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A Analysis

Here, we present the complete proof of our main result. For reader’s conveninence, we restate the theorem,
lemmas and propositions.

We condition on the initializationW (0) and the outer weight a. The expectation E [·] is taken over the randomness
of the samples drawn at iterations, unless specified otherwise.

Theorem 1. Suppose the step size ηt ≤ θ
t+1 with θ < 1

4 . For any T <∞, if

m ≥ c

(
d2 + max

{(
(T + 1)2θ

θ

)9

,

(
θ log(T )

δ

)9
})

for some universal constant c > 0, then with probability at least 1− 2 exp(−2m1/3))− δ,

E [‖∆t‖2] ≤ inf
`

{
t−1∏
k=0

(1− ηkλ`) ‖∆0‖2 +R(∆0, `)

}
+ 2c1, ∀0 ≤ t ≤ T, (1)

where c1 = σ0

√
e4θθ2(2−4θ)

1−4θ .

A.1 Proof Overview

We prove (1) via induction over iteration t.

The base case t = 0 trivially holds as ‖∆0‖2 ≤ ‖∆0‖2 + 2c1. Assume (1) holds for any s ≤ t ≤ T , we show
E [‖W (s+ 1)−W (0)‖F] is small for any s ≤ t.
Lemma A.1. For any t ≥ 0,

E [‖W (t+ 1)−W (0)‖F] ≤
t∑

s=0

ηs (E [‖∆s‖2] + τ) . (2)

Proof. By the SGD update,

Wj(t+ 1)−Wj(t) =
ηtaj√
m

[f∗(Xt) + et − f (Xt;W (t))]1{〈Wj(t),Xt〉≥0}Xt, (3)

where Xt ∈ Rd is the fresh sample drawn at iteration t and et is the random noise.

In view of (3), for any s,

‖W (s+ 1)−W (s)‖F =
ηs√
m
|∆s(Xs) + es|

∥∥DsaX
>
s

∥∥
F
, (4)

where Ds ∈ Rm×m is a diagonal matrix with diagonal entries given by {1{〈W1(s),Xs〉≥0}, · · · , {1{〈Wm(s),Xs〉≥0}},
a ∈ Rm is the outer weight, and ∆s(Xs) ∈ R is the prediction error at iteration s given input Xs.

Note that DsaX
>
s is a rank-one matrix and thus ‖DsaX

>
s ‖F = ‖Dsa‖2 ‖Xs‖2 ≤

√
m, where the last inequality

holds since ‖Ds‖2 ≤ 1, ‖a‖2 =
√
m, and ‖Xs‖2 = 1. Thus, by triangle inequality,

‖W (t+ 1)−W (0)‖F ≤
t∑

s=0

‖W (s+ 1)−W (s)‖F ≤
t∑

s=0

ηs |∆s(Xs) + es| .
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Taking expectation on both hand sides, we have

E [‖W (t+ 1)−W (0)‖F] ≤
t∑

s=0

ηsE [|∆s(Xs) + es|]

(a)

≤
t∑

s=0

ηsE

[√
EXs,es

[
(∆s(Xs) + es)

2
]]

(b)

≤
t∑

s=0

ηs (E [‖∆s‖2] + τ) (5)

where (a) holds by Cauchy-Schwartz inequality; (b) holds by independence of Xs and es.

We now claim that for any s ≤ t,
E [‖∆s‖2] ≤ ‖∆0‖2 + 2c1. (6)

To see this, note for any ε > 0, R(∆0, `) < ε for sufficiently large `. Thus,

E [‖∆s‖2] ≤
s−1∏
k=0

(1− ηkλ`) ‖∆0‖2 + ε+ 2c1 ≤ ‖∆0‖2 + ε+ 2c1.

Since ε can be arbitrarily small, (6) holds.

Pugging (6) into (2), when ηs ≤ θ
s+1 , we get

E [‖W (s+ 1)−W (0)‖F] ≤ [θ (log(T ) + 1)] (‖∆0‖2 + τ + 2c1) . (7)

The induction is then completed by the following proposition.

Proposition A.2. Suppose the conditions in Theorem 1 hold. If (7) holds for any s ≤ t ≤ T − 1, then (1) holds
for t+ 1 with probability at least 1− 2 exp(−m1/3)− δ over the initialization W (0) and the outer weight a.

In Section A.2, we present the proof of Proposition A.2 in details. As a brief overview, we first follow [Su and
Yang, 2019] to derive a recursive relation of ∆t. Afterwards, we recursively replace ∆t and bound ‖∆t‖2 by the
sum of four terms. We then carefully analyze each of the four terms to complete the proof.

A.2 Proof of Proposition A.2

Following [Su and Yang, 2019], we first analyze how the prediction values evolve over iterations. Denote A =
{j : aj = 1} and B = {j : aj = −1}. By definition,

f(x;W (t+ 1))− f(x;W (t)) =
1√
m

∑
j∈A

[σ (〈Wj(t+ 1), x〉)− σ (〈Wj(t), x〉)]

− 1√
m

∑
j∈B

[σ (〈Wj(t+ 1), x〉)− σ (〈Wj(t), x〉)] . (8)

We now bound (8) from both above and below. By the SGD update,

Wj(t+ 1)−Wj(t) =
ηtaj√
m

[f∗(Xt) + et − f (Xt;W (t))]1{〈Wj(t),Xt〉≥0}Xt, (9)

where Xt ∈ Rd is the fresh sample drawn at iteration t and et is the random noise. Since 1{v≥0}
(
u − v

)
≤

σ(u)− σ(v) ≤ 1{u≥0}
(
u− v

)
for u, v ∈ R, it follows that

σ (〈Wj(t+ 1), x〉)− σ (〈Wj(t), x〉) ≤
ηtaj√
m

[f∗(Xt) + et − f (Xt;W (t))] 〈Xt, x〉1{〈Wj(0),Xt〉≥0}1{〈Wj(t+1),x〉≥0}

σ(〈Wj(t+ 1), x〉)− σ(〈Wj(t), x〉) ≥
ηtaj√
m

[f∗(Xt) + et − f (Xt;W (t))] 〈Xt, x〉1{〈Wj(t),Xt〉≥0}1{〈Wj(t),x〉≥0}.



For notation simplicity, define the following functions:

Φ+
t (x, x̃) =

1

m

∑
j∈A
〈x, x̃〉1{〈Wj(t),ex〉≥0}1{〈Wj(t),x〉≥0},

Ψ+
t (x, x̃) =

1

m

∑
j∈A
〈x, x̃〉1{〈Wj(t),ex〉≥0}1{〈Wj(t+1),x〉≥0}.

Similarly we define Φ−t and Ψ−t in terms of the summation over B. Then Ht = Φ+
t + Φ−t . Define Mt = Ψ−t −Φ−t

and Lt = Ψ+
t − Φ+

t .

With the above notation, we obtain the following upper bound:

f(x;W (t+ 1))− f(x;W (t))

≤ ηtΨ+
t (x,Xt) (f∗ (Xt) + et − f (Xt;W (t))) + ηtΦ

−
t+1(x,Xt) [f∗(Xt) + et − f (Xt;W (t))]

= ηt
(
Ψ+
t (x,Xt) + Φ−t (x,Xt)

)
[f∗(Xt) + et − f (Xt;W (t))]

= ηt [Ht(x,Xt) + Lt(x,Xt)] [f∗(Xt) + et − f (Xt;W (t))] . (10)

Similarly, we can obtain a lower bound as

f(x;W (t+ 1))− f(x;W (t)) ≥ ηt
(
Ψ−t (x,Xt) + Φ+

t (x,Xt)
)

[f∗(Xt) + et − f (Xt;W (t))]

= ηt [Ht(x,Xt) +Mt(x,Xt)] [f∗(Xt) + et − f (Xt;W (t))] . (11)

In view of (10) and (11), if Mt and Lt are small, then the evolution of the prediction values is mainly determined
by the kernel function Ht. To capture this idea, define

εt(x, x
′;W (t)) , f (x;W (t))− f (x;W (t+ 1)) + ηtHt(x, x

′) [f∗(x′) + et − f(x′;W (t))] . (12)

For simplicity, we use εt(x, x
′) to denote εt(x, x

′;W (t)). Then from the definition of εt, we have that

f∗(x)− f(x;W (t+ 1)) = f∗(x)− f(x;W (t))− ηtHt(x,Xt) [f∗(Xt) + et − f(Xt;W (t))] + εt(x,Xt). (13)

Moreover, by (10) and (11),

− ηtLt(x,Xt) [f∗(Xt) + et − f (Xt;W (t))] ≤ εt(x,Xt) ≤ −ηtMt(x,Xt) [f∗(Xt) + et − f (Xt;W (t))] . (14)

Thus, we get

∆t+1(x) = (I− ηtHt) ◦∆t(Xt)− vt(x,Xt) + εt(x,Xt), (15)

where

vt(x,Xt) ≡ vt (x,Xt;W (t))

, ηtHt(x,Xt) [f∗(Xt) + et − f (Xt;W (t))]− ηtEXt [Ht(x,Xt) (f∗(Xt)− f (Xt;W (t)))]

characterizes the deviation of the stochastic gradient from its expectation.

For notation simplicity, we define operators:

Kt = I− ηt�, Qt = I− ηtHt, Dt = Qt − Kt.

Note that ‖Dt‖2 = ‖Qt − Kt‖2 ≤ ηt ‖Φ−Ht‖∞. Since Ht is positive semi-definite and ‖Ht‖∞ ≤ 1, we get that
0 ≤ γj ≤ 1 for all j, where γi is the i-th largest eigenvalue of Ht. Therefore, as 0 ≤ ηt ≤ 2,

‖Qt‖2 ≤ ‖Qt‖∞ ≤ sup
1≤i<∞

|1− ηtγi| ≤ 1. (16)

Similarly, we can get that ‖Kt‖2 ≤ 1.
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With the above notation, we can simplify (15) as

∆t+1 = Qt ◦∆t − vt + εt. (17)

It follows that

∆t+1 =

t∏
s=0

Qs ◦∆0 −
t∑

r=0

t∏
s=r+1

Qs ◦ vr +

t∑
r=0

t∏
s=r+1

Qs ◦ εr. (18)

Here Qs is random due to the randomness of Hs. We want to decompose (18) into deterministic terms which
involve Ks and the remaining part. Intuitively, we want to show the remaining part is small so the dynamic of
the prediction error is mainly determined by Ks. Note Qs = Ks + Ds by definition. For any t, by recursively
replacing Qs by Ks + Ds from s = 0 to s = t, we get that

∏t
s=0 Qs =

∏t
s=0 Ks +

∑t
r=0

∏t
i=r+1 QiDr

∏r−1
j=0 Kj .

Thus,

∆t+1 =

t∏
s=0

Ks ◦∆0 +

t∑
r=0

 t∏
i=r+1

QiDr

r−1∏
j=0

Kj ◦∆0

+

t∑
r=0

(
t∏

s=r+1

Qs ◦ (εr − vr)

)
.

Taking the L2 norm over both hand sides and using the triangle inequality, we get

‖∆t+1‖2 ≤

∥∥∥∥∥
t∏

s=0

Ks ◦∆0

∥∥∥∥∥
2

+

t∑
r=0

∥∥∥∥∥∥
t∏

i=r+1

QiDr

r−1∏
j=0

Kj ◦∆0

∥∥∥∥∥∥
2

+

∥∥∥∥∥
t∑

r=0

t∏
s=r+1

Qs ◦ vr

∥∥∥∥∥
2

+

t∑
r=0

∥∥∥∥∥
t∏

s=r+1

Qs ◦ εr

∥∥∥∥∥
2

≤

∥∥∥∥∥
t∏

s=0

Ks ◦∆0

∥∥∥∥∥
2

+

t∑
r=0

‖Dr‖2 ‖∆0‖2 +

∥∥∥∥∥
t∑

r=0

t∏
s=r+1

Qs ◦ vr

∥∥∥∥∥
2

+

t∑
r=0

‖εr‖2 , (19)

where the last inequality holds due to ‖Qs‖2 ≤ 1 and ‖Ks‖2 ≤ 1.

Note that the first term in (19) does not depend on the sample drawn in SGD. The second term corresponds
to the approximation error of using Ks instead of Qs. The third term measures the accumulation of the noise
brought by stochastic gradient descent. The last term measures the accumulation of the approximation error of
using kernel functions Ht shown in (13).

We will analyze (19) term by term, and then combine them to prove Proposition A.2.

First term: Recall λ1 ≥ λ2 · · · are the eigenvalues of � with corresponding eigenfunction φi and R(g, `) =∑
i≥`+1〈g, φi〉2 is the L2 norm of the projection of function g onto the space spanned by the l + 1, l + 2, · · ·

eigenfunctions of �.

The following lemma derives an upper bound of the first term of (19) via the eigendecomposition of �.

Lemma A.3. Suppose ηsλ1 < 1 for any s ≤ t, then,∥∥∥∥∥
t∏

s=0

Ks ◦∆0

∥∥∥∥∥
2

≤ inf
r

{
t∏

s=0

(1− ηsλr) ‖∆0‖2 +R(∆0, r)

}
.

Proof. Fix any t. By the eigendecomposition of �, we know
∏t
s=0 Ks ◦ ∆0 =

∑∞
i=1 ρi(t)〈∆0, φi〉φi, where

ρi(t) ,
∏t
s=0(1− ηsλi). Thus, for arbitrary r ∈ N, we have∥∥∥∥∥

t∏
s=0

Ks ◦∆0

∥∥∥∥∥
2

2

=

∞∑
i=1

ρ2i (t)〈∆0, φi〉2

(a)

≤
r∑
i=1

ρ2r(t)〈∆0, φi〉2 +

∞∑
i=r+1

〈∆0, φi〉2

≤ ρ2r(t) ‖∆0‖22 +R2(∆0, r),

where (a) holds by ρi(t) ≤ 1 and the fact that ρi(t) ≤ ρr(t) for any t. The conclusion then follows.



Second term: To bound the second term of (19), it remains to bound
∑t
r=0 ‖Dr‖2. Note that ‖Dr‖2 =

‖Qr − Kr‖2 ≤ ηr ‖Hr − Φ‖∞. Lemma A.4 and Lemma A.5 below together provide an upper bound of ‖Hr − Φ‖∞
under event Ω1 ∩ Ω2, where

Ω1 =

{
sup
x,R

∣∣∣∣ 1

m

m∑
i=1

1{|〈Wi(0),x〉|≤R} − Ew∼N(0,Id)

[
1{|〈w,x〉|≤R}

]∣∣∣∣ ≤ 1

m1/3
+ C2

√
d

m

}

and

Ω2 =

{
sup
x,ex
∣∣∣∣ 1

m

m∑
i=1

1{〈Wi(0),x〉≥0}1{〈Wi(0),ex〉≥0} − Ew∼N(0,Id)

[
1{〈w,x〉≥0}1{〈w,ex〉≥0})]∣∣∣∣ ≤ 1

m1/3
+ C3

√
d

m

}
.

for some universal constants C2 and C3.

Both events are defined with respect to the initial randomness W (0), and require the sample mean of some
function of Wi(0) to be close to the expectation. Since Wi(0)’s are i.i.d. Gaussian, using uniform concentration
inequalities, we will show later in Lemma A.9 that both Ω1 and Ω2 occur with high probability when m is large.

Denote
Ot(x) = {i : sgn (〈Wi(t), x〉) 6= sgn (〈Wi(0), x〉)}

as the set of neurons that have sign flips at iteration t when the input data is x. Denote St(x) as the cardinality
of Ot(x).

Lemma A.4. Under Ω2, for any t ≥ 0,

‖Ht − Φ‖∞ ≤
2

m
‖St‖∞ + C3

√
d

m
+

1

m1/3
.

Proof. We first show ‖Ht −H0‖∞ ≤
2
m ‖St‖∞ and then show ‖H0 − Φ‖∞ ≤

1
m1/3 + C3

√
d
m . The conclusion

follows by the triangle inequality.

To see ‖Ht −H0‖∞ ≤
2
m ‖St‖∞, note

|Ht(x, x̃)−H0(x, x̃)| =

∣∣∣∣∣〈x, x̃〉 1

m

m∑
i=1

(
1{〈Wi(t),x〉≥0}1{〈Wi(t),ex〉≥0} − 1{〈Wi(0),x〉≥0}1{〈Wi(0),ex〉≥0})

∣∣∣∣∣
≤ 1

m

m∑
i=1

∣∣1{〈Wi(t),x〉≥0}1{〈Wi(t),ex〉≥0} − 1{〈Wi(0),x〉≥0}1{〈Wi(0),ex〉≥0}∣∣
≤ 1

m

m∑
i=1

∣∣1{〈Wi(t),ex〉≥0} − 1{〈Wi(0),ex〉≥0}∣∣+
1

m

m∑
i=1

∣∣1{〈Wi(t),x〉≥0} − 1{〈Wi(0),x〉≥0}
∣∣

≤ 1

m
(St(x) + St(x̃)) .

The conclusion follows by taking the supremum over x and x̃ on both hand sides.

To see ‖H0 − Φ‖∞ ≤
1

m1/3 + C3

√
d
m , note

|H0(x, x̃)− Φ(x, x̃)| =

∣∣∣∣∣〈x, x̃〉
(

1

m

m∑
i=1

1{〈Wi(0),x〉≥0}1{〈Wi(0),ex〉≥0} − Ew∼N(0,Id)

[
1{〈w,x〉≥0}1{〈w,ex〉≥0}]

)∣∣∣∣∣
≤

∣∣∣∣∣ 1

m

m∑
i=1

1{〈Wi(0),x〉≥0}1{〈Wi(0),ex〉≥0} − Ew∼N(0,Id)

[
1{〈w,x〉≥0}1{〈w,ex〉≥0}]

∣∣∣∣∣ ,
which completes the proof by taking the supremum of (x, x̃) and invoking the definition of Ω2.

The next lemma further shows that when ‖W (t)−W (0)‖F is small and m is large, 1
m ‖St‖∞ is small under Ω1.
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Lemma A.5. Under 
 1,

1
m

kSt k1 �
1

m1=3
+ C2

r
d
m

+
2

4
3 kW (t) � W (0)k

2
3
F

m1=3� 1=3
:

Proof. Fix any R and input x. Denote BR (x) = f i : jhWi (0); xij � Rg. Then St (x) � j BR (x)j + jOt (x) \ B c
R (x)j:

If neuron i 2 Ot (x) \ B c
R (x), then jhWi (t); xi � h Wi (0); xij > R . Thus, kW (t) � W (0)k2

F � R2 jOt (x) \ B c
R (x)j.

Under 
 1, we have

sup
x

jBR (x)j � m2=3 + C2

p
md + mEw� N (0 ;I d )

�
1fjh w;x ij� R g

�
� m2=3 + C2

p
md +

2mR
p

2�
:

Thus, we get

kSt k1 � m2=3 + C2

p
md +

2mR
p

2�
+

kW (t) � W (0)k2
F

R2 :

Optimally choosing R to be
� p

2� kW (t ) � W (0) k2
F

2m

� 1=3
, we get that

kSt k1 � m2=3 + C2

p
md +

4m
p

2�

 p
2�

2m
kW (t) � W (0)k2

F

! 1=3

= m2=3 + C2

p
md +

24=3m2=3kW (t) � W (0)k2=3
F

� 1=3
:

The conclusion follows by dividing both hand sides bym.

Third term: Next we derive an upper bound of the third term of (19). Recall � 2
t = E

h
k� t k

2
2

i
+ � 2.

Lemma A.6. Suppose0 � � s � 2 for any s � 0, then,

E

" 










tX

s=0

tY

i = s+1

Qi � vs












2

#

�

vu
u
t

tX

s=0

� 2
s � 2

s :

Proof. Denote Ft as the �ltration of f X 1; � � � ; X t g. Let qt =
P t

r =0

Q t
i = r +1 Qi � vr and ht = Qt � qt � 1. Thus,

qt = vt + ht . Then

E
h
kqt k

2
2

i
= E

h
kvt + ht k

2
2

i
(a)
= E

h
kvt k

2
2

i
+ E

h
kht k

2
2

i (b)
� E

h
kvt k

2
2

i
+ E

h
kqt � 1k2

2

i

where (a) uses the fact that E [hvt ; hi ] = E [E [hvt ; hij Ft � 1]] = E [hE [vt jFt � 1] ; hi ] = 0; (b) follows from (16).

Recursively applying the last displayed equation yields thatE
h
kqt k

2
2

i
�

P t
r =0 E

h
kvr k2

2

i
:

Furthermore, note that

E
�
v2

t (x; X t ; Wt )
�

= � 2
t E

h
(H t (x; X t ) (� t (X t ) + et ) � EX t [H t (x; X t )� t (X t )])

2
i

= � 2
t EF t � 1

h
EX t ;et

h
H 2

t (x; X t ) (� t (X t ) + et )
2 jFt � 1

i
� � 2

t f EX t [H t (x; X t ) � t (X t ) jFt � 1]g2
i

� � 2
t EF t � 1

h
EX t ;et

h
H 2

t (x; X t ) (� t (X t ) + et )
2 jFt � 1

ii

� � 2
t

�
E

h
k� t k

2
2

i
+ � 2

�

= � 2
t � 2

t ; (20)

where the last inequality holds from kH t k1 � 1 and independence ofet and Ft . Therefore, E
h
kvt k

2
2

i
� � 2

t � 2
t for

any t � 0. The conclusion follows by applying Cauchy-Schwartz inequality.



Remark A.1. One key technical challenge is how to control the accumulation of the noisevt due to the stochas-
ticity of the gradients. Unlike the conventional SGD analysis such as [Nemirovski et al., 2009], there is no
deterministic upper bound onkvt k2. In the existing neural networks literature on SGD such as [Allen-Zhu et al.,
2019], a vanishing step size with order�( 1

log m ) is used to ensure a small accumulation of the noisevt , which is
particularly undesirable in the overparameterized regime whenm is large. In contrast, we utilize the fact that vt

is a sequence of martingale di�erence and carefully bound the accumulation ofvt in expectation in Lemma A.6
when � t = O(1=t).

Next, we show an recursive formula of� 2
t .

Lemma A.7. For any t � 0,

� 2
t +1 �

tY

s=0

(1 + 2 � s)2 � 2
0 :

Proof. Recall from (17), � t +1 = Qt � � t � vt + � t . Therefore,

k� t +1 k2
2 = kQt � � t � vt + � t k

2
2

= kQt � � t k
2
2 + kvt k

2
2 + k� t k

2
2 � 2hQt � � t ; vt i � 2hvt ; � t i + 2hQt � � t ; � t i

� k � t k
2
2 + kvt k

2
2 + k� t k

2
2 + 2 k� t k2 kvt k2 + 2 kvt k2 k� t k2 + 2 k� t k2 k� t k2 : (21)

where the last inequality holds by kQt k2 � 1 and Cauchy-Schwartz inequality.

Note kL t k1 � 1 and kM t k1 � 1 for any t. Thus, by (14), k� t k
2
2 � � 2

t (� t (X t ) + et ) and hence

E
h
k� t k

2
2

i
� � 2

t

�
E

h
k� t k

2
2

i
+ � 2

�
= � 2

t � 2
t : (22)

Conditioning on the initialization W (0), taking expectation over both hand sides of (21), adding� 2 on both

hand sides, and applying the upper bound ofE
h
k� t k

2
2

i
in (22) and E

h
kvt k

2
2

i
in (20), we get

� 2
t +1 � � 2

t + � 2
t � 2

t + � 2
t � 2

t + 2E [k� t k2 kvt k2] + 2E [kvt k2 k� t k2] + 2E [k� t k2 k� t k2]

�
�
2� 2

t + 1
�

� 2
t + 2

r

E
h
k� t k

2
2

i r

E
h
kvt k

2
2

i
+ 2

r

E
h
kvt k

2
2

i r

E
h
k� t k

2
2

i
+ 2

r

E
h
k� t k

2
2

i r

E
h
k� t k

2
2

i

�
�
2� 2

t + 1
�

� 2
t + 2 � t � 2

t + 2 � 2
t � 2

t + 2 � t � 2
t

= (1 + 2 � t )
2 � 2

t

where the second inequality holds by Cauchy-Schwartz inequality.

By Lemma A.7, we get

� r � r �
�

r + 1

r � 1Y

k=0

�
1 +

2�
(k + 1)

�
� 0

�
�

r + 1
exp (2� (log (r + 1) + 1)) � 0

� � (r + 1) 2� � 1 e2� � 0: (23)
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Plugging (23) into Lemma A.6, we get

vu
u
t

tX

r =0

E
h
kvr k2

2

i
�

vu
u
t

tX

r =0

� 2
r � 2

r

�

vu
u
t

tX

r =0

e4� � 2� 2
0

(r + 1) 2 exp(4� log(r + 1))

�

vu
u
t

tX

r =0

� 2
0e4� � 2(r + 1) 4� � 2

�

s

� 2e4�

�
1

1 � 4�
+ 1

�
� 2

0 = c1 (24)

where the last inequality holds since
P t

r =0 (r + 1) 4� � 2 �
Rt +1

1 x4� � 2dx + 1 � 1
4� � 1 x4� � 1

�
�
�
�

t +1

1
+ 1 � 1

1� 4� + 1.

Fourth term: For the fourth term of (19), taking the L 2 norm and the conditional expectation of (14), by
Cauchy-Schwartz inequality, we have

E [k� r k2] � � r � r

r

E
h
kL r k2

1 + kM r k2
1

i
: (25)

It remains to bound E
h
kL r k2

1

i
and E

h
kM r k2

1

i
. Note

E
h
kL r k2

1

i
= E

h
kL r k2

1 1f kW (r +1) � W (0) kF � m 1= 3 ; kW (r ) � W (0) kF � m 1= 3 g

i

+ E
h
kL r k2

1 1f kW (r +1) � W (0) kF >m 1= 3 or kW (r ) � W (0) kF >m 1= 3 g

i

� E
h
kL r k2

1 1f kW (r +1) � W (0) kF � m 1= 3 ; kW (r ) � W (0) kF � m 1= 3 g

i

+ P
h
kW (r + 1) � W (0)kF > m 1=3 or kW (r ) � W (0)kF > m 1=3

i
; (26)

where the inequality holds by kL r k1 � 1.

Through Lemma A.5 and the following Lemma A.8, we can upper bound the �rst component of (26) as

E
h
kL r k2

1 1f kW (r +1) � W (0) kF � m 1= 3 ; kW (r ) � W (0) kF � m 1= 3 g

i
�

"
2

m1=3
+ 2C2

r
d
m

+
210=3

� 1=3m1=9

#2

: (27)

Lemma A.8.

kL t k1 �
1
m

kSt k1 +
1
m

kSt +1 k1 ;

kM t k1 �
1
m

kSt k1 +
1
m

kSt +1 k1 :



Proof. Fix x and ex, we have

jL t (x; ex)j =
1
m

�
�
�
�
�
�
hx; exi

X

j 2 A

1fh W j ( t ) ;ex i� 0g
�
1fh W j ( t +1) ;x i� 0g � 1fh W j ( t ) ;x i� 0g

�
�
�
�
�
�
�

�
1
m

X

j 2 A

�
�1fh W j ( t ) ;ex i� 0g

�
1fh W j ( t +1) ;x i� 0g � 1fh W j ( t ) ;x i� 0g

� �
�

�
1
m

X

j 2 A

�
�1fh W j ( t +1) ;x i� 0g � 1fh W j ( t ) ;x i� 0g

�
�

�
1
m

X

j 2 A

�
�1fh W j ( t +1) ;x i� 0g � 1fh W j (0) ;x i� 0g

�
� +

1
m

X

j 2 A

�
�1fh W j ( t ) ;x i� 0g � 1fh W j (0) ;x i� 0g

�
�

�
1
m

(St +1 (x) + St (x)) :

Thus, by taking the supremum on both hand sides, we get the desired bound onkL t k1 . The conclusion for
kM t k1 follows analogously.

For the second component of (26), note by (7) and Markov's inequality, we have fors 2 f r; r + 1g

P
h
kW (s) � W (0)kF > m 1=3

i

�
(k� 0k2 + � + 2c1) � (log(s) + 1)

m1=3
: (28)

Combining (26), (27) and (28), we have

E
h
kL r k2

1

i
�

"
2

m1=3
+ 2C2

r
d
m

+
210=3

� 1=3m1=9

#2

+
2 [k� 0k2 + � + 2c1] � (log(t + 1) + 1)

m1=3
(29)

Denote 
 3 =
�

k� 0k2 �
p

kf � k2 +1
�

�
where 0< � < 1. Under 
 3, we can further bound the RHS of (29) in terms

of � .

The upper bound for E
h
kM t k

2
1

i
can be obtained analogously.

Plugging (29) and (23) into (25), we get

tX

r =0

E [k� r k2] �
2
p

14� 0

m1=9

tX

r =0

�
r + 1

r � 1Y

k=0

(1 +
2�

k + 1
)

�

p
14e2� (t + 2) 2� � 0

m1=9
(30)

for m � max

( �� p
kf � k2

2 +1
� + � + 2c1

�
� (log(T) + 1)

� 9

; 214C3
2 d2

)

.

Combining Lemma A.3, Lemma A.4, Lemma A.5, (24) and (30), we get that conditioning onW (0) and the outer
weight a such that 
 1 \ 
 2 \ 
 3 holds,

E [k� t +1 k2] � inf
`

(
tY

k=0

(1 � � k � ` ) k� 0k2 + R(� 0; `)

)

+
�

m1=3
(log(t + 1) + 1) k� 0k2 +

p
14e2� � 0

m1=9
(t + 2) 2� + c1

� inf
`

(
tY

k=0

(1 � � k � ` ) k� 0k2 + R(� 0; `)

)

+ 2c1
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for m � max

(

27 (2C2 + C3)3 d2;
�

24� (log(T) + 1)
� p

kf � k2
2 +1

� + � + 2c1

�� 9=2

; [10� (log T + 1)] 3 ; 145
h

(T +1) 2 �

�

i 9
)

.


 1; 
 2 and 
 3 occur with high probability :

Lemma A.9.

P[
 1] � 1 � exp(� 2m1=3);

P[
 2] � 1 � exp(� 2m1=3):

Proof. We show the conclusion for 
2; the conclusion for 
 1 follows analogously. Denote

� (w1; � � � ; wm ) = sup
x;x 0

�
�
�
�
�

1
m

mX

i =1

1fh w i ;x i� 0g1fh w i ;x 0i� 0g � Ew
�
1fh w;x i� 0g1fh w;x 0i� 0g

�
�
�
�
�
�
:

By the triangle inequality, we have

j� (w1; � � � ; wi � 1; wi ; wi +1 ; wm ) � � (w1; � � � ; wi � 1; w0
i ; wi +1 ; � � � ; wm )j �

1
m

:

Let W1; : : : ; Wm denote m i:i:d: N (0; I d). Thus, by McDiarmid's inequality, we get

P
h
� (W1; � � � ; Wm ) � m� 1=3 + E [� (W1; � � � ; Wm ]

i
� exp

�
� 2m1=3

�
:

The proof is then completed by invoking the following claim

E [� (W1; � � � ; Wm )] � C3

r
d
m

:

To prove the claim, by Proposition B.2, it su�ces to show the VC dimension of F1 is upper bounded by 11d,
where F1 =

�
gx;x 0 : gx;x 0(w) = 1fh w;x i� 0g1fh w;x 0i� 0g

	
.

To see VC(F1) � 11d, we �rst show VC( F1) � 11VC(G) where G =
�

gx : gx (w) = 1fh w;x i� 0g
	

and then show
VC( G) = d.

Now we show VC(F1) � 11VC(G). For any class of Boolean functionsF on Rd, we de�ne CF = f D f ; f 2 Fg
where D f =

�
x : x 2 Rd; f (x) = 1

	
.

We claim CF 1 = CG u CG where uN
i =1 Ci =

�
\ N

j =1 Cj : Cj 2 Cj ; 1 � j � N
	

. To see this, note that for any f 2 F 1,
we can �nd g1 and g2 in G such that D f = Dg1 \ Dg2 . In particular, if f = 1fh w;x 1 i� 0g1fh w;x 2 i� 0g, then we can
take g1 = 1fh w;x 1 i� 0g and g2 = 1fh w;x 2 i� 0g. Similarly, for any g1; g2 2 G, Dg1 \ Dg2 = D f for somef 2 F 1. Then
by Proposition B.1,

VC( F1) � 5 log(8)VC(G) � 11VC(G): (31)

Next, we show VC(G) = d following the idea of [Hajek and Raginsky, 2019, Proposition 7.1].

Choosef w1; w2; � � � ; wdg to be linearly independent vectors in Rd. Fix an arbitrary binary valued vector b 2
f� 1gd.

Consider the linear systemwT
i x = bi for 1 � i � d. Since f w1; w2; � � � ; wdg are linearly independent, we can

always �nd xb = W � 1b where W = [ w1; w2; � � � ; wd]T . Thus, gx b (wi ) = 1f bi =1 g for all i . This shows VC(G) � d.

Now we show VC(G) < d + 1. Fix arbitrary f w1; w2; � � � ; wd+1 g. Suppose for any binary valued vectorb =
f� 1gd+1 , 9 xb such that gx b (wi ) = 1f bi =1 g for all i . De�ne V = f (hw1; xi ; hw2; xi ; � � � ; hwd+1 ; xi ) : x 2 Rdg
which is a linear subspace inRd+1 . Sincex 2 Rd, dim(V ) � d. Therefore, 9v 6= 0 2 V ? s.t. for any x 2 Rd,

d+1X

i =1

vi hwi ; xi = 0



where vi is the i -th coordinate of v.

WLOG we can assume thatvj < 0 for somej . To see this, sincev 6= 0, there must exist somevk 6= 0. If vk � 0
for all k, then we consider� vk for any k. Thus, we can always assumevj < 0 for somej .

Let bk = 1f vk � 0g � 1f vk < 0g for all k. Denote x0 2 Rd which solvesgx 0 (wk ) = 1f bk =1 g for all k. This implies

1fh wk ;x 0 i� 0g = 1f vk � 0g

for any k.

Thus, vk hwk ; x0i � 0 for any k. However,
P d+1

i =1 vi hwi ; x0i = 0 which implies

vk hwk ; x0i = 0

for any k.

Since vj < 0, hwj ; x0i < 0. This contradicts the fact that vk hwk ; x0i = 0 for any k. Thus, we conclude that
VC( G) < d + 1.

Lemma A.10. For any 0 < � < 1,
P[
 3] � 1 � �:

Proof. Recall that ai 's are i:i:d: Rademacher random variables. Thus,

Ea;W (0)

h
k� 0k2

2

i
= kf � k2

2 � 2Ea;W (0) fhf � ; f ig + Ea;W (0)

h
kf k2

2

i

(a)
= kf � k2

2 + Ea;W (0)

h
kf k2

2

i

(b)
= kf � k2

2 + EW (0) ;X

"
1
m

mX

i =1

� 2(hWi (0); X i )

#

(c)
� k f � k2

2 + EW (0) ;X
�
hW1(0); X i 2�

= kf � k2
2 + 1 ;

where (a) holds sinceEa [f ] � 0; (b) holds by E [ai aj ] = 0 for i 6= j ; (c) holds due to � 2(x) � x2; and
the last equality holds becausehW1(0); X i � N (0; 1): The conclusion then follows by Markov's inequality and
Cauchy-Schwartz inequality.

B Auxiliary Results

B.1 VC dimension

Let C be a collection of subsets ofRd. For any set A consisting of �nite points in Rd, we denote CA =
f C \ A : C 2 Cg. We say C shatters A if jCA j = 2 jA j . Let M C(n) = max

�
jCF j : F � Rd; jF j = n

	
and

S(C) = sup f n : M C(n) = 2 n g which is the largest cardinality of a set that can be shattered byC.

Consider a class of Boolean functionsF on Rd. For each f 2 F , we denoteD f =
�

x : x 2 Rd; f (x) = 1
	

. As a
result, the collection CF , f D f ; f 2 Fg forms a collection of subsets ofRd. The VC dimension of F is de�ned
as VC(F ) , S(CF ).

We now present the propositions that are used in Lemma A.9.

Proposition B.1. [Van Der Vaart and Wellner, 2009, Theorem 1.1]

S(uN
i =1 Ci ) �

5
2

log(4N )
NX

i =1

S(Ci );

where uN
i =1 Ci =

�
\ N

j =1 Cj : Cj 2 Cj ; 1 � j � N
	

.
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Proposition B.1 is used to bound the VC dimension of the function class of the product of two Boolean functions.
Another application of VC dimension used in Lemma A.9 is the following proposition.

Proposition B.2. [Vershynin, 2019, Theorem 8.3.23] Let F be a class of Boolean functions on a probability
space(
 ; � ; � ) with �nite VC dimension VC (F ) � 1. Let X 1; X 2; � � � ; X n be independent random points in
 .
Then

E

"

sup
f 2F

�
�
�
�
�
1
n

nX

i =1

f (X i ) � EX [f (X )]

�
�
�
�
�

#

� C

r
VC(F )

n

for some constantC.

B.2 Eigen-decomposition of � when data is uniform on Sd� 1

Here, we present a way to compute the eigenvalues� ` and the projection R(f � ; `) in Corollary 1 and Corollary
2. Both can be viewed as the applications of the following Theorem 2.

De�ne the space of homogeneous harmonic polynomials of order` on the sphere as

H ` =

8
<

:
P : Sd� 1 ! R : P(x) =

X

j � j= `

c� x � ; � P = 0

9
=

;

where x � = x � 1
1 � � � x � d

d , j� j =
P d

i =1 � i , c� 2 R and � =
P d

i =1
@2

@x2i
is the Laplacian operator.

Denote for all ` � 0, f Y`;i gN `

i =1 as some orthonormal basis ofH ` whereN ` is the dimension ofH ` , i.e., hY`;i ; Y`;j i = 0
for i 6= j . Moreover, from [Dai and Xu, 2013, Theorem 1.1.2] for̀ 6= `0, H ` and H ` 0 are orthogonal. Hence,
f Y`;i g are orthogonal across di�erent ` as well.

We now derive in Theorem 2 an expansion for functions with the formK(x; y) = h(hx; yi ); x; y 2 Sd� 1; d � 3 in
terms of f Y`;i g; 1 � i � N ` ; ` � 0. A similar result is obtained in [Su and Yang, 2019] without a full proof. We
provide a proof here for completeness.

Theorem 2. Suppose the functionK has the formK(x; y) = h(hx; yi ) whereh is analytic on [� 1; 1], x; y 2 Sd� 1

and d � 3. Then

K(x; y) =
X

` � 0

� ` (h)
N `X

i =1

Y`;i (x)Y`;i (y)

where

� ` (h) =
d � 2

2

1X

m =0

h` +2 m

2` +2 m m!( d� 2
2 )` + m +1

(32)

with h` +2 m is the (` + 2m)-th derivative of h at 0 and (�)n is the Pochhammer symbol recursively de�ned as
(a)0 = 1 , (a)k = ( a + k � 1)(a)k � 1 for k � 1.

Remark B.1. The cased = 2 can be analyzed using Fourier analysis. Since this is not of particular interest in
our study, we do not provide the analysis here. One can refer to [Dai and Xu, 2013, Section 1.6] if interested.

Before presenting the proof of Theorem 2, we �rst show a key result that will be used in the proof of Theorem 2.

Proposition B.3. [Cantero and Iserles, 2012, Theorem 2, eq (2.1)] Leth be analytic in [� 1; 1]. Letting
hn = h(n ) (0) be n-th order derivative, then for any � > � 1; � 6= � 1

2 ,

h(x) =
1X

n =0

ehn C � +1 =2
n (x); x 2 [� 1; 1] (33)

where

C � +1 =2
n (x) =

(2� + 1) n

n!

nX

k=0

(� 1)k
�

n
k

�
(n + 2 � + 1) k

(� + 1) k

�
1 � x

2

� k

;

is the Gegenbauer polynomial, and

ehn = ( � + n + 1=2)
1X

m =0

hn +2 m

2n +2 m m!(� + 1=2)n + m +1
; (34)



with hn +2 m = h(n +2 m ) (0), the n + 2m-th derivative of h at 0.

Remark B.2. Gegenbauer polynomials are orthogonal across di�erentn, i.e., for m 6= n, d � 3 and any �xed

y 2 Sd� 1,
D

C
d � 2

2
n (h�; yi ); C

d � 2
2

m (h�; yi )
E

Sd � 1
= 0 . The proof is based on the orthogonality ofH ` . One can check [Dai

and Xu, 2013, Corollary 2.8] for a detailed proof.

The form of � ` (h) in (32) depends on the speci�c function h. Throughout this section, we abbreviate � ` (h) as
� ` .

Now we proceed to the proof of Theorem 2.

Proof. From [Dai and Xu, 2013, eq(2.8)], we know for anyl � 0,

` + �
�

C �
` (hx; yi ) =

N `X

i =1

Y`;i (x)Y`;i (y) (35)

where � = d� 2
2 , x; y 2 Sd� 1.

Plug (35) in (33) and note that � + 1=2 = � = d� 2
2 , we get

h(hx; yi ) =
X

` � 0

eh`
�

` + �

N `X

i =1

Y`;i (x)Y`;i (y) = � `

N `X

i =1

Y`;i (x)Y`;i (y)

where

� ` = eh`
�

` + �
=

d � 2
2

1X

m =0

h` +2 m

2` +2 m m!( d� 2
2 )` + m +1

:

Theorem 2 directly implies the following corollary. Recall that the eigenvalues of� are denoted asf � i g1
i =1 with

� 1 � � 2 � � � � .

Corollary 1. Let �( x; x 0) = h(hx; x 0i ) with h(u) = u
2� (� � arccos(u)) ; u 2 [� 1; 1]. Then the eigenfunctions of

� is f Y`;i g; 1 � i � N ` ; ` � 0 with corresponding eigenvalues� ` with the same form as (32) and multiplicity N `

for each `. More speci�cally, � 1 = � 1 and � k = � 2(k � 2) ; k � 2.

Proof. From the orthonormality of f Y`;i g, it remains to show � 2k+1 = 0 for any k � 1, � ` � � ` � 2 for any l � 2,
and � 1 � � 0.

Firstly, we derive a common form of hl +2 m . Note h(0) = 0. By induction, we can get

h(k ) (u) =
1
2

1f k=1 g �
1

2�

h
k arccos(k � 1) (u) + u arccos(k ) (u)

i
(36)

for any k � 1.

Thus, hk = 1
2 1f k=1 g � 1

2� k arccos(k � 1) (0).

Note arccos(2 i � 1) (0) = � [(2i � 3)!!]2 and arccos(2 i ) (0) = 0 for i � 1. Thus, we geth1 = 1
4 , h2i = i

� [(2i � 3)!!]2

and h2i +1 = 0 for all i � 1.

Plugging h2k+1 into (32), we get � 2k+1 = 0 for any k � 1.

Now we show� k � � k+2 for any k. Fix any d � 3, from (32), we get

� k =
d � 2

2

1X

m =0

hk+2 m

2k+2 m m!( d� 2
2 )k+ m +1

=
d � 2

2
hk

2k ( d� 2
2 )k+1

+
d � 2

2

1X

m =0

1
m + 1

hk+2+2 m

2k+2+2 m (m)!( d� 2
2 )k+2+ m

:
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Similarly,

� k+2 =
d � 2

2

1X

m =0

hk+2+2 m

2k+2+2 m m!( d� 2
2 )k+2+ m +1

=
d � 2

2

1X

m =0

1
d� 2

2 + k + m + 2

hk+2+2 m

2k+2+2 m m!( d� 2
2 )k+2+ m

:

For any term involving hk+2+2 m , the coe�cient in � k is large than the coe�cient in � k+2 . Since hk+2+2 m are
non-negative for anym � 0 and hk � 0, we get � k � � k+2 .

Lastly, we show � 0 � � 1. By (32) and (36), we get

� 1 =
d � 2

2
h1

2( d� 2
2 )2

=
1
4d

; (37)

and

� 0 =
d � 2

2

1X

m =0

h2m

4m m!
�

d� 2
2

�
m +1

=
d � 2

2�

2

4 1

4
�

d� 2
2

�
2

+
X

m � 2

((2m � 3)!!)2

4m (m � 1)!
�

d� 2
2

�
m +1

3

5

=
1

2�d
+

X

m � 2

am ; (38)

where am = d� 2
2�

[(2 m � 3)!!] 2

4m (m � 1)! ( d � 2
2 )

m +1

for m � 2.

Note for any d � 3 and m � 2,
am +1

am
=

(2m � 1)2

4m(m + 1 + d� 2
2 )

�
m2

(m + 1) 2 :

Thus,

X

m � 2

am � 4a2

0

@
X

m � 2

1
m2

1

A
(a)
�

1
�d (d + 2)

�
� 2

6
� 1

�
(39)

where (a) holds by a2 = 1
4�d (d+2) .

Combining (37), (38) and (39), we get
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With the eigendecomposition of � , we now compute the projectionR(f; r ).

Corollary 2. Suppose the functionf has the form f (x) = h(hw; xi ) where w 2 Sd� 1 is the parameter, then

R(f; r ) =

vu
u
t

1X

k= r � 1

� 2
2k

2k + �
�

C �
2k (1)

where � ` has the same form as (32) and� = d� 2
2 .



Proof. Since f Y`;i ; 1 � i � N ` g forms an orthonormal basis ofH ` , it follows from Theorem 2 that hf; Y `;i i =
� ` Y`;i (w) which gives the orthogonal projection of f (x) on H ` as

P N `
i =1 � ` Y`;i (w)Y`;i (x). Then by the de�nition

of R(f; ` ) and the fact that � ` = 0 for ` = 2 j + 1 ; j � 1, we have

R(f; r ) =

vu
u
t

1X

k= r � 1

� 2
2k

N 2kX

i =1

Y 2
2k;i (w): (40)

By (35), we get
N `X

i =1

Y 2
`;i (w) =

` + �
�

C �
` (1):

Plug it back into (40), we get the desired conclusion.

C Additional numerical experiments

C.1 Simulations

We focus on two speci�c settings:

� Linear: f � (x) = hb; xi with b � N (0; I d).

� Teacher neural network: f � (x) =
P 3

i =1 bi  (hvi ; xi ), where  (z) = 1
1+ e� z is the sigmoid function, bi 's are

i:i:d: Rademacher random variables, andvi � N (0; I d).

We run SGD on the streaming data with constant step size� = 0 :2. We assume the symmetric initialization to
ensure the initial prediction error � 0 = f � . At each iteration, we randomly draw data X uniformly from Sd� 1 to
obtain (X; y ) where y = f � (X ). The average prediction error is estimated using freshly drawn 400 data points,
and the resulting error is further averaged over 20 independent runs.

Figure 1 considers the setting with a varying number of hidden neuronsm, when f � is the teacher neural network
and d = 500. Similar to the case with d = 5, Figure 1a shows that the averaged prediction error convergences
faster when m increases from 100 to 1000, but there is not much di�erence whenm is increased further. Again,
this is consistent with our theory, because whenm is large enough, the random kernelH t is already well
approximated by the Neural Tangent Kernel �. We also observe a small proportion of sign changes from �gure
1b when m is above 1000, which leads to a small approximation error� t in view of Lemma A.8 and Lemma A.5.
Figure 1c shows the relative deviation of the weight matrix at each iteration from the initialization. Following
Lemma A.1, we seekW (t) � W (0)kF = O(t) while kW (0)kF = O(

p
md). As a result, we seekW (t ) � W (0) kF

kW (0) kF

decreases asm increases for �xed t and kW (t ) � W (0) kF

kW (0) kF
increases ast grows for �xed m.

The same experiment is performed on the linearf � and the results are shown in Figure 2 ford = 5 and Figure
3 for d = 500. We again see an increase in the convergence rate, a decrease in the number of sign changes,
and a decrease in the relative deviation of the weight matrix from the initialization as m increases. In addition,
we observe a smaller convergence rate whend = 500 compared to d = 5. This is due to the following reason.
Compared to d = 5, when d = 500, � r is smaller and thus the contraction factor

Q t
s=0 (1 � � s � r ) is larger,

resulting in a slower convergence rate, as is shown in Corollary 1.

C.2 Real Data

We also run a numerical experiment on the MNIST dataset. We only use the classes of images 0 and 1 for
simplicity. We treat the empirical distribution of 14780 images with 28 � 28 pixels as the underlying true data
distribution. We reshape the data to have eachx i 2 R784. For each x i 2 R784 in the dataset, we assignyi = 1 if
the corresponding image is 1 andyi = � 1 if the image is 0. We then normalizex i to have kx i k2 = 1. We run the
SGD on streaming data with step size� = 0 :02 to learn the model. At each iteration, we randomly draw onex i
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