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Abstract

In this work, we focus on a variant of the
generalized linear model (GLM) called cor-
rupted GLM (CGLM) with heavy-tailed fea-
tures and responses. To robustify the statis-
tical inference on this model, we propose to
apply `4-norm shrinkage to the feature vec-
tors in the low-dimensional regime and apply
elementwise shrinkage to them in the high-
dimensional regime. Under bounded fourth
moment assumptions, we show that the max-
imum likelihood estimator (MLE) based on
the shrunk data enjoys nearly the minimax
optimal rate with an exponential deviation
bound. Our simulations demonstrate that the
proposed feature shrinkage significantly en-
hances the statistical performance in linear
regression and logistic regression on heavy-
tailed data. Finally, we apply our shrinkage
principle to guard against mislabeling and
image noise in the human-written digit recog-
nition problem. We add an `4-norm shrinkage
layer to the original neural net and reduce the
testing misclassification rate by more than
30% relatively in the presence of mislabeling
and image noise.

1 Introduction

Heavy-tailed data abound in modern data analytics.
For instance, financial log-returns and macroeconomic
variables usually exhibit heavy tails (Cont (2001)). In
a genomic study, microarray data are always wildly
fluctuated (Liu et al. (2003), Purdom et al. (2005)). In
deep learning, features learned by deep neural nets are
generated via highly nonlinear transformation of the
original data and thus have no guarantee of exponential-
tailed distribution. These real-world cases contradict
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the common sub-Gaussian or sub-exponential condi-
tions in the statistics literature. A series of questions
thus arise: with heavy-tailed data, can we still achieve
good statistical properties of the previous standard esti-
mators or testing statistics? If not, is there a solution to
overcome heavy-tailed corruption and achieve equally
well statistical performance as with exponential-tailed
data?

To answer these questions, perhaps the easiest sta-
tistical problem to start with is the mean estimation
problem. It turns out surprisingly, as first pointed out
by Catoni (2012), that from a high-probability devia-
tion perspective, the empirical mean is far from optimal
when data only have finite low-order moments. Catoni
(2012) proposed a novel M-estimator for the population
mean and revealed its sub-Gaussian behavior around
the true mean under merely bounded second moment
assumptions. The score function therein is constructed
to be logarithmic with respect to the deviation when
it is large, thereby being insensitive to outliers and
yielding a robust M-estimator. Since then, there has
been a surge of interest in light-tailed mean estimators
for heavy-tailed data, particularly through the median-
of-means approach (Nemirovsky et al. (1982)). A par-
tial list of the related literature includes Bubeck et al.
(2013), Minsker (2015), Devroye et al. (2016), Hsu and
Sabato (2016), Lugosi and Mendelson (2019e), Lugosi
and Mendelson (2019d), Lugosi and Mendelson (2019b),
among others. Hsu and Sabato (2016) and Lugosi and
Mendelson (2019e) established the sub-Gaussianity of
the median-of-means estimator under univariate and
multivariate cases respectively. Minsker (2015),Hsu
and Sabato (2016) and Lugosi and Mendelson (2019b)
constructed and analyzed the median-of-means estima-
tors in general metric spaces.

Beyond the mean estimation problem, robust risk mini-
mization and the median-of-means approach are proved
to be successful under a great variety of problem se-
tups with heavy-tailed data, e.g., covariance matrix or
general matrix estimation (Minsker (2018); Mendelson
and Zhivotovskiy (2020); Fan et al. (2020+)), empirical
risk minimization (Brownlees et al. (2015); Hsu and
Sabato (2016); Lugosi and Mendelson (2019d,c); Lecué
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Figure 1: Logistic Regression with 10% mislabeled data based on different features

and Lerasle (2020)), low-dimensional regression and
high-dimensional sparse linear regression (Loh (2017);
Bhatia et al. (2015); Fan et al. (2017); Bhatia et al.
(2017); Pan et al. (2019); Sun et al. (2020); Wang
et al. (2020+)), low-rank matrix recovery (Fan et al.
(2020+)) and so forth. We refer our readers to Lugosi
and Mendelson (2019a) for a comprehensive survey on
recent advancement in mean estimation and regression
under heavy-tailed distributions.

Despite heated research on statistics with heavy-tailed
data, few have studied the effect of heavy tails of fea-
tures or designs in regression. Previous works such
as Loh (2017), Bhatia et al. (2015), Fan et al. (2017)
and Avella-Medina and Ronchetti (2018) mainly focus
on cases where only responses are heavy-tailed or con-
taminated. It remains unclear whether widely spread
features or designs are blessings or curses to statistical
efficiency. This motivates us to consider a variant of the
generalized linear model (GLM) called corrupted GLM
(CGLM) that accommodates both heavy-tailed designs
and responses. The CGLM allows extra random corrup-
tion on the response of the traditional GLM, thereby
enjoying much broader model capacity and embraces a
myriad of important real-world problems.

One key message of our paper is that heavy-tailed fea-
tures can aggravate the corruption on the response
and jeopardize standard statistical approaches. To fur-
ther illustrate this point, Panels (a) and (b) of Figure
1 contrast the performance of the standard MLE on
light-tailed features and heavy-tailed features under a
logistic regression model. When the data points are
widely spread as in Panel (b), the boundary derived
from the MLE deviates far from the true boundary.
When the data points are Gaussian, however, Panel
(a) shows nearly perfect alignment between the MLE
boundary and the true boundary. The reason for this

difference is that the outliers, especially those misla-
beled, have severe influence on the log-likelihood and
can undermine the validity of the MLE.

To tame the heavy-tails of the features, we propose to
shrink the features before calculating the M-estimator.
Given feature vectors {xi ∈ Rd}ni=1, a threshold value
τ and a norm ‖ · ‖ on the feature space, the shrunk
features {x̃si}ni=1 are defined as:

x̃si = min(‖xi‖, τ)
xi
‖xi‖

.

In short, we restrict ‖x̃si‖ below the level τ . In the
sequel, we illustrate both theoretically and numeri-
cally that the feature shrinkage trades little bias for
great variance reduction such that the resulting MLE
achieves (nearly) the minimax optimal statistical rate
up to logarithmic factors of n and failure probability.
Panels (b) and (c) of Figure 1 compare the perfor-
mance of MLE based on original heavy-tailed features
and shrunk features. One can see that after feature
shrinkage, the new MLE boundary becomes much more
aligned with the true boundary than the original one,
because the shrinkage mitigates the perturbation of the
outliers on the log-likelihood. Note that similar ideas
have been explored to overcome adversarial corruption
on features. For example, Chen et al. (2013) used
the trimmed inner product to robustify standard high-
dimensional regression methods and established strong
statistical guarantees while allowing a certain fraction
of observations to be arbitrarily corrupted. Feng et al.
(2014) proposed to ignore observations with large fea-
ture values to prevent adversarial feature corruption in
logistic regression and binary classification problems.
The major difference between our work and theirs is
that our focus is tail behavior, rather than corruption,
of features in regression problems. We assume that
the features have only few bounded moments, while
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Chen et al. (2013) and Feng et al. (2014) assume them
to be sub-Gaussian. Our theory does not assume any
corruption on the features; all the corruption in this
paper is imposed on responses.

The rest of the paper is organized as follows. In Sec-
tion 2, we elucidate the CGLM and the log-likelihood
based on the shrunk data. In Section 3, we introduce
specific feature shrinkage methods for different regimes
and present our main theoretical results. Under the
low-dimensional regime, we prove that the MLE based
on `4-norm shrunk features enjoys the same optimal
statistical rate as the standard MLE with sub-Gaussian
features up to a (log n)1/2 factor. For high-dimensional
models, we show that the `1-regularized MLE based on
elementwise shrunk features achieves (nearly) the min-
imax optimal rate. One technical contribution worth
emphasis is that we provide a rigorous justification of
the (restricted) strong convexity of the negative like-
lihood based on shrunk features. In Section 4, we
demonstrate the numerical superiority of our proposed
estimators over the standard MLEs under both low-
dimensional and high-dimensional regimes. We investi-
gate two important problem setups: linear regression
with heavy-tailed noise and binary logistic regression
with mislabeled data. Finally, motivated by the shri-
nakge principle, we add an `4-norm shrinkage layer to a
convolutional neural network to classify human-written
digits in the MNIST dataset. We show the significant
improvement of the new architecture in the presence
of mislabeling and image noise.

2 Problem setup

In this section, we formulate the corrupted GLM as
aforementioned. Recall the definition of the standard
GLM with the canonical link. Suppose we have n
observations {(yi,xi)}ni=1, where yi is the response and
xi is the feature vector valued in Rd. Under the GLM
with the canonical link, the probability density function
of the response yi is defined as

fn(y; X,β∗) =

n∏
i=1

f(yi; η
∗
i )

=

n∏
i=1

{
c(yi) exp

(
yiη
∗
i − b(η∗i )

φ

)}
,

(1)

where y = (y1, · · · , yn)>, X = (x1, · · · ,xn)>, β∗ ∈ Rd
is the regression coefficient vector, η∗i := x>i β

∗, b(·) is
a known function that is twice differentiable with a
positive second derivative and φ > 0 is the dispersion
parameter. The negative log-likelihood corresponding

to (1) is given, up to an affine transformation, by

`n(β) =
1

n

n∑
i=1

−yix>i β + b(x>i β)

=
1

n

n∑
i=1

−yiηi + b(ηi) =
1

n

n∑
i=1

`i(β),

(2)

and the gradient and Hessian of `n(β) are respectively

∇`n(β) = − 1

n

n∑
i=1

(yi − b′(x>i β
∗))xi (3)

∇2`n(β) =
1

n

n∑
i=1

b′′(x>i β
∗)xix

>
i . (4)

Note that b′(x>i β
∗) = E(yi|xi). For ease of notation,

we write the empirical hessian ∇2`n(β) as Hn(β) and
E(b′′(x>i β)xix

>
i ) as H(β).

Under a CGLM, for the ith observation we can only
observe its corrupted response

zi = yi + εi (5)

rather than the original response yi, where εi is random
noise. We emphasize that introducing εi significantly
improves the flexibility of the original GLM, such that
now the response is not limited within the exponential
family. The CGLM embraces many more real-world
problems with complex structures, e.g., the linear re-
gression model with heavy-tailed noise, the logistic
regression with mislabeled samples and so forth.

To handle the heavy-tailed features and noise on the
response, we propose to shrink the data {(zi,xi)}ni=1

first and use them to construct the log-likelihood (2).
Formally, define

˜̀
n(β) :=

1

n

n∑
i=1

−z̃ix̃>i β + b(x̃>i β). (6)

We denote the hessian matrix of ˜̀n(β) by H̃n(β) and
its population version EH̃n(β) by H̃(β). In the next
section, we elucidate the specific shrinkage methods to
construct x̃i and z̃i in both low-dimensional and high-
dimensional regimes and explicitly derive the statistical
error rates of the MLE based on ˜̀n(β).

3 Main results

3.1 Notation

Here we collect all the notation that we use in the
sequel. We use regular letters for scalars, bold regular
letters for vectors and bold capital letters for matrices.
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Denote the d-dimensional Euclidean unit sphere by
Sd−1. Denote the Euclidean and `1-norm balls with
the center β∗ and radius r by B2(β∗, r) and B1(β∗, r)
respectively. We write the set {1, · · · , d} as [d]. For
two scalar sequences {an}n≥1 and {bn}n≥1, we say
an � bn if there exist two universal constants C1 and
C2 such that C1bn ≤ an ≤ C2bn for all n ≥ 1. We use
‖v‖2, ‖v‖1 and ‖v‖4 to denote the Euclidean norm,
`1-norm and `4-norm of v respectively. Particularly,
recall that ‖xi‖4 := (

∑d
j=1 x

4
ij)

1/4. For a matrix A, we
use ‖A‖op and ‖A‖max to denote the operator norm
and elementwise max-norm of A respectively and use
λmin(A) to denote the minimum eigenvalue of A. For
any β∗ ∈ Rd and any differential map f : Rd → R,
define the first-order Taylor remainder of f(β) at β =
β∗ to be

δf(β;β∗) := f(β)− f(β∗)−∇f(β∗)>(β − β∗).

For a set of random variables {Xi}i∈I , we say that
they are i.i.d. if they are independent and identically
distributed. We refer to some quantities as constants if
they are independent of the sample size n, the dimen-
sion d and the sparsity s of β∗ in the high-dimensional
regime.

3.2 Low-dimensional regime

The standard MLE estimator is defined as β̂ :=
argminβ∈Rd `n(β), where `n(·) is characterized as in
(2). It is well established that under a standard GLM
with bounded features, β̂ enjoys (d/n)1/2-consistency
to the true parameter β∗ in terms of the Euclidean
norm. However, when the feature vectors have only
bounded moments, there is no guarantee of (d/n)1/2-
consistency any more, let alone further perturbation
on the response. To overcome the disruption due to
heavy-tailed data, we apply `4-norm shrinkage to the
feature vectors. Construct

x̃i :=
min(‖xi‖4, τ1)

‖xi‖4
xi (7)

and
z̃i := min(|zi|, τ2)zi/|zi|, (8)

where τ1 and τ2 are predetermined thresholds. Clip-
ping on the response is natural; when |zi| is abnormally
large, clipping reduces its magnitude to prevent cor-
ruption by εi. Here we explain more on why we shrink
features in terms of the `4-norm rather than other
norms. The `4-norm shrinkage has been proven to be
successful in low-dimensional covariance estimation in
Fan et al. (2020+). Theorem 6 therein shows that when
data have only bounded fourth moments, the `4-norm
shrinkage sample covariance enjoys an operator-norm
rate of order OP{(d log d/n)1/2} in estimating the pop-
ulation covariance matrix. Intuitively, shrinking ‖xi‖4

implies thresholding the second moment of the random
matrix xix

>
i in (4). This inspires us to apply `4-norm

shrinkage to heavy-tailed features to ensure that the
empirical hessian H̃n(β) is well concentrated around
its population version H(β). Unlike the sample covari-
ance matrix, the Hessian matrix varies with respect
to β. Therefore, we need to develop uniform concen-
tration bounds to ensure that the Hessian matrix is
well-behaved within a neighborhood of β∗ (Lemmas 1
and 3). This is the main technical challenge that distin-
guishes our work from Fan et al. (2020+). After data
shrinkage and clipping, we minimize the negative log-
likelihood based on the new data {z̃i, x̃i}ni=1 to derive
the M-estimator, i.e., we choose β̃ := argminβ∈Rd

˜̀
n(β)

to estimate β∗, where ˜̀n(β) is defined as in (6).’

We first establish the uniform strong convexity of ˜̀n(β)
over β ∈ B2(β∗, r) (up to some small tolerance term)
that is crucial to our subsequent statistical analysis.

Lemma 1. Suppose the following conditions hold: (1)
∀i ∈ [n], b′′(x>i β

∗) ≤M <∞, and ∀ ω > 0, ∃ m(ω) >
0 such that b′′(η) ≥ m(ω) > 0 for |η| ≤ ω; (2) Exi = 0,
λmin(Exix

>
i ) ≥ κ0 > 0 and E(v>xi)

4 ≤ R <∞ for all
v ∈ Sd−1; (3) ‖β∗‖2 ≤ L <∞. Choose the shrinkage
threshold τ1 � (n/ log n)1/4. For any 0 < r < 1 and
t > 0, when (d log n/n) is sufficiently small, we have
with probability at least 1−2 exp(−t) that for all ∆ ∈ Rd
such that ‖∆‖2 ≤ r,

δ˜̀n(β∗ + ∆;β∗) ≥ κ‖∆‖22 − Cr2
{(

t

n

)1/2

+

(
d

n

)1/2}
,

where κ and C are constants.

Remark 1. Here we explain the conditions of Lemma
1. Condition (1) assumes that the response from the
GLM has bounded variance and is non-degenerate when
η is bounded. Note here that we do not assume a uni-
form lower bound of b′′(η). m(ω) is allowed to decay to
zero as ω →∞. Condition (2) says that the population
covariance matrix of the design vector xi is positive
definite and xi has bounded fourth moment. Condi-
tion (3) is natural: it holds if we have var(x>i β

∗) <∞
and λmin(E xix

>
i ) ≥ κ0 > 0. Note that the ordinary

least square (OLS) estimator has been shown to en-
joy consistency under similar bounded fourth moment
conditions (Hsu et al. (2012), Audibert et al. (2011),
Oliveira (2016)). Theorem 1 later establishes a similar
result for the CGLM.

Remark 2. In the proof of Theorem 1, we let the
radius of the local neighborhood r here decay to zero
so that the tolerance term r2{(t/n)1/2 + (d/n)1/2} is
negligible.

We are now in position to present the statistical rate
of ‖β̃ − β∗‖2.
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Theorem 1. Suppose the conditions of Lemma 1
hold. We further assume that (1) Ez4i ≤ M1 < ∞;
(2) ‖E(εixi)‖2 ≤ M2(d/n)1/2 for some constant M2.
Choose τ1, τ2 � (n/ log n)1/4. There exists a constant
C > 0 such that when (d log n/n) is sufficiently small,
for any ξ > 1,

P
{
‖β̃ − β∗‖2 ≥ Cξ

(
d log n

n

)1/2}
≤ 3n1−ξ.

Remark 3. Condition 1 requires merely bounded
fourth moments of the response from CGLM. Condition
2 requires the additional corruption to be nearly uncorre-
lated with the design, which is satisfied if E(εi|xi) = 0.

Remark 4. Some algebra yields the following equiv-
alent form of the high-probability bound in Theorem
1:

P
{
‖β̃ − β∗‖2 &

(
1 +

log(1/δ)

log n

)(
d log n

n

)1/2}
≤ δ,

(9)
where δ is the failure probability. This suggests that β̃
is sub-exponential around β∗. Lugosi and Mendelson
(2019a), Lugosi and Mendelson (2019c) and Lugosi
and Mendelson (2019b) study the optimal confidence
band for a given δ. They achieved sub-Gaussian estima-
tors for many mean estimation and regression problems.
Compared with their optimal rates, our deviation bound
has an extra term of (log δ)1/2. Nevertheless, their re-
sults mainly focus on mean estimation and least squares
problems with isotropic features; it remains to be an
open problem if one can find sub-Gaussian estimators
in a CGLM. Our error bounds in Corollary 1 and The-
orem 2 and are both sub-exponential.

Remark 5. Choosing τ1, τ2 to be of order (n/ log n)1/2

is to achieve bias-and-variance tradeoff in controlling
‖∇˜̀n(β∗)‖2, which determines the statistical rate of
β̃. We refer interested readers to (23) to see how we
balance the rates of two variance terms (T1, T3) and a
bias term (T2).

In some cases, the covariance between εi and xi does
not vanish as n and d grow. For example, in binary
logistic regression with mislabeling, we have that

P(εi = −1|yi = 1) = p,P(εi = 0|yi = 1) = 1− p,
P(εi = 1|yi = 0) = p,P(εi = 0|yi = 0) = 1− p,

(10)

where p < 0.5. In other words, we flip the genuine label
yi with probability p. Then we have

E(εixi) = E(εixi1{yi=0}) + E(εixi1{yi=1})

= pE(xi(1{yi=0} − 1{yi=1})) = 2pE(xi1{yi=0}).

The last equality holds because Exi = 0. Therefore,
E(εixi) ∝ p and if p does not decay, neither does

E(εixi). Natarajan et al. (2013) solve this noisy label
problem through minimizing weighted negative log-
likelihood

β̂
w

:= argmin
β∈Rd

1

n

n∑
i=1

`w(xi, zi;β)

= argmin
β∈Rd

1

n

n∑
i=1

(1− p)`(xi, zi;β)− p`(xi, 1− zi;β)

1− 2p
.

(11)
Lemma 1 therein shows that Eεi`w(xi, zi) = `(xi, yi).
This implies that when the sample size is suffi-
ciently large, minimizing the weighted negative log-
likelihood above is similar to minimizing the nega-
tive log-likelihood with true labels. In the presence of
heavy-tailed features, we propose to replace xi with
the `4-norm shrunk feature x̃i, i.e., we use

β̃
w

:= argmin
β∈Rd

1

n

n∑
i=1

`w(x̃i, zi;β)

=
1

n

n∑
i=1

(1− p)`(x̃i, zi;β)− p`(x̃i, 1− zi;β)

1− 2p

(12)
to estimate the regression vector β∗. The following
corollary establishes the statistical error rate of β̃

w

with an exponential deviation bound.
Corollary 1. Under the logistic regression with
random corruption εi satisfying (10), choose τ1 �
(n/ log n)1/4. Under the conditions of Lemma 1, it
holds for some constant C and any ξ > 1 such that
when (d log d/n)1/2 is sufficiently small,

P
{
‖β̃

w
− β∗‖2 ≥ Cξ

(
d log n

n

)1/2}
≤ 2n1−ξ.

Remark 6. Here we do not need to truncate the re-
sponse by τ2 because in logistic regression the response
is always bounded.

3.3 High-dimensional regime

In this section, we consider the regime where the di-
mension d grows much faster than the sample size n.
Recall that the standard `1-regularized MLE of the
regression vector β∗ under the GLM is

β̂ := argmin
β∈Rd

1

n

n∑
i=1

(
−yix>i β+b(x>i β)

)
+λ‖β‖1, (13)

where (yi,xi) comes from the GLM (1) and λ > 0 is a
tuning parameter. Negahban et al. (2012) show that
‖β̂ − β∗‖2 = OP{(s log d/n)1/2} under the GLM when
{xi}ni=1 are sub-Gaussian. However, in the presence
of heavy-tailed features xi and corruption εi, the sta-
tistical accuracy of β̂ might deteriorate if we directly
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evaluate the log-likelihood (13) on {(zi,xi)}ni=1. Our
goal is to develop a robust `1-regularized MLE for β∗.
Let x̃i be the elementwise shrunk version of xi such
that for any j ∈ [d],

x̃ij := min(|xij |, τ1)xij/|xij |.

Construct z̃i as in (8). We propose the following β̃ that
minimizes the negative log-likelihood on the shrunk
data with `1-norm regularization:

β̃ := argmin
β∈Rd

˜̀
n(β) + λ‖β‖1,

where ˜̀n(β) is defined as in (6), and where λ is a tun-
ing parameter. For S ⊂ [d] and |S| = s, define the
restricted cone C(S) := {v ∈ Rd : ‖vSc‖1 ≤ 3‖vS‖1}.
By Lemma 1 in Negahban et al. (2012), when λ >

2‖∇˜̀n(β)‖max, β̃−β∗ ∈ C(S), which is a crucial prop-
erty that gives rise to statistical consistency of β̃ under
high-dimensional regimes. Therefore, in the following
we first present a lemma that characterizes the order
of ‖∇β

˜̀
n(β∗)‖max.

Lemma 2. Under the following conditions: (1) ∀i ∈
[n], b′′(x>i β

∗) ≤ M < ∞ and ∀ ω > 0, ∃ m(ω) > 0
such that b′′(η) ≥ m(ω) > 0 for |η| ≤ ω; (2) Exij = 0,
Ex2ijx2ik ≤ R < ∞ for all 1 ≤ j, k ≤ d; (3) Ez4i ≤ M1

and Eε4i ≤ M1; (4) ‖β∗‖1 ≤ L < ∞; (5) |Eεixij | ≤
M2/n

1/2 for some universal constant M2 <∞ and all
1 ≤ j ≤ d. With τ1, τ2 � (n/ log d)1/4, for any ξ > 1
we have that

P
{
‖∇˜̀(β∗)‖max ≥ Cξ

(
log d

n

)1/2}
≤ 2d1−ξ.

Remark 7. In this lemma we show that
‖∇˜̀n(β∗)‖max = OP(

√
log d/n). In the sequel

we will choose λ �
√

log d/n to achieve the minimax
optimal rate for β̃.

Another requirement for the statistical guarantee of β̃
is the restricted strong convexity (RSC) of ˜̀n, which is
first formulated in Negahban et al. (2012). RSC ensures
that ˜̀n(β) is “not too flat”, so that if |˜̀n(β̃)− ˜̀n(β∗)|
is small, then β̃ and β∗ are close. In high-dimensional
sparse linear regression, RSC is implied by the re-
stricted eigenvalue (RE) condition (Bickel et al. (2009),
van de Geer (2007), etc.), a widely studied and ac-
knowledged condition for statistical error analysis of
the Lasso estimator. Unlike the quadratic loss in lin-
ear regression, the negative log-likelihood ˜̀n(β) has
its hessian matrix H̃n(β) depend on β, which creates
technical difficulty of verifying its RSC. Here we estab-
lish localized RSC (LRSC) of ˜̀(β), i.e., RSC with β
constrained within a small neighborhood of β∗, which
has been shown to suffice for statistical analysis of reg-
ularized M-estimators in the high-dimensional regime

(Fan et al. (2018), Sun et al. (2020)). Formally, we say
a loss function L(β) satisfies LRSC(β∗, r,S, κ, τL) if
for any ∆ ∈ C(S) ∩ B2(0, r),

δL(β∗ + ∆;β∗) ≥ κ‖∆‖22 − τL,

where τL is a small tolerance term. The following
lemma establishes the LRSC of ˜̀n(β).
Lemma 3. Suppose the conditions of Lemma 2 hold.
Let S be the true support of β∗ with |S| = s. As-
sume that for any v ∈ Rd such that v ∈ C(S) and
‖v‖2 = 1, 0 < κ0 ≤ v>E(xix

>
i )v ≤ κ1 < ∞. Set

τ1 � (n/ log d)1/4. For any 0 < r < 1 and t > 0,
as long as s2 log d/n is sufficiently small, we have
with probability at least 1 − 2 exp(−t) that for any
∆ ∈ C(S) ∩ B2(0, r),

δ˜̀n(β∗ +∆;β∗) ≥ κ‖∆‖22

− C0r
2

{(
t

n

)1/2

+

(
s log d

n

)1/2}
,

where κ and C0 are constants.

Remark 8. This lemma is a high-dimensional ana-
logue of Lemma 1. Similarly, we let r converge to zero
when analyzing the statistical rate of β̃, so that the
tolerance term r2{(t/n)1/2 + (s log d/n)1/2} becomes
negligible.

Combining Lemmas 2 and 3 yields the statistical guar-
antee of β̃ as follows.

Theorem 2. Under the assumptions of Lemma 2
and 3, choose λ = 2Cξ(log d/n)1/2 and τ1, τ2 �
(n/ log d)1/4, where ξ and C are the same constants
as in Lemma 2. Then there exists a constant C1 > 0
such that

P
{
‖β̃ − β∗‖2 ≥ C1ξ

(
s log d

n

)1/2}
≤ 4d1−ξ.

Remark 9. Similarly to Theorem 1, our choice of
τ1, τ2 � (n/ log d)1/4 is to achieve bias-and-variance
tradeoff in bounding ‖∇`n(β∗)‖max. We refer interested
readers to (28) for the technical details.

4 Numerical study

4.1 High-dimensional sparse linear regression

We first consider the high-dimensional sparse lin-
ear model yi = x>i β

∗ + εi. We set d = 1000,
n = 100, 200, 500, 1000, 2000, 5000, 10000 and β∗ =
(1, 1, 1, 1, 1, 0, . . . , 0)>. Recall that in the high-
dimensional regime, we propose elementwise shrinkage
on the heavy-tailed features and clip the responses.
In Figure 2, we compare estimation error of the `1-
regularized least squares estimators based on the shrunk
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Figure 2: High dimensional sparse linear regression with light-tailed features (left) and heavy-tailed features
(right)
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Figure 3: Statistical error of the MLEs based on minimizing ˜̀wn (β) with 10% mislabeled data

data and original data under standard Gaussian fea-
tures and t4.1 features respectively. All feature vectors
{xi}ni=1 are i.i.d., and within each xi, {xij}dj=1 are i.i.d.
{εi}ni=1 are i.i.d. noises that are independent of the
features and we adjust the magnitude of the noise such
that SD(εi) = 5 regardless of its distribution. τ1, τ2
and λ are selected by cross-validation. The plot is
based on 1, 000 independent Monte Carlo simulations.
From Figure 2, we first observe that under both light-
tailed and heavy-tailed features, the heavier tail εi
has, the more the data shrinkage approach improves
the statistical accuracy. More importantly, the ben-
efit from data shrinkage is much more significant in
the presence of heavy-tailed features, which justifies
our theory. Besides, Table 1 compares the average
false discovery proportion (FDP) and true positive rate
(TPR) of the shrinakge and standard approaches with
t4.1 features and t2.1 noise. While both methods select

much denser models than the true one (because of the
`1-norm penalty), the shrinkage method exhibits higher
TPR than the standard method, especially when n is
small.

Table 1: Average FDP and TPR of the standard and
shrinkage methods with t4.1 features and t2.1 noise

n 100 200 500 1000

FDP (Shrinkage) 81.3% 82% 80.9% 78.6%
FDP (Standard) 88.6% 82.8% 81.4% 77.6%
TPR (Shrinkage) 60.9% 92.7% 100% 100%
TPR (Standard) 35.1% 82.2% 99.6% 100%

Following one referee’s suggestion, we investigated a
more high-dimensional (relative to n) setup where
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d = 1000, n = 125, 200, 300, 500, 1125, and where
β = (1, . . . , 1, 0, . . . , 0)> has 15 ones. We set a higher
signal-to-noise ratio here to offset the smaller n and
achieve reasonable statistical accuracy. We choose t2.1
noise and keep the other configurations the same as
that in the right panel of Figure 2. In the table below,
we compare the average `2 error of estimating β∗ by
the shrinkage and standard methods with 100 indepen-
dent Monte Carlo experiments. We can see that the
shrinkage approach still outperforms the standard one.

n 125 200 300 500 1125

Shrinkage 3.37 2.56 1.89 1.32 0.80
Standard 3.60 2.97 2.29 1.65 1.01

We also ran Robust Lasso proposed by Chen et al.
(2013) for comparisons, where there are two tuning
parameters: R, an upper bound of ‖β∗‖1, and n1,
an upper bound of the number of outliers. We set
R = ‖β∗‖1 =

√
5 and set n1 such that the resulting

statistical error is minimized, which leads to the ora-
cle performance of the method. When n = 500, the
mean l2 estimation errors of Robust Lasso are 1.05 and
1.32 under t4.1 and standard Gaussian features respec-
tively, significantly higher than those of our shrinkage
approach (0.68, 1.23). Since the performance curves of
Robust Lasso are quite close to those of the standard
methods, we do not present Robust Lasso in Figure
2 for clarity. From this comparative study, one can
see that our shrinkage approach is better than a typi-
cal adversarial learning approach in terms of guarding
against heavy tails.

Finally, we assessed the sensitivity of our shrinkage
methods with respect to the thresholds τ1 and τ2 with
t4.1 features, t2.1 noise and n = 200. Let Qx be the
set of the upper 2%, 1%, .5%, .2%, .1% quantiles of the
feature values, and let Qy be the set of the upper
2%, 1%, .5%, .2%, .1% quantiles of the responses. Based
on 100 independent Monte Carlo experiments, we com-
pute the average `2 error e(τ1, τ2) of estimating β∗ for
all (τ1, τ2) ∈ Qx × Qy respectively. We found that
max(τ1,τ2)∈Qx×Qy

e(τ1, τ2) = 1.67, which is still less
than the error of the standard method: 1.79. The error
given by CV is 1.41. Therefore, our shrinkage method
is not very sensitive to τ1 or τ2.

4.2 Logistic regression with mislabeled data

In this subsection, we consider the logistic regression
with mislabeled data as characterized by (10). We min-
imize the weighted negative log-likelihood to derive β̂

w

and β̃
w
as described in (11) and (12) to estimate the re-

gression vector β∗ and compare their performance. The

tuning parameters λ and τ1 are chosen based on cross-
validation. We investigate both the low-dimensional
and high-dimensional regimes and three distributions
of features: t2.1, t4.1 and Gaussian features. We scale
the features so that the marginal variance of each di-
mension is always 21 regardless of its distribution.

In the low-dimensional regime, let d = 10, n range from
102 to 104, β∗ = (0.51>5 ,−0.51>5 )> and p = 0.1. The
left panel of Figure 3 compares ‖β̂

w
−β∗‖2 and ‖β̃

w
−

β∗‖2 under t2.1, t4.1 and Gaussian features. We can
observe that β̃

w
significantly outperforms β̂

w
under t2.1

and t4.1 features, and they perform equally well when
features are Gaussian. This perfectly validates our
theory. We also implemented a robust quasi-likelihood
approach with `1-norm regularization (Avella-Medina
and Ronchetti, 2018), whose performance is presented
in the left panel of Figure 3. We can see that the
corresponding error does not go down as n increases;
the reason is that the quasi-likelihood method does not
take into account the random flippling of the labels
and is thus biased in terms of estimating β∗.

In the high-dimensional regime, we apply elementwise
shrinakge to xi to derive β̃

w
. Let d = 100, n range from

50 to 5, 000, β∗ = (1, 1,−1, 0, . . . , 0) and p = 0.1. As
shown in the right panel of Figure 3, β̃

w
enjoys sharper

statistical accuracy than β̂
w
under all the three types

of features. The outstanding performance of β̃
w

under
the Gaussian feature scenario is particularly surprising.
We conjecture that feature shrinkage here downsizes
‖∇˜̀wn (β∗)‖max and thus leads to more effective regular-
ization. We did not manage to report the performance
of the robust quasi-likelihood method since the pro-
vided code did not run through.

4.3 Experiments on the MNIST dataset

Motivated by the effectiveness of feature shrinkage,
we incorporate a shrinkage layer to a convolutional
neural network (CNN) to robustify its classification
performance on corrupted images. Figure 4 illustrates
this new architecture, which we call a shrinkage CNN.
The new shrinkage layer applies the `4−norm shrinkage
as in (7) to the feature vector x learned by the original
CNN to guard against its heavy tail if any. Then
the shrunk features are used to derive the posterior
probability of each class.

We classify the digits 4’s and 9’s in the MNIST (LeCun
(1998)) dataset when the images are randomly misla-
beled with probability 0.4 and corrupted by “salt” noise.
We train both the original CNN and its shrinkage vari-
ant by minimizing the weighted negative log-likelihood˜̀w
n (β) in (12). We choose τ1 = 2 in (7) in the `4-norm
shrinakge layer. We repeat flipping labels, adding noise
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Figure 4: Architecture of the shrinkage CNN

and training for 100 times independently to evaluate
the average misclassification rate. The result is pre-
sented in Table 2. We can see that the feature shrinkage
layer reduces the testing misclassification rate by more
than 30% relatively in the presence of noisy pixels.

Table 2: Average testing misclassification rate (with
standard error in the parentheses) on noisy MNIST
images under mislabeling probability 40%

Noisy Pixel Ratio Original CNN Shrinkage CNN

0 3.64%(0.20%) 2.93%(0.09%)

0.1 6.88%(0.22%) 4.18%(0.17%)

0.2 6.90%(0.21%) 4.37%(0.16%)

0.4 10.69%(0.29%) 6.65%(0.24%)

0.6 18.82%(0.88%) 12.80%(0.65%)

5 Discussion

This paper proposes and studies several shrinkage prin-
ciples for CGLMs under both low-dimensional and
high-dimensional regimes. Assessing the tail behavior
of features and shrinking the features appropriately is
crucial to achieve reliable statistical inference. There
are two future research directions to pursue: (1) design-
ing computationally efficient algorithms or guidlines to
find the appropriate shrinkage thresholds; (2) handling
adversarial corruption on features.
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