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Abstract

Let A = L0 + S0, where L0 ∈ Rd×d is
low rank and S0 is a perturbation matrix.
We study the principal subspace estimation
of L0 through observations yj = f(A)xj ,
j = 1, . . . , n, where f : R → R is an un-
known polynomial and xj ’s are i.i.d. random
input signals. Such models are widely used in
graph signal processing to model information
diffusion dynamics over networks with ap-
plications in network topology inference and
data analysis. We develop an estimation pro-
cedure based on nuclear norm penalization,
and establish upper bounds on the principal
subspace estimation error when A is the ad-
jacency matrix of a random graph generated
by L0. Our theory shows that when the sig-
nal strength is strong enough, the exact rank
of L0 can be recovered. By applying our re-
sults to blind community detection, we show
that consistency of spectral clustering can be
achieved for some popular stochastic block
models. Together with the experimental re-
sults, our theory show that there is a fun-
damental limit of using the principal com-
ponents obtained from diffused graph signals
which is commonly adapted in current prac-
tice. Finally, under some structured pertur-
bation S0, we build the connection between
this model with spiked covariance model and
develop a new estimation procedure. We
show that such estimators can be optimal un-
der the minimax paradigm.
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1 Introduction

We consider a matrix perturbation model where

A = L0 + S0, A ∈ Rd×d (1.1)

where L0 is low rank and positive semi-definite (PSD)
and S0 is a perturbation matrix. The problem of in-
terest in this article is to study the principal subspace
estimation of L0 given observations

yj = f(A)xj , j = 1, ..., n (1.2)

with xj ’s being i.i.d. copies of a Gaussian random
vector x ∼ N (0, Id) and f : R → R being an un-
known polynomial which belongs to certain polyno-
mial class F .

One major motivation behind model (1.2) originates
from network data analysis and graph signal process-
ing (Sandryhaila and Moura, 2013; Shuman et al.,
2013; Ortega et al., 2018). Model (1.2) is widely
used to model information diffusion dynamics over
networks. In particular, let one sample observation
y = (y1, ..., yd)

T ∈ Rd be a zero-mean graph signal in
which the ith element yi denotes the signal value at
node i of an unknown graph G with graph-shift opera-
tor (GSO). Common choices of GSO can be either the
adjacency matrix A of the graph or the Laplacian ma-
trix L := diag(A)−A. The GSO can be used to define
linear graph filters. Typically, these graph filters are
linear graph signal operators that can be expressed as
matrix polynomials of A: f(A) =

∑T
`=0 β`A

`. For a
given excitation graph signal x ∈ Rd, the output of
the filter is y = f(A)x, which is exactly model (1.2).
Graphical data is widely used to capture network in-
formation such as the underlying dependency and/or
similarity structure between the data points. For ex-
ample, neural activities at different regions of the brain
can be viewed on a graph where the regions are rep-
resented by nodes and the edge weights between the
nodes encode the functional or structural connectivity
levels among the corresponding regions (Honey et al.,
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2007). Additionally, when a society is affected by an
epidemic, a graph can show the individual interactions
and data at each node can measure the infection level
of each individual. The corresponding principal com-
ponents of the network can be crucial in network topol-
ogy inference (Segarra et al., 2017) or community de-
tection (Wai et al., 2019).

According to Cayley-Hamilton theorem, any matrix
polynomial of A can be represented as

f(A) :=

T∑
`=0

β`A
` = U

( T∑
`=0

β`Λ
`
)
UT (1.3)

where A := UΛUT is the eigen-decomposition of A.
It suggests that U is an invariant parameter of A un-
der such diffusion process. Moreover, if S0 is a small
perturbation under model (1.1), it’s reasonable to use
U to estimate the principal subspace of L0 which is of
our interest. One major difficulty in solving this prob-
lem comes from the low rank constraint of L0. Ap-
parently, both perturbation in (1.1) and diffusion in
(1.2) can introduce noise and redundant information.
Thus how to accurately locate the underlying low di-
mensional principal space becomes essential. Our first
idea is to use nuclear norm penalization for low rank
information retrieval. This classical tool was originally
introduced by Candès and Recht (2009) in the classical
matrix completion problem and has been very success-
ful to study low rank matrix recovery during the past
decade (Recht, 2011; Koltchinskii et al., 2011; Liu and
Li, 2014; Chatterjee, 2015; Cai and Li, 2020) and the
references therein. Our second idea is to use tools de-
veloped in principal component analysis (PCA) in co-
variance estimation. Indeed, model (1.2) suggests that
the principal components of A is the same as that of
the covariance matrix of the Gaussian random vector
y, which is relatively well understood.

There are several well studied models closely related
to ours. Robust PCA was introduced by Candès et al.
(2011) where they considered model (1.1) with L0 be-
ing a low rank component and S0 being a sparse per-
turbation. Clearly, the diffusion process in our model
(1.2) introduces further correlation between L0 and
S0 which makes the sparsity pattern of S0 hard to
capture. So we don’t assume any sparsity on S0. An-
other well studied topic related to ours is spiked covari-
ance model, where L0 is a PSD low rank component
with compact spectrum and S0 is a multiple of iden-
tity, see Paul (2007); Johnstone and Lu (2009). When
A is equipped with this structure, we are able to de-
velop estimation procedure that is minimax optimal
under model (1.2). We notice that in a recent related
work (Wai et al., 2019), the authors studied a special
case of model (1.2) with A being the Laplacian matrix
of the underlying graph focusing on the algorithmic

and application aspects of blind community detection,
while ours is focused on the theoretical understanding
of the statistical estimation procedure. There are also
other works which focus on minimax estimation prob-
lems that relate nonlinear functions and matrix (Gao
et al., 2015; Zhou, 2019). Works that focus on prin-
cipal subspace estimation under matrix perturbation
model can be found in Cai and Zhang (2018); Xia and
Zhou (2019) and the references therein.

Our major contribution is on the theory front. In
Section 3 we introduce our low rank estimation proce-
dure and establish a major result that serve as the
cornerstone to derive bounds on the principal sub-
space estimation error. We show that when the signal
strength is strong enough, the exact rank of L0 can be
recovered. In Section 4, we derive bounds on principal
subspace estimation under random graph setting and
apply it in blind community detection in stochastic
block model (SBM) (Holland et al., 1983) which is one
of the most important model in network data analysis.
We show that for some popular SBM, it implies con-
sistency of spectral clustering. In Section 5, we turn
to some structured perturbation and propose a new
estimation procedure. We show that our model under
this setting is closely related to the spiked covariance
model (Johnstone and Lu, 2009) and minimax optimal
rates are proved. In section 6, we conduct numerical
simulation study to validate our analysis. Together
with the upper bounds on principal subspace estima-
tion proved for random graph setting, our experimen-
tal results show that there is a fundamental limit of
using principal components of f(A) to estimate those
of L0 which is commonly adapted in practice. To our
best knowledge, this is the first work that established
those theoretical results in graph signal processing.

2 Preliminaries

2.1 Notations

Throughout this paper, we use boldface uppercase let-
ter X to denote a matrix and boldface lowercase letter
x to denote a vector. Given a matrix A, we always use
the form A =

∑d
j=1 σj(A)uj(A) ⊗ vj(A) to denote

its singular value decomposition (SVD); we denote by
‖A‖op := σ1(A) its spectral or operator norm; de-
note by ‖A‖F its Frobenius norm; denote by ‖A‖∗
its nuclear norm; denote by ‖A‖∞ its max-norm, i.e.
‖A‖∞ := maxi,j Aij . Moreover, if A is PSD, we de-
note by r(A) := tr(A)/‖A‖op the effective rank of
A. We denote by [d] := {1, 2, . . . , d}. Given nonneg-
ative a and b, a . b or a = O(b) means that a ≤ Cb
with a numerical constant C, and a � b or a = Ω(b)
means that a . b and b . a. a ∧ b = min{a, b} and
a ∨ b = max{a, b}.
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2.2 Matrix Perturbation Model

Assumption 1. Assume that A is symmetric and
yields a decomposition A = L0 + S0 where L0 is posi-
tive semidefinite (PSD) with rank(L0) = r � d. Fur-
ther, we assume that L0 has the following SVD:

L0 = UrΛrU
T
r =

r∑
j=1

λj(L0)uj(L0)⊗ uj(L0), (2.1)

with Ur ∈ Rd×r, Λr ∈ Rr×r, λ1 ≥ λ2 ≥ · · ·λr > 0.

Remark 1. Note that the PSD assumption on L0 is
necessary. One reason is that there exist polynomials
f that can cause identifiability issue on estimation of
the principal components of L0 under model (1.2). We
will have a detailed discussion on this in Section 2.3.

Assumption 2 (Random graph). Let A be an adja-
cency matrix of a random graph of d nodes generated
by L0 such that E[A] = L0 − diag(L0), and each edge
of the random graph occurs independently. Assume
that d ·

∥∥L0

∥∥
∞ ≤ s for some s ≥ c0 log d with some

constant c0 > 0.

Example 1. One important example under Assump-
tions 1 and 2 is a popular stochastic block model
(SBM) widely used in community detection. In this
case, the adjacency matrix A is generated from L0

where L0 = ZBZT . Here Z ∈Md,r is the membership
matrix where each row has one entry equals 1 and the
rest are 0’s. B ∈ Rr×r is the connectivity matrix.
Especially,

B = αdB0; B0 = λIr + (1− λ)1r ⊗ 1r, λ ∈ (0, 1),

where Ir ∈ Rr×r is the identity matrix and 1r ∈ Rr is
a vector of 1’s.

Assumption 2 is standard in network analysis and com-
munity detection. Briefly, Example 1 exemplifies the
edge probability within the same community is αdλ
and that across different communities is αd(1 − λ).
The quantity s in Assumption 2 is an upper bound
on the expected node degree of the random graph and
characterizes the sparsity of the network. Since in-
teresting networks in reality are mostly sparse. The
following wonderful result proved by Lei and Rinaldo
(2015) provides an upper bound on the size of such
perturbation.

Proposition 2.1. (Spectral bound of binary symmet-
ric random matrices) Suppose that Assumption 2 holds
under model (1.1). Then for any t > 0 there exists a
constant C = C(t, c0) such that with probability at
least 1− d−t ∥∥S0

∥∥
op
≤ C
√
s. (2.2)

2.3 Polynomial with Homogenous Decaying
Coefficients

The polynomial f in model (1.2) we consider belongs
to the following polynomial class.

F(`, σ, λ) :={
f(x) =

∑̀
i=0

aix
i
: |a0| ≤ σ; ai = O(|λ|−(i−1)

), ai ≥ 0 ∀i ≥ 1
}
.

The constant coefficient a0 serves as a bias intercept.
The degree ` characterizes the diffusion depth. When
A is an adjacency matrix, higher order term in f(A)
models the interaction along longer path in the net-
work. Throughout this paper, we assume that ` is a
fixed constant. In diffusion dynamics over networks,
the decaying coefficients can model the situation that
further nodes have less effect on a given one.

Consider

f(A) = f(L0 + S0) =
∑̀
i=0

ai(L0 + S0)
i

= f(L0) + Sf (L0,S0)

(2.3)

where Sf (L0,S0) := f(A) − f(L0). One can imme-
diately realize that given the full eigen-decomposition
of L0 = UΛUT with U ∈ Rd×d and Λ ∈ Rd×d, then
f(L0) = Uf(Λ)UT which shares the same eigenspace
with L0. Especially, if f(0) = a0 6= 0, f(L0) is not
necessarily low rank. However, one can decompose
f(L0) := L1+a0Id which implies that f(L0) has a very
simple decomposition form, i.e. a low rank component
plus a scalar matrix. Moreover, L1 has a simple form of
SVD: L1 = Ur(f(Λr)− a0Ir)UT

r when f ∈ F(`, σ, λ).
It essentially means that L1 perfectly preserves the
eigenspace and rank information of L0. Meanwhile,
given that the exact values of ai’s are unknown to us,
which is the typical case in real world applications, the
eigenvalue information is lost. Therefore, it is only
reasonable for one to recover its eigenspace or rank
information.

Given f ∈ F(`, σ, λ1), another direct observation is

that ‖L1‖op = σ1(L1) =
∑`
i=1 aiλ

i
1 � λ1. This obser-

vation partly motivates our PSD assumption on L0.
If L0 is not PSD, and the largest eigenvalue λ1 < 0.
Even with a simple polynomial function f̃ ∈ F(`, σ, λ)
such as f̃(x) := |λ1|−1x2 + x, we can have f̃(λ1) = 0,
which means L1 loses the most important principal
component information of L0. This will cause some
identifiability issue of the problem thus we don’t con-
sider it here.
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3 Information Retrieval via Nuclear
Norm Penalization

In Section 2.3, we discussed that f(A) can be decom-
posed into a low rank component plus some perturba-
tion, and the low rank component preserves the prin-
cipal subspace of L0. In this section, we construct an
estimator using nuclear norm penalization to estimate
the low rank component. We prove a major result
below which serves as a cornerstone for us to derive
bounds on principal subspace estimation.

Recall from Section 2.3, we can rewrite f(A) as

f(A) = L1 + S̃f (L0,S0), where S̃f (L0,S0) :=
Sf (L0,S0) + a0Id. Then the covariance matrix of y
can be represented as

f2(A) = L2 + S̄f (L0,S0) (3.1)

where we use L2 = L2
1 for the simplicity of represen-

tation and denote

S̄f (L0,S0) := L1S̃f (L0,S0)+S̃f (L0,S0)L1+S̃2
f (L0,S0).

From (3.1), we can see that the covariance matrix can
be decomposed into a low rank part plus some remain-
der. It is a natural idea to use nuclear norm penaliza-
tion to extract the low rank component. Dealing with
low rank estimation through nuclear norm minimiza-
tion/penalization has been a standard approach along
with the prosperous development of matrix completion
and low rank recovery (Recht et al., 2010; Gross, 2011;
Candes and Plan, 2010; Koltchinskii et al., 2011; Liu
and Li, 2016; Shen and Li, 2016) and the references
therein. Since the underlying true covariance matrix
of y is not available, the sample covariance matrix
Σ̂ := n−1

∑n
j=1 yj ⊗yj can serve as a good surrogate.

Consider the following optimization problem

L̂ := arg min
L∈D

∥∥Σ̂− L
∥∥2
F

+ ε‖L‖∗. (3.2)

where D is a closed convex subset of the space of PSD
matrices. The following lemma characterizes the per-
formance of estimator (3.2) measured by Frobenius

norm ‖L̂− L2‖F .

Lemma 1. Suppose that Assumption 1 holds under
model (1.2) with ‖S0‖op ≤ δ, and f ∈ F(`, σ, λ1) with
λ1 := λ1(L0) ≥ C1(σ ∨ δ) for some absolute constant

C1 > 0. Let L̂ be the solution to (3.2). For any t1,
t2 > 0, take

ε ≥ C(`)max
{
λ21

√
r(L2) + t1

n
, λ1(σ+δ)

(
1∨
√
d+ t2

n

)}
(3.3)

Then with probability at least 1− (e−t1 + 5e−t2)∥∥L̂− L2

∥∥
F
≤

C∗(`)
√
rmax

{
λ21

√
(r(L2) + t1)

n
, λ1(σ + δ)

(
1 ∨

√
d+ t2

n

)}
.

(3.4)

Especially,

E‖L̂− L2‖F ≤

c∗(`)
√
rmax

{
λ21

√
(r(L2))

n
, λ1(σ + δ)

(
1 ∨

√
d

n

)}
.

where C(`), C∗(`) and c∗(`) are some constants de-
pending on `.

The proof of Lemma 1 (and missing proofs for other
theorems) can be found in the supplementary ma-
terial. The key challenge of the proof is to bound
‖S̄f (L0,S0)‖op whose structure is quite complicated.
Lemma 1 indicates that when the sample size n is
large enough, ‖L̂ − L2‖F .

√
rλ1(σ + δ). It shows

that the estimation error of L̂ is only controlled by the
size of the perturbation δ when n is large enough. The
intuition behind this is that large sample size n can
only contribute to better covariance estimation. While
the covariance estimation is accurate enough, it is the
matrix perturbation that controls the estimation accu-
racy. Currently, we don’t know whether bound (3.4)
is optimal or not since to prove the lower bound, one
needs some advanced mathematical tools that are not
available as far as we are concerned. However, as we
shall see in Section 6, our numerical experiments vali-
date this phenomenon and show bound (3.4) could be
very tight. On the other hand, as we shall see in Sec-
tion 5, it is possible for us to design new estimators to
further denoise this perturbation for some structured
S0, and get estimators that can be not only consistent
but also minimax optimal. This result is crucial for
us to derive bounds on principal subspace estimation
under our random graph setting (Assumption 2).

In the following theorem, we show that when the signal
strength λr, the smallest singular value of L0 is strong
enough, one can recover the exact rank of L0 with high
probability.

Theorem 3.1. Under the same condition as in
Lemma 1, let L̂ be the solution to (3.2) with ε taken

as in Lemma 1. Suppose that for some 0 < η < 1, L̂′

be the solution to (3.2) with ε′ = ε/(1 − η), namely,
for some t1, t2 > 0

ε′ ≥
C(`)

1− η
max

{
λ21

√
r(L2) + t1

n
, λ1(σ + δ)

(
1 ∨

√
d+ t2

n

)}
.

(3.5)

Set r̂ := rank(L̂′). Then with probability at least 1 −
(e−t1 + 5e−t2)

r̂ ≤ r.
Moreover, if

min
j:σj(L2)6=0

σj(L2) ≥
C(`)

1− η
max

{
λ21

√
r(L0)

n
, λ1(σ+δ)

}
, (3.6)

then with the same probability

r̂ ≥ r.
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Remark 2. Recall that the smallest singular value of
L2 is minj:σj(L2)6=0 σj(L2) � (λ2r+λrσ). An immediate
observation is that when λr � λ1, then (3.6) can easily
hold when the sample size n is large enough. Thus the
exact rank r can be recovered with high probability.

4 Principal Subspace Estimation of
Random Graph

4.1 Bounds on Principal Subspace

As we have discussed in Section 3, L2 preserves the
principal subspace information of L0. Consider the
eigen-decomposition (or equivalently SVD when L2 is
PSD) of L2 = UrΛUT

r . A natural estimator of Ur is

the first r-leading singular vectors Ûr of L̂. Denote by
L̂ := ÛrΛ̂ÛT

r the SVD of L̂ with Ûr ∈ Rd×r. In The-

orem 4.1, we derive an upper bound on
∥∥Ûr−UrQ

∥∥
F

where Q ∈ Rr×r is an orthogonal matrix. It is a
common metric used for principal subspace estima-
tion under the perturbation model (1.1) and Assump-
tion 2. The proof (in the supplementary material) fol-
lows from Lemma 1 and is an application of Davis-
Kahan sin Θ-Theorem (Davis and Kahan, 1970; Yu
et al., 2014).

Theorem 4.1. Suppose that Assumption 1 and 2 hold
under model (1.2), and f ∈ F(`, σ, λ1) with λ1 ≥
C1(σ ∨ δ) for some constant C1 > 0. Let L̂ be the so-

lution to (3.2) and Ûr be the principal subspace with
columns being the first r leading eigenvectors. Take

ε ≥ C1(`)max
{
λ21

√
r(L2)

n
, λ1(σ +

√
s)
(
1 ∨

√
d

n

)}
(4.1)

Then for any orthogonal matrix Q ∈ Rr×r, with prob-
ability at least 1− d−1∥∥Ûr −UrQ

∥∥
F
≤

C∗1 (`)

√
r(

λ2r ∨ λrσ
) max

{
λ21

√
r(L2)

n
, λ1(σ +

√
s)
(
1 ∨

√
d

n

)}
,

(4.2)

where C∗1 (`) and C1(`) are constants depending on `.

Remark 3. One implication of Theorem 4.1 is that
when λ1 � λr, σ ≤

√
s, and the sample size n is

large enough, then the bound in (4.2) implies that the
following rate holds with high probability

∥∥Ûr −UrQ
∥∥
F
.`

√
s
√
r

λr
.

In Section 4.2 we apply this result to blind community
detection in SBM and show that it can imply consis-
tency of spectral clustering for some popular SBMs.

Another common metric used in the literature to mea-
sure the distance between two subspaces is ‖ÛrÛ

T
r −

UrU
T
r ‖F . Compared with the previous metric, this

one is more straight forward to compute in prac-
tice. As a consequence, we show an upper bound on
‖ÛrÛ

T
r −UrU

T
r ‖F in the sequel theorem which again

follows from of Lemma 1.

Theorem 4.2. Under the same condition of Theo-
rem 4.1, let L̂ be the solution to (3.2) and Ûr be the
principal subspace with columns being the first r lead-
ing eigenvectors. Take

ε ≥ C2(`)max
{
λ21

√
r(L2)

n
, λ1(σ +

√
s)
(
1 ∨

√
d

n

)}
(4.3)

Then with probability at least 1− (e−t1 + 5e−t2)

∥∥ÛrÛ
T
r −UrU

T
r

∥∥
F
≤

C∗2 (`)
√
r

λ2r ∨ λrσ
max

{
λ21

√
r(L2) + t1

n
, λ1(σ +

√
s)
(
1 ∨

√
d+ t2

n

)}
,

(4.4)

where C∗2 (`) and C2(`) are constants depending on `.

Remark 4. As one might have noticed, the term
λ1(σ +

√
s)
(
1 ∨

√
d/n

)
in bound (4.4) presents a fun-

damental limit of using Ûr to estimate Ur under such
diffusion models. Despite the fact that this estima-
tor is commonly adopted in the literature, it indicates
that even if the sample size n goes to infinity, it will
not contribute much to improving the accuracy on the
estimation of Ur once n is bigger than d. As we shall
see in Section 6, our numerical simulation results ver-
ified this observation. Thus, this result suggests that
when one intends to use Ûr under this model, too
many samples (when n� d) can be redundant.

4.2 Application in Blind Community
Detection

Community detection has been one of the central top-
ics in network data analysis while most of the works are
based on a single observation of the network, see New-
man and Girvan (2004); Amini et al. (2013); Bickel
and Chen (2009); Sussman et al. (2012); Lei and Ri-
naldo (2015) and the references therein. Recently, we
also see a surge of interests in generalization of such
topics to tensor-valued data (Paul and Chen, 2016;
Jing et al., 2020). We consider blind community de-
tection in SBM. In SBM, a network with d nodes and
r communities is parameterized by two matrices: 1.
a membership matrix Z ∈ Md,r and 2. a symmet-
ric connectivity matrix P ∈ [0, 1]r×r. The nodes are
indexed by [d] and the communities are indexed by
[r]. For the membership matrix, a node i ∈ [d] be-
longs to the kth community if and only if Zik = 1 and
Zi` = 0 when ` 6= k. For the connectivity matrix, the
entry Pk` is the edge probability between any nodes in
community ` and community k. The adjacency matrix
A ∈ {0, 1}d×d that represents the network is generated
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by

If Zik = Zj` = 1, then

Aij = Aji ∼ Bern(Pk`) independently ∀i > j;

Aii = 0, ∀i ∈ [n]

(4.5)

Especially, we can write

E[A] = ZPZT − diag(ZPZT ). (4.6)

Note that rank(ZPZT ) ≤ r and diag(ZPZT ) with
bounded operator norm has little effects. The goal
of community recovery is to recover the membership
matrix Z up to column permutations. A standard way
to achieve this goal is to use a simple method called
spectral clustering (Von Luxburg, 2007; Rohe et al.,
2011; Balakrishnan et al., 2011; Fishkind et al., 2013;
Rohe et al., 2011; Zhou and Li, 2020). In the classi-
cal setting, adjacency matrix A is given and so is the
number of community r. Under our model, we only
observe the graph signals Y =

(
y1, ...,yn

)
∈ Rd×n,

so the adjacency matrix A is latent. As a result, we
can not apply spectral clustering algorithm through
the adjacency matrix A directly. However, according
to our discussion in Section 4, we can apply spectral
clustering algorithm to Ûr instead. Our estimation
procedure is summarized in Algorithm 1.

Algorithm 1: Spectral-Clustering with approxi-
mate k-means

1: Ûr ← top-r left singular vectors of Y;
2: Ẑ← (1 + ε)-approximation solution to k-means

with r clusters on rows of Ûr;
3: Output Ẑ.

Remark 5. There are two computational concerns
in practice: 1. we simply use the top-r left singular
vectors of Y which is exactly the top-r left singular
vectors of L̂. Since it is shown in Koltchinskii et al.
(2011) that the solution to (3.2) is just Σ̂ with a soft

threshold on its singular values. It means that Ûr is
again the top-r singular vectors of Σ̂. Computation-
ally, it is more stable to get Ûr from Y. 2. the original
spectral clustering algorithm is applying the k-means
clustering algorithm on the rows of Ûr. However, it is
known that finding a global minimizer of such a pro-
cedure is NP-hard (Aloise et al., 2009). Instead, one
can solve the (1+ε) approximate k-means that is com-
putationally tractable and whose solution is within a
constant fraction of the optimal value (Kumar et al.,
2004).

Once we get the estimated membership matrix Ẑ ∈
Md,r, we consider a popular measure of estimation er-
ror in community detection called overall relative er-
ror: L

(
Ẑ,Z

)
:= d−1 minJ∈Or

∥∥ẐJ − Z
∥∥
0
, where Or

denotes the set of all r × r permutation matrices. In
short, L

(
Ẑ,Z

)
measures the overall proportion of mis-

classified nodes. The following theorem characterizes
the error bound on L

(
Ẑ,Z

)
.

Theorem 4.3. Suppose that the conditions of Theo-
rem 4.1 hold, and let A be an adjacency matrix gener-
ated from SBM parametrized by L0 = ZPZT . Assume
that λ1 � λr and σ <

√
s. Especially, let P = αdP0

with ‖P0‖∞ = 1 and its smallest singular value λ > 0

be a constant. Let Ẑ be the output of Algorithm 1.
Then there exists an absolute constant c such that if

(2 + ε)rd

d2minλ
2αd

< c (4.7)

Then with probability at least 1− d−1,

L
(
Ẑ,Z

)
≤ c̃(`, ε) rdmax

d2minλ
2αd

. (4.8)

where c̃(`) is a constant depending on ` and ε. dmax

and dmin are the largest and smallest community size
respectively.

Remark 6. When dmax � dmin and dαd = Ω(log d),

then bound (4.8) with r = o(
√

log d) implies L
(
Ẑ,Z

)
=

op(1), which means the communities can be consis-
tently recovered. This shows that our result (4.2) can
be used to achieve consistency of spectral clustering
for blind community detection of this important SBM
with balanced community sizes. Similar results were
proved by Lei and Rinaldo (2015) when A and r are
given.

5 Principal Subspace Estimation
under Structured Perturbation

As we have discussed in Section 3, the term λ1(σ + δ)
in bounds (3.4) controls the estimation accuracy of
the estimator (3.2) as the sample size n → ∞. The
term σ is introduced by a0. The other term

√
s is

caused by perturbation matrix S0. The major reason
that large sample size n could not decrease the er-
ror to zero is that the estimator (3.2) fails to capture
the complicated structure of S̄f (L0,S0) with a random
perturbation S0. In this section, we study some struc-
tured perturbation for which we are able to develop
new estimators for denoising. Therefore consistency
can be achieved. Such a model is closely related to
the so called spiked covariance model (SPM) which
draws a lot of attention during the past decade. We
refer to Johnstone and Paul (2018) as a good survey
on this topic. We further show that the estimator we
get is minimax optimal when the new model is equiv-
alent to SPM.

We consider the case S0 = εId for some ε > 0. In the
following proposition we show that under such pertur-
bation f2(A) can be uniquely decomposed into a low
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rank component plus a multiple of identity. What is
more important is that the low rank component pre-
serves the exact principal subspace information of L0.

Proposition 5.1. Suppose that Assumption 1 holds
under model (1.2) with S0 = εId. Let r < d/2 and
λ1 ≥ C1(σ ∨ ε) for some absolute constant C1 > 0..
Then for any f ∈ F(`, σ, λ1), there exists a unique
decomposition of f2(A) such that

f2(A) = f2(L0 + εId) := g(L0) + f2(ε) (5.1)

where g(L0) := g̃2(L0) + 2f(ε)g̃(L0) with g̃ ∈
F(`, 0, λ1).

g(L0) preserves the rank information and eigenspace
of L0. When (σ + ε) < λ1 and λ1 � λr, the co-
variance matrix Σ = f2(A) = g(L0) + f2(ε) of y
is exactly a spiked covariance matrix. We propose
an improved estimator of the low rank component
g(L0). Denote the spectrum of the sample covari-

ance Σ̂ by σ̂(Σ) := {σ1(Σ̂), ..., σd(Σ̂)}. Take ã20 :=

Med{σ1(Σ̂), ..., σd(Σ̂)} as the median of the singular

values of Σ̂. Consider the following optimization prob-
lem:

L̃ = arg min
L∈D

∥∥Σ̂− (L + ã20)Id
∥∥2
F

+ ε‖L‖∗. (5.2)

The intuition behind this estimator is that ã20 serves

as a good estimate of f2(ε) as long as Σ̂ is close to
Σ given rank(L0) < d/2. To see why, we denote by

∆Σ := Σ̂−Σ, then by the classical Wely’s inequality
from matrix perturbation theory (Stewart, 1990, page
203)

sup
j≥1
|σj(Σ̂)− σj(Σ)| ≤ sup

j≥1
|σj(∆Σ)| = ‖∆Σ‖op.

(5.3)
Thus as long as ‖∆Σ‖op is small, |ã20 − f2(ε)| is also
small. In the following theorem, we prove an upper
bound on estimation of the low rank component.

Theorem 5.2. Suppose that Assumption 1 holds un-
der model (1.2) with S0 = εId and r < d/2, and
f ∈ F(`, σ, λ1) with λ1 ≥ C1(σ ∨ ε) for some abso-

lute constant C1 > 0. Let L̃ be the solution to (5.2).
For any t1, t2 > 0 take

ε ≥ C3(`)max
{
λ21

√
r(L0) + t1

n
, λ1(σ + ε)

√
d+ t2

n

}
(5.4)

Then with probability at least 1− (e−t1 + 5e−t2)∥∥L̃− g(L0)
∥∥
op
≤

C∗3 (`)max
{
λ21

√
r(L0) + t1

n
, λ1(σ + ε)

√
d+ t2

n

}
.

(5.5)

Especially,

E‖L̃− g(L0)‖op ≤

c∗3(`) max
{
λ21

√
r(L0)

n
, λ1(σ + ε)

√
d

n

}
.

where C3(`), C∗3 (`) and c∗3(`) are some constants de-
pending on `.

Remark 7. When the sample size n → ∞, E‖L̃ −
g(L0)‖op → 0 which shows that L̃ is a consistent esti-
mator of the low rank component g(L0).

In the following, we derive a minimax lower bound
when λ1 � λr, which shows the optimality of estimator
(5.2). The techniques used to prove the minimax lower
bound are based on those used to prove minimax lower
bounds for spiked covariance estimation (Vu and Lei,
2012; Birnbaum et al., 2013; Cai et al., 2015).

Firstly, we define the following parameter space which
contains A

Θ0 :={A ∈ Sd : A = L0 + εId, L0 ≥ 0,

rank(L0) ≤ r, ‖L0‖op = λ1 > |ε| > 0}.

We consider the following parameter space:

Θ := {g(L0) :f(A) = g(L0) + f2(ε),

f ∈ F(`, σ, λ1), A ∈ Θ0}.

Theorem 5.3. Under model (1.2), for some constant
c̄(`) > 0, the following minimax lower bound holds

inf
L̃

sup
g(L0)∈Θ

E
∥∥L̃− g(L0)

∥∥
op

≥ c̄(`) max
{
λ21

√
r

n
, λ1(σ + ε)

√
d

n

}
.

Remark 8. Note that when λ1 � λr, we have r(L0) �
r. It shows that the estimator defined in (5.2) for the
low rank component is actually minimax optimal.

Now we switch to prove the upper bounds on the prin-
cipal subspace estimation.

Theorem 5.4. Under the same condition of Theo-
rem 5.2, let Ũr be the r-leading singular vectors of L̃.
Then with the same probability∥∥ŨrŨ

T
r −UrU

T
r

∥∥
op
≤

C̃(`)

λ2r + λr(σ + ε)
max

{
λ21

√
r(L0)

n
, λ1(σ + ε)

√
d

n

}
,

(5.6)
where C̃(`) is a constant depending on `.

Remark 9. When d = o(n), Ũr becomes a consistent
estimator of Ur. Especially, when λ1 � λr, bound
(5.6) can reproduce the minimax optimal rate of prin-
cipal subspace estimation for spike covariance model,
see Cai et al. (2015).

Similar to Theorem 4.2, we can get an upper bound
on ‖ŨrŨ

T
r −UrU

T
r ‖F .
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Theorem 5.5. Under the same condition of Theo-
rem 5.4, let Ũr be the r-leading singular vectors of L̃.
Then with the same probability∥∥ŨrŨ

T
r −UrU

T
r

∥∥
F
≤

Č(`)
√
r

λ2r + λr(σ + ε)
max

{
λ21

√
r(L0)

n
, λ1(σ + ε)

√
d

n

}
.

(5.7)
where Č(`) is a constant depending on `.

Remark 10. Bound (5.7) is very different from (4.4)
as the right hand side goes to zero when n→∞. Thus
it makes ŨrŨ

T
r a consistent estimator of UrU

T
r . As

we shall see in Section 6, our experimental results show
that once n exceeds d,

∥∥ŨrŨ
T
r −UrU

T
r

∥∥
F

decreases
rapidly as we increase n.

6 Numerical Simulation

In this section, we present numerical simulation results
to validate our theoretical analysis. We create an un-
derlying low rank parameter matrix L0 as described in
Theorem 4.3:

L0 = ZPZT , (6.1)

where Z is a randomly generated membership matrix
and P is generated as

P = α
(
λIr + (1− λ)1r ⊗ 1r

)
, λ ∈ (0, 1). (6.2)

Clearly, this L0 satisfies Assumption 1. We choose

f(x) = λ−11 x2 + x+ σ

where λ1 is the largest singular value of L0 and
σ < λ1 is a small constant. One can check that
f ∈ F(2, σ, λ1). We consider two types of perturbation
model studied in this paper: 1. A1 = L0 + S1 is the
adjacency matrix of a random graph generated by L0

as explained in (4.5) in Section 4.2. 2. A2 = L0 + S2

is the spiked covariance model, where S2 = εId. Here
we take ε = ‖S1‖op so that the noise levels of the two
perturbation matrices are the same. By solving (3.2)

and (5.2) respectively, we get L̂ and L̃. Then we use
their leading singular vectors as estimators of the sin-
gular vectors U of L0, we denote them by Û and Ũ
respectively. The metric we use to measure the dis-
tance between two principal subspaces are

err1 :=
∥∥ÛÛT −UUT

∥∥
F

;

err2 :=
∥∥ŨŨT −UUT

∥∥
F
.

(6.3)

We plot the estimation errors against different sample
sizes for both cases with different values of d. The re-
sults are presented in the first row of Fig. 1. As we can
see, when d is large compared with n, we can not see
much difference between the estimation error for both

cases. However, when we keep increasing n, we can
see that err2 decreases rapidly while we can hardly see
any improvement in error reduction of err1 for large n.
This difference reflects the term λ1(σ+

√
s)
(
1∨
√
d/n

)
in bound (4.4) which presents a fundamental limit of

using Ûr to estimate Ur. To take a closer look at the
evolution of err1 as n increases, we plot it in the sec-
ond row of Fig. 1. As we can see, for each d, when
d > n, we can observe relatively rapid decrease in err1
as n increases. However, once d < n the curve in each
figure flattens, which validates bound (4.4). These ex-
perimental results shows that bound (5.7) can be quite
tight, which essentially puts a question mark on the
effectiveness of using Ûr to estimate U which is com-
monly adapted in the community.

As we have mentioned, the result we proved in Theo-
rem 1 is quite general. It can be applied to any sub-
gaussian perturbation S0. In fact, the random graph
case in Section 4 we studied is a special case of sub-
gaussian perturbation. In this section, we plot the er-
ror against sample size for gaussian perturbations and
show that bound (3.4) is still accurate. We set S0 to
be a random matrix with independent zero-mean gaus-
sian entries. In the forth and the fifth row of Fig. 1,
we plot how err1 evolves with different sample size and
different noise levels, i.e. δ := ‖S0‖op. As we can see,
err1 behaves similarly as that of the random graph
case: 1. as the sample size n exceeds the dimension d,
there is no substantial reduction in err1; 2. err1 is de-
termined by the noise level ‖S0‖op with large n. These
two phenomena align well with bound (4.2) and may
indicate that the results of Lemma 1 and Theorem 4.1
are tight for general subgaussian perturbations under
this model.

As we have learned from the bounds in Theorem 5.4
and Theorem 5.5, the proposed estimator is consis-
tent regardless of the size of perturbation in this case.
So we conducted experiments with different values of
ε. The outcome of err2 with ε = 10, 1, 0.1 are
presented in the third row of Fig. 1. For each case,
‖S0‖op = 10, 1, 0.1. As we can see, err2 converges
to 0 as long as n → ∞. This validates our results
in Theorem 5.4 and Theorem 5.5. It shows that under
such perturbation, even if the noise level δ := ‖S0‖op is
large, as long as we have enough samples, the principal
subspace can still be estimated accurately. However,
as we have discussed, this is very different from other
random perturbations such as the examples shown
above.

7 Conclusion

In this article, we studied principal subspace estima-
tion through diffused network data where theoretical
results are rarely explored. One major result we get
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Figure 1: Principal Subspace Estimation Error

is the upper bound on principal subspace estimation
for random graphs. We showed that such bounds can
serve as the theoretical guarantee of consistency of
spectral clustering in blind community detection for
some popular SBMs. By combining our analysis with
numerical simulation results, we showed that our up-
per bounds are very tight and it implies a fundamen-
tal limit of using principal components obtained from

diffused graph signals to estimate the underlying net-
work. We further show that with some structured per-
turbation this model can be connected to SPM, where
minimax optimal estimators can be constructed for
principal subspace estimation.
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