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Abstract

We study a novel curriculum learning scheme
where in each round, samples are selected
to achieve the greatest progress and fastest
learning speed towards the ground-truth on all
available samples. Inspired by an analysis of
optimization dynamics under gradient flow for
both regression and classification, the problem
reduces to selecting training samples by a score
computed from samples’ residual and linear
temporal dynamics. It encourages the model
to focus on the samples at the learning frontier,
i.e., those with large loss but fast learning speed.
The scores in discrete time can be estimated via
already-available byproducts of training, and thus
require negligible extra compute. We discuss
the properties and potential advantages of the
proposed dynamics optimization via current deep
learning theory and empirical studies. By integrat-
ing it with cyclical training of neural networks,
we introduce “dynamics-optimized curriculum
learning (DoCL)”, which selects the training
set at each step by a weighted sampling based
on the scores. On nine different datasets, DoCL
significantly outperforms random mini-batch
SGD and recent curriculum learning methods
both in terms of efficiency and final performance.

1 Introduction

Effective human learning requires dynamically adjusting
one’s training contents based on past learning experience
and future learning expectations and desires. Most
widely-deployed machine learning schemes, on the other
hand, use the same static training set identically and
repeatedly over numerous optimization epochs, thus lacking
any nuanced adjustment to what best should be learnt at
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any moment. Such adjustments, however, should be highly
beneficial for machine learning (ML) since the amount of
new information each sample carries can vary drastically
at different learning stages. For example, samples with
losses close to zero often contribute nearly nothing to the
gradients in back-propagation. Although the idea of data
subset selection has been studied for a variety of classical
machine learning problems, e.g., active learning [45} 3} [12]],
boosting [43) [16] curriculum learning [5, 31, 59] and
machine teaching [28l 63], selection criteria in such cases
are often heuristic [[18] (e.g., select samples with small
losses) and they are designed for specific settings (e.g.,
convex objectives) and may not be universally applicable.

In this work, we propose to select training sample subsets
that most quickly help the predictions for all samples in the
training set get close to their targets (Eq. (1))). Unlike previ-
ous data selection methods, we directly relate our selection
criteria to the changes in the training objective at every
step. Specifically, we select samples to maximize the linear
dynamics of the model’s output along the direction from
the current output to its ground truth target at time-t, i.e.,
the learning speed, in expectation over the data distribution.
This provides a principle formulation of curriculum
learning from which we can derive data selection criteria:

Eop <y ~ f(a), f’gf) S> Y

where D is the empirical training data distribution,
[n] = {1,2,...,n} is the training index set, f(z) is the
model’s prediction for x, y is the target for f(x), and the
linear dynamics a’;(t’”) |s can be thought of as the prediction
change for & when training on subset .S. Following a simple
analysis for regression and classification objectives, we
reduce the problem to selecting samples with the largest
scores in each step, with the score on each sample calculated
from its current residual and its linear dynamics under the
gradient flow computed on the data distribution D. These
two quantities can be estimated directly via byproducts of
normal training, and therefore, computing the curriculum
of training sets above incurs negligible additional costs.

max
SC[n],|S|<k

Our score matches the intuition to always select data at the
learning frontier, i.e, hard samples that the model is making
the greatest progress on. The first quantity of our score is the
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sample’s prediction residual, and encourages the selection
of samples that predict far away from their targets. Similar
criteria have been studied in active learning, boosting, and
curriculum learning 59, 24]. By focusing on data with large
residuals, we do not waste computation on samples that are
already learnt. The second quantity is the sample’s linear
dynamics under the gradient flow over the data distribution,
i.e., the learning speed. Empirical deep neural network
(DNN) studies [52, 160, 62]] show that predictions for some
samples remain fixed and correct (i.e., memorized) once
learnt, while some samples’ predictions frequently change
during training and are easier to be forgotten. Moreover,
they show that training on the latter minimally impacts the
former’s predictions, so we can focus training only on the lat-
ter for better efficiency. Our score is mathematically derived
to be a combination of the two selection criteria formerly
motivated by empirical studies and heuristics, and hence
bridges the gap between theoretical principles of curriculum
design and empirical observations of training dynamics.

We further discuss a natural interpretation of our score
achieved when relating it to the neural tangent kernel
(NTK) [23} [1, [14]. Its properties in the NTK regime also
suggest the feasibility of a lazy update and moving average
of the scores. We show that linear dynamics capture the
gradient similarity between samples. Intuitively, applying
gradient descent on samples with large linear dynamics can
effectively reduce losses on many similar samples and may
further stabilize their dynamics to reach flat minima. By
selecting samples with higher scores, we focus on unlearnt
data whose gradients are most consistent with gradients
of other data. Hence, the selected samples have significant
impacts on the optimization process and by focusing on
them we potentially shorten the optimization trajectory.

Based on the selection criterion, we propose a cyclical cur-
riculum learning algorithm, “Dynamics-optimized curricu-
lum learning (DoCL)”, which seamlessly incorporates sev-
eral other techniques for better performance and efficiency.
To evaluate the improvement solely brought by the selection
criterion, we present an empirical study without using these
techniques. In experiments over nine datasets, DoCL sig-
nificantly improves the training efficiency and model’s gen-
eralization performance on test sets compared with random
mini-batch SGD and recent curriculum learning methods.

1.1 Related Work

Active learning [45) 153\ 3] allows there to be an interaction
between machines and (often human) annotators, where
the former can iteratively select samples and query their
labels from the latter. It aims to reduce the labeled sample
complexity (or annotation cost), and therefore it usually
prefers the most uncertain/noisy samples [10} 144} [11}[12]
— this also, however, can make the learning susceptible to
adversarially chosen noise on a small number of samples.
Boosting [43,[16]], as an ensemble method, aims to compose

a strong learner from sequentially trained weak learners,
each trained on a weighted dataset that emphasizes the
samples found difficult by the predecessors. Machine
teaching (MT) [28, 163,41} 132] focuses on having the learner
train only on an extracted “teaching” subset of training data.
A recent line of work [33| [34] studies iterative machine
teaching (IMT) that allows iterative interactions between
the teacher and student via sequential selection of subsets.
MT and IMT are different from our problem because: (1)
they assume that the teacher knows the optimal model —
we do not make this assumption; (2) their objective is to
minimize the distance a student model to the optimal one
but ours is to speedup the learning dynamics.

Curriculum learning (CL) was first introduced as a method
that relied on human experts to determine a training sam-
ple order [5 128 4,!47] in order to avoid local minima. CL
was later extended to strategies that automatically select
samples over the course of training using various crite-
ria [50,149, 151,18} [19], e.g., hardness [31]] or representative-
ness [25,159]] of samples. However, these criteria might not
necessarily be directly related to the original training objec-
tive. Some of them suffer from hyperparameter sensitivity,
e.g., a threshold on loss values. Although the ultimate goal
of CL (i.e., finding an optimal sequence of training sam-
ples) is more general than other data selection methods, CL
strategies are usually built upon relatively simple heuristics
without having a complete mathematical analysis.

In addition, the selection criteria of these methods were
developed for various learning settings and hypothesis class
assumptions, and thus can sometimes be contradictory. For
example, active learning and boosting both favor difficult-to-
learn samples, while many CL methods prefer easy-to-learn
samples [26} 131]]. Although selection criteria are often
partially adaptive to per-sample feedback during training,
they are not designed to directly accelerate the learning
process, as we do in this paper. Some recent work [27, |[15]]
resorts to an additional model to directly generate selection
results but they require training another model using
non-stationary feedback from the ongoing training process,
e.g., via reinforcement learning, which might be more
challenging and costly to solve than the original problem.

A line of recent research [48 54] has studied acceler-
ated optimization dynamics derived from discretized
Lagrangian/Hamiltonian dynamics of a model, showing
optimal convergence rates. By doing so, they recover a class
of accelerated optimization schemes and even generate
new ones. These approaches mainly focus on convex
optimization. The major difference with our work is that
we optimize the dynamics of a model’s output on individual
samples (vs. on model parameters) by changing the training
set (vs. by choosing kinetic energy function, scaling condi-
tions and discretization). In addition, they optimize the total
energy along the optimization trajectory, which might be
an objective worth studying for our problem in the future.
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2 Optimizing Training Dynamics

The ultimate goal of curriculum learning is to find an optimal
sequence of training samples that will lead to faster training
progress, lower training computation, and better generaliza-
tion performance. It is, however, prohibitively expensive
to directly search for the optimal sequence since the set of
candidates grows exponentially with n7', where n is the
training set size and 7' is the number of training epochs. In
this section, we reduce curriculum learning to optimizing the
per-step training dynamics for samples drawn from the data
distribution D. Specifically, at step ¢, we show how to select
a subset S; C [n] leading to f making the greatest progress
towards the ground truth y in expectation for z ~ D as
per Eq. (I). By relating it to a simple analysis of training
dynamics, we will show that the problem can be efficiently
solved using only pre-existing byproducts of training, as
mentioned above. For simplicity, we remove all subscripts
denoting the time step, for example, we use S for S;.

2.1 Problem Formulation

We first consider a regression task that aims to learn a pre-
diction model f(z;6) by minimizing the expected {5 loss
Ly, f(x;0)) for x drawn from the data distribution D, i.e.,

minEan (y, f(r:6) 2 Ly~ f@0)E @
In the following, we will use simplified notations: we will
use f(x) and £(z) to denote f(x;0) and £(y, f(x;0)), re-
spectively. Under the gradient flow (continuous-time gra-

dient descent) computed on a subset S C [n], we have
ol(z;) 0l(xs) | Of(xi)

E’s = —Dies o0~ = Dies ~ 97 = oo - Ihe

linear dynamics of the model’s output f(z) for any sample

x can be represented as

Of(r)| _ Bf(x) 98

ot |g 09  ot|g
3)
For this section, we always assume that the optimization
is performed in the continuous time domain, so the gradi-
ents, chain-rules and integration are all well-defined, and the
derivation holds rigorously. We will discuss the discretiza-
tion in Sec. @ when we need to estimate the continuous-time
quantities in an algorithmic implementation.

At step ¢, we aim to find a subset S C [n] of size |S| < k

whose gradient flow maximizes the projection of residual

0f(z)

y — f(x) on the dynamics =5

forall z ~ D, i.e.,
S
e of (z)

Sg[n],lslng“D <yf(x), ot S>- )

Intuitively, the goal is to maximize the momentum of
each sample’s prediction f(z) moving towards its target
y. The dynamics 9f(=)/st are weighted by their residuals
y — f(x) so we achieve faster decreasing loss for samples

_ Of(x) ol(z;) Of (x;)
T 06 ';*af(xi)' 0

with larger residual. Thereby, predictions of different
samples ideally can reach their targets at the same time
without overshooting. The objective maximizes the
dynamics of decreasing the objective in Eq. (), i.e.,

OB, —L(y,f(z;0¢ Of(x;0¢
Ez~p 8(tyf( )):EzND<y*f(ﬂf;9t), f(at )S>_

One can think that we break down the original problem
in Eq. into a sequence of sub-problems in the form of
Eq. (@) over time steps. To verify this, we can integrate
the objective in Eq. @) over time from ¢ = 0 to 7', which
recovers the objective in Eq. (2)) (negated, up to a constant):

/OT <y— f(x;Gt)va‘f(gt;at»dt

1
=5 (ly = F@ 005 = lly = f(@:00)l13) - )

Since the gradients 94(z:)/a0 computed on different samples
might have conflicts and cancel out with each other if
selected in the same training batch, compared to uniform
sampling .S, maximizing the dynamics encourages selecting
samples with consistent gradients that decrease the expected
risk/loss over the data distribution.

2.2 Regression

To optimize Eq. @), we approximate the expected momen-
tum w.r.t. x ~ D in Eq. (4) by averaging over a finite number
of samples D drawn from the data distribution D, i.e.,

0f(x) S>

Eznp <y - f(fl?)7 7

\D\Z Té’f Z éw xl _ f(;;i)
=é§;-[§§iii%]T;3f§§"’ FJ;?] -
5] Lt s [ 5
2 [ses] -5
—éies@ s, P D>- ©)

This introduces a per-sample score a;(i) as the inner
product of two vectors at step ¢, i.e., the residual y; — f(x;)
and its dynamics under the gradient flow computed on D:

Of (w43 0;) > . A
D

N A
= i i 0 )
e 2 (- S0, 215
Hence, the expectation in Eq. (4)) can be approximated by
a function that sums up the scores of all selected samples
i € S. Note the two vectors can be directly obtained
from the byproduct of training on .S and D, so estimating
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the score for all the candidate samples does not require
any additional computation. However, in each step of
curriculum learning, we only train the model on a subset
S and only update the score for ¢ € S. In practice, this
problem can be mitigated by maintaining an exponential
moving average d41(4) of a;(7) over time:

if i € .S,
otherwise,

a1 (1) = 7 X. a:(0) (1 =) x ar(d)
a (1)

As we will discuss later, with sufficient exploration over
all samples and in the regime of DNN training, d41(4) is
a high-quality and more stable alternative to a.(¢) that is
almost free to compute. According to Eq. @), the optimal
S; simply selects the top-k samples with the largest scores.
However, S; cannot replace D in estimating the linear
dynamics 9f(=:)/at|, because S; can be biased from the
data distribution D. Therefore, in our algorithm presented
later, instead of selecting the top-k, we sample S; based on
their scores, and cyclically employ a large-batch training
epoch over uniform samples from the training set after
every episode of mini-batch training on the selected subsets.
These strategies encourage more exploration for better
estimate to the scores in practice.

Remarks: Take a closer look at the induced score at the
end of Eq. (6): the residual y; — f(x;) measures the gap
between the current prediction f(x;) and the ground truth
y; (i.e., how hard the sample is), while the linear dynam-
ics delineates how f(z;) changes (i.e., speed and direction)
when training the model using samples drawn from the data
distribution. Together, their inner product reflects the mo-
mentum of f(x;) moving towards y; under the gradient flow
on D. Intuitively, we tend to select (1) harder samples that
the model can make more progress on and (2) samples that
are consistent with most other samples drawn from the same
distribution (indicating that reducing the losses on D helps
to also move f(z;) towards y;). The former intends to select
the most informative ones (compared to the ones already
learned) and is consistent with the selection criteria proved
to be effective in previous curriculum learning [59} 60| and
boosting methods [43}116], while the latter tends to select the
most representative ones that are consistent with other data,
which is another criterion whose success has been demon-
strated in recent curriculum learning methods [[61}162]. How-
ever, unlike many previous criteria that are built upon empiri-
cal observations or human heuristics, Eq. (6) is derived from
a well-formulated and motivated optimization problem.

2.3 Classification

We can extend the above analysis of dynamics for regression
to the general multi-class classification task, which learns a
model f(x; ) to minimize the cross entropy loss £..(z; 6):

minEsp loe(x) £ —logp(z)[y], &)

exp(f(z)[y])
>j=rexp f(z)[j]’
where c is the number of classes and ¥ is the class label of x.
We denote the one-hot encoding of y as y. Similarly, at step
t, we aim to find a subset S C [n] of size |S| < k whose
resulting gradient flow maximizes the projection of the resid-

ual y — p(x) onto the dynamics pa ;

p(@)[y] =

forall z ~ D, i.e.,
s

Ip(x)
sgfﬁﬁ)sﬂng”D <y - p(x), 9 S> : (10)

Similar to the regression case, we approximate the
expectation with samples D drawn from D, i.e.,

Ezvp <y —p(x), 8pa(f) s>

T op(z) Of(z)

~1D| 3;3 Of(x) 90
6&56 xi af(xi
IEZS (x;) 00
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|D|Z{8fmz} T
af(xi) > (11)
D

— 5 3 (i = e, 223
Hence, we compute the per-sample score a; (i) by

i€S

i) 2 (v = plostn), LHEW) )

t D
Which has a form similar to Eq. (7)) except that the residual is
vi—p(x;; 0;) for classification. The linear dynamics term in
Eq. is associated with the gradient flow minimizing the
L2 loss () on D instead of the cross-entropy loss £,.(+) on
S. This is the major difference between Eq. and Eq. (@),
which uses the same loss £(-) for both the model training and
dynamics estimation. This difference requires the training
steps to switch between the two types of losses, i.e., we min-
imize the cross-entropy loss £, () during mini-batch train-
ing on S; and switch to the square loss () in the large-batch
training epoch on D ~ D at the end of each episode/cycle.
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2.4 Learning Dynamics with Neural Tangent Kernel

We can obtain an intuitive explanation of the score in Eq. (6)

under the context of neural tangent kernel (NTK) [23} [14]].

For simplicity, we focus on the regression task (Section [Z)
in the single-output case (the result can be extended to every
dimension in the multiple-output case). The second row of
Eqg. (6) can be written as

s >

Eoop <y - f), 8@?’
; e )
£ )

IDI Z

o¢( xz) .
|D| Z ;)

xe Of(x)
! —rLHg prp = Z H; jrirj, (13)
|D| zES]ED
2 8€(x1) - N N af(xl) af(xJ)
2 Gy = e~ s & (P S5,

One can think that H is a dynamic kernel matrix describing
the pairwise relationship between sample-i and sample-j
in terms of their model gradients at step ¢. Note both r
and H depend on 6; so they are time-variant. In recent
work [23}[1]], it is shown that when f(-) is a neural network
with enough neurons per layer (i.e., with adequate but
still finite width), with high probability, H converges to a
deterministic kernel matrix H* so-called the “neural tangent
kernel (NTK)” computed on random initialization. In this
case, our objective becomes a weighted sum of the pairwise
product of residuals r;7; over all ¢ € S, j € D, where the
weights are time-invariant and determined by H*, i.e.,

TRNAC)) oy
Em~D<y f(z), ot S> ZE;:EDHM'?%TJ

Z ZH 7y (14)

zGS jeED

Given the NTK H*, which is a static matrix describing
the pairwise correlation between samples, we can obtain
more insights about dynamics optimization in Eq. (). First,
setting .S to be all the training samples, i.e., S = [n], is not
guaranteed to maximize the objective in Eq. (14). Instead,
it prefers samples with both large (i.e., large in magnitude)
residuals 7; and strong correlations to other samples with
large residual ;. Specifically, the objective tends to select
difficult samples (i.e., large |r;|) that are representative of
(i.e., sign(H, ;) = sign(r;r;)) and strongly related to (i.e.,
large |H; ;|) other difficult samples j € D (i.e., large |r;]).
Such criteria rule out the following two types of samples,
which might be selected by previous curricula: (1) difficult
samples with large residuals but weakly related to other
samples, which can possibly be outliers (or adversarially

chosen) that fail on training; (2) easy samples with small
residuals that can only contribute very weak gradients to
improve the predictions on difficult samples.

Furthermore, in the NTK regime, H* does not change over
time, so the score of each sample x; solely depends on
its own residual 7; and the residual r; of its strongly re-
lated samples from D. Hence, when applied to training
over-parameterized (wide-enough) neural nets, the objective
tends to keep selecting the same x; until most of the strongly-
related-samples to x; have sufficiently small residuals or r;
itself becomes nearly zero. If samples can be well structured
by H*, e.g., H* has a block diagonal structure after certain
symmetric row/column permutation where each block forms
a cluster, the dynamics optimization will keep reducing the
errors on some clusters until their errors become sufficiently
small before switching to other clusters. This property al-
lows us, in practice, to lazily update the scores (which re-
quires large-batch training on i.i.d. samples D ~ D and
might degenerate performance), and for most other steps we
can still train the model via mini-batch SGD on the selected
subset S;. That being said, a static H* is not required by
DoCL: the lazy update should work well if the block diago-
nal structure of H does not change too quickly. In addition,
the score computation in DoCL does not require explic-
itly computing H *. In fact, we avoid additional heavy com-
putation by using only already-computed byproducts of the
training process to estimate the linear dynamics in Eq. (6).

3 Empirical Studies of Training Dynamics
under Three Data Selection Curricula

The above analysis of dynamics-optimization suggests that
we should select samples with larger scores (i) (Eq. (8)
for training in each step. In this section, we present an em-
pirical study of the training dynamics with different data
selection curricula in a more primitive framework (Algo-
rithm[2)in Appendix) that in each step computes the score for
all samples and then trains the model on the top-k samples
with the largest/smallest scores. The aim is to solely evalu-
ate the effectiveness of the proposed scores and rule out
influences of any additional heuristics, techniques, or
hyperparameters that we will introduce later for building
a more practical algorithm (DoCL in Algorithm ).

CIFAR10, 10, Baseline

s: instantaneous
les: EMA model

model

red samples: EMA model

100 150 200 250 300
epoch

Figure 1: Test set accuracy of WideResNet-28-10 (instantaneous
model) and its exponential moving average (EMA model) during
the course of training when using the three data selection curricula.

In particular, we train a WideResNet-28-10 on CIFAR10 for
multiple episodes/cycles each applying SGD with cosine
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Dynamics of alternating between training on the highest and lowest scored samples (CIFAR10,

score (i)
Lo

!
S

score &(i) of the 10000 training samples selected in each epoch

[ 50 100 150 200 250 300
epoch

0.15

0.00
-0.10
-0.15 10000 unselected samples in each epoch with the Largest DoCL objective (Eq.(10))
~—— 10000 unselected samples in each epoch with the Smallest DoCL objective (Eq.(10))

DoCL objective
s
3

[ 50 100 150 200 250 300
epoch

10000 unselected samples in each epoch with the Largest DoCL objective (Eq.(10))
~—— 10000 unselected samples in each epoch with the Smallest DoCL objective (Eq.(10))

hll.uwf‘..n.a
Wi WV

0 50 100 150 200 250 300

Figure 2: Baselinel alternates between the highest and lowest
scored samples: Dynamics (mean+std) for (Top) the score a (i)
(Eq. (B)) of the selected samples, (Middle) DoCL objective
(Eq. (10)) values of unselected samples, and (Bottom) output
true-class probabilities for unselected samples. We split the
unselected samples in each epoch into two groups with the
largest/smallest DoCL objective values.

annealing learning rates. In every epoch of an episode, we
select £ = 10000 samples to train the model and we com-
pare three data selection curricula: (1) Baselinel selects the
k highest-scored samples in oddly-numbered episodes and
k lowest-scored samples in evenly-numbered episodes; (2)
Baseline2 always selects the k highest-scored samples; and
(3) Baseline3 always selects the k lowest-scored samples.
To update the scores for all the n samples, in each epoch,
we uniformly draw 2048 samples as D to estimate the linear

9ftzi0) | in Eq. (12), and we apply inference
D

dynamics ——;
on all samples to obtain f(x;) (costly for practice usage).

Dynamics of training on Highest vs. Lowest scored samples (CIFAR10,

-1

score ay(i)

-2
-3 Training on Highest-scored samples: score &i) of selected samples in each epoch
—— Training on Lowest-scored samples: score (i) of selected samples in each epoch

[ 50 100 150 200 250 300
epoch

I y;\miw \w f

DoCL objective

Training on Highest-scored samples: 10000 unselected samples with the Largest DoCL objective (Eq.(10)) in each epoch
_0.10{ — Training on Lowest-scored samples: 10000 unselected samples with the Largest DoCL objective (Eq.(10)) in each epoch

0 50 100 150 200 250 300
epoch

Training on Highest-scored samples: 10000 unselected samples with the Largest DoCL objective (Eq.(10)) in each epoch
—— Training on Lowest-scored samples: 10000 unselected samples with the Largest DoCL objective (Eq.(10) in each epoch

Figure 3: Training with highest-scored (Baseline2) vs. lowest-
scored (Baseline3) samples: Dynamics (mean=std) for (Top) the
score a(i) (Eq. [8)) of the selected samples, (Middle) DoCL objec-
tive (Eq. (10)) values and (Bottom) output true-class probabilities
for unselected samples with the largest DoCL objective values.

We first compare the test set accuracy of the three curricula
in Figure [I. Baseline2 keeps achieving the highest test
accuracy among the three since very early episodes. In

addition, Baselinel and Baseline2 outperform Baseline3
by a large margin. This indicates that the samples with
higher scores bring more improvement to the generalization
performance than the ones with lower scores.

Next, we take a closer look at the proposed score a.(7)
on selected samples, the DoCL objective (Eq. (10)), the
prediction quality (measured by true class probabilities) of
unselected data, and their correlations during the course of
training. The results verify that optimizing the learning dy-
namics indeed improves the generalization performance and
training on high-scored samples. In Figure 2] we report the
dynamics observed on Baselinel. In the middle and bottom
plots, we split the unselected samples in each epoch into
two groups, i.e., the 10000 samples with the largest DoCL
objective values and the 10000 samples with the smallest
DoCL objective values. They together show that the model
performs better (i.e., producing higher true-class probabil-
ities) on samples with larger DoCL objective values. Hence,
optimizing the learning dynamics of all samples (not only
the selected training samples) is consistent with the learning
goal of reducing the classification error over the data distri-
bution. Moreover, in the top and middle plots, we observe
that the DoCL objective (for both groups) degrades when
training on the lowest-scored samples, while it increases
when training on the highest-scored ones. It indicates that
the highest-scored samples improve the DoCL objectives
more effectively and result in better prediction qualities.

In Figure[3] we compare the dynamic patterns of Baseline2
and Baseline3. The top plot shows that the samples are
distinguishable based on their scores, indicating that they
are not equal in accelerating the learning process and thus
a data selection curriculum can be better than uniform
sampling. In the middle and bottom plots, we compare
the two baselines on their 10000 unselected samples with
the largest DoCL objective values, which are the better-
predicted samples as implied by Figure[2]and the objective
formulation in Eq. (10). The middle and bottom plots show
that by selecting the highest-scored samples as in Baseline2,
we can make greater learning progress and achieve better
prediction accuracy on these better-predicted samples.

Therefore, the training dynamics observed on the three base-
line curricula justify the proposed DoCL objective for dy-
namics optimization and motivate us to develop a curricu-
lum learning method based on selecting samples with higher
score (7). We also provide similar empirical results on
CIFAR100 and larger version of the plots in Appendix.

4 Dynamics-optimized Curriculum
Learning (DoCL)

In this section, we will develop a new practical curriculum
learning algorithm based mainly on the above dynamics-
optimization strategy. It also integrates other techniques
to make it more efficient and compatible with current deep
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learning schemes. We provide its detailed procedures in
Algorithm|[T and subsequently elaborate on its major steps.

Algorithm 1 Dynamics-optimized Curriculum Learning
L: input: {('ri? le) ?:1’ f(, ')’ f(’ 9),

{0320, {Ti Mg i € [0, 1], Emmin
2: initialize: T_; = 0,k = n, p; = 0,9; = f(x;)

3: forj € {0,--- ,k} do
4: fort e {Tj_y,---,T;} do
5 ift <Tport =1, then
6: Uniform sampling S; C [n] up to size n;
7 Update 6 by large-batch SGD with learning rate
7; to minimize L2 loss on Sy;
8: else
9: Sy < Draw k samples with probability o< G (4);
10: Optional: prune S; to a diverse subset by sub-
modular maximization in Eq. (15);
11: Update 6 by mini-batch SGD with learning rate

7; to minimize the task’s loss ¢(-) on Sy;
12: end if

13: fori c S; do

14: Estimate linear dynamics of f(x;):
pi e pi -y, 2) = LG,

15: Restore p; < 0 and gi f(xz)

16: Compute a¢(i) by Eq. (7) (regression) or
Eq. (classification);

17: Update a1 (¢) using Eq. (8);

18: end for

19:  end for

20:  Reduce training set size: k < max{kmin, & X k};
21: end for

Warm starting. To initialize the scores, at the beginning
we run 7g epochs of large-batch SGD (line 5-7) to minimize
the L2 loss on the whole training set. These warm-start
epochs provide accurate estimates of the scores in Eq.
(regression) or Eq. (classification), in which the linear
dynamics should be estimated under the full gradient flow
(rather than stochastic gradient flow) that minimizes the L2
loss on a training set D drawn from the data distribution D.

Cyclical curriculum learning. We train the model for mul-
tiple () episodes/cycles with an increasing number of steps
(e, Tj41 —T; > T; — Tj_ for {1} }le in Algorithm ,
where each episode starts with a large or rapidly increasing
learning rate, which gradually decays towards zero by a
predefined function (e.g., cosine or exponent). The learning
rate decay results in a fast convergence to local minima,
while its surge at the beginning of each episode helps to
quickly jump out from the previous local minima. Hence,
cyclical learning rates [46] such as the cosine annealing
schedule [35] can quickly jump between different local min-
ima on the loss landscape and explore more regions without
being trapped in challenging local minima. It is a perfect
match to our strategy since it leads to more exploration of
the training dynamics under different learning rates, which

improves the estimates of the scores. Moreover, at the end
of each episode (line 20), we reduce the training set size
k because more samples have their predictions converging
to the ground truth as the training proceeds. In addition,
we apply a large-batch training epoch (similar to the ones
during warm starting) to update the scores (line 5-7).

Estimate the linear dynamics under varying learning
rates. For computing a;(¢) (line 16), we need to estimate
the linear dynamics 9/(¢)/a¢ in continuous time from the ob-
servations of f(x) at discrete time steps. Since the learning
rate 7, can change over time, and a larger learning rate leads
to greater changes in f(x), we estimate 9/(=)/a: at step ¢
by (fe(@)=fu(@))/52t _, n,, where t' is the last step before ¢
when z is selected for training. In line 14-15 of Algorithml|T]
we update p; and g; to keep a record of > g=t' Mg and fy(2)
for sample-i, which is used to estimate the linear dynamics.

Update the scores by using dynamics computed on S;.
Theoretically, the scores can only be updated during the
warm start epochs at the beginning of the algorithm and
the update epoch at the end of each episode. In other steps
(line 9-11), since we instead apply mini-batch training
on a possibly biased subset S; (i.e., not guaranteed to be
i.i.d. drawn from D) and minimize a loss determined by
the task (i.e., not always to be the L2 loss), the resulting
training dynamics 9/(#)/s¢ can be different from the one
required in Eq. (7) and Eq. (12). However, in practice, by
encouraging more exploration on samples with small é(7)
when sampling S; (line 9), we find that the byproducts of
those training steps can also be leveraged to update a. (%)
(line 13-18) and produce compelling performance.

Weighted sampling. The problem formulations in Eq.
and Eq. (10) suggest directly selecting samples with the
largest scores d;(i). For better exploration, however, we
instead apply a weighted sampling of .S; based on the scores
(line 9). We can also trade off exploration vs. exploitation
using strategies from online learning methods. For example,
we can sample S; from a Boltzmann distribution, i.e.,
Pr(i € S;) = exp(a:(i)/7), where 7 is a temperature
parameter. We can additionally apply exponential weights
similar to Exp3 [2] if we assume the feedback a; (%) is more
adversarial than entirely stochastic. The momentum a; (%)
can either increase or decrease during different training
stages so it is not entirely stochastic. It is neither purely
adversarial since SGD on a complicated loss landscape
does not play against the curriculum. In this case, we can
additionally re-scale a; (i) < a4(i)/ Pr(i € S;) after line
16. It encourages more exploration since x with a smaller
probability is more likely to be selected in the future.

Further prune S; to a diverse subset. We can further
reduce training time in early stages when k is large by
extracting a small and diverse/representative subset of
S;. Inspired by MCL [59]], at line 10, we reduce S; to a
subset of size k; = i/ k: (0 < v, < 1) by (approximately)
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solving the following submodular maximization problem:

> a(i) + A F(S), (15)
€S

max
SCSy,|S|<k

where F : 25 — R, is a submodular function [[17] so
we can exploit fast greedy algorithms [39, 377, 38] to solve
Eq. with an approximation guarantee. We gradually
reduce preference for diversity as training proceeds via
reducing \; by a factor 0 < v, < 1 at each step.

S5 Experiments

We compare DoCL with the widely-used random mini-batch
SGD, two recent curriculum learning methods, i.e., self-
paced learning (SPL) [31] and minimax curriculum learn-
ing, and one variant of DoCL (DoCL-NR) by using them to
train different DNNs architectures on 9 image classification
datasets (without pre-training), i.e., (A) WideResNet-28-
10 [57] on CIFAR10 and CIFAR100 [30]]; (B) ResNeXt50-
32x4d [56] on Food-101 [[7], FGVC Aircraft (Aircraft) [36]],
Stanford Cars [29], and Birdsnap [6]; (C) ResNet50 [20] on
ImageNet [13]]; (D) WideResNet-16-8 on Fashion-MNIST
(FMNIST) [55]]; (E) PreActResNet34 [20] on SVHN [40].
The major difference across different curriculum learning
methods lies in the criteria to select samples. Random mini-
batch SGD adopts the criterion of uniform sampling over
training set. SPL. and MCL rely on the instantaneous loss
of each sample: SPL tends to select easier samples while
MCL prefers harder ones and applies an additional diversity
criterion as in Eq. (13). As defined in Eq. (7) and Eq. (12),
DoCL’s criteria are built upon the inner product of the resid-
uvals and linear dynamics. Hence, MCL can also be seen as a
variant of DoCL that only considers the instantaneous feed-
back on the residual part. To complete this ablation study,
we consider another variant DoCL-NR (NR stands for “no
residual”) that only relies on the linear dynamics part, i.e., it
instead uses a; (i) = ||9f(z::0:)/6¢||2 to compute the running
mean in Eq. (8) and follows the schedule of increasing sam-
ples over epochs as MCL (vs. decreasing samples in DoCL).

Hyperparameters. For all these methods, we update the
model on their selected/sampled data using mini-batch SGD
with momentum of 0.9. We use a cyclical cosine annealing
learning rate schedule [35] (multiple cycles with ending
epoch numbers {7;}7=, and with starting/target learning
rate decayed by a multiplicative factor 0.85). It will suffer
a short period of accuracy drop due to the surging learning
rate at the beginning of every cycle (as in Figure ) but can
traverse more regions with different local minima on the
loss landscape and eventually achieve better performance
with faster long-term convergence. On each dataset, we
tried a handful of schedules on mini-batch SGD, chose the
one with the best validation accuracy, and used it for all the
methods (but each method may select different numbers of
samples per epoch). We apply standard data augmentation
on all datasets and Mix-up [S8] with o = 0.4. More details
about the datasets, options of {7;}.~, and other training

hyperparameters shared across methods can be found in
the appendix. In DoCL-NR and DoCL, we set v, = v\ =
0.9, kmin = 0.2n. We tried a few common choices for them,
e.g., Tk, Yx € {0.85,0.9,0.95} and chose the best one. On
some datasets, we further test the performance of Eq. in
reducing S; and employ the “facility location” submodular
function [9] G(S) = ;s maxieswi,; as a diversity
criterion, where w; ; represents the similarity between sam-
ple z; and x;. We utilize a Gaussian kernel for similarity
measurement using neural net features (i.e., the inputs to
the last fully connected layer in our experiments) z(x) for
each z, i.e., w;; = exp (—l#(=:)—2(=,)°/202), where o is
the mean value of all the #(k—1)/2 pairwise distances.

CIFAR 10

uracy (%)

set acc

cy (%)

set accura

cy (%)

test set accuras

uracy (%)

set accy

Figure 4: Training DNNs with DoCL, DoCL-NR, SPL [31],
MCL [59], and random mini-batch SGD on 3 datasets: CIFAR100,
Food101, Birdsnap and ImageNet. We report test accuracy
changes v.s. the number of training batches.

Main Results. In Table[I] we summarize the final test accu-
racy achieved by every method on all the 9 datasets. DoCL
achieves the highest test accuracy among all the evaluated
methods and outperforms them by a large margin. On the
four fine-grained classification datasets (i.e., Food101, Bird-
snap, Aircraft and Cars) that traditional solutions usually
rely on fine tuning a pre-trained model, DoCL significantly
improves the training from scratch so the resulting accuracy
can be comparable with the fine-tuned models. Furthermore,
DoCL improves the state-of-the-art top-1 accuracy of
ResNet50 on ImageNet from 79.29% [21] (after applying a
bag of tricks that might be specific for ImageNet) to 79.54%
without heavy tuning of tricks and hyperparameters.

Efficiency. In Figure 4, we report how the test accuracy
improves with the increasing number of training batches
on three datasets (more results in the appendix). During the
first several cycles, DoCL has lower accuracies than some
other baselines because it starts from the whole training set
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Table 1: The test accuracy (%) achieved by random mini-batch SGD (Random), SPL, MCL, DoCL-NR and DoCL in training DNNs
on 9 datasets (without pre-training). In MCL, DoCL-NR and DoCL, we apply lazier-than-lazy-greedy [38]] for Eq. on CIFAR10,

CIFAR100, SVHN and FMNIST. DoCL achieves the highest test accuracy over all 9 datasets.

Curriculum  CIFAR10 CIFAR100 Food-101 ImageNet SVHN FMNIST Birdsnap Aircraft Cars
Random 96.18 79.64 83.56 75.04  96.48 95.22 64.23 7471 78.73
SPL [31]] 93.55 80.25 81.36 73.23  96.15 92.09 63.26  68.95 77.61
MCL [59] 96.60 80.99 84.18 75.09  96.93 95.07 65.76  75.28 76.98
DoCL-NR 96.40 81.42 84.75 75.62  96.80 95.50 66.59  79.72 81.48
DoCL (Ours) 97.43 83.23 87.45 79.54 97.36 9589 7137 8240 86.26

and gradually reduces the samples per epoch (i.e., line 20 of
Algorithm T)) while other CL methods increase the samples
per epoch from a small number. DoCL selects samples in
decreasing numbers since it needs sufficient exploration of
more samples in line with the fast-changing linear dynamics
during earlier stages. Hence, given the same number of
epochs, DoCL has longer cycles than others. As the cycle
length decreases for later stages/cycles, the optimization of
dynamics in DoCL prevails and improves the test accuracy
much faster than other methods.

CIFARL Ablation Study

test set accuracy (%)

DoCL: exp-decay stagewise LR
DoCL: no diversity pruning
DoCL: longer warmstart To = 10
DoCL: shorter warmstart To =2

—— DoCL: temperature T=1

—— DoCL: temperature T =0.02

—— DoCL: EMA discounting y = 0.1

—— DoCL: EMA discounting y = 0.99

test set accuracy (%)

Figure 5: Ablation study and sensitivity analysis of hyperpa-
rameters for DoCL when applied to train WideResNet-28-10 on
CIFAR10 (top) and CIFAR100 (bottom).

Ablation Study. In Figure [5, we conduct a thorough
ablation study of DoCL (i.e., removing diversity prun-
ing in line 10 of Algorithm [T, or changing the cyclical
learning rate to exponential decaying learning rate over
episodes) and compare the default hyperparameters (i.e.,
Ty = 5,7 = 0.1,y = 0.9 ) used in above experiments
with other options. It shows that DoCL is not very sensi-
tive to most hyperparameters. Specifically, DoCL equipped
with diversity pruning, cyclical learning rates, longer warm-
starting epochs, lower temperature 7, and moderate v works
slightly better than their counterparts. DoCL with a very
short warm-starting period (2 epochs) suffers from insuf-
ficient exploration over all samples in earlier stages and
thus performs much poorer than other variants but it finally
achieve similar test accuracy as others in later stages.

Regression. Although the above experiments mainly focus
on classification tasks, we also evaluate the performance of
DoCL and compare it with other baselines on a regression
task called “knowledge distillation” [} 42, 22] that aims to
transfer the knowledge of a pre-trained large neural net to
a smaller one (e.g., ResNet-18). In particular, we study an

L2 regression minimizing the L2 loss between the output
logits (the last-layer outputs before softmax) of a ResNet-18
model and the logits produced by a pre-trained ResNeXt-29
8x64d on the same data. We apply different methods to
sequentially select the data subset in each epoch on which
we minimize the L2 distillation loss. In Figure [6, we re-
port their performance on CIFAR10 and CIFAR100, which
shows that DoCL achieves the best test accuracy among all
the methods. On CIFAR100, DoCL keeps outperforming
the others starting at very early stages. On CIFAR10, DoCL
improves slower during earlier stages due to the decreasing
schedule of subset size adopted by DoCL (as illustrated
before) but it surpasses others after 30,000 training batches.

CIFAR10 Knowledge Distillation (L2 regression): ResNext-29 8x64d - ResNet-18

uracy (%)

set acc

2or )

set accura

number of training batches (batch size = 128)

Figure 6: Regression (knowledge distillation with L2 loss on
pre-softmax logits) by DoCL, DoCL-NR, SPL [31], MCL [59],
and random mini-batch SGD for transferring the knowledge of a
pre-trained ResNeXt-29 8x64d (34.4M parameters) to ResNet-18
(11.2M parameters) on CIFAR10 (top) and CIFAR100 (bottom).

6 Conclusion

We derive a general curriculum learning strategy (DoCL)
from the optimization of training dynamics. DoCL selects
training sample subsets that most quickly help the predic-
tions for samples drawn from the data distribution get close
to their targets (Eq. (I)). It uses an objective that combines
training dynamics and gradient flow in both the regression
and classification settings. We relate DoCL to recent studies
on the neural tangent kernel. The DoCL scores depend
only on training time byproducts and thus incur minimal
extra computation. DoCL is built upon a time-moving
average of this score and integrates it into a framework
with several state-of-the-art DNN-training techniques. In
experiments over 9 datasets, DoCL substantially improves
the performance and efficiency over existing CL methods.
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