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Appendix: Kernel Distributionally Robust Optimization:
Generalized Duality Theorem and Stochastic Approximation

A PROOFS OF THEORETICAL RESULTS

Table 2 provides an overview to help readers navigate the theoretical results in this paper.

Table 2: List of the theoretical results in this paper

Theorems Generalized Duality Theorem 3.1
Strong duality of the inner moment problem Proposition A.1
Interpolation property Proposition 3.1.3
Complementarity condition Lemma A.2
Robust representer theorem Proposition B.1
IPM-DRO duality Corollary 3.1.1
Kernel DRO as stochastic optimization with expectation constraint Corollary 3.1.2

Formulations Kernel DRO primal (P) (2), dual (D) (4)
IPM-DRO primal (3), dual (5)
Formulations for various RKHS ambiguity sets Table 1, 3
Stochastic program with expectation constraint formulation of Kernel DRO (6),(9)
Program to compute worst-case distributions (23),(24),(25)
Kernel DRO convex program by the discretization of SIP (7)
Kernel conditional value-at-risk (8)

In general, we refer to standard texts in optimization (Boyd et al., 2004; Shapiro et al., 2014; Ben-Tal et al.,
2009), convex analysis (Rockafellar, 1970; Barvinok, 2002), and functional analysis (Conway, 2019) for more
mathematical background.

Notation. In the proofs, we useM to denote the space of signed measures on X . The dual cone of a set of
signed measures K ⊆ M is defined as K∗ := {h :

∫
hdm ≥ 0,∀m ∈ K, h measurable}. Using the reproducing

property, we have the identity
∫
f dP = 〈f, µP 〉H for f ∈ H and P ∈ P, which we will frequently use in the

proofs.

A.1 Proof of the Generalized Duality Theorem 3.1

We now derive our key result for Kernel DRO — the Generalized Duality Theorem, in Theorem 3.1. Let us first
consider the inner moment problem of (2)

sup
P∈P,µ∈C

∫
l dP subject to

∫
φ dP = µ, (11)

where we suppress θ in l(θ, ·) as we fix it for the moment. (11) generalizes the problem of moments in the sense
that the constraint can be viewed as infinite-order moment constraints. Using conic duality, we obtain the strong
duality of the inner moment problem.
Proposition A.1 (Strong dual to (11)). Under Assumption 3.1, (11) is equivalent to solving

min
f0∈R,f∈H

δ∗C(f) + f0

subject to l(ξ) ≤ f0 + f(ξ), ∀ξ ∈ X
(12)

where δ∗C is the support function of C, i.e., strong duality holds.

Using Proposition A.1, we can reformulate the inner moment problem in (2) to obtain Theorem 3.1. We now
prove this generalized duality result for the inner moment problem in Proposition A.1. We first derive the weak
dual and then prove the strong duality.
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Proof. We first relax the constraint P ∈ P to its conic hull P ∈ co(P). To constrain P to still be a probability
measure, we impose

∫
1 dP (x) = 1, which results in the primal problem equivalent to (11)

(P ) := max
P∈co(K),µ∈C

∫
l dP subject to

∫
φ dP = µ,

∫
1 dP = 1.

We construct the Lagrangian relaxation by associating the constraints with the dual variables f ∈ H, f0 ∈ R, as
well as adding the indicator function of C. Note both sides of the constraint

∫
φ dP = µ are functions in H, hence

the multiplier f is an RKHS function.

L(P, µ; f, f0) =

∫
l dP − δC(µ) + 〈µ−

∫
φ dP , f〉H + f0(1−

∫
1 dP )

=

∫
l dP − δC(µ) + 〈µ, f〉H −

∫
f dP + f0 −

∫
f0 dP

=

∫
l − f − f0 dP + (〈µ, f〉H − δC(µ)) + f0. (13)

The second equality is due to the reproducing property of RKHS. The dual function is given by

g(f, f0) = sup
P,µ

∫
l − f − f0 dP + (〈µ, f〉H − δC(µ)) + f0.

The first term is bounded above by 0 iff l − f − f0 ∈ −K∗. By Lemma D.1, this conic constraint is equivalent to
the constraint of (12), l(ξ) ≤ f0 + f(ξ), ∀ξ ∈ X .

Finally, expressing the second term using convex conjugate δ∗C(f) = supµ〈µ, f〉H − δC(µ) concludes the derivation.

Strong duality can potentially be adapted from the strong duality result of moment problem, e.g., (Shapiro, 2001).
However, we give a self-contained proof with only elementary mathematics that sheds light on the connection
between the RKHS theory and distributionally robust optimization. The proof is a generalization of the Euclidean
space conic duality theorem ((Ben-Tal et al., 2009) Theorem A.2.1) to infinite dimensions. Figure 4 illustrates
the idea of the proof.

Figure 4: Illustration of the strong duality proof that uses a separating hyperplane. See the proof for detailed
descriptions.

Proof. We assume the dual optimal value of (12) is finite (D) < ∞. Since the converse means that the dual
problem is infeasible, which implies that the primal problem is unbounded. Due to the upper semicontinuity of l
in Assumption 3.1, this can not happen on a compact X .

Let us consider the Hilbert space R×H×R equipped with the inner product 〈, 〉R + 〈,〉H + 〈, 〉R. We construct a
cone in R×H× R

A =

{(∫
1 dP ,

∫
φdP,

∫
l dP

)
: P ∈ co(P)

}
,

where co again denotes conic hull.
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Let t = (P ) denote the optimal primal value. ∀ε > 0, we construct the set

Bε =

{
(1, µ, t+ ε) : µ ∈ C

}
,

which is a closed convex set with non-empty relative interior by Assumption 3.1 (i.e., Slater condition is satisfied).

It is straightforward to verify that those two sets do not intersect. Suppose x = (x1, x2, x3) ∈ A ∩Bε, this means
∃µ′, P ′ such that x1 = 1 =

∫
1 dP ′, x2 = µ′ =

∫
φdP ′, i.e., µ′, P ′ is a primal feasible solution. Then the third

coordinate of x satisfies x3 =
∫
l dP ′ ≤ (P ) < t+ ε = x3, which is impossible. Hence, A ∩Bε = ∅.

In the rest of the proof, we will show that, ∀ε > 0, the dual optimal value (D) satisfies

(D) ≤ (P ) + ε.

Combining this with weak duality (D) ≥ (P ) will result in strong duality. We now justify this inequality.

By the separation theorem, (see, e.g., (Barvinok, 2002) Theorem III.3.2, 3.4), there exists a closed hyperplane
that strictly separates A and Bε. The separation is strict because t+ ε > t =

∫
l dP . By the Riesz representation

theorem, ∃(f0, f, τ) ∈ R×H× R, s ∈ R, such that

f0 + 〈f, µ〉H + τ(t+ ε) < s,

f0

∫
1 dP + 〈f,

∫
φdP 〉H + τ

∫
l dP > s.

Plugging in P = 0, we obtain s < 0. Since P lives in a cone, the left-hand side of the second inequality must be
non-negative. Otherwise, we can scale P so that the separation will fail. In summary, we have

f0 + 〈f, µ〉H + τ(t+ ε) < 0,∀µ ∈ C,

f0

∫
1 dP + 〈f,

∫
φdP 〉H + τ

∫
l dP ≥ 0,∀P ∈ co(P).

(14)

By Assumption 3.1 (Slater condition), the primal problem has a non-empty solution set. Because l is proper and
upper semi-continuous and the feasible solution set for the optimization problem is compact (see Section D) , the
primal optimum is attained by the extreme value theorem. Suppose P ∗ is a primal optimal solution, from the
second inequality of (14),

f0

∫
1 dP ∗ + 〈f,

∫
φdP ∗〉H + τ

∫
l dP ∗ = f0 + 〈f, µP∗〉H + τt ≥ 0.

Using this and the first inequality of (14), we obtain τ < 0. Without loss of generality, we let τ = −1.

From the second inequality of (14), we have

f0

∫
1 dP + 〈f,

∫
φdP 〉H −

∫
l dP =

∫
f0 + f − l dP ≥ 0,∀P ∈ co(P).

This tells us that f0, f is a feasible dual solution because it satisfies the semi-infinite constraint in (12).

By the first inequality of (14),
f0 + sup

µ∈C
〈f, µ〉H ≤ t+ ε,∀ε > 0,

where the left-hand side is precisely the dual objective in (12). This implies (D) ≤ (P ) + ε. By weak duality,
(D) ≥ (P ). Therefore, strong duality holds.

This proof gives us the third interpretation of the dual variables f0, f — they define a separating hyperplane of A
and Bε.
Remark. From the proof, we see that the Slater condition in Assumption 3.1 is stronger than needed be. If C
is singleton, we can still find a convex neighborhood Wε of the singleton Bε since R×H× R is locally convex.
Then Wε and A can still be strictly separated using the same technique in the proof. Hence strong duality still
holds when C is a singleton.
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Table 3: Robust counterpart formulations of Kernel DRO.

RKHS ambiguity set C Robust counterpart formulation

norm-ball C = {µ : ‖µ− µP̂ ‖H ≤ ε} f0 + 1
N

∑N
i=1 f(ξi) + ε‖f‖H

convex hull C = conv{C1, . . . , CN} f0 + maxi δ
∗
Ci(f)

(same under closure clconv{C} )
example: polytope f0 + maxi f(ξi)
C = conv{φ(ξ1), . . . , φ(ξN )} (equivalent to SVMs/scenario opt. (Calafiore and Campi, 2006))

Minkowski sum
∑N
i=1 Ci f0 +

∑N
i=1 δ

∗
Ci(f)

example: C = C1 + C2 f0 + maxi f(ξi) + ε‖f‖H
C1 = {µ : ‖µ‖H ≤ ε}
C2 = conv{φ(ξ1), . . . , φ(ξN )}

affine combination f0 +
∑N
i=1 αiδ

∗
Ci(f)

C =
∑N
i=1 αiCi,

∑N
i=1 αi = 1

example: data contamination f0 + α
N

∑N
i=1 f(ξi) + (1− α)δ∗CQ(f)

C = {αµP̂ + (1− α)µQ : µQ ∈ CQ}

Intersection C = ∩Ni=1Ci f0 +
∑N
i=1 δ

∗
Ci(fi),

∑N
i=1 fi = f

multiple kernels Ci ⊆ Hi f0 +
∑N
i=1 δ

∗
Ci(fi) where fi ∈ H

example: Ci = {µ : ‖µ− µP̂ ‖H ≤ εi} f0 + 1
N

∑N
i=1

∑N
i=j fi(ξj) + ε

∑N
i=1 ‖fi‖Hi

singleton C =
{∑N

i=1
1
N φ(ξi)

}
f0 + 1

N

∑N
i=1 f(ξi) (equivalent to ERM/SAA)

entire RKHS C = H f0+ δ0(f)
(equivalent to worst-case RO (Ben-Tal et al., 2009))

Finally, we summarize the results above to prove the Kernel DRO Generalized Duality Theorem 3.1

Proof. Theorem (3.1) is obtained by reformulating the inner moment problem in (2) using the strong duality
result in Proposition A.1, i.e.,

min
θ

sup
P,µ

{∫
l(θ, ξ) dP (ξ) :

∫
φ dP = µ, P ∈ P, µ ∈ C

}
= min

θ
min

f0∈R,f∈H

{
f0 + δ∗C(f) : l(θ, ξ) ≤ f0 + f(ξ), ∀ξ ∈ X

}
, (15)

which results in formulation (4).

A.2 Table 3 deriving formulations for various choices of RKHS ambiguity set C

We now derive the formulations of support functions for various RKHS ambiguity sets in Table 3.

(RKHS norm-ball) Let us consider the ambiguity set of C = {µ : ‖µ − µ̂‖H ≤ ε}, where P̂ =
∑N
i=1

1
N δξi .

The support function is given by

δ∗C(f) = sup
µ∈C
〈f, µ〉H = 〈f, µ̂〉H + sup

‖µ−µ̂‖H≤ε
〈f, µ− µ̂〉H = 〈f, µ̂〉H + ε‖f‖H

where the last equality is by the Cauchy-Schwarz inequality, or alternatively by the self-duality of Hilbert norms.
(Note we assume there exists some µ ∈ H such that ‖µ− µ̂‖H = ε.)
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(Polytope, convex hull of ambiguity set) The result for convex hull follows from standard support function
calculus. If the ambiguity set C is described by the polytope conv{φ(ξ1), . . . , φ(ξN )}, then δ∗C(f) = max1≤i≤N f(ξi).
Furthermore, the support function value remains the same under closure operation 1 . The equivalence to
the scenario approach in (Calafiore and Campi, 2006) can be seen by noticing that max1≤i≤N l(ξi) ≤ f0 +
max1≤i≤N f(ξi). If H is universal, then there exists f0, f such that the equality is attained.

(Minkowski sum, affine combination, intersection) Those cases follow directly from the support function
calculus; cf. (Ben-Tal et al., 2015).

(Kernel DRO with multiple kernels) Let us consider multiple ambiguity sets from different RKHSs.
Suppose H1, . . . ,HNh

are RKHSs associated with feature maps φ1, . . . , φNh
. Let C1, . . . , CNh

be the ambiguity
sets in the respective RKHSs. Kernel DRO formulation with multiple kernels is given By

min
θ

sup
P,µ

{∫
l(θ, ξ) dP (ξ) :

∫
φi dP = µi, P ∈ P, µi ∈ Ci, i = 1 . . . Nh

}
, (16)

Using the same proof as Proposition A.1, we have the Kernel DRO reformulation

min
θ,f0∈R,fi∈Hi

f0 +

N∑
i=1

δ∗Ci(fi)

subject to l(θ, ξ) ≤ f0 +

N∑
i=1

fi(ξ), ∀ξ ∈ X

. (17)

Hence we obtain the formulation in Table 3.

(Singleton ambiguity set C =
{∑N

i=1
1
N φ(ξi)

}
) By the reproducing property, the support function of the

singleton ambiguity set is given by δ∗C(f) = 1
N

∑N
i=1 f(ξi).

(If C = H, reduction to classical RO) δ∗H(f) 6=∞ iff f = 0. Then (4) is reduced to

min
θ,f0∈R

f0

subject to l(θ, ξ) ≤ f0, ∀ξ ∈ X
(18)

which is the epigraphic form of the worst-case RO. 2

A.3 Complementarity condition and proof

Lemma A.2 (Complementarity condition). Let P ∗, f∗, f∗0 be a set of optimal primal-dual solutions of (P) and
(D), then ∫

l − f∗ − f∗0 dP ∗ = 0, δ∗C(f
∗) =

∫
f∗ dP ∗ (19)

If C = {µ : ‖µ− µP̂ ‖H ≤ ε}, the second equality implies∫
f∗

‖f∗‖H
d(P ∗ − P̂ ) = MMD(P ∗, P̂ ), (20)

which gives a second interpretation of the dual solution f∗ as a witness function.

It is well known that complementarity condition holds iff strong duality holds in the moment problem; cf. (Shapiro,
2001). The following is a straightforward proof.

1The convex hull can be replaced with its closure clconv(·). Note convex hulls in infinite-dimensional spaces are not
automatically closed; cf. Krein-Milman theorem.

2Note that C = H is no longer closed. However, the resulting ambiguity set becomes P, which is still compact if X is
compact.
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Proof. Plug P ∗, f∗, f∗0 into Lagrangian (13),∫
l dP ∗ ≤

∫
l − f − f0 dP ∗ + δ∗C(f

∗) + f∗0 ≤ δ∗C(f∗) + f∗0 .

By strong duality, all inequalities above are equalities. Therefore, the first equality gives the condition δ∗C(f
∗) =∫

f∗ dP ∗ while the second yields
∫
l − f∗ − f∗0 dP ∗ = 0.

A.4 Proof of Proposition 3.1.3 (Interpolation property)

Proof. Since f∗0 , f
∗ is a solution to the inner moment problem of Kernel DRO (12), we have l(θ, ξ) ≤

f∗0 + f∗(ξ), ∀ξ ∈ X for any given θ. By the first equation in the complementarity condition (19), we have∫
l − f∗ − f∗0 dP ∗ = 0. Hence the integrand must be zero P ∗-a.e.

A.5 Corollary 3.1.1 IPM-DRO duality

We provide a derivation using a technique alternative to the proof of Proposition A.1.

Proof. We consider the Lagrangian

L(P ;λ) =

∫
l dP − λ(dF (P, P̂ )− ε)

=

∫
l dP − λ sup

f∈F

∫
fd(P − P̂ ) + λε

= inf
f∈F

∫
l − λf dP + λ

∫
fdP̂ + λε

≤ inf
f∈F

sup
ξ∈X

[l(ξ)− λf(ξ)] +
λ

N

N∑
i=1

f(ξi) + λε. (21)

The second equality above is due to the dual representation of IPM. The last inequality is due to that the
expectation is always dominated by the supremum. This results in the reformulation

min
θ,λ≥0,f∈F

sup
ξ∈X

[l(ξ)− λf(ξ)] +
λ

N

N∑
i=1

f(ξi) + λε.

By introducing the epigraphic variable f0, we obtain the reformulation (5).

A.6 Corollary 3.1.2 Kernel DRO as stochastic optimization with expectation constraint

Using the known relationship between semi-infinite constraint and expectation constraint (see, e.g., (Tadić et al.,
2006, Theorem 1)), the SI constraint in (4) is equivalent to the expectation constraint in (6).

B COMPUTATIONAL FORMULATIONS

We now provide practical plug-in formulations for computation. Specifically, we can parametrize the RKHS
function f by, e.g., the following methods. We note that the random feature method is well-suited for large scale
problems, such as in SFG-DRO applications.

B.1 Random features

Common ways to parametrize an RKHS function include the representer theorem as well as approximations such
as the random Fourier features (Rahimi and Recht, 2008). Recall that an RKHS function can be approximated
by the finite feature expansion

f(ξ) ≈ f̂(ξ) = w>φ̂(ξ), k(x, x′) ≈
N∑
i=1

φ̂i(x)φ̂i(x
′)



Jia-Jie Zhu, Wittawat Jitkrittum, Moritz Diehl, Bernhard Schölkopf

where {φ̂i(x)}Ni=1 are the random features, e.g., random Fourier features φ̂i(x) = cos(wix+ bi), wi ∼ N(0, σ2), bi ∼
Uniform[0, 2π]. If x is a vector, then wi ∼ N (0, Iσ2), and wix is the dot product. See, e.g., (Rahimi and Recht,
2008), for more properties.

One strength of the Generalized Duality Theorem 3.1 is that it does not require the knowledge of the RKHS that
the loss l lives in, which is typically not available in non-kernelized models. This enables us to use approximate
features for commonly used RKHSs, e.g., random Fourier feature. This is a strength of our Kernel DRO theory.

Note program (7) is a convex optimization problem with the random feature parametrization.

B.2 Distributionally robust version of representer theorem

In program (7), we may parametrize the RKHS function by f(·) =
∑N
i=1 βik(ξi, ·) +

∑M
j=1 γjk(ζj , ·), ‖f‖H =√

α>Kα, where α = (β1, . . . , βN , γ1, . . . , γM )>,K = [k(ηi, ηj)], η = (ξ1, . . . , ξN , ζ1, . . . , ζM )>. We justify this
parametrization by the following DRO version of the RKHS representer theorem (Schölkopf et al., 2001).

The intuition of the following result is to restrict Kernel DRO to a smaller ambiguity set of distributions supported
on {ζi}Mi=1 (i.e., replace P ∈ P by P ∈ PM , an inner approximation depending on M). In this setting, the
ambiguity set only contains only distributions supported on (a subset of) ζi. Then it suffices to parametrize f in
(7) by f(·) =

∑N
i=1 βik(ξi, ·) +

∑M
j=1 γjk(ζj , ·).

Lemma B.1 (Robust representer). Given data {ξi}Ni=1 and the ambiguity set chosen to be a set of embeddings with
the form

∑M
j=1 αjφ(ζj), for some 0 ≤ αj ≤ 1,

∑M
j=1 αj = 1, and within the RKHS norm-ball C = {µ : ‖µ−µP̂ ‖H ≤

ε}. Then, it suffices to consider the RKHS function of the form f(·) =
∑N
i=1 βik(ξi, ·) +

∑M
j=1 γjk(ζj , ·) for some

βi, γj ∈ R, i = 1...N, j = 1...M .

Lemma B.1 states that the expansion points of the RKHS representer in (7) are exactly the support of the
empirical and worst-case distributions. It extends the classical RKHS representer theorem (Schölkopf et al., 2001),
which uses only the empirical samples as expansion points. The implication is that, to be distributionally robust,
we should choose the representers as in Lemma B.1 instead of only using empirical samples. Below is a proof that
is similar to the original representer theorem.

Proof. In (7) we consider f = fs + f⊥, where fs =
∑N
i=1 βik(ξi, ·) +

∑M
j=1 γjk(ζj , ·) belongs to a subspace of the

H and f⊥ its complement. Plug in f = fs + f⊥ to (7) and note the orthogonality, we obtained

min
θ,fs,f⊥,f0

f0 +
1

N

N∑
i=1

fs(ξi) + ε(‖fs‖H + ‖f⊥‖H)

subject to l(θ, ζi) ≤ fs(ζj) + f0, j = 1 . . .M.

(22)

It suffices to choose f⊥ = 0 in this optimization problem. Hence the conclusion follows.

Remark. Note the existence of a worst case distribution in more general settings is not yet proven. The discussion
here is restricted to the setting of (7).

C FURTHER NUMERICAL EXPERIMENT RESULTS

We carry out additional numerical experiments to study Kernel DRO.

C.1 Testing other variants of Kernel DRO

We empirically test the following proposed variants of Kernel DRO.

• Relaxed Kernel DRO formulation (Kernel DRO-relaxed) with constraint hold for only the empirical samples,
i.e., l(θ, ξi) ≤ f0 + f(ξi), i = 1 . . . N.

• Unconstrained Kernel DRO using Kernel CVaR in Example 4.1
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Figure 5: Comparing Kernel DRO-relaxed, Kernel DRO-KCVaR, ERM, and regular Kernel DRO. y-axis limit is
adjusted to show the plot. All error bars are in standard error.

We compare Kernel DRO-relaxed with the ERM as well as the regular Kernel DRO. Compared with ERM, Kernel
DRO-relaxed still possesses moderate robustness. In this case, we effectively proposed a way to apply RKHS
regularization to general optimization problems, not limited to kernelized models. Hence, it may be used in
practice as a finite-sample approximation to Kernel DRO.

We then test the Kernel DRO using the unconstrained objective given by Kernel CVaR. We observe no significant
difference in performance between Kernel DRO-KCVaR (with small chance constraint level α.) and regular Kernel
DRO (7).

C.2 Analyzing the generalization behavior

An insight can be obtained by observing the plot of the MMD estimator between the training and test data in
Figure 6 (left). As Kernel DRO with ε = 0.5 robustified against perturbation less than the level MMD = 0.5, we see
this threshold was exceeded as we increase the perturbation in test data. Meanwhile, this is the same time (∆ ≈ 1.5)
where Kernel DRO solutions start to exceed the generalization bound

∫
l dP ≤ f0 + 1

N

∑N
i=1 f(ξi) + ε‖f‖H, see

Figure 6 (right). This empirically validates our theoretical results for robustification.

Figure 6: (Left) MMD estimator between the empirical samples and test samples. The level MMD = 0.5 is marked
in red. (Right) Loss compared to the generalization bound. As the test data falls outside the robustification level
ε, the loss starts to exceed the generalization bound (red) f0 + 1

N

∑N
i=1 f(ξi) + ε‖f‖H.

C.3 Miscellaneous details for experimental set-up

Robust least squares example. Our experiments are implemented in Python. The convex optimization
problems are solved using ECOS or MOSEK interfaced with CVXPY. In the experiments, we chose the bandwidth
for the Gaussian kernel using the medium heuristic (Gretton et al., 2012). ε in this paper are fixed to constants
below 2 for Gaussian kernels. Choosing ε can be further motivated by kernel statistical tests (Gretton et al., 2012)
and is left for future work.

Sampled ζj In applying Kernel DRO using (7), we may obtain ζj by simply sampling in X . {ζj}i need not
be real data, e.g., in stochastic control, they can be a grid of system states; in learning, they can be synthetic
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(a) Support sampling (b) Perturbation

Figure 7: Computing the worst-case distribution P ∗ using (a): (23) samples possible support ζj then optimizes
w.r.t. weights α. (b): (24) moves the empirical samples directly.

samples such as convex combinations of data ζj =
∑N
i=1 aijξi, a·j ∈ SN (simplex), or perturbations ζj = ξ̂i + ∆i

where ∆i can be a small perturbation, or they can be obtained by domain knowledge of the specific application.
In the setting of supervised machine learning, there is a difference between this paper’s approach of sampling
ζj and commonly used data-augmentation techniques: ζj need not have the correct labels or targets. Directly
training on them may have unforeseen consequences. For example, in the robust least squares experiment, we
sampled the support ζi uniformly random from [−1, 1].

Robust learning under adversarial perturbation example. For the MNIST robust classification example,
we used a neural network with two hidden layers with 64 units each. For the training of ERM and PGD, we
used the ADAM optimization routine implemented in the PyTorch library. In Step 3 of SFG-DRO, we used
random Fourier features (Rahimi and Recht, 2008) with 500 features. In Step 5 of SFG-DRO, we used the SA
routine from CSA algorithm (Lan and Zhou, 2020). While other SA routines can be used, we prefer the simplicity
of CSA in that it does not use a dual variable. We set the threshold and step-size of the CSA algorithm (Lan
and Zhou, 2020) to decay at the rate of 1√

k
as suggested in that paper. We did not attempt further adaptive

tuning of the step-sizes or the proposing distribution for ζ (we generate 3000 samples uniformly in Step 2 of
SFG-DRO), which may further improve the performance. Parameter (weights of the neural nets) averaging is
used for training all models. In the visualization of the predictions in Figure 3d, we perturbed the images by the
PGD method (Madry et al., 2019; Madry) based on the ERM loss and linear model. SFG-DRO does not have
the knowledge of the perturbation method.

C.4 Computing worst-case distributions

We have proposed Kernel DRO for making the decision θ via reformulation (4). In practice, it is often useful to
find the worst-case distribution P ∗ (e.g., to study adversarial examples). We now propose two practical methods
to compute P ∗ for a given θ, based on support sampling and perturbation, respectively. We illustrate the ideas in
Figure 7.
Support sampling. We consider the moment problem (11) where the distribution is restricted to discrete
distributions supported on some sampled support {ζj}Mj=1 ⊆ X . 2 For any given θ,

max
α∈SM

M∑
j=1

αil(θ, ζj) subject to

∥∥∥∥ M∑
j=1

αiφ(ζj)−
1

N

N∑
i=1

φ(ξi)

∥∥∥∥
H
≤ ε. (23)

(23) can be written as a quadratically constrained program with linear objective, which admits a (strong)
semidefinite program dual via what is historically known as the S-lemma (Pólik and Terlaky, 2007) (cf. appendix).
Alternatively, (23) can be directly handled by convex solvers for a given θ. Note this approach was previously
used in solving the problem of moments in (Zhu et al., 2020).
Perturbation. Alternatively, we search for worst-case distributions that are perturbations of the empirical
distribution. Let di ∈ X be some perturbation vector, given θ,

max
di,i=1...N,
ξi+di∈X

1

N

N∑
i=1

l(θ, ξi + di) subject to

∥∥∥∥ 1

N

N∑
i=1

(φ(ξi + di)− φ(ξi))

∥∥∥∥
H
≤ ε. (24)

2 Note the sampled support {ζj}Mj=1 need not be real data; they are only the candidates for the worst-case support.
The purpose is to make the the semi-infinite constraint approximately satisfied. See the appendix for more details.
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Compared with (23), (24) directly searches for the support of the worst-case distribution. It can be interpreted
as transporting the probability mass from empirical samples ξi to form the worst-case distribution. Depending on
the kernel used, (24) may become a nonlinear program. However, its feasibility is guaranteed since it can always
be initialized with a feasible solution di = 0.

We now empirically examine the support sampling method (23) and perturbation method (24) to recover the
worst-case distribution. Since both programs (23) and (24) search for the worst-case distribution within a subset
of all distributions, their optimal values lower-bound the true worst-case risk (P) in (11), i.e., with finite samples,
they are optimistic bound.

Under the experimental setting as in Figure 3b, we ran Kernel DRO with fewer empirical samples (N = 5). After
we obtain the Kernel DRO solution θ∗, we plug it into (23) and (24), respectively, to compute the worst-case
distribution P ∗. Figure 7 plots the results. Note (23) is a convex optimization problem, while (24) results in a
nonlinear program (with Gaussian kernel). Nonetheless, we solve it with an always-feasible initialization di = 0.

C.5 SDP dual via S-lemma

We consider a discretized version of the primal moment problem in (23) where the distribution is constrained to
be a discrete distribution. We rewrite (23) as a quadratically constrained program using the plug-in estimator of
MMD,

max
α

M∑
i=1

αil(ζi)

subject to α>Kzα− 2
1

N
α>Kzx1 +

1

N2
1>Kx1 ≤ ε2

M∑
i=1

αi = 1, αi ≥ 0, i = 1 . . .M.

This is a quadratically constrained linear objective convex optimization problem, where the Gram matrix Kz

almost always has exponentially decaying eigenvalues. By applying S-lemma (Pólik and Terlaky, 2007), this
program can be reformulated as the following SDP,

min
λ≥0,x,y≥0,t

t

subject to

[
λP −λq − 1

2 (l + x · 1 + y)
(−λq − 1

2 (l + x · 1 + y))> t− λε2 + x+ λr

]
≥ 0,

(25)

where P := Kz, q := 1
N 1>Kzx, r := 1

N21
>Kx1, and Kz = [k(ζi, ζj)]ij ,Kzx = [k(ζi, ξ̂j)]ij ,Kx = [k(ξ̂i, ξ̂j)]ij , l =

[l(ζ1), . . . , l(ζM )]>.

D SUPPORTING LEMMAS

We establish a few technical results that are used in the proofs.

D.1 Reducing conic constraint to infinite constraint

To derive the semi-infinite constraint in (12), we need a standard result from the literature of the moment problem.
We give a self-contained proof below.

Lemma D.1. Let K∗ be the dual cone to the probability simplex P. The conic constraint l − f − f0 ∈ −K∗ is
equivalent to

l(θ, ξ) ≤ f0 + f(ξ), ∀ξ ∈ X . (26)

Proof. “ =⇒ ”: Let us consider the set of all Dirac measures on X , D := {δξ : ξ ∈ X}. For any ξ ∈ X , we have

l(ξ)− f0 − f(ξ) =

∫
l − f0 − fdδξ ≤ 0.
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Hence sufficiency.

“ ⇐= ”: Suppose there exists P ′ ∈ co(P) such that
∫
l − f0 − fdP ′ > 0. Without loss of generality, we assume

P ′ ∈ P, or we can normalize it to be a probability measure. Then,

0 <

∫
l − f0 − fdP ′ ≤ sup

ξ∈X
l(ξ)− f0 − f(ξ) ≤ 0.

The second inequality is due to that expectation is always less than or equal to the supremum. The last inequality
holds because l is u.s.c. This double inequality is impossible, hence l − f0 − f ∈ −K∗.

Note an extension of this result to generating classes other than all Dirac measures D can be proved using Choquet
theory, cf. (Shapiro et al., 2014, Proposition 6.66) (Popescu, 2005, Lemma 3.1), as well as in (Shapiro, 2001;
Rogosinski).

D.2 Compactness of the ambiguity set

We now prove the compactness of the ambiguity set. We use the mean map notation T : P 7→ µP to denote a
map between the space of P equipped with MMD, and H equipped with its norm. Let us denote the image of a
subset K of measures under T by T (K) := {µP | P ∈ K} ⊆ H. If H is universal, then MMD is a metric. By the
definition of MMD, T is an isometry (i.e., distance-preserving map) between P and H.
Lemma D.2. T (P) is compact if X is compact.

Proof. If X is compact, by Prokhorov’s theorem P is compact. Since T is an isometry, T (P) is compact.

It is straightforward to verify that T (P) is convex.

Lemma D.3. Let CP = C ∩ T (P). If X is compact, under Assumption 3.1, Cp is compact.

Proof. By the Krein-Milman theorem, the convexity and compactness of T (P) (proved in the previous lemma)
imply that T (P) is closed. By Assumption 3.1, C is closed, which results in the closedness of Cp. Since Cp is a
closed subset of a compact set T (P), it is compact.

Recall that we denote the feasible set of probability measures, i.e., ambiguity set, for primal Kernel DRO (2) by
KC = {P :

∫
φ dP = µ, µ ∈ C, P ∈ P}. It is convex by straightforward verification. Let us derive the following

compactness property of the ambiguity set.

Lemma D.4. If X is compact, under Assumption 3.1, KC is compact.

Proof. We first note KC = T −1(Cp) and T is an isometric isomorphism (i.e., bijective isometry) between KC and
Cp. Then KC is compact since Cp is compact.


