Taming heavy-tailed features by shrinkage

7 Technical lemmas, propositions and proofs

Lemma 4. Suppose E(v'x;)* < R for any v € 8?1, Define the £4-norm shrunk samples

~ min(||x;|4,7)
i= X,
1[4

where T is a threshold value. Then we have the following:

L %X —EXX/ [lop < Hill% +VR < Vdr?* + VR;
2. |[E(xx —Exix]) T (XX —EX;X[))llop < R(d+ 1);
1/2

3. For all £ > 0, P{||§:n(T) — B|op > &(Hdloan)
constant.

} < n!=% where T < (nR/(log n))1/4 and C' is a universal

Proof. This result is from [Fan et al.|(2020+). For convenience of adapting the lemma to other settings, we present

its proof here. Notice that
HN X, ]E;(i;(zTHOP < ||;(i;(:||0p + HEiiiz—'rHOP = ||§Z||§ + \/E < ‘/%—2 + \/R
Also for any v € S!, we have

E(v %] %% v) = E(|[%:l[5(v"%:)?) < E(|[xi[5(v " x:)?)
d d
Z v X;) gzq/ vix)* < Rd

Then it follows that [|EX;X; X;X,; [|op < Rd. Since [|(Ex;X; ) TE(XiX; )|op < R,
IE(ix| —Exix{) " (xiX{ —EXiX{))]lop < R(d +1).
By the matrix Bernstein’s inequality (Theorem 5.29 in [Vershynin| (2010)), we have for some constant ¢y,

nt?

nt
(R " v v

I~ o .
P(Hg X% —EXX |lop > t) < 2dexp(—cl
i=1

For any v € S~1, it holds that

R2d\'? RVd
E(v'(xix; )Vl{\|x1\|4>‘r} \/E vIx)*P([[xilla > 7) < ( 4 > -T2

T

Therefore we have
[B(xix, — %% )|lop < RVA/T>.

(14)

(18)

Choose 7 < (nR/logd)'/* and substitute ¢t with £y/Rdlogn/n. Then we reach the final conclusion by combining

the concentration bound and bias bound.

Proof of Lemma[dl Define a contraction function

o(x;0) = $21{\m\§9} + (z — 29)21{9<m§20} + (z+ 29)21{—29§z<—0}'

O

One can verify that ¢(x;0) < 22 for any . This contraction function was used in a preliminary version of
Negahban et al.| (2012) to establish the RSC of negative log-likelihood. Given any A € By(0,r), by the Taylor
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expansion, we can find v € (0,1) such that
- ~ ~ ~ 1+~
5 (B + A;B°) = 0,(B" + A) — £,(B") = VL, (B") A = —ATHn(ﬁ* +vA)A

- Zb” X, (8" +vA)(ATX)? > Zb” (%] (B" +vA) (A X3 017) 1 g+ 5, | <am) (19)

m w ~
z Z¢(ATXi?al”%w*@agw}’
i=1

where we choose w = ay + as > 17 + g so that the last inequality holds by Condition (1) . For ease of notation,
let A; == {|ATX;| < ayr} and B; := {|8" '%;| < an}. We have
E[o(ATX;; a17)15,] > E[(ATX)?14,08,]
> ATE[xixiTlAmlgi]A — ATE[(XiX — XX )1A nB: ] A
> ATE[xixiTlAmBi]A — ATE[XZ*X — X XT]A
> ATE(xix;)A — ATE(xixiTlAgugic)A — ATE[xix — ile]A

> o Al — E(ATx,)4(B(AD) + B(B2) — ATElx,x] — %% |A.
By the Markov Inequality,

EATX)* R E(B* '%)*  R|B*:  RLA
oqr o (5 (5 (e

Besides, according to (|18)),
. A 1 12
ATE[x;x] — %X, ]A < Rf” 15 <y R||A||2<d0gd) ,
n

where C is certain constant. Therefore, for sufﬁc1ently large ay, a2, n and d,

~ K
Elo(A R eur)1s) 2 2] AB. (20)

n
For notational convenience, define Z; := (b(ATii; ar)lp, = ¢(AT>~<i13i; ayr) and Ty := SUPHAHzgr’”_l M Zi—
i=1

EZ;|. Then an application of Massart’s inequality (Massart| (2000)) delivers that

1/2
]P’{|FT —ET,| > a3r? (Z) } < 2exp(—§). (21)

The remaining job is to derive the order of EI',. Note that |¢(x1;60) — ¢(z2;0)| < 20|y — x2| for any 1, x2 € R.
By the symmetrization argument and then Ledoux-Talagrand contraction inequality (see |Ledoux and Talagrand
(2013), p. 112), for a sequence of i.i.d. Rademacher variables {v;},,

1 L
ET, <2E sup E Vi Z; ‘ < 8ayrE sup g 'Yixil{\,s*Tii\gaz}yAH
HAH2<T i—1 HAH2<T i=1

1 n N 1 n N 1/2
§ 8(117‘2E”ﬁ Z’yixil{lﬁ*Tiilgaz}Hg S 8Oélr2 <E”n Z’yzle{'ﬁ*'r;cll<a2}”g>
i=1 1=1

n 1/2 1/2
2 i =12 / 2 pl/4 ﬂ /
< 8ayr o Z]E”XlHQ < 8aym*R - .
i=1

Combining the above inequality with , and yields that for any ¢ > 0, with probability at least
1 — 2exp(—t), for all A € R? such that [[Afs <7,

5 o MK ]t 1/2 g\ /2
(5671(,6”6 ) 0 ||AH2 (n) r2 — 8a1R1/4(n> r2.



Taming heavy-tailed features by shrinkage

Proof of Theorem[1l Construct an intermediate estimator Bn between B and B":
By=B8"+uB~p"),

where n = 1if |8 — B*||s < r and n = r/||B — B%||2 if |3 — 8|2 > r. Write Bn — 3" as A,. By Lemma it
holds with probability at least 1 — 2exp(—t) that

N 1/2 g\ 12 o N B N B
B E-cr{(L) 4 (8) ) 0B, < V)T A < IVEE )l A,

which further implies that

< 3 Vzn B* 3eir2\ M2\ 1/4 3eor2\ V2 1 dy 1/4
< AT (3£ () 0y o

Now we derive the rate of |[V/,(3)]2.

~ 1 &
Vi (B =~ (& V(& B
i=1
I~ ~ = =~ 13T Ak 1n/~T *\ 13T g\ (23>
== zixi —Ezx; +E(z - b'(x; BY))x; + > Zb (x; B7)x; — E(V'(x; B7)x;).-
i=1

n <
i=1

T
T T3

where X; is between x; and X; by the mean value theorem. In the following we will bound 77,75 and T3
respectively.

Bound for Ty: Define the Hermitian dilation matrix

Note that
NT ~

521 _qml2( XiXi O _ 2 25 5T
IEZ oy = B[22 ( 0% g7 )] llop = max(BEERT %0, IEGIRA ) op)

E(27%};) < \/Ez!Ex}; < /MR,

so E[22x/ X;] < dv/M; R. In addition, for any v € R? such that ||v||s = 1,

K2 3

For any j € [d],

E(Z(v'x;)?) < VMR

We thus have |[EZ2||op < dv/ M R. In addition, IEZi]lop = E(Z||Xill2) < E2ZE[x,]2 < \f(MlR)l/‘L, which
further implies that ||IE(Z — EZ; i)llop < 2dy/MiR. Also notice that since ||X;|l4 < 71 and z; < 7o, ||Z llop <
1d1/ 47179. By the matrix Bernstein’s inequality,

P(Hl iz EZi|op > t) < dex min nt 2nt
n o PN 2 LR @, )

Given that ||Ty ]2 = 2||n=1 3. Z; — EZ|op, it thus holds that
i=1

. nt? 2nt
[P(||T1||2 > 2t) < dexp{—cl rmn(2d\/]\471R7 d1/47'17'2) } (24)
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Bound for Ty:  We decompose T3 as follows:

1T2ll2 < |E(Z: — 20)%all2 + |E(2 — yo)Xill2 + |E(ys — V' (%] B*)%ill2
T21 T22 T23
+ IE( (% B%) = b/ (%] B))Xill2-

To4

Now we work on {T5;}%_, one by one. For any v € R? such that ||v|s = 1,

EG: — 2)(vTE)| < E(l5(v %)Lz 5my) < VEGZYT%0)2)B(2i] > 7).

< (MlR)l/Zlina
72
thus we have | Thy ||ls < M2/*RY4/72. Again, for any v € R? such that ||v||s = 1, since |Eex; |2 < Mar/d/n,

1/2
Bl V)] = Bl(% — %) V)] + Elex] )] < Ele e ¥I1 e 5m] + Ma )

1/2
<\/qu v))2P(||x;fl4 > 1) +M2< >

e 1/2
< (MyR)Y* dR+M2(d> .

Ti

Therefore ||Taz||2 < (MlR)1/4VdR/T1 + My+/d/n. For Ty, since Ely; — b (x; 8%)|x;] = 0, Toz = 0. Finally we
bound 7Tb4. For any v € R? such that |v|z =1,

| Toalla < ME(B* (x; — %:))(v %) < ME[(B* x:)(vT %)L, um)]

< M\/E (8" xz (vTx;)? P(||xi||4 > 7'1) < MLvdR/le.

To summarize here, we have

VM, VAR VAR d\ /2
I1T2]l2 < (M R)Y* (75~ 2 T )+ ML 2 +M2(n> ' (25)
2 1 1

Bound for T3: We apply a similar proof strategy as in the bound for 7T;. Define the following Hermitian dilation
matrix:
X, = b (&7 x;
=& (L %)

IEX?[lop = max(E(V (%] B7)%] %:). |EY (%] B°)*%i%] lop).
Write |b'(1)] as by. For any j € [d],
E(V(x87)°%;) <El(br + M 8" — 1))%33] < 2E[((by + M)* + M?(X] 8)*)7))
< 2M?R||B*|2 4+ 2(by + M)*VR =:V,
so E[/ (%] 8*)%x,; x;] < dV. In addition, for any v € R? such that ||v||z = 1,
E(V(X B°)*(v'%:)?) <E((by + MI%] 8"~ 1)*(v'%:)%) < V.
We thus have |[EX2|,p < dV. In addition, |EX||ep = E(V (X} 8%)|Xill2) < VEV (X 87)2E[X;|2 < VdV, which

further implies that |[E(X; —EX;)2[lop < (d+/d)V. Also notice that [|X;||op < ((by+ M)+ M||B8* [|2d"/ 47, )d*/*7,.
By the matrix Bernstein’s inequality,

First,

nt? nt )

1 e < <~
P~ S X — EXillop > t) < dexp(—cy mi , ! .
(1522 lep 2 1) < dexp( comin( T o+ M+ M8 ad i) i)

i=1
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Given that | T3]z = 2|n~ 3. X; — EX;]|ep, it thus holds that
=1

nt? nt

(d+ \/&)V7 (bl + M + M||ﬁ*|‘2d1/47'1)d1/47'1)>.

]P’(HT3||2 > 2t> < dexp(—q min ( (26)

Finally, choose 71,7 = (n/logn)/%. Combining , and delivers that for some constant Cy any £ > 1,

P{nvu i >cys(d1°g”)l/2} < it (27)

Choose t = £logn and let r be larger than the RHS of . When d/n is sufficiently small and n is sufficiently
large, we can obtain that

dlogn>1/2
=:To,
n

T>sz<

where C5 is a constant. Choose r = ry. Then by , HA,]HQ < rp and thus A= 5,,. Finally, we reach the

conclusion that
~ dlogn 1/2 1 1
P{(1A1: > Cog(TE8) T <t o <aui <

O

Proof of Corollary[1. The proof strategy is nearly the same as that for deriving Theorem [} so we provide a

roadmap here and do not dive into great details. For ease of notation, write n=! Z 0¥ (X;,2;;3) as o (B) and
i=1

denote the hessian matrix of £¥(3) by H¥(3). Since H*(3) = V?/,(8) = H,,(3), we can directly obtain the

uniform strong convexity of HY(8) from Lemma |1} In addition,

n

Tw *\ _p l ~T L N\S. l - "'T _
Vﬁgn (ﬁ ) - 1_ 2 n z:: ﬁ Zz)xz DN z:: ﬁ 1 Zl)) X
T1 T2
_ 1= p P 1-p P
=71z (T1 ETy) 2 (T, — ET3) + T2 ET; — T 2pET2
1-— T ok -
= 1= p(Tl ETy) — 1 _pr(TQ —ET,) + E(V (X! B") — ).

Since |b' (X, B*) — z;| <1 and |0'(X] B%) — (1 — ;)| < 1, following the bound for T} in Theorem |1} we will obtain

1 P dlogn 1/2 1—¢
]P) (TQ — ]ET2)||2 2 Clg S n s
1 —2p n

where ¢; > 0 depends on R and p and £ > 1. In addition, following the bound for T3 and 754 in Theorem 1, we
shall obtain
dR1 12
< eaMy (0gn> .
n
where ¢o > 0 is a constant. Therefore, for some constant c3 depending on R, p, M5, R, we have

~ dlogn 1/2
P{IaT )l > o (TE) ) < i

Combining this with the uniform strong convexity of ITIﬁ (B) delivers the final conclusion. O

—-Pp
T, — ET;
5,1 1)

~T % ~ VdR
[ (X B%) — yi)Xilla < MaL =
1
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Proof of Lemma[4 According to (B), [Val(B9)]; = (V/(X] B") — Z:)Zi;. Then we have

|—Z V(X B") —Z) x”|<]—2b’ X; BTy — BV (X] 87|+ [E(W (X! B7) — 7))

i=1

Ts

T
n (28)
+ |ﬁ ZiZy; — Bz
1=1

T3

We start with the upper bound of T7. By the Mean Value Theorem, for any ¢ € [n], there exists &; between 1 and
z] B* such that V' (x] 8%) = b/(1) + b"(&) (X, B* — 1). Therefore we have

1 ~ 1\~ 1< " ~ (=T g* 1 ~ =T g*
Ty < |g D OV ()FE; —EE (1),)] + |ﬁ Zb (&) (X B" = 1) —E("(&)T:; (%] B = 1))
1=1 3

1 ¢ -
< |% Zb/(l)xm - ng | + Z |Bk||7 Zb// E’L xmxzk *Eb gz xljxlk|

=1

Zb (&)@ij — (fz)xw”

Since var(#;;) < V'R and |;;] < 71, an application of Bernstein’s inequality (Theorem 2.10 in Boucheron et al.
(2013)) yields that

dl gb’amj - B > Wl (@”)m + S0 < vexp(),

n

where ¢; > 0 is some universal constant. In addition, b'(£)Z;;Z < M7 and var(b”(&)ZijTau) <
E((&)%:jTi)? < M?R. Again by Bernstein’s inequality,

1 n L ., -
P{|n Z;bn(fi)xijxik — E(b"(&)Ti;Tir)| > (

2M2Rt> 1/2 L oMt
n

} < 2exp(—t).

n

Similarly,

B2 v, —em) 2 (V)T M0 < ey

: n n
i=1

Combining the above three inequalities delivers that

1/2 2 1/2 2 2 1/2
2 2M M M M
P[TI > b/(l){(\/l:t> N a;lt} N ( Rt> L aMrt ( n\/Rt) N m}

n n n (29)
< 6exp(—t).
Now we bound T5.
Ty = E[(2i — %)) + Eeiyj + E[(V (%] B7) — V' (X B7))Z44]
d
El|2iij|1{)z,)> 73] + Eeiwij) + Bei(ziy — Tj) + MZ |8 |B| Tk (Tig — 245)] (30)
k=1
VM,  Ms  (MR)Y/* VR
< (MyR)VAYL 28 T MM,
SO+t Ty P

Finally we bound T3. Note that |2;7;;| < 7172, var(z;;2;) < E|Z;7;;|? < /M1 R. According to the Bernstein’s
inequality,

2t/ M1 R V2 it

P{|T3|Z( nl) 4 ant

n

} < 2exp(—t). (31)
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Choose 71,7y < (n/logd)*/*. Combining 29), and delivers that for some constant C; > 0 that depends
on M, R, {M;}3_,,V'(1) and any & > 1,

E{ (Va2 cag(logd)w} <ot

Then by the union bound for all j € [d], it holds that

P{maxuvﬁz( ), > Clg(logd> } < 2d'¢.

J€ld]

O

Proof of Lemma[3 The proof strategy is quite similar to that for Lemmal [} except that we need to take advantage
of the restricted cone C(S) that A lies in. First of all, for any 1 < j, k < d,

\fR

1

E(@ijTir, — wijwan)| < \/E(xijivik) (P(jzij| = 71) + P(jzin| > 7)) <

We thus have

- 2R 2logd\ "/
BT — % s < Y5 < OR(222) T 2
73 n
where C > 0 is some constant. Again, define a contraction function
B(;0) = °1j51<0) + (7 — 20)*1{gcn<on) + (7 4 20)° 1 _29<rc_g)-
Given any A € B2(0,7) NC(S), by the Taylor expansion, we can find v € (0,1) such that
- - - - 1 -~
5 (B + A;B") = 0,(B" + A) — £,(B") — VL, (B")TA = fATHn(ﬂ* +vA)A

Zb// & (8" +vA))(ATX)? Zb'/ (X (B +vA)S(ATXi; 017) 11575, | <an) (33)

i=1

m(w) ~
2 5 Z¢(ATXi; 1)l Tx;|<as}s
=1

where we choose w = a1 + g > 17 + o so that the last inequality holds by Condition (1). For ease of notation,
let A; == {|ATX;| < arr} and B; := {|B8" '%;| < ax}. We have

E[$(A % a1r)1p,] > E[(ATX:)*14,08,]
> ATE[xix; 14,08 ]A — ATE[(xix] — XX, )1a,n5,]A
> ATE[xx; 14,08 ]A — ATE[xx;] — %X ]A
> ATE(xix) )A — ATE(xix] Lacuse)A — ATE[xx]| — %%/ |A

> rol| A3 — E(ATx:) (P(AS) + P(BY)) — ATEfxix] — %i%) |A

> rollA|l3 — \/R(E”(Af) +P(B))AZ — [Bxix{ — XiX{ J[lmax [ A}
By the Markov Inequality and ,

E(ATil)Q < E(ATXZ‘)2 + ATE(S@)’EI — XiXZT)A
afrz — atr?
\/>HA||2+CRS||AH «/210gd/n VR + CRs+/logd/n

2 2
O[17" ay

P(A7) <
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and
o < BB %) BB %) + 7 EEE] —xix])p’
P(B;) < 2 S 2
a3 a3
< VR||B"||3 + CRs||B*"||3/21ogd/n < VRL? + CRL?s+/2logd/n
> 2 = 2 :
lo% a3

Overall, as long as a1, ay are sufficiently large and s4/logd/n is not large,
-~ K
Blo(A % arr)1s] = 2 A3, (34

For notational convenience, define Z; = ¢(A'X;our)ls, = ¢(A Xlp;oqr) and I, =

SuPHA\lzgr,AeC(S)‘n_l ; Z; — IEZZ-’. Then an application of Massart’s inequality (Massart| (2000)) delivers
that

1/2
t t
P{|D, — EL,| > o272 = <2 —2). 35
{| | > air (n) }_ exp(~3) (35)

The remaining job is to derive the order of EI',. By the symmetrization argument and Ledoux-Talagrand
contraction inequality, for a sequence of i.i.d. Rademacher variables {v;}",,

1 & 1 —
ET, <2E sup — viZ;i| < 8ayrE sup (= YiXilg g Tz | <ants A)
HAuzgnAecw)'" ; | HAHzST,AGC(S)’ n ; (8751 ea) )]

I e~
< 8oV B[~ Y i%il{ja- 75, <az) lmax-
=1

For any 1 < j < d, by Bernstein inequality,

o= WRNY? Oyt
P{|n Z%Iijl{\ﬁ*Tii\SGQH 2 < > + 1711} < 26Xp(*t),
i=1

n

where (' is some constant. By the union bound, we can deduce that for some constant Cs,

I~ tlogd\/? _
P{”nZ%Xil{wmgw}llmax2@( x ) }szdl J
=1

which further implies that

I e— slogd\ /2
EFT S8a1\/§T2E||ﬁZ’yixil{|ﬁ*T§i|Sa2}||max §803041T2( ng ) .

i=1

for some constant C3. Combining the above inequality with , and yields that for any ¢ > 0, with
probability at least 1 — 2exp(—t),

~ " me 8t /2 slogd\'/?
Mn(ﬂ;ﬁ)zﬁnA@—a?rQ(n) —803a1r2( ng) .

O

Proof of Theorem[3 According to Lemma 1 in Negahban et al.| (2012), as long as A > 2|Vl (8)|lmax: A € C(S).
We construct an intermediate estimator 3, between 3 and B

B, =B"+nB-pB),
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where n = 1if |3 — 8%||2 <7 and = r/|8 — B%||2 if ||8 — B*||]2 > r. Choose A = 2C¢+/log d/n, where C and ¢
are the same as in Lemma |2l By Lemmas [2[ and [3] it holds with probability at least 1 — 2 exp(—t) that

WA - c{(fl)/ + (ﬂf")/} < 0Tu(B,: B)
=0a(B,) — 0(B7) = V0.(BY)T A,
< AIA [l + (V0 (B a1 Ay 11 (36)
< A+ IV (B [lmax) | Ay 11
< AN+ V(B ma) [[A4) s 1
<AV [V (B max) 1A -

Some algebra delivers that

4v/5( + [ V0 (87) [ max) M[%{(t)l/? . (slogd>1/2}]1/2

1Ay

IN

K n n

_ 4\/§||Vl7n(ﬂ*)umax N 8C¢ (slogd>1/2 +r[c‘){<t)1/2 . (Slogd>1/2H1/z.
K

K K n n n

Choose t = £logd above. Let r be greater than the RHS of the inequality above. For sufficiently sufficiently small
slogd/n, we have r > 51/s||Vly(8")|lmax/k. Define ro := 51/5|| V€ (8")||max/#x and choose r = ro. Therefore,
|Ayll2 <7 and A, = A. By Lemma we reach the conclusion. O



