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A Analysis

Here, we present the complete proof of our main result. For reader’s conveninence, we restate the theorem,
lemmas and propositions.

We condition on the initialization W (0) and the outer weight a. The expectation E [-] is taken over the randomness
of the samples drawn at iterations, unless specified otherwise.

Theorem 1. Suppose the step size 1, < Hil with 0 < %. For any T < oo, if

oo { (50 (43

for some universal constant ¢ > 0, then with probability at least 1 — 2 exp(—2m'/3)) — 6,

t—1

Ef[[Adl,] < irl}f{H(l — nkAe) [ Boll, + R(Ao,é)} +2¢;, YO<t<T, (1)

k=0
1092(2-40
where ¢, = am/%.

A.1 Proof Overview

We prove (1) via induction over iteration ¢.

E[|W(s+ 1) — W(0)||r] is small for any s < ¢.
Lemma A.1. For anyt >0,

The base case t = 0 trivially holds as [[Agll, < [|Aolly + 2¢1. Assume (1) holds for any s < ¢t < T, we show

t

E([W(t+1) - WO)el <> ns B A,] +7). (2)
s=0
Proof. By the SGD update,
Wyt + 1) — Wy(t) = L2 [1(X,) + e — f (Xes W] Ly, ().x0) 20 X (3)

vm
where X, € R? is the fresh sample drawn at iteration ¢ and e; is the random noise.

In view of (3), for any s,

(s +1) = W(s)lle =~ 180 (Xe) + ] [ DsaX] e 4
where D, € R™*™ is a diagonal matrix with diagonal entries given by {1{mw,(s),x.)>01: s {1{(Wyn(s),X.)>0} }»

a € R™ is the outer weight, and A4(X;) € R is the prediction error at iteration s given input X.

Note that DsaX, is a rank-one matrix and thus |[|[DsaX, ||r = || Dsall, | Xs|l, < v/m, where the last inequality
holds since || Ds||, < 1, |lall, = v/m, and || X,||, = 1. Thus, by triangle inequality,

IW(E+1) = WO e <D IW(s+1) = W)l <D ns [A(Xs) + el

s=0 s=0
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Taking expectation on both hand sides, we have

E[[W(t+1) = W(O)llr] < D nE[1As(X) + e]

< Zt:nsE [\/EX (A + efﬂ

< Zﬂs AslL] +7) (5)
where (a) holds by Cauchy-Schwartz inequality; (b) holds by independence of X, and e;.
O
We now claim that for any s < ¢,
EflJAsll] < 1Al + 2¢1. (6)
To see this, note for any € > 0, R(Ag, ¢) < ¢ for sufficiently large ¢. Thus,
s—1
E (1A, < [T (= meA) 8ol + € + 261 < Aol + ¢ + 21
k=0
Since € can be arbitrarily small, (6) holds.
Pugging (6) into (2), when ng < 5%, we get
Ef[[W(s+1) = W(0)[r] < [0 (log(T) + 1)] ([[Aolly + 7 + 2¢c1) . (7)

The induction is then completed by the following proposition.

Proposition A.2. Suppose the conditions in Theorem 1 hold. If (7) holds for any s <t < T —1, then (1) holds
for t + 1 with probability at least 1 — 2exp(—m'/3) — § over the initialization W (0) and the outer weight a.

In Section A.2, we present the proof of Proposition A.2 in details. As a brief overview, we first follow [Su and
Yang, 2019] to derive a recursive relation of A;. Afterwards, we recursively replace A; and bound ||A¢||, by the
sum of four terms. We then carefully analyze each of the four terms to complete the proof.

A.2 Proof of Proposition A.2

Following [Su and Yang, 2019], we first analyze how the prediction values evolve over iterations. Denote A =
{j:a; =1} and B = {j : a; = —1}. By definition,

fla;W(t+1) = fa; W(t Z Wit +1),2)) — o (W;(t), 2))]
]EA
- % D lo ((Wylt +1),2)) — o (W;(t), 2))] (8)
jeB
We now bound (8) from both above and below. By the SGD update,
Wit +1) = W;(t) = :7;%] [f*(Xe) + e — f(Xes W) 1w, (0),x.) >0 Xt (9)

where X; € R? is the fresh sample drawn at iteration ¢ and e; is the random noise. Since 1,50y (u — v) <
o(u) — o(v) < Lysoy(u—v) for u,v € R, it follows that

o ((W;(t+1),2)) — o ((W;(t), 7)) < % [ (Xe) e — f (X W) (Xt )L w; 0), x>0 LW, (t41) ) >0}

(Wt +1),2)) — o((Wy(1),2)) > P22 [*(X;) + e — f (Xi3 W(E))] (X, )L w; (1), x,) 201 L{w; (1),2) >0 -

3



For notation simplicity, define the following functions:
~ 1 ~
O (,3) = — > ) Ligw, (.00 200 L{(w, (0.0 20}
JEA

1 -
U (0, 7) = — > (0, 2) 1w, (1)) 203 L{(W, (141).) 20
JEA

Similarly we define ®, and ¥, in terms of the summation over B. Then H; = (Dj + @, . Define M; =¥, — &,
and L, = ¥} — &,

With the above notation, we obtain the following upper bound:
Wt +1)) — flaz; W(t))
<neUf (2, Xp) (F (Xo) + e — [ (Xes W () 4+ 0@y (2, Xo) [f*(Xp) + e — [ (Xes W(2))]

= (U (2, Xo) + @7 (2, X4)) [f*(Xe) + e — f (Xp; W(2))]
= e [He(, Xt) + Le(w, Xo)] [f*(Xe) + e — f (Xe; W(2))] - (10)

Similarly, we can obtain a lower bound as

fl@W(t+1) = f; W) > n (U5 (@, Xe) + @ (2, X0)) [f*(Xe) + e — [ (Xe; W ()]
= e [He(z, X¢) + My(z, Xo)] [f*(Xe) + e — [ (X W(R))] - (11)

In view of (10) and (11), if M; and L; are small, then the evolution of the prediction values is mainly determined
by the kernel function H;. To capture this idea, define

e, a s W(t) 5 [ W) = f (oW ([ +1) +mHy(w,2') [[*(2") + e = (2" W(D))]- (12)
For simplicity, we use e;(x,2’) to denote (2, 2'; W (t)). Then from the definition of €;, we have that
(@) = flasW(t+1)) = f*(2) = fa W) — mHe(z, Xo) [f(X0) + e — f(Xs W) + e, Xo). (13)
Moreover, by (10) and (11),

— neL(, Xo) [f*(Xe) + &0 = f (X W) < er(w, Xo) < —neMi(, Xo) [f5(Xe) +e0 = f (Xes W) (14)

Thus, we get
Apra(x) = (I =mHe) 0 Ay (Xy) — vi(, X)) + €, Xy), (15)

where
v(z, X3) = vy (z, Xp; W (1))
» el (@, Xo) [f*(Xe) + e — f(Xs W) — mEx, [He(z, Xo) (f(Xe) = f(Xe; W(1)))]

characterizes the deviation of the stochastic gradient from its expectation.

For notation simplicity, we define operators:

Ki=l—-m , Qi=I1-mH:y Dy=Q:—Ky.

Note that ||D¢|ly = [|Qr — Kelly < ¢ ||® — Hy| . Since Hy is positive semi-definite and ||H¢||,, < 1, we get that
0 <; <1 for all j, where v; is the i-th largest eigenvalue of H;. Therefore, as 0 <7, < 2,

[Qell, < lQtll < sup [1—neyi| < 1. (16)
1<i<oco

Similarly, we can get that ||K,||, < 1.
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With the above notation, we can simplify (15) as
At+1 :QtoAt_/Ut'i_Et- (17)

It follows that

AtJrl HQSOAO_Z H Qsovr+z H Qsoer (18)

r=0s=r+1 r=0s=r+1

Here Q; is random due to the randomness of Hy. We want to decompose (18) into deterministic terms which
involve K and the remaining part. Intuitively, we want to show the remaining part is small so the dynamic of
the prediction error is mainly determined by K;. Note Q; = K; + D, by definition. For any t, by recursively

replacing Q, by K, + D, from s = 0 to s = ¢, we get that Hi:o Qs = HZ:O Ks + 22:0 H§:T+1 Q;D, Hg;é K;
Thus,

Agp1 = HK OAO—I—Z H Q;D. HK oAy —I—Z( H Qso(er—vT)>.

r=0 \i=r+1 r=0 \s=r+1

Taking the Ly norm over both hand sides and using the triangle inequality, we get

t t
+Z HQ’LD HKOAO Z H Qsovr
2

r=0 ||i=r+1 r=0s=r+1

t
IT Qice

s=r+1

Y

2 r=0

Aty < s Ao

2 2

Z H Qsovy

r=0s=r+1

+Z llerllz (19)

t
H Ks 9 AO
s=0

where the last inequality holds due to [|Qs||, < 1 and ||K,||, < 1.

+Z||DT”2 180l +
2 r=0

Note that the first term in (19) does not depend on the sample drawn in SGD. The second term corresponds
to the approximation error of using K, instead of Q4. The third term measures the accumulation of the noise
brought by stochastic gradient descent. The last term measures the accumulation of the approximation error of
using kernel functions Hy shown in (13).

We will analyze (19) term by term, and then combine them to prove Proposition A.2.

First term: Recall Ay > Ao+ are the eigenvalues of  with corresponding eigenfunction ¢; and R(g,f) =
Zi>e+1<g,¢i>2 is the Ly norm of the projection of function g onto the space spanned by the [ + 1,1+ 2,---
eigenfunctions of

The following lemma derives an upper bound of the first term of (19) via the eigendecomposition of

Lemma A.3. Suppose nsA1 < 1 for any s < t, then,

t
< inf {H (1= nsAr) [|Aoll, + R(AO’T)} :
2

s=0

Proof. Fix any t. By the eigendecomposition of , we know HZ:O Ks o Ag = Y02, pi(t)(Ao, ¢i)di, where
pi(t) » Hizo(l —1nsA;). Thus, for arbitrary r € N, we have

sz A07¢1
ZPT (D0, 80)° + Y (Ao, ¢4)?

i=r+1
< P (1) [ Bol3 + R (Do, ),

where (a) holds by p;(t) <1 and the fact that p;(t) < p,(t) for any ¢. The conclusion then follows.

SOA()
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Second term: To bound the second term of (19), it remains to bound Zi:o |Dr|l,- Note that ||D,||, =
1Qr — Kvlly < nr |Hy — @, Lemma A.4 and Lemma A.5 below together provide an upper bound of || H, — ®||
under event 1 N €y, where

1 m

Q) = {Sup —
z,R m —
i=1

1 d
> LW mi<m) ~ w1 [Liwei<m] ‘ —m + O\ }

and

1
Qg = {Sup —
z,e |

for some universal constants Cy and Cj.

m

1 d
D Liwi0).0)20) (w0020} ~ Burnv(o.10) [Ty 2011w 0)>01)] ‘ < im0y m}-
i=1

Both events are defined with respect to the initial randomness W(0), and require the sample mean of some
function of W;(0) to be close to the expectation. Since W;(0)’s are i.i.d. Gaussian, using uniform concentration
inequalities, we will show later in Lemma A.9 that both €; and €5 occur with high probability when m is large.

Denote
O¢(x) = {i : sgn ((Wi(t), x)) # sgn ((Wi(0),z))}

as the set of neurons that have sign flips at iteration ¢ when the input data is . Denote S;(x) as the cardinality
of Ot (‘T)

Lemma A.4. Under Qs, for any t > 0,

2 d 1
1He = @lloe < —MIStlloe + Cayf — + —573.

Proof. We first show ||H; — Hol,, < 2 ||Si]|,, and then show [|Ho — @], < # + C54/ 2. The conclusion
follows by the triangle inequality.

To see ||Hy — Holl,, < 2 /S¢||,, note

_ _ 1 &
|Hy (2, &) — Ho(2, B)| = [(@,7)— > (Liwi.2) 20 L{(wi(6).2)20) = L{wi(0).2)20} L{(W, (0).2)0})
=1

m

IN

o Z [Lewi (0,29 201 Liwa(o),020) = 1w, (0),2)20) L{(w:(0),0) >0}
i=1

I A

*Z|1{W<t 120 — Lywi(0),e)203 | + — Z|1{W<t 220} — L{(wi(0),2)>0}

=1
< (Sila) + 5i(@)).
The conclusion follows by taking the supremum over x and Z on both hand sides.

To see [|[Hy — @, < m1/3 +ng/ , note

|H0(.’E, f) - (I)(xazfﬂ =

(x,7) < Zl{Ww) 220} L{(W;(0).2)20) — BunN(0,1) [1{<w,m>20}1{<w,e>20}])’
=1

1 m
< | 2 Lm0 .20 w0208 ~ Buan(o,10) [Lwa 20 Lw.e201] |
i=1
which completes the proof by taking the supremum of (z,z) and invoking the definition of 5. O

The next lemma further shows that when [|[W(t) — W (0)||r is small and m is large |S¢|l o is small under €.

7m|
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Lemma A.5. Under 1,
r 2
1 1 d 25kwW(t) W(O)k:
nksky gt G ot s B R ECRE

Proof. Fix any R and input x. Denote Bgr(x) = fi : jhiwW;(0);xij Rg. Then S;(x) j Br(X)j+ jO:(X)\ BE(X)j:
If neuron i 2 O¢(x)\ BE(X), then jhw;(t);xi h W;(0);xij > R. Thus, kW (t) W(O)kZ R?jO((x)\ BS(X)j.
Under 1, we have

. . - P— - P— 2mR
SUpiBr(X)] mM?@+ Co md+ MEy Ny ljhwxi Rg M-+ Cp md+ szi
X

Thus, we get
- pP—
kStk, m?2+C, md+

2mR  kW(t) W(0)kZ
L RZ.

P — 1=3
Optimally choosing R to be %\N@kg , we get that
p 4 2 1=
KStk, m*2+C, md+ prznj S kWD) WK
) P—  2%3mZ3kw(t) W(0)kE
=m*2+C, md+ m (133 Oke _.
The conclusion follows by dividing both hand sides bym.
O
h i

Third term:  Next we derive an upper bound of the third term of (19). Recall 2= E k k5 + 2
Lemma A.6. Suppose0 s 2foranys O, then,

" # Vv

u
Xty o Xt
E Q Vs 2z
s=0 i=s+l 2 s=0
i . _Po Q _
Proof. Denote F; as the ltration of fXjq; ;X0 Letag = 5 2,1 Q vwandh = Q g 1. Thus,
G = vt + h;. Then
h i h h i@ h [ h i

i h i
E kgk?® = E kvi+ hik2 @ E kyld +E khik  E kvl +E kq 1K
where (a) uses the fact thatE[vi;hi] = E[E[tv;hijFe 1]] 3 E[ME[WjEr 1];hi] = 0; (b) follows from (16).

Recursively applying the last displayed equation yields thatE kg kg LO E kv kg :
Furthermore, note that

E th(X'hXt;Wt) i

= B (HOGX( (X0 + @) Bx, (6 X0) it(xo])z

= ZEr, : Exoe hHE X c(X)+ @)?jFe 1 EFEx, [Hi(6Xe) «(X1)jFe 1]g°
ii
tZEF‘hl Exieo HEOGX ) ( o(Xo) + a)’jFt 1
i
2 EKk (K + 2
28 e
h i
where the last inequality holds from kH ¢k, 1 and independence o& and F;. Therefore, E kv kg 2 2for
anyt 0. The conclusion follows by applying Cauchy-Schwartz inequality. O



Remark A.1. One key technical challenge is how to control the accumulation of the noisg due to the stochas-
ticity of the gradients. Unlike the conventional SGD analysis such as [Nemirovski et al., 2009], there is no
deterministic upper bound onkvik,. In the existing neural networks literature on SGD such as [Allen-Zhu et al.,
2019], a vanishing step size with order( m%) is used to ensure a small accumulation of the noise;, which is
particularly undesirable in the overparameterized regime whem is large. In contrast, we utilize the fact that v;

is a sequence of martingale di erence and carefully bound the accumulation of in expectation in Lemma A.6
when = O(1=t).

Next, we show an recursive formula of 2.

Lemma A.7. Foranyt O,

2 ¥ 2 2
t+1 (1+2 )

s=0
Proof. Recall from (17), 41 = Q; t Vi + . Therefore,
K t+1 k§ =kQ ¢ v+ tk§
= kQ; tk§+ kvtk§+ K tk§ 2hQ; uvel 20w i+ 20 t) i
kK )G+ kviks + K (kG +2 Kk ko kvek, +2 kvek, Kk, +2 K 1Ky K (K, (21)

where the last inequality holds by kQik, 1 and Cauchy-Schwartz inequality.
Note KLk, 1 and kM k; 1 for any t. Thus, by (14), k tkg 2( ¢(Xt)+ &) and hence

h h i
Ekk 2Ek K+ 2 =22 (22)

Conditioning on the initialization W (0), taking,expegctation over both hand sides of (21), adding 2 on both
hand sides, and applying the upper bound ot k tkg in (22) and E kv; kg in (20), we get

2, 2+ 224 55+2E[k tk?kvt ]+2E[kvtk k k]+2E[k tho K o k,r]
22+41 2+2 Ek (K& E kvki +2 E kwyk® E k& +2 E k (k5 E k(K5
28+1 fr2 fH2 P P2 ¢
=(1+2 )* ?

where the second inequality holds by Cauchy-Schwartz inequality. O

By Lemma A.7, we get

0

(r+1)? ' o (23)
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Plugging (23) into Lemma A.6, we get

U M
Xt h [ Xt
t” g kvy K3 t 2 2
r=0 r=0
M
X et 22
t T 1)‘; exp(4 log(r + 1))
r=0

i X

t a4 2(r+1)4 2
r=0

S

1+1

2 2
e414 0

=q (24)

P R
where the last inequality holds since | _,(r +1)* 2 lHl x* Zdx+1  Aex* 1 o+1 A+l

Fourth term: For the fourth term of (19), taking the L, norm and the conditional expectation of (14), by
Cauchy-Schwartz inequality, we have

' —h i
Ek k)]  E KL K + kMK : (25)

h i h i
It remains to bound E kL. ki andE kM,k: . Note

h i h i
2 2
E kirki =E KLeky ey woke me=sikw) woke mig
|

2
+E hkakl 1f kKW (r+1) W (0)ke>m 1=3 or kW (r) W (0)kr>m 1=3g
[

2
E KLrki Ifpw () w©ke mi=5ikw(r) W@k mi=3g i
P kW(r+1) W(@Okr>m¥@=@orkw(r) W(@Oke>m?¥™ ; (26)

+

where the inequality holds by kL, k; 1.
Through Lemma A.5 and the following Lemma A.8, we can upper bound the rst component of (26) as

r #2

h i 0 10=3
+2C, E + 2
m

2
E kL kj 1ka(r+l) WO ke mi=3;kW(r) W(@O)ke mi=3g mi=3 (27)

1=311=9

Lemma A.8.

1 1
KLck,  kStky + ZkSuaky ;

1 1
kM ¢k, akS(k1 + Eksﬁl K, :



Proof. Fix x and e, we have

X
jLe(x; B)j = % hx; ei Linw; (t)yei og ltw;(t+1) xi og  Lw; (t)xi og
i2A
1 X
o Inw; (t)ei og Lw;t+1) xi og  ltw;(t)xi og
i2A
1 X
o Ynw; (t+1) xi og  Ltw; ()i og
i2A
1 X 1 X
o Iw;t+1) xi og  Ltw;©xi og * o Iw, (t)xi og  Ltw;©:xi og
i2A i2A
1
m

(St (X) + St(x)) :

Thus, by taking the supremum on both hand sides, we get the desired bound oRLk, . The conclusion for
kMk; follows analogously. O

For the second component of (26), note by (7) and Markov's inequality, we have fos 2 fr;r +1g

h i
P kW(s) W (0)kg >m?*=3

(k ok, + +2c1) (log(s)+1)

mi=3 (28)
Combining (26), (27) and (28), we have
hooi "T gwm 2 20k ok 2¢] (log(t +1) +1)
2 2 2+°= ok, + +2¢ og(t+1)+
E kLr kl m + 2C2 E + l:3m1:9 + m1:3 (29)
P k,+1

Denote 3= Kk ok, where 0< < 1. Under 3, we can further bound the RHS of (29) in terms

of .
h [
The upper bound for E kMtki can be obtained analogously.

Plugging (29) and (23) into (25), we get

p— 1
2 14 o X Y 2
E[k rky] = 1+ )
r=0 pml ° r=0 r+1 k=0 k+1

T 2

14e? (tlfgz) 0 (30)
p_r
( P 0 )

ki KZ+1

form max + +2¢;  (log(T)+1) ;2%¥C3d?

Combining Lemma A.3, Lemma A.4, Lemma A.5, (24) and (30), we get that conditioning onW (0) and the outer
weight a such that 1\ >\ 3 holds,

( ) _
RS . P 122 0 )
EK t+1ky] inf T « )k oky+R( 0;7) + WUOQ(I"']-)"'J-) K ok, + W(t‘*z) +C
k=0
(s )

inf 1 )k ok, *R( 0;7) +2¢
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( 3 P e o2 3 h 2 ig)
form max 27(2C,+ C3)°d?; 24 (log(T)+1) —2—+ +2¢ ‘[10 (logT +1)]%;14°5 (D~

1; 2 and 3 occur with high probability :

Lemma A.9.
P[ 1 1 exp( 2m'™);
P[ o] 1 exp( 2m¥):

Proof. We show the conclusion for ,; the conclusion for ; follows analogously. Denote

1 X
(Wl; ;Wm):sup0 H 1fhwi Xi Oglfhwi x% Og Ew 1fhw;xi Oglfhw;xoi 0g
XX i=1
By the triangle inequality, we have
(W1, Wi Wi Wie1 ;Wi ) (W Wi 1 W Wik, Wi )] =

Let Wy;:::; W, denotem iii:d: N (0;14). Thus, by McDiarmid's inequality, we get
h i
P (Wi, Wm) m *P+E[ (Wi [Wa] exp 2m'™

The proof is then completed by invoking the following claim
r

E[ (Wi;  ;Wm)] GCs

5l

To prove the claim, by Proposition B.2, it su ces to show the VC dimension of F; is upper bounded by 14,
whereF1 = Quxo: Oux o(W) = Lpwxi oglthwixo og -

To see VC(F;) 11d, we rst show VC(F;) 11VC(G) where G= gy : k(W) = lwxi og and then show
VC(G) = d.

Now we show VCF1) 11VC(G). For any class of Boolean functionsF on RY, we dene G- = fD¢;f 2 Fg
whereDs = x:x2 R%:f(x)=1 .

We claim G-, = GsuCg whereull,; G= \N,C;:C;2G;1 | N . To see this, note that for any f 2 F 4,
we can nd g; and g, in Gsuch that Dt = Dg, \ Dg,. In particular, if f = lhwx,i oglihwx,i og, then we can
take g1 = Lihwx,i og @d G2 = Linwx,i og- Similarly, forany 91592, 2 G, Dg, \ Dg, = D¢ for somef 2 F;. Then
by Proposition B.1,

VC(F;) 5log(8)VC(G) 11VC(G): (31)

Next, we show VC(G) = d following the idea of [Hajek and Raginsky, 2019, Proposition 7.1].

Choosefwy;w,;  ;wgg to be linearly independent vectors inRY. Fix an arbitrary binary valued vector b 2

f 1gd.

Consider the linear systemw'x = Iy for 1 i d. Sincefw;;ws; ;Wqg are linearly independent, we can
always nd xp = W bwhereW =[wg;wy; ;wg]". Thus, gy, (W) = Ly -1¢ forall i. This shows VC(G) d.
Now we show VC@G) < d +1. Fix arbitrary fwg;wy;  ;wg+1 g. Suppose for any binary valued vectorb =

f 1g%*1, 9 xp such that gy, (Wi) = Lip=14 for all i. Dene V = f(hwy;xi;hwy;Xi;  ;hwger;xi) @ x 2 Rig

which is a linear subspace irR%*! . Sincex 2 RY, dim(V) d. Therefore,9v 6 0 2 V? s.t. for any x 2 RY,

%1
vihwi;xi =0
i=1



wherev; is the i-th coordinate of v.

WLOG we can assume thatv; < 0 for somej. To see this, sincev 6 0, there must exist somevy 6 0. If vy, 0
for all k, then we consider vy for any k. Thus, we can always assume; < 0 for some; .

Let bc = 1ty, og 1fv.<og for all k. Denote xo 2 RY which solvesgy, (Wx) = 1; bc=1g for all k. This implies

Linw, xoi 0g — Liy, 0g

for any k.

P
Thus, vkhwy; Xei 0 for any k. However, :’fll vihw;; Xoi = 0 which implies

thNk;Xoi =0
for any k.

Sincev; < 0, hwj;Xoi < 0. This contradicts the fact that vihwy;Xoei = 0 for any k. Thus, we conclude that
VC(G) <d +1.

O

Lemma A.10. Forany O0< < 1,
P[ 3] 1

Proof. Recall that a;'s arei:i:d: Rademacher random variables. Thus,
h i h i
Eaw@© K oko =kf K5 2Eaw (o fhf ;fig + Eqw o kfK5
@ h
2 kf K5+ Eaw o) KFKS
n #

b 1 X .
O s K3 + Ew (0) x = 2(HW; (0); X i)

i=1
() 2 .2 2
k f k;+ Ew@x MW1(0);Xi° = kf k;+1;
where (a) holds sinceE;, [f ] 0; (b) holds by E[aja] = 0 for i 6 j; (c) holds due to ?(x) x2; and

the last equality holds becausehw;(0); Xi N (0;1): The conclusion then follows by Markov's inequality and
Cauchy-Schwartz inequality. O

B Auxiliary Results

B.1 VC dimension

Let C be a collection of subsets ofRY. For any set A consisting of nite points in RY, we denote Gy =
fC\ A:C2Cg We say C shatters A if jCaj = 214, Let M¢(n) = max jCj:F RY%jFj=n and
S(O =sup fn: M c(n)=2"g which is the largest cardinality of a set that can be shattered byC.

Consider a class of Boolean functiong& on RY. For eachf 2 F, we denoteDs = x:x2R%f(x)=1 . Asa
result, the collection G- , fDs;f 2 Fg forms a collection of subsets oRY. The VC dimension of F is de ned
as VC(F), S(G).

We now present the propositions that are used in Lemma A.9.

Proposition B.1. [Van Der Vaart and Wellner, 2009, Theorem 1.1]

N @y 2 X e
S(uiz; G) 5 log(4N)  S(G),
i=1

whereull; G = \J-N:le:CjZCj;l i N
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Proposition B.1 is used to bound the VC dimension of the function class of the product of two Boolean functions.
Another application of VC dimension used in Lemma A.9 is the following proposition.

Proposition B.2. [Vershynin, 2019, Theorem 8.3.23] LetF be a class of Boolean functions on a probability

space( ; ; ) with nite VC dimension VC (F) 1. Let X1;X2; ;Xn be independent random points in .
Then " 0 # r
Esp s tx) Exifxy ¢ YEP)
f2r N n

i=1
for some constantC.

B.2 Eigen-decomposition of when data is uniform on % 1

Here, we present a way to compute the eigenvalues- and the projection R(f ;°) in Corollary 1 and Corollary
2. Both can be viewed as the applications of the following Theorem 2.

De ne the space of homogeneous harmonic polynomials of ordéron the sphere as
8

< X
Ho= P:s' "1 R:P(x)= cx; P=0
' =

P P
wherex = x;'  X4° ] j= id:1 i»¢ 2Rand = idzl @% is the Laplacian operator.

Denote forall™ 0,fY giN:\l as some orthonormal basis ofi- whereN- is the dimension ofH-, i.e.,hY+; ; Yy i =0
for i 6 j. Moreover, from [Dai and Xu, 2013, Theorem 1.1.2] for 6 % H- and H-. are orthogonal. Hence,
fY-; g are orthogonal across di erent” as well.

We now derive in Theorem 2 an expansion for functions with the formK (x;y) = h(hx;yi); x;y 2 % ;d  3in
terms of fY-ig;1 i N-;° 0. A similar result is obtained in [Su and Yang, 2019] without a full proof. We
provide a proof here for completeness.

Theorem 2. Suppose the functiork has the formK(x;y) = h(hx;yi) whereh is analyticon[ 1;1], x;y 2 ¢ !
andd 3. Then

X X
K(x;y) = “(h) YL ()Y (y)
0 i=1
where
d 2% hev2 m
(h)= - (32)
2 o 272 mi(02)

with h i1, is the (O + 2m)-th derivative of h at 0 and (), is the Pochhammer symbol recursively de ned as
(@o=1, (@k =(a+k 1)@k 1fork 1

Remark B.1. The cased =2 can be analyzed using Fourier analysis. Since this is not of particular interest in
our study, we do not provide the analysis here. One can refer to [Dai and Xu, 2013, Section 1.6] if interested.

Before presenting the proof of Theorem 2, we rst show a key result that will be used in the proof of Theorem 2.

Proposition B.3. [Cantero and Iserles, 2012, Theorem 2, eq (2.1)] Leth be analytic in [ 1;1]. Letting
h, = h(™(0) ben-th order derivative, then for any > 1, 6 3,

b3
h(x)=  B,C,"72(x); x2[ 1,1] (33)
n=0
where , )
=y 2 +1)n kN (n+2 +1), 1 x
o b= n' k:o( Y k ( +D« 2 ’
is the Gegenbauer polynomial, and
R
B,=( +n+1=2) fin+2m ; (34)

m=0 202mml( +1=2)q4m+1



with hpso m = h("*2M)(0), the n + 2 m-th derivative of h at 0.

Remark %2 Gegenbauer polynoguals are orthogonal across dierent, i.e., for m6 n, d 3 and any xed
y2s 4 Cn z (h;yi); sz (h;yi) = 0. The proof is based on the orthogonality of-. One can check [Dai
and Xu, 2013, Corollary 2.8] for a detalled proof.

The form of -(h) in (32) depends on the speci ¢ function h. Throughout this section, we abbreviate -(h) as

Now we proceed to the proof of Theorem 2.

Proof. From [Dai and Xu, 2013, eq(2.8)], we know for anyl 0,

. X
—C (hyi)= Y5 (X)Yi(y) (35)
i=1
where = 42 x;y 2 &8 1,
Plug (35) in (33) and note that +1=2= = 92 we get
X X X
hhcyi)= R — Yi ()Y ()= - Y5 (X)Ysi(y)
0 i=1 i=1
where
_a _d 2% hzm _
o+ 2 0 272mmI(952) e

m=

O

Theorem 2 directly implies the following corollary. Recall that the eigenvalues of are denoted asf ;gl; with
1 2 .
Corollary 1. Let ( x;x9 = h(hx;x%) with h(u) = 4~ (  arccos@)) ;u 2 [ 1;1]. Then the eigenfunctions of
isfY.g;1 i N-;° 0 with corresponding eigenvalues - with the same form as (32) and multiplicity N-
for each”. More specically, 1= j1and k= ,x 2:k 2

Proof. From the orthonormality of fY-; g, it remains to show 241 =0 forany k 1, - « g forany |l 2
and 1 0-

Firstly, we derive a common form ofhj,, . Note h(0) = 0. By induction, we can get
h i
1
h( (u) = —1fk g o k arccos® Y (u)+ uarccos® (u) (36)
forany k 1.
Thus, hg = 1fk=14 5 karccosk P(0).

Note arcco$”’ D(0)= [(2i 3)!° and arcco$)(0)=0for i 1. Thus, we geth; = 1, hy = L[2i 3
and hyizy =0forall i 1.

Plugging hok+1 into (32), we get o+ =0 forany k 1.

Now we show g k+2 forany k. Fixany d 3, from (32), we get

d 2% his2 m
K=
z m= 2k+2mml(d )k+m+1
_d 2 hy +d 2 R 1 Nk+2+2 m

2 2(HFHa 2 ML 2022 M)z m
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Similarly,

_ d 2 X hk+2+2 m

k+2 — d 2
2 m=0 2k+2+2 mm!(T)k+2+ m+1

d 2 X 1 hk+2+2 m

2 24 k+ m+2 222 mmud 2y, o,

For any term involving hyis:+2 m, the coe cient in ¢ is large than the coe cient in 4. Sincehyioir m are
non-negative for anym O andhy 0, we get k+2 -

Lastly, we show ¢ 1- By (32) and (36), we get
~d 2 1

=< = — (37)
T2 (%2, A
and
d 2% ham
0~ d 2
2 =0 anm! &= 3
d 2, 1 X (2m 3?2
= 2 4 d 2 + 4m 1)! d 2
R TR UL L
1 X
=  + N
54 am; (38)
m 2
—d2__ [em 3’
where a,, = T 05 form 2.
Note foranyd 3andm 2,
Am+1 _ (2m 1)2 m?2 .
am dmm+1+ 92)  (m+1)2
Thus,
0 1
X X 1 (a) 1 2
4a, @ — A - 1
8m %8 m? dd+2) 6 (39)
m 2 m 2
where (@) holds by a, = W.
Combining (37), (38) and (39), we get
1 1 1 2
=+ — 1 >0
1% 44 2d  d(d+2) 6
O

With the eigendecomposition of , we now compute the projectionR (f;r ).
Corollary 2.  Suppose the functionf has the formf (x) = h(hw;xi) wherew 2 S¢ ! is the parameter, then

R
R(f;r)= 8 Co (1)

k=r 1

where - has the same form as (32) and = 42



Proof. SincefY+;;1 i N-g forms an orthonormal basis ofH-, it follows from Theorem 2 that H;Y-;i =

Y+ (w) which gives the orthogonal projection off (x) on H- as iN:\l Y+ (W)Y~ (X). Then by the de nition

of R(f;" ) and the fact that - =0for ~=2j +1;j 1, we have

v
ﬁ % N
R(f;r)= 20 Yai(w): (40)
k=r 1 i=1
By (35), we get
- -
Y2 (w)= ——C ():

i=1

Plug it back into (40), we get the desired conclusion.

C Additional numerical experiments
C.1 Simulations
We focus on two speci ¢ settings:

Linear: f (x) = Ho;xi with b N (0;4).

P
Teacher neural network: f (x) = i3:1 b (hvi;xi), where (z) =
i:i:d: Rademacher random variables, and;; N (0; 14).

ﬁ is the sigmoid function, y's are

We run SGD on the streaming data with constant step size = 0:2. We assume the symmetric initialization to
ensure the initial prediction error o= f . At each iteration, we randomly draw data X uniformly from S¢ * to
obtain (X;y) wherey = f (X). The average prediction error is estimated using freshly drawn 400 data points,
and the resulting error is further averaged over 20 independent runs.

Figure 1 considers the setting with a varying number of hidden neuronsn, whenf is the teacher neural network
and d = 500. Similar to the case with d = 5, Figure 1a shows that the averaged prediction error convergences
faster whenm increases from 100 to 1000, but there is not much di erence whem is increased further. Again,
this is consistent with our theory, because whenm is large enough, the random kernelH; is already well
approximated by the Neural Tangent Kernel . We also observe a small proportion of sign changes from gure
1b whenm is above 1000, which leads to a small approximation error; in view of Lemma A.8 and Lemma A.5.
Figure 1c shows the relative deviation of the weight matrix at each Heration from the initialization. Following

Lemma A.1, we seekW(t) W (O)ke = O(t) while KW (O)ke = O(" md). As a result, we see" /0¥

decreases asm increases for xedt and ““ 1O increases ag grows for xed m.

The same experiment is performed on the lineaf and the results are shown in Figure 2 ford =5 and Figure

3 for d = 500. We again see an increase in the convergence rate, a decrease in the number of sign changes,
and a decrease in the relative deviation of the weight matrix from the initialization as m increases. In addition,

we observe a smaller convergence rate wheth= 500 compared tod = 5. This is du@to the following reason.
Compared to d = 5, when d = 500, , is smaller and thus the contraction factor tszo (I s ) is larger,
resulting in a slower convergence rate, as is shown in Corollary 1.

C.2 Real Data

We also run a numerical experiment on the MNIST dataset. We only use the classes of images 0 and 1 for
simplicity. We treat the empirical distribution of 14780 images with 28 28 pixels as the underlying true data
distribution. We reshape the data to have eachx; 2 R84, For eachx; 2 R’ in the dataset, we assigny; = 1 if
the corresponding image is 1 angj; = 1 if the image is 0. We then normalizex; to have kxjk, = 1. We run the
SGD on streaming data with step size =0:02 to learn the model. At each iteration, we randomly draw onex;
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