S and S

0.

One advantage of f -di↵erential privacy is that the
composition of algorithms can be neatly handled.
The composition primitive refers to an algorithm A
that consists of R algorithms A1, . . . ,AR, where Ai

observes both the input dataset and output from
all previous algorithms. Let f1 = T (P1, Q1) and
f2 = T (P2, Q2), Dong et al. (2019) defines a bi-
nary operator ⌦ on trade-o↵ functions such that
f1⌦ f2 = T (P1⇥P2, Q1⇥Q2), where P1⇥P2 is the
distribution product. This operator is commutative
and associative, and provides elegant formulations
for the composition of private algorithms.

Lemma 3.3 (Dong et al. (2019)). If Ai is fi-
di↵erentially private for 1  i  R, then the com-
posed algorithm A is f1⌦ · · ·⌦ fR-di↵erentially pri-
vate.

Lemma 3.4 (Dong et al. (2019)). The R-fold com-
position of µi-GDP algorithms is

p
µ
2
1 + · · ·+ µ2

n-
GDP.

3.2 Federated f-Di↵erential Privacy

Section 2 has discussed that the privacy leakage of
Client j to Client i is determined by the helper model
h̃
(i), which motivates the following definitions.

Recall that S
(j) is the dataset of Client j. Let

S
0(j) denote a neighboring dataset of S

(j), i.e.,
S

0(j) and S
(j) di↵er by only one entry. Let

S =
�
S
(1)

, . . . , S
(m)

�
denote the joint dataset across

clients. Let M(·) = (M1(·), . . . ,Mm(·)) be the ran-
domized federated algorithm that returns the helper
models to clients: Mi(S) = h̃

(i) is the helper model

for Client i. Note that for Mi, the usage of S
(j)
j 6=i

is implicit: Client i is blind to those datasets. We
write S

0j if it is neighboring with S in the j-th com-
ponent: S

0j = (S(1)
, . . . , S

0(j)
, . . . , S

(n)). The follow-
ing two definitions quantitatively describe how well
every client could protect her/his own data against
the other clients.

Definition 3.5. A randomized federated learn-
ing algorithm M satisfies the weak federated f -
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di↵erential privacy if for any i 6= j, it holds that
T
�
Mi(S),Mi(S

0j)
�
� f.

Definition 3.6. Let M�j denote the randomized
output of all the helper models except j. M satisfies
the strong federated f -di↵erential privacy if it holds
that for any j, T

�
M�j(S),M�j(S

0j)
�
� f. This is

equivalent to T
�Q

i 6=j Mi(S),
Q

i 6=j Mi(S
0j)
�
� f.

We remark that Definition 3.5 is a one-vs.-one pri-
vacy notion. Under this notation, every client is
protected from the attack from any other malicious
client. Definition 3.6 is a one-vs.-all privacy notion.
In the worst case, the other clients would make allies
and attack Client i together. An algorithm M sat-
isfying Definition 3.6 could guarantee the privacy of
Client i even in this situation. In other words, if M
satisfies the strong federated f -di↵erential privacy,
then it satisfies the weak federated f -di↵erential pri-
vacy.

3.3 Analysis

Let H̃i denote the update of h̃(i) on the server. In
practice, if Client i is not sampled for synchroniza-
tion, the algorithm does not release a model to Client
i, thus the perfect privacy of all the other clients’
data is achieved. In the privacy analysis, this is
equivalent to releasing a constant number that car-
ries zero information. Letting S⌦ denote the sub-
sampled dataset, we can write this update as:

H̃i(S⌦) =

(
h̃
(i)(S⌦), if i 2 ⌦,

0, otherwise.
(3.1)

Let Samplep denote the Possion subsampling of

clients for synchronization. The update of h̃(i) for
one synchronization round is the subsampled algo-
rithm H̃i � Samplep. We remark that the subsam-
pling step Samplep(S) = ⌦ is an intermediate step
that is not released, and the subsampled algorithm
H̃i � Samplep should be considered as a whole. Our
target to analyze is essentially the composition of R
copies of H̃i � Samplep:

T
�
Mi(S),Mi(S

0j)
�

= T
�
(H̃i � Samplep)⌦R(S), (H̃i � Samplep)⌦R(S

0j)
�
.

(3.2)

The analysis has three steps. We first need to
understand the privacy guarantee of the algorithm
H̃i, without sampling. The second step is to fig-
ure out the guarantee of the subsampled algorithm
H̃i � Samplep. Last, we apply the composition theo-
rem of f -di↵erential privacy to obtain the final guar-
antee. The results are presented in Lemma 3.7,
Lemma 3.8, and Theorem 1 in order.

Lemma 3.7. For any Client j, suppose the local
training of w̃(j) is fj-di↵erentially private. It holds
that

T
�
H̃i(S), H̃i(S

0j)
�
� fj , i 2 [m].

Proof. See Appendix A.

This lemma implies that for any Client j, the privacy
guarantee holds uniformly the same for all the other
clients. Intuitively, the privacy loss is determined
once Client j dispatches w̃

(j), and the subsequent
post-processing of w̃(j) will incur no extra privacy
loss. The privacy leakage to the other clients will
only di↵er if Client j sends di↵erent models with
di↵erent levels of noise to the other clients, explicitly
or implicitly. Since each client only communicates
with the server in PriFedSync, we can guarantee
the privacy protection is uniform over all the other
clients.

Next, we analyze the subsampled algorithm H̃i �
Samplep. Compared with the original algorithm,
subsampling amplifies the privacy guarantee. Such
amplification is due to the fact that if Client j is
not included in one round of synchronization, it en-
joys perfect privacy for that round. Our results are
described formally in the following lemma.

Lemma 3.8. Let gp,j = max(fj , 1 � ↵ � p
2).

Suppose the local training algorithm of w̃
(j) is fj-

di↵erentially private. Consider the subsampled al-
gorithm H̃i � Samplep with 0  p  1. For any
i 2 [m], it holds that

T
�
H̃i � Samplep(S), H̃i � Samplep(S

0j)
�
� gp,j .

Proof. See Appendix B.

We emphasize that the technical needs for analyzing
the client sampling of PriFedSync is di↵erent from
the analysis of private SGD with Poisson sampling
(Bu et al., 2020), and the existing results do not
directly apply to our case. The main di↵erence is
that for PriFedSync, the privacy loss of Client j to
Client i is a↵ected by whether i and j are both sam-
pled in ⌦. From the hypothesis testing point of view,
the two distributions the adversary is trying to tell
apart, H̃i � Samplep(S) and H̃i � Samplep(S

0j), are
both mixture models of two groups: one group con-
tains the cases both i and j are sampled, the other
group contains the other cases. Whereas, for analyz-
ing private SGD, only one of the two distributions
need to be divided into two groups.

Finally, we apply the composition theorem of f -
di↵erential privacy (Lemma 3.3) to obtain the fol-
lowing results.
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Algorithm 2: Example Local Training of Client
j using NoisySGD

Input: loss L, dataset S(j), helper model h̃(j),
batch size Bj, noise scale �j, maximum
gradient norm C, learning rates �1, . . . , �K

Initialize: w
(j)  h̃

(j)

for k = 1, . . .K do
Sample I ✓

�
1, . . . , |S(j)|

 
with size Bj

uniformly at random
// Compute and clip the per-sample

gradient

for ` 2 I do
v` = rL(w(j)

, x`, y`)
v`  v`/max {1, kv`k /C}

w
(j)  w

(j) � �k

B

✓X

`2I

v` +N (0, 4C2
�
2
j I)

◆

Theorem 1. Let gp,j = max(fj , 1 � ↵ � p
2) be de-

fined as in Lemma 3.8. It holds that

T
�
Mi(S),Mi(S

0j)
�
� g

⌦R
p,j , i 2 [m].

Consequently, Algorithm 1 satisfies weak federated
f -di↵erential privacy for f = g

⌦R
p,jmin

, where gp,jmin =
min {gp,1, . . . , gp,m}. It also satisfies strong federated

g
⌦(m�1)R
p,jmin

-di↵erential privacy.

Proof. See Appendix C.

3.4 Local Private Training

In this section, we present an example local train-
ing algorithm using noisy SGD as the optimizer, see
Algorithm 2. We analyze its privacy guarantee and
present a final privacy bound of PriFedSync after
injecting it into Algorithm 1. Although Algorithm 2
uses SGD as the optimizer, our results hold for a
large number of other optimizers, including Adam
(Kingma and Ba, 2014), AdaGrad (Duchi et al.,
2011), Momentum SGD (Qian, 1999), etc. In brief,
this is because the statistics like the momentum, the
running mean of the gradient, are deterministic func-
tions of the noisy gradient, thus no additional pri-
vacy loss would be incurred for those computations.

Let fp = pf + (1 � p)Id for some p 2 [0, 1].
Let f

�1
p be the inverse function of fp: f

�1
p (↵) =

inft2[0,1] {fp(t)  ↵}. Define a trade-o↵ function

Cp(f) = min
�
fp, f

�1
p

 ⇤⇤
where f⇤⇤ denotes the dou-

ble conjugate of f . The function fp is asymmetric
in general but Cp(f) is symmetric, see Figure E.1.

Theorem 2. Suppose Algorithm 2 is used in Algo-
rithm 1 for the local private training. It holds that

for any Client j,

T
�
Mi(S),Mi(S

0j)
�
� CBj/nj

(G1/�j
)⌦KR

, i 2 [m].

Furthermore, if Bj

nj

p
KR ! cj as

p
KR !1, then

CBj/nj
(G1/�j

)⌦KR ! Gµj where

µj =
p
2cj

q
e
��2
j �(1.5��1

j ) + 3�(�0.5��1
j )� 2.

Consequently, Algorithm 1 satisfies weak feder-
ated Gµmax-di↵erential privacy and strong feder-
ated Gp

m�1µmax
-di↵erential privacy, where µmax =

max {µ1, . . . , µm}.

Proof. See Appendix D.

4 Experiments

We use Algorithms 1 and 2 to train private
deep learning models for two computer vision
tasks: MNIST digit recoginition (LeCun, 1998) and
CIFAR-10 object classification (Krizhevsky and Hin-
ton, 2009)1. To simulate the heterogeneous data
distributions, we make non-IID partitions of the
datasets, see below for the detailed descriptions. For
all the experiments, we fix the aggregation parame-
ter ⌘ = 1, use the interpolation method as in Equa-
tion (2.1) with ↵ = 0.1 to compute the helper mod-
els, and clip the gradient with maximum norm C = 1
when training private models. For both tasks, we
report the average testing accuracy along with the
privacy guarantees we obtained, and compare with
the non-private results under the same setting. The
algorithms and models we use might not yield the
best possible prediction accuracy, but they are su�-
cient for the purposes of illustrating our private no-
tion and investigating the relative performance for
private and non-private algorithms.

4.1 Non-IID MNIST

The MNIST dataset contains 60,000 training images
and 10,000 testing images. We use a setup similar
to (McMahan et al., 2017) to partition the data for
100 clients. We sort the training data by digit label
and evenly divide it into 400 shards. Each of 100
clients is assigned four random shards of the data,
so that most of the clients have examples of three
or four digits. For testing, each client will sample
200 examples with the same label she/he has seen
in training2. We use a CNN model with two convo-

1
Our code is available at https://github.com/

enosair/federated-fdp.
2
In contrast to some previous works where only the

training data is non-IID, our testing data is also not

identically distributed across the clients.
7
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p � R µmax Test Acc Non-Pri Acc

1.0 93 2.71 90.03 98.74

1.0 0.9 83 3.10 90.25 98.72

0.75 64 3.96 90.10 98.55

1.0 194 3.92 90.02 98.90

0.5 0.9 176 4.51 90.02 98.83

0.75 127 5.58 90.11 98.54

1.0 386 5.52 90.00 98.75

0.25 0.9 325 6.13 90.00 98.75

0.75 245 7.75 90.04 98.55

Table 1: MNIST experiment results: the round of
synchronization and corresponding privacy parame-
ter when the average test accuracy reaches 90%. The
privacy parameter is computed as in Theorem 2.

� B K R Total Iter. Total Ex. µmax

1 8 76 266 20216 161728 3.24

16 38 194 7372 117952 3.92

0.9 8 76 229 17404 139232 3.64

16 38 176 6688 107008 4.51

0.75 8 76 191 14516 116128 4.84

16 38 127 4826 77216 5.58

Table 2: The trade-o↵ between privacy and com-
putation. The per-client total number of iterations
is KR, the per-client total number of examples is
BKR, and the results are reported when the average
test accuracy reaches 90%. The privacy parameter
µmax for small batch size (B = 8) runs is roughly
0.83⇥ as large as obtained by the B = 16 runs, yet
the B = 8 runs process approximately 1.39⇥ total
number of data samples. The client sampling rate is
p = 0.5.

lution layers with 3 x 3 kernels, followed by an FC
layer with 128 units and ReLu activation, and a fi-
nal softmax output layer. For local training, we use
noisy Adam with base learning rate 0.001.

Performance of Private Models. We test three
values for the client sampling rate p: 0.25, 0.5 and
1.0, and three values of noise scale � : 0.75, 0.9, and
1.0. We use batch size B = 16 and run local train-
ing for K = 38 iterations between synchronization.
The total number of samples processed between syn-
chronization is 608, so we are approximately run-
ning local training for one epoch. Table 1 reports
the synchronization rounds R and the privacy pa-
rameter µmax, when the average prediction accuracy
across 100 clients is above 90%. Table 1 also shows
an intuitive phenomenon: a larger client sampling
rate and a smaller noise level lead to faster conver-

Figure 4.1: The personalized models outperform the
global model in the MNIST experiments. The client
sampling rate is p = 0.5.

Figure 4.2: A larger batch size leads to faster con-
vergence for the MNIST experiments. The client
sampling rate is p = 0.5.

gence, see also Figure E.2. One might notice the
privacy parameter is slighter larger than one usually
see in a centralized training setting. Recall that The-
orem 2 states that the privacy parameter µj scales
linearly with a constant cj . Loosely speaking, cj is

the product of the data sampling rate Bj

nj
and the

squared training iterations
p
KR: Bj

nj

p
KR! cj as

KR!1. In our simulated federated environment,
each client holds only 1% data of the whole dataset,
and the batch size is approximately 1/16 of the nor-
mal setting. Therefore, the e↵ective data sampling
rate B/n is much larger. Besides, it also takes much
more iterations for the algorithm to converge in the
federated setting. This leads to a larger privacy pa-
rameter. Interesting, there is also a trade-o↵ be-
tween data sampling rate and computing iterations
which might a↵ect the privacy parameter, and we
shall discuss this later in this section.

Accuracy Gain from Personalization. Fig-
ure 4.1 investigates the personalization performance
of our approach. It compares the average test accu-
racy for the private global model and private person-
alized models. We plot the results when the noise
scale � = 0.75 and 1.0, where the client sampling
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rate is p = 0.5. For both cases, personalized mod-
els significantly outperform the global model. The
results for the other sampling rates are similar.

Privacy vss Computation Trade-o↵. As pre-
sented in Theorem 2, the privacy parameter µj

scales linearly with a constant cj . Informally, this

is the product of the data sampling rate Bj

nj
and the

squared training iterations
p
KR. Since cj scales

linearly with Bj but sublinearly with K, using a
smaller batch size would lead to a more private
model if one processes the same amount of total data
examples. For example, Bj/2

nj

p
2KR <

Bj

nj

p
KR.

However, the batch size has great impact on the
rate of convergence. Figure 4.2 illustrates this phe-
nomenon. Fixing the client sampling rate p = 0.5,
we decrease the batch size from B = 16 to B = 8,
and double the number of local iterations to K = 76.
The small batch size (B = 8) runs take more rounds
to achieve the same test accuracy, which means it
processes more data examples in total. Table 2
demonstrates such a trade-o↵ between privacy and
computation. We compare the total number of train-
ing iterations KR, the per-client total training ex-
amples BKR, and the privacy parameter µmax. As
before, the results are reported when the average
test accuracy achieves 90%. Compared with the
large batch size (B = 16) runs, the small batch
size (B = 8) runs obtain smaller privacy parameters,
which are roughly 0.83⇥ as obtained by the B = 16
runs. However, they take approximately 2.78⇥ iter-
ations to achieve 90% accuracy, which translates to
1.39⇥ total number of samples.

4.2 Non-IID CIFAR

The CIFAR-10 dataset contains 50,000 training im-
ages and 10,000 test images of 10 classes. We use the
same experiment setup as (Hsu et al., 2019). There
are 100 clients, each holds 500 training images and
200 testing images. For each client, we generate data
using the following probabilistic model:
1. Sample the class probability q ⇠ Dir(�).
2. Sample ✓

tr ⇠ Multinomial(q, 500).
3. Sample ✓

tr
i images with label i from the train-

ing set without replacement.
4. Likewise, sample ✓te ⇠ Multinomial(q, 200) and

the testing data accordingly.
The hyperparameter ↵ controls the heterogeneity of
the client data distributions. With � ! 1, all the
clients have identical class distributions; with � ! 0,
the probability vector q will be one-hot and each
client will hold samples from only one class. We
use � = 0.5 throughout our experiments, see Fig-

Figure 4.3: Average top-1 test accuracy vs. synchro-
nization rounds for the CIFAR-10 experiments. The
client sampling rate is p = 0.5.

p � R µmax Top-1 Acc Non-Pri Acc

1.0 468 6.70 52.03 64.72

1.0 0.75 321 9.77 52.22 62.55

0.5 207 26.81 52.23 59.61

1.0 904 9.31 52.07 64.65

0.5 0.75 671 14.13 52.04 62.53

0.5 405 37.51 52.01 59.85

Table 3: CIFAR-10 experiment results: the round of
synchronization and the corresponding privacy pa-
rameter when the average top-1 accuracy reaches
52%.

ure E.3a for a visual illustration of the label propor-
tions. Due to the GPU memory limit, we use the
CNN model from the TensorFlow tutorial3, like the
previous work (McMahan et al., 2017; Hsu et al.,
2019). This architecture is not state-of-the-art for
CIFAR, but su�cient to demonstrate the relative
performance for private and non-private models.

We observe that Adam is more stable than SGD for
training private models, although SGD generalizes
better on non-private models. Thereby, we train the
models by noisy Adam with base learning 0.005 and
weight decay 0.0005. The learning rate is decayed by
a factor of 0.99 every 10 epochs. We use batch size
B = 16 and run local training for K = 32 iterations.
Figure 4.3 plots the top-1 test accuracy curve when
the client samping rate p = 0.5. We can observe the
privacy-accuracy trade-o↵: the test accuracy mod-
erately decreases as the model becomes more pri-
vate, i.e. trained with larger �. Meanwhile, per-
sonalized models still outperform the global model.
Table 3 reports the round of synchronization and
corresponding privacy parameter when the average
top-1 accuracy reaches 52%.

3https://www.tensorflow.org/tutorials/images/
cnn.
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