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Abstract

While reinforcement learning has witnessed
tremendous success recently in a wide range
of domains, robustness—or the lack thereof—
remains an important issue that has not been
fully explored. In this paper, we provide
a distributionally robust formulation of of-
fline learning policy in tabular RL that aims
to learn a policy from historical data (col-
lected by some other behavior policy) that
is robust to the future environment that can
deviate from the training environment. We
first develop a novel policy evaluation scheme
that accurately estimates the robust value
(i.e. how robust it is in a perturbed environ-
ment) of any given policy and establish its
finite-sample estimation error. Building on
this, we then develop a novel and minimax-
optimal distributionally robust learning algo-
rithm that achieves Op (1/4/n) regret, mean-
ing that with high probability, the policy
learned from using n training data points will
be O(1/4y/n) close to the optimal distribu-
tionally robust policy. Finally, our simulation
results demonstrate the superiority of our dis-
tributionally robust approach compared to
non-robust RL algorithms.

1 Introduction

Reinforcement learning (RL) has emerged to be an
important and active research area that has found
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widespread applications-including robotics (Kober
et al.,|2013;|Gu et al.,[2017)), computer vision (Sadeghi
and Levine| 2016; Huang et al., |2017), finance (Li
et al) [2009; |Choi et al., |2009; [Deng et al.l [2017)
and game-playing (Silver et al., 2016 2018)—and has
witnessed great recent empirical success (Bertsekas
and Tsitsiklis, [1996; [Powell, [2007; Bertsekas, 2011}
Szepesvaril 2010; [Sutton and Barto, |2018)).

Within RL, offline policy learning—learning an opti-
mal policy from historical data collected from some
other (behavior) policy—is an important subarea that
has been extensively studied (Dudik et al.,|2011;|Zhang
et al.| 2012} |Lazaric et al.;|2012; Mahmood et al.,|2014;
Jiang and Li, [2016; Munos et al., 2016} |Athey and Wa-
ger, [2017; |Zhou et al.| |2018; [Kallus and Zhou, |2018;
Fujimoto et al., 2019;|Chen and Jiang, 2019)). The pri-
mary focus in this line of work has been to develop
efficient estimation schemes that are able to perform
accurate policy evaluation for an arbitrary policy (us-
ing the historical data), which is then used in the pol-
icy optimization step to select the best policy. Further,
the key quantity that is used to assess the effectiveness
of a proposed policy learning algorithm is regret, which
measures the discrepancy of the value of the learned
policy and that of the optimal policy when n training
samples are available (note that regret can be equiva-
lently understood as sample complexity). This quan-
tity has been well-studied and it is well-known that the
optimal regret scales as O p (1/4/n) in tabular and cer-
tain parametric settings, and different algorithms exist
that achieve this bound (although some are superior
to others in terms of constants in the Op(-)).

Despite the significant advances provided by this rich
literature, the existing works in this area are missing
an important aspect: robustness (i.e., a learned pol-
icy is insensitive to and continues to perform well in a
new environment). This is because offline policy learn-
ing in RL-as it currently stands—makes the crucial as-
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sumption that may not always hold in practice: the
past environment from which the historical data has
been collected is the same as the future environment in
which the learned policy will be deployed. Under this
assumption, learning a good policy means learning a
policy that yields high value (sum of discounted future
rewards) in the old environment, and because the new
environment is identical to the old environment, this
policy will be equally effective in the new environment.

In practice, however, this assumption often does not
hold, and a change in the future environment would
often render the learned policy ineffective. For in-
stance, in financial trading (an area where RL has
seen a growing applied presence in the industry
et all Deng et all [2017; [Nevmyvaka et al., 2006}
Choi et all [2009)), the markets are often volatile and
non-stationary, and the assumption that the past fi-
nancial markets data faithfully represent the future
markets is simply invalid. Another area where robust-
ness is highly desired is robotics, where a robot trained
to perform certain maneuvers (such as walking [Schul-
man et al.| (2013) or folding laundry (Maitin-Shepard
et al., [2010))) in an environment can fail catastrophi-
cally (Drew, |2015)) in a slightly different environment,
where the terrain landscape (in walking) is slightly al-
tered or the laundry object (in laundry folding) is po-
sitioned differently. This indicates that policy learning
assuming future environments are the same will often
yield fragile policies that are not useful except in highly
controlled “testing” environment.

As such, learning robust policies that account for po-
tentially varied future environments is of enormous im-
portance and practical utility. However, traditional ro-
bust RL approaches (Basar and Bernhard) 2008} [Xie
and de Souzal [1990} [Ugrinovskii, [1998; [Morimoto and
Doyal, 2001; [Petersen et al., [2000; Dupuis et al., [2000)—
which stem from the H..-control perspective-studies
policies that are robust to the worst possible deter-
ministic environment. This framework-also adopted
in the early robust control and robust optimization
literature—is often overly conservative, and does not
yield effective policies for many commonly occurring
environment-shift scenarios. Consequently, developing
practically useful policies that are robust to common-
place shifts in environments calls for a new paradigm.

Recently, distributional robustness (Duchi and
[Namkoong), 2018; |[Blanchet and Kang, [2020; Duchi
let all, 2016} [Duchi and Namkoong), [2019; Blanchet]
et al.| [2019; Bertsimas et al., [2018} |Gao and Kleywegtl,
2016}, [Esfahani and Kuhn| [2018)) has emerged to be an
effective metric for capturing robust-yet-not-overly-
conservative learning performance in the supervised
learning setting. At a high level, distributional
robustness posits that the future environment is

characterized by a distribution (as opposed to a deter-
ministic quantity) that lies in a neighborhood around
the old-environment distribution. The robustness
is ensured by optimizing (model parameters) over
the worst possible distribution in this neighborhood
(under certain distance metric on probability distri-
butions). It is worth noting that there are two types
of distributional robust philosophies one can pursue:
one is that the environment itself does not change and
the learner wants add robustness in its algorithm so
as to not be misled by the lack of data. In such cases,
0 (the robustness parameter) needs to go to 0 (at an
appropriate rate). The other, which is what we are
pursuing here, is that the environment has an intrinsic
shift. In such cases, § must remain constant. Our
results make this adaptation formal by characterizing
a clear dependency on ¢ in the regret bound.

While the recently flourishing line of work has studied
distributional robust learning—particularly the sample
complexity guarantees and algorithms for achieving
them—in supervised learning, distributional robust pol-
icy learning in RL has not been explored, except in
the highly special and limiting case where the entire
learning horizon is one 2020)), a setting also
known as contextual bandits. Consequently, our goal
in this paper is to fill in this gap and bring distribu-
tional robustness—and particularly a rigorous under-
standing of finite-sample guarantees thereof-into the
offline RL setting. In chartering an initial path in this
unexplored landscape, we focus our attention on tab-
ular RL in the infinite-horizon discounted setting for
concreteness, where we aim to understand how many
samples are sufficient for learning the optimal distri-
butionally robust policy.

1.1 Owur Contributions

We have two core contributions.

First, we borrow the distributional robustness concept
from supervised learning (Duchi and Namkoong, |2018;
[Blanchet and Kang), [2020; [Duchi et al. 2016} [Duchi
[and Namkoong), [2019; [Blanchet et al, 2019} [Bertsimas|
et all [Gao and Kleywegt| 2016} [Esfahani and

Kuhnl, 2018)) and formulate a offline policy learning
problem where the goal is to learn a distributionally ro-

bust policy using as few samples as possible. We mea-
sure sample complexity using distributional robust re-
gret (analogue of the standard regret for offline policy
learning), which is the discrepancy between the value
of the policy learned by the algorithm and that of the
optimal distributionally robust policy. With regards
to this formulation, we point out that there has been
a line of work on distributionally robust MDPs
[2005}, [Xu and Mannor], 2010} [Wolff et al.| 2012}

Wiesemann et al.| 2013) from the operations research
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community. Despite the seeming similarity, there are
two crucial differences that clearly separate the two
problems. First, that line of work assumes the under-
lying MDP is known, hence there is no learning that
occurs and it’s simply an optimization problem. Sec-
ond, that line of work only focuses on developing opti-
mization algorithms (which are not applicable here as
they require the true MDP to be known) and has no
finite-sample guarantees.

Second, we provide a novel policy learning algorithm
(Algorithm that takes advantage of the simple struc-
ture of the dual space of the distributions that char-
acterize the possible environments. We then establish
in Theorem [2] that this algorithm achieves the finite-
sample regret of Op (1/4/n), meaning that with high
probability, the policy learned from using n training
data points will be O (1/+/n) close to the optimal dis-
tributionally robust policy. Since Qp (1/4/n) is a lower
bound (even in standard offline policy learning), our
algorithm is minimax-optimal. In obtaining this finite-
sample regret guarantee, we also study distributionally
robust policy evaluation—both algorithmically (Algo-
rithm [1)) and theoretically (Theorem f which is not
only an important intermediate step, but also of inde-
pendent interest on its own.

Additionally, we provide two sets of simulations—one
in the gambler’s problem and the other in options
trading—that demonstrate the superiority of our dis-
tributionally robust approach. In each setting, we
show that the policy learned from our distribution-
ally robust approach is robust and performs much bet-
ter in altered future environments than that learned
through the standard policy learning approach. Taken
together, our results provide the first inroad into the
broad landscape of distributionally robust RL that
aims to understand how to learn an effective and ro-
bust policy from data.

2 A Distributionally Robust
Formulation of Offline Policy
Learning in Tabular RL

2.1 Standard Offline Policy Learning in RL

Let M = (S, A,P,R,v) be a tabular RL environment,
where S and A are finite state space and action space
respectively, R : § x A — P(R>¢) (the set of random
variables that are supported on Rxg) is the random-
ized reward function, P = {ps.a(-)}(s,a)esx.4 is the
transition model, and 7 € (0, 1) is the discount factor.
We assume that the transition is Markovian, i.e., at
each state s € S, if action a € A is chosen, then the
subsequent state is determined by the conditional dis-
tribution ps o(-) = p(-|s,a). The decision maker will

therefore receive a randomized reward r(s,a). A pol-
icy 7 is a mapping from S to A. II denotes the class
of deterministic policies.

In the world of offline policy learning, agent are only
allowed to utilize historical data, without additional
online interaction with the environment. To be spe-
cific, we assume the agent only has access to a batch
dataset {(s;,a;,7;,s;)};_, from the original environ-
ment, where the actions {a;} are generated by some
known policy 7, r; is a realization of the random re-
ward 7(s;, a;), and s is determined by the transition
kernel p?, , (-). We may also assume that the data are
sampled uniformly across the state space S. Note that
7o is the policy that we use to generate the observable
training data, and it could be any randomized policy

Let (s¢, at)teT be the stochastic process that is induced
by the transition model P and the policy 7, the stan-
dard value function can be defined by

nytflr(st,at) 51 = s] .
t=1

The standard goal is to learn a policy 7 such that its
value function is as large as possible (there exists a
deterministic policy 7* that maximize V™ (s) for all
s), or equivalently, a policy that minimize the regret

V*(5) = V7 (8)lloos

where V*(s) := max, V7™ (s) and || || o is the L norm
of a function.

V™(s) :=E

Throughout this paper, we impose the following as-
sumptions on the rewards and the data generating pro-
cess.

Assumption 1. Bounded reward with density. For
any (s,a) € S x A, r(s,a) € [0, Rmax]. Moreover,
r(s,a) has a density fs.q.

Assumption 2. The training data are sampled uni-
formly across the state space S.

Assumption 3. Overlapping. There exists some n >
0, such that P(mo(s) = a) >n, V(s,a) € S x A.

By Assumption [1, we know immediately that V™ (s) <
%:" for all the policy 7 and s € §. The Assumption
] and [3] guarantees sufficient exploration in training
data collection (in Assumption [3} 7 is the policy that
we use to generate the observable training data). Both
the bounded reward and the overlapping assumptions
are fairly standard and can be found in some policy
learning literature (Si et all 2020; [Kallus, 2018} [Zhao
et al.}|2012). The Assumption 2 is also standard in the
theoretical analysis of batch (offline) RL, and can be
founded in (Chen and Jiang, |2019)). Lastly, the density
assumption on reward is a technical assumption that
ensures the Op(1/4/n) rate of convergence in Theorem

[ and 21



Finite-Sample Regret Bound for Distributionally Robust Offline Tabular Reinforcement Learning

2.2 Distributionally Robust Offline Policy
Learning in RL

In practice, the transition model P and rewards R in
the original environment M are subject to change over
time, and we may not be able to update our policy
by interacting with the environment. This practical
challenge motivates us to learn a offline policy that is
robust to certain perturbations in the environment. In
particular, we consider the setting of distributionally
robust offline RL, where both the transition probabili-
ties and rewards are perturbed, based on the Kullback-

Leibler (KL) divergence Dkr,(P||Q) = [ log ( ) dP

whenever P < @ (P is absolutely continuous with
respect to Q).

In the original environment, let P° = {p? .} (s 0)esx4
be the transition probabilities, ° be the joint dis-
tribution of (r(s,a))(s,q)esx.4, where r(s,a) ~ v2,
(marginal distribution with respect to (s, a)). We may

assume that P° and v° are independent.

To construct the distributional uncertainty set, for
each (s,a) € S x A, we define robust KL balls that
are centered at pga and z/gva by

,Ps,a((s) = {ps,a € A|S\ : DKL (ps,a”pg’a) < 5}

and

Rs,a(é) = {Ts,a ~ Vsa : DKL(Vs,aHVS’a) < 5}

respectively. Here § > 0 is the level of distributional
robustness, and A|g| stands for the |S| — 1 dimen-
sional probability simplex. Now we are able to build
the uncertainty set P(J) by the Cartesian product of
Ps.a(6) for each (s,a) € S x A. This type of uncer-
tainty set is called (s, a)—rectangular set in standard
literature (Wiesemann et al., [2013). Similarly we de-
fine R(J) by the Cartesian product of R 4(d) for each
(s,a) € S x A. In the distributionally robust frame-
work, the adversarial player is assumed to pick the
worst-case transition model and rewards that mini-
mize the expected cumulative discounted reward. To
be clear, we define the distributionally robust value
function as follows.

Definition 1. Given § > 0 and policy m € 11, the
distributionally robust value function Vmb ™ is defined

as:
1)

Follows from the definition, measures the qual-
ity of a policy m by computing its performance in the
worst-case environment among the set of all possible

VIoPT (g) = r(se,a)
5 () pEP(d): rE’R,(J) Ep.r [ZW e

Vrob,ﬂ'

environments that perturb the original transition P°
and reward distribution »° under a §-KL ball. The opti-
mal distributionally robust value function is therefore
defined by

Vv(srob,*(s) — rnealzl(erob TI'(S)’ Vs € S,

and the optimal policy 7rr°b * is the deterministic pol-
icy that maximizes the dlstributionally robust value
function, i.e.,

rob,*

Ty " € arg max Vy vrobm, (2)
TE

Remark 1. It sufficies to define V;Ob’* by taking the
mazimum over the class of deterministic policies 1I.
Suppose that V;Ob’* is defined by the mazimum over all
possible randomized policies . Then, by using the same
techniques in Theorem 3.1 and 3.2 in (lyengar, |2005),
such optimal value function can be achieved by a de-
terministic policy. Thus, one can restrict the decision
maker to Il without affecting the optimal distribution-
ally robust value function.

Our goal is to learn a robust policy 7 such that its
distributionally robust value is as large as possible. In
other words, we want the distributionally robust value
of 7 is as close to the optimal distributionally robust
policy value as possible. We formalize this discrepancy
by the notion of regret.

Definition 2. The distributionally robust regret
R™P(7) of a policy © € 11 is defined as:
RrP () :=

b, b,
||Vv6ro K V:;ro -rrH(><>

Note that in our offline policy learning framework,
we learn the policy 7 from pre-collected data set
{(si,a;, 75, 5;)};_,, hence both 7 and R™" () are ran-
dom variables.

In the rest of this paper, we aim to solve the following
two main problems:

Q1. For any fixed policy 7w € II, how to approximately
compute the distributionally robust value func-
tion V:;mb’ﬂ given the observational data? What
is the rate of convergence of such an approxima-
tion?

Q2. How to learn a good distributionally robust policy
7 given the observational data, where the perfor-
mance is quantified by how the distributionally
robust regret scales with respect to the size of the
batch dataset?
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3 Policy Learning in Distributionally
Robust RL

To answer the main problems that are listed in sec-
tion by order, we first propose a policy evaluation
algorithm (Algorithm [I| in section that combine
the idea of distributionally robust optimization with
value-based RL. Next, we develop a policy learning
algorithm that base on distributionally robust value
iteration (Algorithm [2] in section , which output
the robust policy that is based on the accessible data.
Lastly, theoretical guarantees are discussed in section

B4

Before state the main algorithms and theoretical re-
sults, we need to discuss the optimization technique
that serve as the cornerstone of our analysis.

3.1 Strong Duality

Follow from the well known results in (Iyengar, 2005;
Xu and Mannor, [2010), we can write down the distri-
butionally robust dynamical programing for the distri-

butionally robust value function V;Ob’” in equation
as follows:
‘/;Ob’ﬂ—(s) _

) Gigf * {E[r(s,w(s))] + Z psyﬂ_(s)(sl)‘/érob,ﬂ'(sl)
R

®3)

Note that equation (3| is in general computationally
intractable since it involves infinite dimensional op-
timization. To address this issue, we introduce the
following strong duality lemma from distributionally
robust optimization under KL-perturbation.

Lemma 1 (Hu and Hong| (2013)), Theorem 1). Sup-
pose H(X) has finite moment generating function in
the neighborhood of zero. Then for any § > 0,

sup  Ep [H(X))
PDKL(PHP())S(;

= inf {alog (IEIP0 [eH(X)/aD + aé}.

a>0
By Lemma [l} we can transform the equation [3| to the
following equation.
rob,
Vs (s) =
sup {—a log (E,,o - [e‘r(s’“(s))/o‘b — aé} +

a>0

REP(s,m(s))

7sup {—Blog <Z pf;ﬁ(s)(s’)e—v«s‘“””“’)/ﬁ) — 65} :

820 seS

T30 (s, (s))

(4)

In the above dual formulation, the optimization prob-
lems that presented in Rg()b’” and TgOb’ﬂ are both
one dimensional concave optimization problems, and
therefore computationally feasible.

As a direct consequence of the equation 4| (note that
the size of II is finite in the tabular setting, see The-
orem 3.2 in [Iyengar| (2005)) for a standard proof), the
optimal distributionally robust value function V;Ob’*
in fact satisfies the following distributionally robust
Bellman’s equation.

‘/(Srob,*(s):
oy o {-oos (0, [07]) e} +
. —B1 0 (Ne= Vs (/B _gs\
v Zlipo{ Blog (S;Sps,a(s Je~ Vs ) B }}
(5)

3.2 Distributionally Robust Policy
Evaluation

In this section, we aim to develop a policy evalua-
tion algorithm that address the question Q1 in sec-
tion Given the batch dataset {(s;,a,74,85) 0,

et n(s,a) = |{i € [n] : (si,a:) = (s,a)}], for ¥(s,a) €

S x A, we can define the empirical estimators of tran-
sitions and rewards via

|{Z : (sivaivs;) = (S7a’ )}‘

n(s,a)

1
n(s,a) Z
je{i:(si,ai)=(s,a)}
By the strong duality result in section we trans-
form the primal infinite-dimensional robust value op-
timization problem into its one-dimensional concave
dual, and the expectation in the dual formulation
(equation[d) is taken with respect to p® and 1, i.e., the
transition probabilities and rewards under the original
environment. Therefore, we can approximate the dis-
tributionally robust value function V;Ob’ﬂ by a plug-in

. . =rob
estimation V"

p\s,a(’) =

b

Vs o(dz) =

1(T'j S dJ?)

that satisfies the following equation:

"Zsrob,ﬂ' (S)

= sup {—alog (Eps () [e—r(sm(s))/a}) — (15}
a>0 o

RE°P (s,7(s))

rob,mw 1
a5t ) )

s'eS

TP (5,7 (s))

(6)
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The empirical distributionally robust optimal value
function under the estimated model is therefore de-

fined by V;Ob’* = maXren Vro ™. Moreover 7rf5Ob Y e
rob,m

arg max, ‘75 stands for the empirical distribution-
ally robust optimal policy. Note that the right hand
side of equation [G] is a linear combination of two sim-
ple concave optimization problems. Those one di-
mensional concave optimization problems can be re-
solved efficiently by Newton-Raphson method with
convergence guarantee (Chapter 8, |[Luenberger et al.

(1984)). We can therefore compute the plug-in esti-
mation Vgob '™ efficiently by combining value iteration

with concave optimization. The formal description of
our distributionally robust policy evaluation algorithm
is stated in Algorithm

Algorithm 1: Distributionally Robust Policy

Evaluation

Input: Dataset {(s;,a;,rs,s;)}, policy m € II,
uncertainty radius § > 0.

Output: Estimator of the empirical
distributionally robust value function Vj

i>rob,m

initialization: V;Ob ™ =0, compute {Psq} and
{Vs,a} base on the data set,

REP(s,7(s))

ICI};%( —alog (Eﬁs,ﬂ(s) [677’(5,71'(5))/04]) _ 045}.
repeat
T3 (s, m(s))

rggX{ ﬁlog(me(s)() VTG ) 65}

b
V57 (s) = R (s,m(s)) + v - TgeP (s, m(s)).
until V;°"" converges (with respect to the L™
norm);
Srob,
Output: V™.

3.3 Policy Learning via Distributionally
Robust Value Iteration

In this section, with the purpose of answering the ques-
tion Q2 in section [2:2] we investigate the distribution-
ally robust policy learning by proposing efficient al-
gorithm to compute the distributionally robust policy
that is learned from the accessible data. In princi-
ple, by the empirical version of distributionally robust
Bellman’s equation , the empirical optimal robust
policy can be computed by:

B [renr]) )

s ) Bé}}

(o)

€ arg max {sup {—a log (
acA a>0

+7vsup ¢ —SBlog Ds,a(s
75>o{ (Z

s'eS

However, it is intractable to compute the above prob-
lem exactly as it is in general non-concave. To over-
come this difficulty, we propose a novel approxima-
tion scheme (Algorithm that alternatively maxi-
mize the dual variables and iterate the value function.
Note that the optimization problem with respect to
the dual variables is a one dimensional concave prob-
lem, and our numerical experiments suggest that only
a few Newton-Raphson iterations are sufficient for the
convergence of the dual variables.

Algorithm 2: Policy Learning via Distributionally

Robust Value Iteration

Input: Dataset {(s;,a;,rs,s;)};, uncertainty
radius § > 0.

Output: Distributionally Robust empirical
optimal policy T, 5.

initialization: Vmb 0, compute {ps .} and
{Us,o} based on dataset.

RX°P(s,a) «
max { ~alog (Ey, ,

[e’r(s’“)/o‘] ) — a5}.

repeat
Trob( ) —
max {—ﬂlog ( > ﬁsya(s’)eﬁgob(sl)/ﬁ> — 55}.
820 s'eS

{/rob prob Trob
1% ()<—1;1€aj<{R5 (s,a) + - T5° (s, )}

until VrOb converges (with respect to the L™
norm);
Output:

75(s) = argmax, ¢ 4 {R b(s,a) + - T“’b(s a)}

3.4 Theoretical Guarantee

First of all, the consistency of the output in Algorithm
1] is shown in the following proposition.

Proposition 1. Let V:;rzbﬂ denotes the distribution-
ally robust value functwn after k iterations in Al-

gorithm For any initialization V50b T we have
‘A/(;‘,)Cb’”( ) — V;Ob "(s), forall s € S.
Proof. Note that in Algorithm [I} we have
Vi (s) =
lg\lf [ ] + Yy p.s (s VrOb 7"(8’) .
Ps,n(s) EPs,m(s)(9), { ggs ) ok
TER s n(s) (9)

Since the infimum operator is 1- L{Pschltz we have
rob7r

|| 5r(;);171r _ < '7” rob T rob T || Hence
” I’ObTI' rob 71'”00 < v H (;(())bﬂ'_‘/érob 7r||oo S 0ask
goes to mﬁmty. O
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Next, we confirm that for any fixed policy = € II,
the gap between the optimal distributionally robust
value function V;°"™ (equation [3) and empirical dis-
tributionally robust value function ‘A/;Ob’ﬂ (equation

is Op(1/y/n), which together with Algorithm (1| that
complete the answer of Q1 in section 2.2}

Theorem 1. Given § > 0 and any fized policy m € 1I.
If Assumption[1], [4 and[3 hold, there exists a constant
N, =N (5,6, uo,Poﬂr), such that for n > N, with
probability at least 1 — ¢,

S| IS|
(I=y)  Vn’

where Cy is a constant depending on v°,P° (defined
in section and the policy .

Srob, b,
||‘/;O ‘n-_‘/:;ro Tr”OO S

The proof details of Theorem (1| are deferred to the
supplementary material.

Finally, We are able to establish the finite-sample guar-
antee for the distributionally robust empirical optimal
policy 7¥ that is learned from Algorithm To be
precise, we utilize the idea of distributionally robust
regret (see Definition [2) to quantify how well is our
policy 7y compare to the best possible distribution-
ally robust policy (see equation . The following high
probability bound illustrates that the regret scales at
the rate of Op (1/4/n), which answer the question Q2
in section

Theorem 2. Given § > 0. If Assumption [1} [ and
@ hold, there exists a constant N := N (5,6, VO,PO),
such that for n > N, with probability at least 1 — €,

1S12 ISIIAl

C ; log( - ) 1
(1=7)d vn'

where the constant C' is a constant depending on v

and P° (defined in section[2.9).

The proof details of Theorem [2| are deferred to the
supplementary material.

Rrob (%rob,*)
é

IN

0

4 Numerical Results

To numerically evaluate the performance of our pro-
posed policy learning algorithm, in the following sub-
sections, we first evaluate it on a variant of the Gam-
bler’s problem, as a sanity check. Then we further
evaluate our algorithm on a more realistic simulated
problem of American options. In all experiments, we
compare our proposed distributionally robust Algo-
rithm [2| with its non-robust counterpart, i.e., standard
value iteration algorithm.

4.1 Gambler’s Problem

Gambler’s Problem (Sutton and Barto, [2018) A
gambler makes bets on the outcomes of a sequence of
coin flips, winning his stake with heads and losing with
tails. The game ends when the gambler reaches $100
or losses all the money. A gambler’s policy outputs on
each flip a portion of his capital to stake, in integer
number of dollars. This problem can be formulated
as an undiscounted, episodic, finite MDP. The state is
the gambler’s remaining capital, s € {1,2,...,99} and
actions are stakes, a € {0,1,..., min(s, 100 — s)}. The
reward is zero on all transitions except those reaching
the $100 goal, when it is +1. The state-value func-
tion then gives the probability of winning from each
state. The optimal policy maximizes the probability
of reaching the goal. When the probability p, of the
coin coming up heads is known, then the optimal pol-
icy can be solved by value iteration.

To incorporate distributionally robust setup, we con-
sider a variant of the Gambler’s problem where the
actual pj for testing the learned policy lies in a KL-
ball of radius 0.1 centered at the p% provided to the
policy learning algorithms. For pg = 0.4,0.5,0.6 re-
spectively, we run both standard value iteration and
our distributionally robust value iteration, then test
the obtained policies under different perturbed py’s.

835 6369554 045 05 0% 0 oes 07 07
Test heads-up probabity

(b) ph = 0.5

002 025 03 035 04 045 05 055 06 065
Test heads-up probabity

(a) ph = 0.4

tage of winning
o o o
X o =

(c) ph = 0.6

Figure 1: Performance of robust v.s. regular policies
in the Gambler’s problem. The z-axis is the heads up
probability of the testing games, and the y-axis is the
actual winning percentage obtained by playing 1,000
games under the same py,.

As shown in Figure both robust and non-robust
policies perform similarly when p% = 0.4 is provided,
this is because when true py is less than 0.5, there is
a family of optimal policies which lead to a winning
probability equal to py. Given the provided p) is less
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than 0.5, both standard and distributionally robust
value iterations find such an optimal policy. When
pY > 0.5, however, the performance of robust and non-
robust policies are different. Note that when true py
is greater or equal to 0.5, there is an unique optimal
policy: put $1 stake for each flip. Then it is as ex-
pected that the standard value iteration always learns
this “optimal” policy when p9 = 0.5,0.6 is provided,
which performs poorly whenever the actual p, is lower
than 0.5. On the other hand, our distributionally ro-
bust value iteration outputs the worst case (within the
perturbed ball of given p) optimal policy. Given the
preset radius of perturbations, when p9 = 0.5,0.6 is
provided, our algorithm still outputs one of the opti-
mal policies for p,, < 0.5 as a worst case optimum. Asa
result, the non-robust policy performs optimally when
pr, > 0.5 but poorly when p;, < 0.5, while our robust
policy performs more conservatively when p;, > 0.5
but much better in worst cases when p, < 0.5. This
example demonstrates the robustness of our proposed
distributionally robust formulations in perturbed test-
ing environment.

We further illustrate how distributionally robust regret
scales when the sample size increases for the Gambler’s
problem. For each sample size n, we repeat the exper-
iment 10 times and compute the average distribution-
ally robust regret. See Figure

Ll #states=100 |
" true p=0.65
® 0150 radius=0.02
© 0.125
o~
)
9 0.100
o
o
9 0075
o
[
I
< 0.050
©
[
= 0.025
0.000

200 400 600 800 1000 1200 1400 1600
Number of training data

Figure 2: Regret v.s. sample size for the Gambler’s
problem.

4.2 American Options

We also evaluate our algorithm in a simulated Amer-
ican put option problem, where the price fluctuation
model follows the following Bernoulli distribution,

CySt,
St+1 =
CdSt,
where ¢, and ¢4 are constant price up and down fac-

tors, and p, is the probability that the price goes up.
At each time step, one can take an action of either

W.p. Pu
w.p. 1 —py

exercising or not exercising the option. When not ex-
ercising at time ¢, the reward is 0, and the next state
is s¢y1 based on the price fluctuation model above;
when exercising at time t, the reward is max(0, K —s;),
where K is the strike price, and the next state is the
exit state, which is an absorbing state. In each exper-
iment, we choose a value of the price up probability
p? and generate 10000 trajectories of T + 1 time steps
for policy learning, where we fix T = 20, K = 100,
cy = 1.02, ¢g = 0.98, and sg = K + € with € being
a random number in the range of [—5,5] in all our
simulations. In contrast to the Gambler’s problem, p?
is unknown to the policy learning algorithm and an
empirical estimation p? is used for all competing al-
gorithms. To test a learned policy, we evaluate the
total reward under different price fluctuation models
with different price up probabilities p,, diverging from
p? up to about 0.1 in KL divergence. For each testing
price model, we report the total reward averaged over
1,000, 000 runs. Figure[3|shows the test results for the
policy obtained by our distributionally robust value it-
eration v.s. that obtained by standard value iteration.
It can be observed that the averaged total reward from
our robust policy is more stable over different testing
price models for all data generating p?, in particular,
it performs considerably better under worst-cases then
the actual price-up probability is much higher than the
data generating pQ. Such risk-averse behavior is con-
sistent with our theoretical results and demonstrates
the effectiveness of the proposed distributionally ro-
bust formulations.

robust —— roblst ——
non-robust = %  nonol bust
e, | of
] . % ‘“,
15 * ] 3 "
810 g *
< g z %,
5—\,_“\ .
S R T P
UOQ 025 03 035 04 045 05 055 06 065 25 03 035 0.4 045 05 055 06 0.65 0.7 0.75
Test price-up probability st price-up probability
0 0
(a) pp = 0.5 (b) pu =0.6

OSUA 045 05 055 06 065 07 075 0.8 085
Test price-up probabilty

(c) P =0.7

Figure 3: Performance of robust v.s. regular policies
in the American put option simulation. The z-axis
is the probability of the test prices going up, and the
y-axis is the average total reward.

We further test our algorithm on a simulated Amer-
ican call option problem using the same parameters
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as in the above put option problem except that the
reward function when exercising the option at time
step t is changed to max(0,s; — K). Test results are
shown in Figure [d] where it can be observed, again,
that the averaged total reward resulting from our ro-
bust policy is more stable than that from the stan-
dard value iteration policy. With varying test prob-
abilities, our algorithm performs considerably better
in worst cases when the actual price-up probability is
much lower than the training data generating proba-
bility p?, demonstrating again the effectiveness of our
proposed distributionally robust formulations.

Average total reward

Average total reward
\ 83

%7075 02 0.5 03 035 04 045 05 055 06 83565 03 o7 045 05 05 05 065 07
st pice-up probabiity Test price-up probabitty

(a) p% = 0.4 (b) 2 =05

Average total reward

(c) p2 =0.6

Figure 4: Performance of robust v.s. regular policies
in the American call option simulation. The z-axis
is the probability of the test prices going up, and the
y-axis is the average total reward.

To demonstrate the scalability of our algorithms, we
extend the American put option example to simulate
the trading of a collection of different put options with
the same stopping time, where the underlying assets
are different stocks with different price transition prob-
abilities. The reward will be the weighted sum of the
payoffs of all the options. In this example, the size of
the state space grows exponentially when the number
of stocks increases. When simulating a collection of 4
stocks for a maximum execution time of 20, with price
ranges of about 100 and price precision of 2 decimal
places, the state space size grows to over 10'7, where
we use a simple state aggregation function approxi-
mation to reduce the computational complexity of the
problem. The results are shown in Table[I} where R,y
denotes the average reward obtained using our robust
policy, and R, on_rop denotes the average reward ob-
tained using the policy from standard value iteration.
We use different price transition probabilities for dif-
ferent stocks to generate the data samples, and we
test the policies in an environment where the price up

probabilities are higher than those in the training en-
vironment to demonstrate the risk-averse behavior of
the robust policies, with KL divergence of 0.08, 0.16,
0.25, 0.34, respectively, for each Ngtocrs €xample.

Nstocks 1 2 3 4
Nstates 2-10° [ 2-10° | 2-10%3 [ 2- 1017
R0y 1.38 1.37 1.34 1.31

Ryon—rob | 0.13 0.64 0.47 0.64

Table 1: Trading a collection of American put options.
The reward is computed as the average payoff of all the
options.

5 Conclusion

First, we have provided a distributionally robust for-
mulation for offline policy learning in RL. Second, we
proposed a novel distributionally robust policy learn-
ing algorithm that is able to learn a robust policy un-
der adversarial perturbation of transition probabilities
and rewards. Third, we established the first finite sam-
ple guarantee on the distributionally robust regret of
the policy that is learned by our algorithm. There are
still many interesting directions that are worth further
exploration. For instance, generalization of our algo-
rithm and theory to the non-tabular setting, which is
extremely challenging and require significant improve-
ments to the current techniques. Another interesting
direction would be to extend our results to the Wasser-
stein perturbation, which is entirely different from the
current KL-divergence based framework and it is more
flexible in term of the support of the transition model.
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Supplementary Materials

7 Technical Lemmas

First of all, we introduce two ancillary concentration inequalities.

Lemma 2 (Fournier and Guillin| (2015)), Concentration inequality for Wasserstein distance ). For p € P(R), we
consider an i.i.d. sequence (Xjy)ip>1 of u-distributed random variables and, for all n > 1, the empirical measure

TS % Z 0x, -
k=1

Assume that there exists v > 0 such that & () == [ exp(y|z|*)p(dz) < co. Then for alln > 1, all x> 0,
P(W(H’nvl’(‘) > .f) < CeXp (_CnxQ) ’

where the Wasserstein distance W(jip, 1) is defined by

TEI (s pt)

W, ) == inf {/r—ylﬂ(dx,dy)},

and the positive constant C' and c depends only on v and & ().

Lemma 3 (Hoeflding’s inequality). Let X1, -, X, be independent random variables such that X; € [a;,b;
almost surely for alli=1,2,--- ,n. Then for everyt > 0,
1« 2n2t2
P ’ (X; —EX;)| >t §2exp(—n).
< " ; 1 > i1 (bi — a;)?

Next, we state and prove the Lemma [4] that characterize the boundedness of the dual parameter of data-driven
Distributionally Robust Optimization. It is the key technical step in the proofs of Lemma [5| and Theorem

Lemma 4. Let X ~ P be a random variable with X € [0, M], and P,, denotes its empirical distribution of
sample size n. For § > 0, for any

a® € argi;noax {—alog (Ep [e_X/‘XD - aé} , (7)

(1) a* =0. Furthermore, assume that the support of X is finite. Then there exists a constant N’ := N'(g,d, P),
such that n > N', with probability at least 1 — ¢, we have

0€ argi%ax {—a log (Epn [e_X/O‘D - aé} .

(2) a* > 0. Then there exists a constant N" := N' (¢,8, P), such that for any n > N, with probability at least
1 — ¢, there exists a

a* € arg max {—alog (Epn {e_X/O‘D — aé} ,
a>0

such that o*,a* € [a, &), where a > 0 is independent of n and & = M/4.
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Proof. First of all, note that —«/log (Ep [e_X/“]) — af is a concave function of «, thus a* is the solution of a
concave optimization problem. Moreover, follows from simple calculus,

lim {—alog (Ep {e_X/O‘D - a&} = essinf X,

a—0
where essinf X is the essential infimum of X.

Case 1. Suppose o = 0. Since X ~ P is bounded, by Proposition 2 in [Hu and Hong| (2013), we have o* = 0 if
and only if k := P(X = essinf X) > 0 and logk + § > 0. Since ¢ is chosen by us, we can ignore the edge case
log(k) 4+ 6 = 0 by introducing randomness on §. Without loss of generality, we may assume that log(x) + d > 0.

Let Sx be the support of X, and p, denotes the probability P(X = z) for all x € Sx. Consider X7,--- , X, -
i.id. ~ P, we have

r€Sx

n
P <1r<n_i£1 X, # essian) < <1 — min pw) <eg/2,

1
l-mingesy pa

n>2M?log (%) / (k- 6_5)2,

|

Define k,, := % Yo 1(X; = minj<;<, X;) > 0. From the above results, with probability at least 1 — &, we have

-1
whenever n > 1og< ) log (%) Moreover, follows from the Hoeffding’s inequality (Lemma , for

1 n
— E 1(X; =essinf X) — &
n

i=1

_ e ¢ =0\ 2
> 26 )§26_2”( ) Mg,

k—e?

2

|n — K| <

1-mingesy pe

as long as n > N'(g, 4, P) := log (%)_1 log (%) V 2M? log (g) / (FL — 6*5)2. Consequently,

_ =90
log K, > log </€ _k 26 ) > —0,
which implies a = 0.

Case 2. Suppose o > 0. We first show that a* is upper bounded by @ = M /4. On one hand,

sup {—alog (Ep {e_X/“D - 0«5} > lim [—alog (Ep {e_X/aD — aé} =essinf X > 0.

a>0 a—0

On the other hand,
—alog (Ep [e_X/O‘D —ad < —alog (e_M/o‘) —ad < M — ad.

Hence the optimal o* is bounded by M/é. Note that if X is non-degenerate, the optimization problem in
equation |[7] admits unique solution. However, the problem is trivially optimized at a* = 0 when X is degenerate.
Hence the o™ in Case 2 is unique. Given this observation, let

T := min {glog (Ep [eiX/QD + ad, alog (Ep [efx/@D + 075} — (a* log (]Ep [eiX/“*]) + a*é) ,

where o := «*/2. Then we have 7 > 0. Given « € [a, @], we have

’alog <Epn [e*X/OCD + ad — {a log (Ep [e*X/aD + aé} ‘ =« E, [e_X/a]

Ep, [efX/o‘} —Ep [efX/o‘} .

—-X/al _ —X/a
10g<1+]EP" ] B fe ]>‘

< 20[6”1/0(

where the last inequality follows from the fact that |log(1+ z)| < 2|z| when |z| < 1/2. Now by Hoeffding’s
inequality (Lemma [3]),

P (;E [e=X/%] ~Ep [e=¥/e]

> % (2aeM/a)1> < 2e—m—2/(8M232M/0<).
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M2e2M/a

Therefore, for n > N" (g, 4, P) := maXae{a,0+,a} {8

T2

log (g) }, with probability at least 1 — ¢,

alog (Ep” [e_X/aD +ad — {alog (Ep [e_X/O‘D + a6” <7/2.

max
ac{a,a*,a}

Hence,

a:u@p&] {—alog (Ep" [e_X/aD - aé}

> —alog (Epn [e*X/a*D —a*d
> —a'log (]Ep [e_X/O‘*D —a"0—71/2
>  max {—glog (Ep [e_X/QD — ad, —alog (Ep [e_X/&D — dé} +7/2
>  max {fglog (Epn [e*X/QD — ad, —alog (Epn [B*X/aD - o‘zé} .
Follows from the concavity of —alog (Ep, [e=*/?]) — ad (with respect to «) that & € [a, a). O

8 Lemma 5

The following lemma provides a sample complexity bound on the gap between the robust reward R°P(s,(s))
and empirical robust reward R} (s, 7(s)).

Lemma 5. Given § > 0 and a policy 7 € 1. For any € > 0, there exists a constant N := N(g, 9, 1/8 7T(S)), such
that for any n > N , with probability at least 1 — €, we have

ro pro 2Rpmax €Xp (Rmax/g) 1 2C 1
R (s, m(s)) — Ry b(S,ﬂ'(S))‘ < Sa ~log <€> e

where the positive constant « is presented in Lemmalf, and both C and ¢ are constants determined by Lemma[3

Proof. Recalled from the proof of Lemma {df that o = 0 implies P,.(; r(5))~u0 ( )(r(s, 7(s)) = essinf r(s,m(s))) >
0. Hence, as Assumption [1|is enforced, we have a* > 0. By Lemma , we know that for n > N"(e/2, 6, ng(s))a
with probability at least 1 —e/2, there exists optimal o and & that are contained in an interval [a, & bounded

away from zero. Here & = Rpax/0, and o is a positive constant depends on VS,W(S) and 6. Hence

[R5, m(5)) = Ry (s,m(s))

< sup {[—a log (Euo " |:6_T(S,7T(S))/O‘:|) _ Oz(s} _ [—alog (Eﬁs o [E_T(Sm(s))/a}> _ aé]}
(XE[Q,&] smis ,
Eyo [6_7"(377"(3))/04] _E,ﬁ “ [e—T‘(S,TI'(S))/a]
< sup alog [ 1+ — s,7(s
a€la,a] E;SJ(S) [e*r(sﬁﬂ(s))/a]
- 2Rmax ‘Eygm(s) [6*7‘(8,71'(8))/04] _ EDS,TI’(S) [efr(s,ﬂ'(s))/ajl
N N Sup —7r(s,m(s «
0 aclaal Ep, . [e G/
2Rmax —r(s,m(s))/a —r(s,m(s)) /e
< goeg (B, [ -m o]

where we have used the fact that |In(1 + z)| < 2|z| for |z| < 1/2. For any a € [a, @], the function e=%/* is a
Lipschitz function on [0, 00), and its Lipschitz constant is bounded by 1/«. Hence, by Lemma [2| and the dual
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representation of Wasserstein distance, with probability at least 1 — /2,

1
sup {‘]E 0 [efr(s,vr(s))/a] 7ED€”) |:ef’r‘(s,7r(s))/a:| ‘} < 2w (Vgﬂr(s)?l/;i;’:z(s))

a€la,a] o)

IN
Q|+~
| =
—
o
o]
7N
ks
~

3
—~
R | .
A
&

9 Proof of Theorem [

Proof. By Assumption |3 and the sampling scheme, the expected value E[n(s,a)] is bounded below by nn/|S|.
By Hoeffding’s inequality (Lemma , for n > Ny := 2|77i2|2 log (@), with probability at least 1 —e/2,

n(s,m(s)) > 35 ™ Vs e S.

Observe that

{rob,n _yrob,m g/ Trrob,m _ysrob,w
Blog (pru S V”) <ﬁlog<Zpsﬂs) eV Bl VTV Im//ﬁ)

s'eS s'eS

rob,
”Vrob K Vrob 7r|| + Blog (Z Pans ) ) -V (s )/5) ,

s'eS

and similarly, we have

rob, Trrob,m
610g <Z Ds,x(s ) -V (e )/ﬁ> < ||Vr0b . VrOb 7T||O<J Blog <Z Ps,n(s ) ) -V (e )/B> .

s'eS s'eS
Combing the above facts with equation [5| equation |§| and Lemma [5| for each state s € S, when n > Ny 5 :=
N (6\3| , 0,00 ) (defined in Lemma, with probability at least 1 —e/(6|S]),

' Ys,m(s)

CM(S) 1 log (12C\S|

‘f}rob,Tr(s) . VrOb’Tr(S)’ < + ’Y||‘7mb’7r . Vrob,TrHOO

B dv/nn/(2|5])

+ y| sup { 510g <Z Ps 7'r(s _Vmb T )/B> - 55} -
p20 s'€S
Sup Blog ps 71' s Vrob ﬂ(s )/ﬁ - 55 )

where the constant C; (), c and C are determined in Lemma [5| Note that C; () is independent of §. Let 3*
denote an the optimal solution of

rob,m
Sup{ 510g<§ P (e (s)e™” (S)/B>—55}a
£=0 s'eS

and B* denote an optimal solution of

su lo 5,7 (s —verTen/e ) g5 b
5>13{ - g(Zp (s)(3 3

s'eS
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Next we discuss the upper bound of the above inequality via different values of 5*.
Case 1, 3* = 0. By Lemma for n > N3 4 := N’ (ﬁ, 0, pg’ﬂ(s)) (defined in Lemma 7 with high probability

there is a optimal E* equals 0. Hence

Camayy/ log (120|3|
’f}rob,‘n‘(s) . Vrob,ﬂ'(s)| < + ,y”"/\-rob,ﬂ _
nn/(2|S])
+ min Vrobm(shy — essinf VIO ()].
7 {i:(s4,a:)=(s,7(s))} (5:) s'~pd () ()

. . . . 0
Since |S| is finite, we have Milgp0 ()50 psm(s)(s’) > 0, and

nn

afs]
P Vb (gl essinf V™PT(s) | < 1 min P2 (s .
({z (ses00) (.7 (s))} () # Sop? iy () () {790 0y ()50} 7 ()
As a result. forn > Ny, :=log | — L 3 ; log <6|$|>, with probability 1 — &/(6|S]), we
) I—ming, 2w()<5 >>0}psﬂ,()(s)
have
min Vb (gl = essinf  VOPT(s).
{i:(si,a:)=(s,7(s))} S/NPS,W(S)(')
Hence,
CS,ﬂ'(S) \/ ¢ i log (12C‘S|>
}Vrob,w(s) _ Vrob;n'(s)| < + ,YHVrobJr _ Vrob,ﬂ'HOO

B +/nm/(2|S])

By taking the supremum over s on the left-hand side, with an union bound of probability, we have for n >
max { N1, max, Ny 5, maxs N3 s, maxs Ny, }, with probability at least 1 —e/2 — |S| - (¢/(6|S]) - 3) = 1 — ¢ that

/1 70 [
"71"0}3,7\'(5) B VrObﬂT(s)’ maxg C ,7(s) IOg e 2|S

(1 -

Case 2, B* > 0. By Lemma |4l once again, when n > N3 . := N” (ﬁ,é,pg ﬂ(s)) (defined in Lemma , with

probability at least 1 — £/(6|S|), we have 3%, B* € (3, 8], where 3> 0 and 8 = Ruax/((1 —7)d).

Similar to what we have done in Lemma

sup{ Blog (ZPSﬂs) Vmbﬂ(b)/ﬂ)—ﬁé}—sup{ 310g<2psw(s Vmbﬂ(é)/ﬁ)—ﬂ&}‘

B=0 s'eS B0 s'€S
< sup {‘ [ ﬁlOg <Z Ds 71'(3) —VRT Vﬂ) - ﬁ5‘| - [ ﬁlog (Z ps ™ s) B )/'B> - 55‘| }
BEIB,B] S'ES s'€S
/ 0 o 6_Vmb,7r(8/)/6 B / ,\s . o e_vrob,‘/r(sl)/ﬂ
< sup Blog 1+ ZS €3 pSJ(S)( ) ~ , Z_Svii.]:(7 ')(/)ﬁ( )
BelB.h) 2sres Pon(s)(s)e” VT

Zps W(S Vrob‘lr(s Zpg ﬂ(s) Vrobw(s Y/8

s'eS s’eS

< 2Rmax su {
= =)0 5D (— R/ (B =) sl

}

2R ax / ~ /
: (1 - ’Y)(S exp (_Rmax/(é(l — ’Y))) Z pg,ﬂ(s)(s ) _ps,ﬂ'(s)(s )’ .

s'eS



Zhengqing Zhou, Zhengyuan Zhou, Qinxun Bai, Linhai Qiu, Jose Blanchet, Peter Glynn

Lastly, by Hoeffding’s inequality (Lemma [3)), with probability at least 1 —&/(6|S]), we have

~ 1 12|S]? 1
5 [t = P61 = 10 (251

s'€s 2 Vin/(2[8])
Hence,
’ 1 12C|S|
)f}rob,w(s) _ Vrobnr(s)‘ < Cs’ﬂ(s) ¢ log ( € + ,YH"}rob,w _ Vrob,TrH
B nn/(2|S])
where C” __ ) is a constant depends on 1/ (s) and ps (s)" Taking the supremum over s on the left-hand side
yields the des1red result. O

10 Proof of Theorem [2

Proof. For each state s € S, we have V" (s) — Vrrob A (s) > 0 by definition. Follows from Theorem

~rob,*

Vrob,*( ) Vrob 7y Frob,x

) < ‘Vrob,*(s) _ f}rob,*(s)’ + H"}rob,ﬁg"b’* Vrob 7y

lloo

Trrob,7ioP* rob, Frob.*
- DR R

sup Vb (s) — sup XA/rOb”T(s)
s s

* ~rob,*

Vrob s

lloo

, (8) _ f}robm(s)‘ + ”"}robﬁg%,
< 2sup Hvrob,w o "}rob,ﬂ'”OO
T

~rob,*

Thus [|[VP* — VIobas™"|| o < 2sup, |[VFP™ — Vrbm|| . Note that there are the total number of fixed
policy from S to A is bounded by |A[l®l. Moreover, from Lemma {4 we know that max, N(e,6,0°, P° ) is
essentlally maximize among constants N that induced by all possible ps . and /0 o> hence it is in fact a constant
N(g, 6,v°,PY) only depends on ¢, § and the original environment (1/° and PY). Slmllarly7 we also have max, C
is in fact maximizing over Cs ,’s that induced by all possible state and action pairs. In other words, maxﬁ Cr is
constant that only depends on v° and P°. Now, follows from Theorem |1 l when n > N(e/|A|!S], 6,00, P0),

max, Cﬂ\/ log (M) S|

1—7 nn

11og [ CISLIALS
Cﬂ\/clog( L )@

1—7 nn

Y

P | sup ”Vrobm' B ‘7rob,7r||oo
s

IN

ZP ||Vrob,7r _ ‘7[‘01),71’“
LS

v

A =

|A||5\

Finally, observe that |S|log (|S| - [A|'S!/e) = |S|log (|S|/e) +|S|* log(|A]) < |S[*log (S| - |A|/€), we arrive at the
desired result. O
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