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A Analysis

Here, we present the complete proof of our main result. For reader’s conveninence, we restate the theorem,
lemmas and propositions.

We condition on the initializationW (0) and the outer weight a. The expectation E [·] is taken over the randomness
of the samples drawn at iterations, unless specified otherwise.

Theorem 1. Suppose the step size ηt ≤ θ
t+1 with θ < 1

4 . For any T <∞, if

m ≥ c

(
d2 + max

{(
(T + 1)2θ

θ

)9

,

(
θ log(T )

δ

)9
})

for some universal constant c > 0, then with probability at least 1− 2 exp(−2m1/3))− δ,

E [‖∆t‖2] ≤ inf
`

{
t−1∏
k=0

(1− ηkλ`) ‖∆0‖2 +R(∆0, `)

}
+ 2c1, ∀0 ≤ t ≤ T, (1)

where c1 = σ0

√
e4θθ2(2−4θ)

1−4θ .

A.1 Proof Overview

We prove (1) via induction over iteration t.

The base case t = 0 trivially holds as ‖∆0‖2 ≤ ‖∆0‖2 + 2c1. Assume (1) holds for any s ≤ t ≤ T , we show
E [‖W (s+ 1)−W (0)‖F] is small for any s ≤ t.
Lemma A.1. For any t ≥ 0,

E [‖W (t+ 1)−W (0)‖F] ≤
t∑

s=0

ηs (E [‖∆s‖2] + τ) . (2)

Proof. By the SGD update,

Wj(t+ 1)−Wj(t) =
ηtaj√
m

[f∗(Xt) + et − f (Xt;W (t))]1{〈Wj(t),Xt〉≥0}Xt, (3)

where Xt ∈ Rd is the fresh sample drawn at iteration t and et is the random noise.

In view of (3), for any s,

‖W (s+ 1)−W (s)‖F =
ηs√
m
|∆s(Xs) + es|

∥∥DsaX
>
s

∥∥
F
, (4)

where Ds ∈ Rm×m is a diagonal matrix with diagonal entries given by {1{〈W1(s),Xs〉≥0}, · · · , {1{〈Wm(s),Xs〉≥0}},
a ∈ Rm is the outer weight, and ∆s(Xs) ∈ R is the prediction error at iteration s given input Xs.

Note that DsaX
>
s is a rank-one matrix and thus ‖DsaX

>
s ‖F = ‖Dsa‖2 ‖Xs‖2 ≤

√
m, where the last inequality

holds since ‖Ds‖2 ≤ 1, ‖a‖2 =
√
m, and ‖Xs‖2 = 1. Thus, by triangle inequality,

‖W (t+ 1)−W (0)‖F ≤
t∑

s=0

‖W (s+ 1)−W (s)‖F ≤
t∑

s=0

ηs |∆s(Xs) + es| .
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Taking expectation on both hand sides, we have

E [‖W (t+ 1)−W (0)‖F] ≤
t∑

s=0

ηsE [|∆s(Xs) + es|]

(a)

≤
t∑

s=0

ηsE

[√
EXs,es

[
(∆s(Xs) + es)

2
]]

(b)

≤
t∑

s=0

ηs (E [‖∆s‖2] + τ) (5)

where (a) holds by Cauchy-Schwartz inequality; (b) holds by independence of Xs and es.

We now claim that for any s ≤ t,
E [‖∆s‖2] ≤ ‖∆0‖2 + 2c1. (6)

To see this, note for any ε > 0, R(∆0, `) < ε for sufficiently large `. Thus,

E [‖∆s‖2] ≤
s−1∏
k=0

(1− ηkλ`) ‖∆0‖2 + ε+ 2c1 ≤ ‖∆0‖2 + ε+ 2c1.

Since ε can be arbitrarily small, (6) holds.

Pugging (6) into (2), when ηs ≤ θ
s+1 , we get

E [‖W (s+ 1)−W (0)‖F] ≤ [θ (log(T ) + 1)] (‖∆0‖2 + τ + 2c1) . (7)

The induction is then completed by the following proposition.

Proposition A.2. Suppose the conditions in Theorem 1 hold. If (7) holds for any s ≤ t ≤ T − 1, then (1) holds
for t+ 1 with probability at least 1− 2 exp(−m1/3)− δ over the initialization W (0) and the outer weight a.

In Section A.2, we present the proof of Proposition A.2 in details. As a brief overview, we first follow [Su and
Yang, 2019] to derive a recursive relation of ∆t. Afterwards, we recursively replace ∆t and bound ‖∆t‖2 by the
sum of four terms. We then carefully analyze each of the four terms to complete the proof.

A.2 Proof of Proposition A.2

Following [Su and Yang, 2019], we first analyze how the prediction values evolve over iterations. Denote A =
{j : aj = 1} and B = {j : aj = −1}. By definition,

f(x;W (t+ 1))− f(x;W (t)) =
1√
m

∑
j∈A

[σ (〈Wj(t+ 1), x〉)− σ (〈Wj(t), x〉)]

− 1√
m

∑
j∈B

[σ (〈Wj(t+ 1), x〉)− σ (〈Wj(t), x〉)] . (8)

We now bound (8) from both above and below. By the SGD update,

Wj(t+ 1)−Wj(t) =
ηtaj√
m

[f∗(Xt) + et − f (Xt;W (t))]1{〈Wj(t),Xt〉≥0}Xt, (9)

where Xt ∈ Rd is the fresh sample drawn at iteration t and et is the random noise. Since 1{v≥0}
(
u − v

)
≤

σ(u)− σ(v) ≤ 1{u≥0}
(
u− v

)
for u, v ∈ R, it follows that

σ (〈Wj(t+ 1), x〉)− σ (〈Wj(t), x〉) ≤
ηtaj√
m

[f∗(Xt) + et − f (Xt;W (t))] 〈Xt, x〉1{〈Wj(0),Xt〉≥0}1{〈Wj(t+1),x〉≥0}

σ(〈Wj(t+ 1), x〉)− σ(〈Wj(t), x〉) ≥
ηtaj√
m

[f∗(Xt) + et − f (Xt;W (t))] 〈Xt, x〉1{〈Wj(t),Xt〉≥0}1{〈Wj(t),x〉≥0}.



For notation simplicity, define the following functions:

Φ+
t (x, x̃) =

1

m

∑
j∈A
〈x, x̃〉1{〈Wj(t),x̃〉≥0}1{〈Wj(t),x〉≥0},

Ψ+
t (x, x̃) =

1

m

∑
j∈A
〈x, x̃〉1{〈Wj(t),x̃〉≥0}1{〈Wj(t+1),x〉≥0}.

Similarly we define Φ−t and Ψ−t in terms of the summation over B. Then Ht = Φ+
t + Φ−t . Define Mt = Ψ−t −Φ−t

and Lt = Ψ+
t − Φ+

t .

With the above notation, we obtain the following upper bound:

f(x;W (t+ 1))− f(x;W (t))

≤ ηtΨ+
t (x,Xt) (f∗ (Xt) + et − f (Xt;W (t))) + ηtΦ

−
t+1(x,Xt) [f∗(Xt) + et − f (Xt;W (t))]

= ηt
(
Ψ+
t (x,Xt) + Φ−t (x,Xt)

)
[f∗(Xt) + et − f (Xt;W (t))]

= ηt [Ht(x,Xt) + Lt(x,Xt)] [f∗(Xt) + et − f (Xt;W (t))] . (10)

Similarly, we can obtain a lower bound as

f(x;W (t+ 1))− f(x;W (t)) ≥ ηt
(
Ψ−t (x,Xt) + Φ+

t (x,Xt)
)

[f∗(Xt) + et − f (Xt;W (t))]

= ηt [Ht(x,Xt) +Mt(x,Xt)] [f∗(Xt) + et − f (Xt;W (t))] . (11)

In view of (10) and (11), if Mt and Lt are small, then the evolution of the prediction values is mainly determined
by the kernel function Ht. To capture this idea, define

εt(x, x
′;W (t)) , f (x;W (t))− f (x;W (t+ 1)) + ηtHt(x, x

′) [f∗(x′) + et − f(x′;W (t))] . (12)

For simplicity, we use εt(x, x
′) to denote εt(x, x

′;W (t)). Then from the definition of εt, we have that

f∗(x)− f(x;W (t+ 1)) = f∗(x)− f(x;W (t))− ηtHt(x,Xt) [f∗(Xt) + et − f(Xt;W (t))] + εt(x,Xt). (13)

Moreover, by (10) and (11),

− ηtLt(x,Xt) [f∗(Xt) + et − f (Xt;W (t))] ≤ εt(x,Xt) ≤ −ηtMt(x,Xt) [f∗(Xt) + et − f (Xt;W (t))] . (14)

Thus, we get

∆t+1(x) = (I− ηtHt) ◦∆t(Xt)− vt(x,Xt) + εt(x,Xt), (15)

where

vt(x,Xt) ≡ vt (x,Xt;W (t))

, ηtHt(x,Xt) [f∗(Xt) + et − f (Xt;W (t))]− ηtEXt [Ht(x,Xt) (f∗(Xt)− f (Xt;W (t)))]

characterizes the deviation of the stochastic gradient from its expectation.

For notation simplicity, we define operators:

Kt = I− ηtΦ, Qt = I− ηtHt, Dt = Qt − Kt.

Note that ‖Dt‖2 = ‖Qt − Kt‖2 ≤ ηt ‖Φ−Ht‖∞. Since Ht is positive semi-definite and ‖Ht‖∞ ≤ 1, we get that
0 ≤ γj ≤ 1 for all j, where γi is the i-th largest eigenvalue of Ht. Therefore, as 0 ≤ ηt ≤ 2,

‖Qt‖2 ≤ ‖Qt‖∞ ≤ sup
1≤i<∞

|1− ηtγi| ≤ 1. (16)

Similarly, we can get that ‖Kt‖2 ≤ 1.
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With the above notation, we can simplify (15) as

∆t+1 = Qt ◦∆t − vt + εt. (17)

It follows that

∆t+1 =

t∏
s=0

Qs ◦∆0 −
t∑

r=0

t∏
s=r+1

Qs ◦ vr +

t∑
r=0

t∏
s=r+1

Qs ◦ εr. (18)

Here Qs is random due to the randomness of Hs. We want to decompose (18) into deterministic terms which
involve Ks and the remaining part. Intuitively, we want to show the remaining part is small so the dynamic of
the prediction error is mainly determined by Ks. Note Qs = Ks + Ds by definition. For any t, by recursively
replacing Qs by Ks + Ds from s = 0 to s = t, we get that

∏t
s=0 Qs =

∏t
s=0 Ks +

∑t
r=0

∏t
i=r+1 QiDr

∏r−1
j=0 Kj .

Thus,

∆t+1 =

t∏
s=0

Ks ◦∆0 +

t∑
r=0

 t∏
i=r+1

QiDr

r−1∏
j=0

Kj ◦∆0

+

t∑
r=0

(
t∏

s=r+1

Qs ◦ (εr − vr)

)
.

Taking the L2 norm over both hand sides and using the triangle inequality, we get

‖∆t+1‖2 ≤

∥∥∥∥∥
t∏

s=0

Ks ◦∆0

∥∥∥∥∥
2

+

t∑
r=0

∥∥∥∥∥∥
t∏

i=r+1

QiDr

r−1∏
j=0

Kj ◦∆0

∥∥∥∥∥∥
2

+

∥∥∥∥∥
t∑

r=0

t∏
s=r+1

Qs ◦ vr

∥∥∥∥∥
2

+

t∑
r=0

∥∥∥∥∥
t∏

s=r+1

Qs ◦ εr

∥∥∥∥∥
2

≤

∥∥∥∥∥
t∏

s=0

Ks ◦∆0

∥∥∥∥∥
2

+

t∑
r=0

‖Dr‖2 ‖∆0‖2 +

∥∥∥∥∥
t∑

r=0

t∏
s=r+1

Qs ◦ vr

∥∥∥∥∥
2

+

t∑
r=0

‖εr‖2 , (19)

where the last inequality holds due to ‖Qs‖2 ≤ 1 and ‖Ks‖2 ≤ 1.

Note that the first term in (19) does not depend on the sample drawn in SGD. The second term corresponds
to the approximation error of using Ks instead of Qs. The third term measures the accumulation of the noise
brought by stochastic gradient descent. The last term measures the accumulation of the approximation error of
using kernel functions Ht shown in (13).

We will analyze (19) term by term, and then combine them to prove Proposition A.2.

First term: Recall λ1 ≥ λ2 · · · are the eigenvalues of Φ with corresponding eigenfunction φi and R(g, `) =∑
i≥`+1〈g, φi〉2 is the L2 norm of the projection of function g onto the space spanned by the l + 1, l + 2, · · ·

eigenfunctions of Φ.

The following lemma derives an upper bound of the first term of (19) via the eigendecomposition of Φ.

Lemma A.3. Suppose ηsλ1 < 1 for any s ≤ t, then,∥∥∥∥∥
t∏

s=0

Ks ◦∆0

∥∥∥∥∥
2

≤ inf
r

{
t∏

s=0

(1− ηsλr) ‖∆0‖2 +R(∆0, r)

}
.

Proof. Fix any t. By the eigendecomposition of Φ, we know
∏t
s=0 Ks ◦ ∆0 =

∑∞
i=1 ρi(t)〈∆0, φi〉φi, where

ρi(t) ,
∏t
s=0(1− ηsλi). Thus, for arbitrary r ∈ N, we have∥∥∥∥∥

t∏
s=0

Ks ◦∆0

∥∥∥∥∥
2

2

=

∞∑
i=1

ρ2i (t)〈∆0, φi〉2

(a)

≤
r∑
i=1

ρ2r(t)〈∆0, φi〉2 +

∞∑
i=r+1

〈∆0, φi〉2

≤ ρ2r(t) ‖∆0‖22 +R2(∆0, r),

where (a) holds by ρi(t) ≤ 1 and the fact that ρi(t) ≤ ρr(t) for any t. The conclusion then follows.



Second term: To bound the second term of (19), it remains to bound
∑t
r=0 ‖Dr‖2. Note that ‖Dr‖2 =

‖Qr − Kr‖2 ≤ ηr ‖Hr − Φ‖∞. Lemma A.4 and Lemma A.5 below together provide an upper bound of ‖Hr − Φ‖∞
under event Ω1 ∩ Ω2, where

Ω1 =

{
sup
x,R

∣∣∣∣ 1

m

m∑
i=1

1{|〈Wi(0),x〉|≤R} − Ew∼N(0,Id)

[
1{|〈w,x〉|≤R}

]∣∣∣∣ ≤ 1

m1/3
+ C2

√
d

m

}

and

Ω2 =

{
sup
x,x̃

∣∣∣∣ 1

m

m∑
i=1

1{〈Wi(0),x〉≥0}1{〈Wi(0),x̃〉≥0} − Ew∼N(0,Id)

[
1{〈w,x〉≥0}1{〈w,x̃〉≥0})

]∣∣∣∣ ≤ 1

m1/3
+ C3

√
d

m

}
.

for some universal constants C2 and C3.

Both events are defined with respect to the initial randomness W (0), and require the sample mean of some
function of Wi(0) to be close to the expectation. Since Wi(0)’s are i.i.d. Gaussian, using uniform concentration
inequalities, we will show later in Lemma A.9 that both Ω1 and Ω2 occur with high probability when m is large.

Denote
Ot(x) = {i : sgn (〈Wi(t), x〉) 6= sgn (〈Wi(0), x〉)}

as the set of neurons that have sign flips at iteration t when the input data is x. Denote St(x) as the cardinality
of Ot(x).

Lemma A.4. Under Ω2, for any t ≥ 0,

‖Ht − Φ‖∞ ≤
2

m
‖St‖∞ + C3

√
d

m
+

1

m1/3
.

Proof. We first show ‖Ht −H0‖∞ ≤
2
m ‖St‖∞ and then show ‖H0 − Φ‖∞ ≤

1
m1/3 + C3

√
d
m . The conclusion

follows by the triangle inequality.

To see ‖Ht −H0‖∞ ≤
2
m ‖St‖∞, note

|Ht(x, x̃)−H0(x, x̃)| =

∣∣∣∣∣〈x, x̃〉 1

m

m∑
i=1

(
1{〈Wi(t),x〉≥0}1{〈Wi(t),x̃〉≥0} − 1{〈Wi(0),x〉≥0}1{〈Wi(0),x̃〉≥0}

)∣∣∣∣∣
≤ 1

m

m∑
i=1

∣∣1{〈Wi(t),x〉≥0}1{〈Wi(t),x̃〉≥0} − 1{〈Wi(0),x〉≥0}1{〈Wi(0),x̃〉≥0}
∣∣

≤ 1

m

m∑
i=1

∣∣1{〈Wi(t),x̃〉≥0} − 1{〈Wi(0),x̃〉≥0}
∣∣+

1

m

m∑
i=1

∣∣1{〈Wi(t),x〉≥0} − 1{〈Wi(0),x〉≥0}
∣∣

≤ 1

m
(St(x) + St(x̃)) .

The conclusion follows by taking the supremum over x and x̃ on both hand sides.

To see ‖H0 − Φ‖∞ ≤
1

m1/3 + C3

√
d
m , note

|H0(x, x̃)− Φ(x, x̃)| =

∣∣∣∣∣〈x, x̃〉
(

1

m

m∑
i=1

1{〈Wi(0),x〉≥0}1{〈Wi(0),x̃〉≥0} − Ew∼N(0,Id)

[
1{〈w,x〉≥0}1{〈w,x̃〉≥0}

])∣∣∣∣∣
≤

∣∣∣∣∣ 1

m

m∑
i=1

1{〈Wi(0),x〉≥0}1{〈Wi(0),x̃〉≥0} − Ew∼N(0,Id)

[
1{〈w,x〉≥0}1{〈w,x̃〉≥0}

]∣∣∣∣∣ ,
which completes the proof by taking the supremum of (x, x̃) and invoking the definition of Ω2.

The next lemma further shows that when ‖W (t)−W (0)‖F is small and m is large, 1
m ‖St‖∞ is small under Ω1.
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Lemma A.5. Under Ω1,

1

m
‖St‖∞ ≤

1

m1/3
+ C2

√
d

m
+

2
4
3 ‖W (t)−W (0)‖

2
3

F

m1/3π1/3
.

Proof. Fix any R and input x. Denote BR(x) = {i : |〈Wi(0), x〉| ≤ R}. Then St(x) ≤ |BR(x)|+ |Ot(x)∩BcR(x)|.
If neuron i ∈ Ot(x) ∩ BcR(x), then |〈Wi(t), x〉 − 〈Wi(0), x〉| > R. Thus, ‖W (t) −W (0)‖2F ≥ R2 |Ot(x) ∩BcR(x)|.
Under Ω1, we have

sup
x
|BR(x)| ≤ m2/3 + C2

√
md+mEw∼N(0,Id)

[
1{|〈w,x〉|≤R}

]
≤ m2/3 + C2

√
md+

2mR√
2π

.

Thus, we get

‖St‖∞ ≤ m
2/3 + C2

√
md+

2mR√
2π

+
‖W (t)−W (0)‖2F

R2
.

Optimally choosing R to be
(√

2π‖W (t)−W (0)‖2F
2m

)1/3
, we get that

‖St‖∞ ≤ m
2/3 + C2

√
md+

4m√
2π

(√
2π

2m
‖W (t)−W (0)‖2F

)1/3

= m2/3 + C2

√
md+

24/3m2/3‖W (t)−W (0)‖2/3F

π1/3
.

The conclusion follows by dividing both hand sides by m.

Third term: Next we derive an upper bound of the third term of (19). Recall σ2
t = E

[
‖∆t‖22

]
+ τ2.

Lemma A.6. Suppose 0 ≤ ηs ≤ 2 for any s ≥ 0, then,

E

[∥∥∥∥∥
t∑

s=0

t∏
i=s+1

Qi ◦ vs

∥∥∥∥∥
2

]
≤

√√√√ t∑
s=0

η2sσ
2
s .

Proof. Denote Ft as the filtration of {X1, · · · , Xt}. Let qt =
∑t
r=0

∏t
i=r+1 Qi ◦ vr and ht = Qt ◦ qt−1. Thus,

qt = vt + ht. Then

E
[
‖qt‖22

]
= E

[
‖vt + ht‖22

]
(a)
= E

[
‖vt‖22

]
+ E

[
‖ht‖22

] (b)

≤ E
[
‖vt‖22

]
+ E

[
‖qt−1‖22

]
where (a) uses the fact that E [〈vt, h〉] = E [E [〈vt, h〉|Ft−1]] = E [〈E [vt|Ft−1] , h〉] = 0; (b) follows from (16).

Recursively applying the last displayed equation yields that E
[
‖qt‖22

]
≤
∑t
r=0 E

[
‖vr‖22

]
.

Furthermore, note that

E
[
v2t (x,Xt;Wt)

]
= η2tE

[
(Ht(x,Xt) (∆t(Xt) + et)− EXt [Ht(x,Xt)∆t(Xt)])

2
]

= η2tEFt−1

[
EXt,et

[
H2
t (x,Xt) (∆t (Xt) + et)

2 |Ft−1
]
− η2t {EXt [Ht (x,Xt) ∆t (Xt) |Ft−1]}2

]
≤ η2tEFt−1

[
EXt,et

[
H2
t (x,Xt) (∆t(Xt) + et)

2 |Ft−1
]]

≤ η2t
(
E
[
‖∆t‖22

]
+ τ2

)
= η2t σ

2
t , (20)

where the last inequality holds from ‖Ht‖∞ ≤ 1 and independence of et and Ft. Therefore, E
[
‖vt‖22

]
≤ η2t σ2

t for

any t ≥ 0. The conclusion follows by applying Cauchy-Schwartz inequality.



Remark A.1. One key technical challenge is how to control the accumulation of the noise vt due to the stochas-
ticity of the gradients. Unlike the conventional SGD analysis such as [Nemirovski et al., 2009], there is no
deterministic upper bound on ‖vt‖2. In the existing neural networks literature on SGD such as [Allen-Zhu et al.,
2019], a vanishing step size with order Θ( 1

logm ) is used to ensure a small accumulation of the noise vt, which is
particularly undesirable in the overparameterized regime when m is large. In contrast, we utilize the fact that vt
is a sequence of martingale difference and carefully bound the accumulation of vt in expectation in Lemma A.6
when ηt = O(1/t).

Next, we show an recursive formula of σ2
t .

Lemma A.7. For any t ≥ 0,

σ2
t+1 ≤

t∏
s=0

(1 + 2ηs)
2
σ2
0 .

Proof. Recall from (17), ∆t+1 = Qt ◦∆t − vt + εt. Therefore,

‖∆t+1‖22 = ‖Qt ◦∆t − vt + εt‖22
= ‖Qt ◦∆t‖22 + ‖vt‖22 + ‖εt‖22 − 2〈Qt ◦∆t, vt〉 − 2〈vt, εt〉+ 2〈Qt ◦∆t, εt〉

≤ ‖∆t‖22 + ‖vt‖22 + ‖εt‖22 + 2 ‖∆t‖2 ‖vt‖2 + 2 ‖vt‖2 ‖εt‖2 + 2 ‖∆t‖2 ‖εt‖2 . (21)

where the last inequality holds by ‖Qt‖2 ≤ 1 and Cauchy-Schwartz inequality.

Note ‖Lt‖∞ ≤ 1 and ‖Mt‖∞ ≤ 1 for any t. Thus, by (14), ‖εt‖22 ≤ η2t (∆t(Xt) + et) and hence

E
[
‖εt‖22

]
≤ η2t

(
E
[
‖∆t‖22

]
+ τ2

)
= η2t σ

2
t . (22)

Conditioning on the initialization W (0), taking expectation over both hand sides of (21), adding τ2 on both

hand sides, and applying the upper bound of E
[
‖εt‖22

]
in (22) and E

[
‖vt‖22

]
in (20), we get

σ2
t+1 ≤ σ2

t + η2t σ
2
t + η2t σ

2
t + 2E [‖∆t‖2 ‖vt‖2] + 2E [‖vt‖2 ‖εt‖2] + 2E [‖∆t‖2 ‖εt‖2]

≤
(
2η2t + 1

)
σ2
t + 2

√
E
[
‖∆t‖22

]√
E
[
‖vt‖22

]
+ 2

√
E
[
‖vt‖22

]√
E
[
‖εt‖22

]
+ 2

√
E
[
‖∆t‖22

]√
E
[
‖εt‖22

]
≤
(
2η2t + 1

)
σ2
t + 2ηtσ

2
t + 2η2t σ

2
t + 2ηtσ

2
t

= (1 + 2ηt)
2
σ2
t

where the second inequality holds by Cauchy-Schwartz inequality.

By Lemma A.7, we get

ηrσr ≤
θ

r + 1

r−1∏
k=0

(
1 +

2θ

(k + 1)

)
σ0

≤ θ

r + 1
exp (2θ (log (r + 1) + 1))σ0

≤ θ (r + 1)
2θ−1

e2θσ0. (23)
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Plugging (23) into Lemma A.6, we get

√√√√ t∑
r=0

E
[
‖vr‖22

]
≤

√√√√ t∑
r=0

η2rσ
2
r

≤

√√√√ t∑
r=0

e4θθ2σ2
0

(r + 1)2
exp(4θ log(r + 1))

≤

√√√√ t∑
r=0

σ2
0e

4θθ2(r + 1)4θ−2

≤

√
θ2e4θ

(
1

1− 4θ
+ 1

)
σ2
0 = c1 (24)

where the last inequality holds since
∑t
r=0(r + 1)4θ−2 ≤

∫ t+1

1
x4θ−2dx+ 1 ≤ 1

4θ−1x
4θ−1

∣∣∣∣t+1

1

+ 1 ≤ 1
1−4θ + 1.

Fourth term: For the fourth term of (19), taking the L2 norm and the conditional expectation of (14), by
Cauchy-Schwartz inequality, we have

E [‖εr‖2] ≤ ηrσr
√

E
[
‖Lr‖2∞ + ‖Mr‖2∞

]
. (25)

It remains to bound E
[
‖Lr‖2∞

]
and E

[
‖Mr‖2∞

]
. Note

E
[
‖Lr‖2∞

]
= E

[
‖Lr‖2∞ 1{‖W (r+1)−W (0)‖F≤m1/3, ‖W (r)−W (0)‖F≤m1/3}

]
+ E

[
‖Lr‖2∞ 1{‖W (r+1)−W (0)‖F>m1/3 or ‖W (r)−W (0)‖F>m1/3}

]
≤ E

[
‖Lr‖2∞ 1{‖W (r+1)−W (0)‖F≤m1/3, ‖W (r)−W (0)‖F≤m1/3}

]
+ P

[
‖W (r + 1)−W (0)‖F > m1/3 or ‖W (r)−W (0)‖F > m1/3

]
, (26)

where the inequality holds by ‖Lr‖∞ ≤ 1.

Through Lemma A.5 and the following Lemma A.8, we can upper bound the first component of (26) as

E
[
‖Lr‖2∞ 1{‖W (r+1)−W (0)‖F≤m1/3, ‖W (r)−W (0)‖F≤m1/3}

]
≤

[
2

m1/3
+ 2C2

√
d

m
+

210/3

π1/3m1/9

]2
. (27)

Lemma A.8.

‖Lt‖∞ ≤
1

m
‖St‖∞ +

1

m
‖St+1‖∞ ,

‖Mt‖∞ ≤
1

m
‖St‖∞ +

1

m
‖St+1‖∞ .



Proof. Fix x and x̃, we have

|Lt(x, x̃)| = 1

m

∣∣∣∣∣∣〈x, x̃〉
∑
j∈A

1{〈Wj(t),x̃〉≥0}
(
1{〈Wj(t+1),x〉≥0} − 1{〈Wj(t),x〉≥0}

)∣∣∣∣∣∣
≤ 1

m

∑
j∈A

∣∣1{〈Wj(t),x̃〉≥0}
(
1{〈Wj(t+1),x〉≥0} − 1{〈Wj(t),x〉≥0}

)∣∣
≤ 1

m

∑
j∈A

∣∣1{〈Wj(t+1),x〉≥0} − 1{〈Wj(t),x〉≥0}
∣∣

≤ 1

m

∑
j∈A

∣∣1{〈Wj(t+1),x〉≥0} − 1{〈Wj(0),x〉≥0}
∣∣+

1

m

∑
j∈A

∣∣1{〈Wj(t),x〉≥0} − 1{〈Wj(0),x〉≥0}
∣∣

≤ 1

m
(St+1(x) + St(x)) .

Thus, by taking the supremum on both hand sides, we get the desired bound on ‖Lt‖∞. The conclusion for
‖Mt‖∞ follows analogously.

For the second component of (26), note by (7) and Markov’s inequality, we have for s ∈ {r, r + 1}

P
[
‖W (s)−W (0)‖F > m1/3

]
≤

(‖∆0‖2 + τ + 2c1) θ (log(s) + 1)

m1/3
. (28)

Combining (26), (27) and (28), we have

E
[
‖Lr‖2∞

]
≤

[
2

m1/3
+ 2C2

√
d

m
+

210/3

π1/3m1/9

]2
+

2 [‖∆0‖2 + τ + 2c1] θ (log(t+ 1) + 1)

m1/3
(29)

Denote Ω3 =

{
‖∆0‖2 ≤

√
‖f∗‖2+1

δ

}
where 0 < δ < 1. Under Ω3, we can further bound the RHS of (29) in terms

of δ.

The upper bound for E
[
‖Mt‖2∞

]
can be obtained analogously.

Plugging (29) and (23) into (25), we get

t∑
r=0

E [‖εr‖2] ≤ 2
√

14σ0
m1/9

t∑
r=0

θ

r + 1

r−1∏
k=0

(1 +
2θ

k + 1
)

≤
√

14e2θ (t+ 2)
2θ
σ0

m1/9
(30)

for m ≥ max

{[(√
‖f∗‖22+1

δ + τ + 2c1

)
θ (log(T ) + 1)

]9
, 214C3

2d
2

}
.

Combining Lemma A.3, Lemma A.4, Lemma A.5, (24) and (30), we get that conditioning on W (0) and the outer
weight a such that Ω1 ∩ Ω2 ∩ Ω3 holds,

E [‖∆t+1‖2] ≤ inf
`

{
t∏

k=0

(1− ηkλ`) ‖∆0‖2 +R(∆0, `)

}
+

θ

m1/3
(log(t+ 1) + 1) ‖∆0‖2 +

√
14e2θσ0
m1/9

(t+ 2)2θ + c1

≤ inf
`

{
t∏

k=0

(1− ηkλ`) ‖∆0‖2 +R(∆0, `)

}
+ 2c1
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form ≥ max

{
27 (2C2 + C3)

3
d2,

{
24θ (log(T ) + 1)

(√
‖f∗‖22+1

δ + τ + 2c1

)}9/2

, [10θ (log T + 1)]
3
, 145

[
(T+1)2θ

θ

]9}
.

Ω1,Ω2 and Ω3 occur with high probability :

Lemma A.9.

P [Ω1] ≥ 1− exp(−2m1/3),

P [Ω2] ≥ 1− exp(−2m1/3).

Proof. We show the conclusion for Ω2; the conclusion for Ω1 follows analogously. Denote

φ(w1, · · · , wm) = sup
x,x′

∣∣∣∣∣ 1

m

m∑
i=1

1{〈wi,x〉≥0}1{〈wi,x′〉≥0} − Ew
[
1{〈w,x〉≥0}1{〈w,x′〉≥0}

]∣∣∣∣∣ .
By the triangle inequality, we have

|φ(w1, · · · , wi−1, wi, wi+1, wm)− φ(w1, · · · , wi−1, w′i, wi+1, · · · , wm)| ≤ 1

m
.

Let W1, . . . ,Wm denote m i.i.d. N (0, Id). Thus, by McDiarmid’s inequality, we get

P
[
φ(W1, · · · ,Wm) ≥ m−1/3 + E [φ(W1, · · · ,Wm]

]
≤ exp

(
−2m1/3

)
.

The proof is then completed by invoking the following claim

E [φ(W1, · · · ,Wm)] ≤ C3

√
d

m
.

To prove the claim, by Proposition B.2, it suffices to show the VC dimension of F1 is upper bounded by 11d,
where F1 =

{
gx,x′ : gx,x′(w) = 1{〈w,x〉≥0}1{〈w,x′〉≥0}

}
.

To see VC(F1) ≤ 11d, we first show VC(F1) ≤ 11VC(G) where G =
{
gx : gx(w) = 1{〈w,x〉≥0}

}
and then show

VC(G) = d.

Now we show VC(F1) ≤ 11VC(G). For any class of Boolean functions F on Rd, we define CF = {Df , f ∈ F}
where Df =

{
x : x ∈ Rd, f(x) = 1

}
.

We claim CF1 = CG u CG where uNi=1Ci =
{
∩Nj=1Cj : Cj ∈ Cj , 1 ≤ j ≤ N

}
. To see this, note that for any f ∈ F1,

we can find g1 and g2 in G such that Df = Dg1 ∩Dg2 . In particular, if f = 1{〈w,x1〉≥0}1{〈w,x2〉≥0}, then we can
take g1 = 1{〈w,x1〉≥0} and g2 = 1{〈w,x2〉≥0}. Similarly, for any g1, g2 ∈ G, Dg1 ∩Dg2 = Df for some f ∈ F1. Then
by Proposition B.1,

VC(F1) ≤ 5 log(8)VC(G) ≤ 11VC(G). (31)

Next, we show VC(G) = d following the idea of [Hajek and Raginsky, 2019, Proposition 7.1].

Choose {w1, w2, · · · , wd} to be linearly independent vectors in Rd. Fix an arbitrary binary valued vector b ∈
{±1}d.

Consider the linear system wTi x = bi for 1 ≤ i ≤ d. Since {w1, w2, · · · , wd} are linearly independent, we can
always find xb = W−1b where W = [w1, w2, · · · , wd]T . Thus, gxb(wi) = 1{bi=1} for all i. This shows VC(G) ≥ d.

Now we show VC(G) < d + 1. Fix arbitrary {w1, w2, · · · , wd+1}. Suppose for any binary valued vector b =
{±1}d+1, ∃ xb such that gxb(wi) = 1{bi=1} for all i. Define V = {(〈w1, x〉, 〈w2, x〉, · · · , 〈wd+1, x〉) : x ∈ Rd}
which is a linear subspace in Rd+1. Since x ∈ Rd, dim(V ) ≤ d. Therefore, ∃v 6= 0 ∈ V ⊥ s.t. for any x ∈ Rd,

d+1∑
i=1

vi〈wi, x〉 = 0



where vi is the i-th coordinate of v.

WLOG we can assume that vj < 0 for some j. To see this, since v 6= 0, there must exist some vk 6= 0. If vk ≥ 0
for all k, then we consider −vk for any k. Thus, we can always assume vj < 0 for some j.

Let bk = 1{vk≥0} − 1{vk<0} for all k. Denote x0 ∈ Rd which solves gx0
(wk) = 1{bk=1} for all k. This implies

1{〈wk,x0〉≥0} = 1{vk≥0}

for any k.

Thus, vk〈wk, x0〉 ≥ 0 for any k. However,
∑d+1
i=1 vi〈wi, x0〉 = 0 which implies

vk〈wk, x0〉 = 0

for any k.

Since vj < 0, 〈wj , x0〉 < 0. This contradicts the fact that vk〈wk, x0〉 = 0 for any k. Thus, we conclude that
VC(G) < d+ 1.

Lemma A.10. For any 0 < δ < 1,
P [Ω3] ≥ 1− δ.

Proof. Recall that ai’s are i.i.d. Rademacher random variables. Thus,

Ea,W (0)

[
‖∆0‖22

]
= ‖f∗‖22 − 2Ea,W (0) {〈f∗, f〉}+ Ea,W (0)

[
‖f‖22

]
(a)
= ‖f∗‖22 + Ea,W (0)

[
‖f‖22

]
(b)
= ‖f∗‖22 + EW (0),X

[
1

m

m∑
i=1

σ2(〈Wi(0), X〉)

]
(c)

≤ ‖f∗‖22 + EW (0),X

[
〈W1(0), X〉2

]
= ‖f∗‖22 + 1,

where (a) holds since Ea [f ] ≡ 0; (b) holds by E [aiaj ] = 0 for i 6= j; (c) holds due to σ2(x) ≤ x2; and
the last equality holds because 〈W1(0), X〉 ∼ N (0, 1). The conclusion then follows by Markov’s inequality and
Cauchy-Schwartz inequality.

B Auxiliary Results

B.1 VC dimension

Let C be a collection of subsets of Rd. For any set A consisting of finite points in Rd, we denote CA =
{C ∩A : C ∈ C}. We say C shatters A if |CA| = 2|A|. Let MC(n) = max

{
|CF | : F ⊂ Rd, |F | = n

}
and

S(C) = sup {n :MC(n) = 2n} which is the largest cardinality of a set that can be shattered by C.

Consider a class of Boolean functions F on Rd. For each f ∈ F , we denote Df =
{
x : x ∈ Rd, f(x) = 1

}
. As a

result, the collection CF , {Df , f ∈ F} forms a collection of subsets of Rd. The VC dimension of F is defined

as VC(F) , S(CF ).

We now present the propositions that are used in Lemma A.9.

Proposition B.1. [Van Der Vaart and Wellner, 2009, Theorem 1.1]

S(uNi=1Ci) ≤
5

2
log(4N)

N∑
i=1

S(Ci),

where uNi=1Ci =
{
∩Nj=1Cj : Cj ∈ Cj , 1 ≤ j ≤ N

}
.
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Proposition B.1 is used to bound the VC dimension of the function class of the product of two Boolean functions.
Another application of VC dimension used in Lemma A.9 is the following proposition.

Proposition B.2. [Vershynin, 2019, Theorem 8.3.23] Let F be a class of Boolean functions on a probability
space (Ω,Σ, µ) with finite VC dimension VC(F) ≥ 1. Let X1, X2, · · · , Xn be independent random points in Ω.
Then

E

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)− EX [f(X)]

∣∣∣∣∣
]
≤ C

√
VC(F)

n

for some constant C.

B.2 Eigen-decomposition of Φ when data is uniform on Sd−1

Here, we present a way to compute the eigenvalues λ` and the projection R(f∗, `) in Corollary 1 and Corollary
2. Both can be viewed as the applications of the following Theorem 2.

Define the space of homogeneous harmonic polynomials of order ` on the sphere as

H` =

P : Sd−1 → R : P (x) =
∑
|α|=`

cαx
α, ∆P = 0


where xα = xα1

1 · · ·x
αd
d , |α| =

∑d
i=1 αi, cα ∈ R and ∆ =

∑d
i=1

∂2

∂x2
i

is the Laplacian operator.

Denote for all ` ≥ 0, {Y`,i}N`i=1 as some orthonormal basis ofH` whereN` is the dimension ofH`, i.e., 〈Y`,i, Y`,j〉 = 0
for i 6= j. Moreover, from [Dai and Xu, 2013, Theorem 1.1.2] for ` 6= `′, H` and H`′ are orthogonal. Hence,
{Y`,i} are orthogonal across different ` as well.

We now derive in Theorem 2 an expansion for functions with the form K(x, y) = h(〈x, y〉), x, y ∈ Sd−1, d ≥ 3 in
terms of {Y`,i} , 1 ≤ i ≤ N`, ` ≥ 0. A similar result is obtained in [Su and Yang, 2019] without a full proof. We
provide a proof here for completeness.

Theorem 2. Suppose the function K has the form K(x, y) = h(〈x, y〉) where h is analytic on [−1, 1], x, y ∈ Sd−1
and d ≥ 3. Then

K(x, y) =
∑
`≥0

β`(h)

N∑̀
i=1

Y`,i(x)Y`,i(y)

where

β`(h) =
d− 2

2

∞∑
m=0

h`+2m

2`+2mm!(d−22 )`+m+1

(32)

with h`+2m is the (` + 2m)-th derivative of h at 0 and (·)n is the Pochhammer symbol recursively defined as
(a)0 = 1, (a)k = (a+ k − 1)(a)k−1 for k ≥ 1.

Remark B.1. The case d = 2 can be analyzed using Fourier analysis. Since this is not of particular interest in
our study, we do not provide the analysis here. One can refer to [Dai and Xu, 2013, Section 1.6] if interested.

Before presenting the proof of Theorem 2, we first show a key result that will be used in the proof of Theorem 2.

Proposition B.3. [Cantero and Iserles, 2012, Theorem 2, eq (2.1)] Let h be analytic in [−1, 1]. Letting
hn = h(n)(0) be n-th order derivative, then for any α > −1, α 6= − 1

2 ,

h(x) =

∞∑
n=0

h̃nC
α+1/2
n (x), x ∈ [−1, 1] (33)

where

Cα+1/2
n (x) =

(2α+ 1)n
n!

n∑
k=0

(−1)k
(
n

k

)
(n+ 2α+ 1)k

(α+ 1)k

(
1− x

2

)k
,

is the Gegenbauer polynomial, and

h̃n = (α+ n+ 1/2)

∞∑
m=0

hn+2m

2n+2mm!(α+ 1/2)n+m+1
, (34)



with hn+2m = h(n+2m)(0), the n+ 2m-th derivative of h at 0.

Remark B.2. Gegenbauer polynomials are orthogonal across different n, i.e., for m 6= n, d ≥ 3 and any fixed

y ∈ Sd−1,
〈
C
d−2
2

n (〈·, y〉), C
d−2
2

m (〈·, y〉)
〉
Sd−1

= 0. The proof is based on the orthogonality of H`. One can check [Dai

and Xu, 2013, Corollary 2.8] for a detailed proof.

The form of β`(h) in (32) depends on the specific function h. Throughout this section, we abbreviate β`(h) as
β`.

Now we proceed to the proof of Theorem 2.

Proof. From [Dai and Xu, 2013, eq(2.8)], we know for any l ≥ 0,

`+ λ

λ
Cλ` (〈x, y〉) =

N∑̀
i=1

Y`,i(x)Y`,i(y) (35)

where λ = d−2
2 , x, y ∈ Sd−1.

Plug (35) in (33) and note that α+ 1/2 = λ = d−2
2 , we get

h(〈x, y〉) =
∑
`≥0

h̃`
λ

`+ λ

N∑̀
i=1

Y`,i(x)Y`,i(y) = β`

N∑̀
i=1

Y`,i(x)Y`,i(y)

where

β` = h̃`
λ

`+ λ
=
d− 2

2

∞∑
m=0

h`+2m

2`+2mm!(d−22 )`+m+1

.

Theorem 2 directly implies the following corollary. Recall that the eigenvalues of Φ are denoted as {λi}∞i=1 with
λ1 ≥ λ2 ≥ · · · .
Corollary 1. Let Φ(x, x′) = h(〈x, x′〉) with h(u) = u

2π (π − arccos(u)) , u ∈ [−1, 1]. Then the eigenfunctions of
Φ is {Y`,i} , 1 ≤ i ≤ N`, ` ≥ 0 with corresponding eigenvalues β` with the same form as (32) and multiplicity N`
for each `. More specifically, λ1 = β1 and λk = β2(k−2), k ≥ 2.

Proof. From the orthonormality of {Y`,i}, it remains to show β2k+1 = 0 for any k ≥ 1, β` ≤ β`−2 for any l ≥ 2,
and β1 ≥ β0.

Firstly, we derive a common form of hl+2m. Note h(0) = 0. By induction, we can get

h(k)(u) =
1

2
1{k=1} −

1

2π

[
k arccos(k−1)(u) + u arccos(k)(u)

]
(36)

for any k ≥ 1.

Thus, hk = 1
21{k=1} − 1

2πk arccos(k−1)(0).

Note arccos(2i−1)(0) = − [(2i− 3)!!]
2

and arccos(2i)(0) = 0 for i ≥ 1. Thus, we get h1 = 1
4 , h2i = i

π [(2i− 3)!!]
2

and h2i+1 = 0 for all i ≥ 1.

Plugging h2k+1 into (32), we get β2k+1 = 0 for any k ≥ 1.

Now we show βk ≥ βk+2 for any k. Fix any d ≥ 3, from (32), we get

βk =
d− 2

2

∞∑
m=0

hk+2m

2k+2mm!(d−22 )k+m+1

=
d− 2

2

hk

2k(d−22 )k+1

+
d− 2

2

∞∑
m=0

1

m+ 1

hk+2+2m

2k+2+2m(m)!(d−22 )k+2+m

.
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Similarly,

βk+2 =
d− 2

2

∞∑
m=0

hk+2+2m

2k+2+2mm!(d−22 )k+2+m+1

=
d− 2

2

∞∑
m=0

1
d−2
2 + k +m+ 2

hk+2+2m

2k+2+2mm!(d−22 )k+2+m

.

For any term involving hk+2+2m, the coefficient in βk is large than the coefficient in βk+2. Since hk+2+2m are
non-negative for any m ≥ 0 and hk ≥ 0, we get βk ≥ βk+2.

Lastly, we show β0 ≤ β1. By (32) and (36), we get

β1 =
d− 2

2

h1

2(d−22 )2
=

1

4d
, (37)

and

β0 =
d− 2

2

∞∑
m=0

h2m

4mm!
(
d−2
2

)
m+1

=
d− 2

2π

 1

4
(
d−2
2

)
2

+
∑
m≥2

((2m− 3)!!)
2

4m(m− 1)!
(
d−2
2

)
m+1


=

1

2πd
+
∑
m≥2

am, (38)

where am = d−2
2π

[(2m−3)!!]2

4m(m−1)!( d−2
2 )

m+1

for m ≥ 2.

Note for any d ≥ 3 and m ≥ 2,
am+1

am
=

(2m− 1)2

4m(m+ 1 + d−2
2 )
≤ m2

(m+ 1)2
.

Thus,

∑
m≥2

am ≤ 4a2

∑
m≥2

1

m2

 (a)

≤ 1

πd(d+ 2)

(
π2

6
− 1

)
(39)

where (a) holds by a2 = 1
4πd(d+2) .

Combining (37), (38) and (39), we get

β1 − β0 ≥
1

4d
−
[

1

2πd
+

1

πd(d+ 2)

(
π2

6
− 1

)]
> 0.

With the eigendecomposition of Φ, we now compute the projection R(f, r).

Corollary 2. Suppose the function f has the form f(x) = h(〈w, x〉) where w ∈ Sd−1 is the parameter, then

R(f, r) =

√√√√ ∞∑
k=r−1

β2
2k

2k + λ

λ
Cλ2k(1)

where β` has the same form as (32) and λ = d−2
2 .



Proof. Since {Y`,i, 1 ≤ i ≤ N`} forms an orthonormal basis of H`, it follows from Theorem 2 that 〈f, Y`,i〉 =

β`Y`,i(w) which gives the orthogonal projection of f(x) on H` as
∑N`
i=1 β`Y`,i(w)Y`,i(x). Then by the definition

of R(f, `) and the fact that β` = 0 for ` = 2j + 1, j ≥ 1, we have

R(f, r) =

√√√√ ∞∑
k=r−1

β2
2k

N2k∑
i=1

Y 2
2k,i(w). (40)

By (35), we get
N∑̀
i=1

Y 2
`,i(w) =

`+ λ

λ
Cλ` (1).

Plug it back into (40), we get the desired conclusion.

C Additional numerical experiments

C.1 Simulations

We focus on two specific settings:

• Linear: f∗(x) = 〈b, x〉 with b ∼ N(0, Id).

• Teacher neural network: f∗(x) =
∑3
i=1 biψ(〈vi, x〉), where ψ(z) = 1

1+e−z is the sigmoid function, bi’s are
i.i.d. Rademacher random variables, and vi ∼ N(0, Id).

We run SGD on the streaming data with constant step size η = 0.2. We assume the symmetric initialization to
ensure the initial prediction error ∆0 = f∗. At each iteration, we randomly draw data X uniformly from Sd−1 to
obtain (X, y) where y = f∗(X). The average prediction error is estimated using freshly drawn 400 data points,
and the resulting error is further averaged over 20 independent runs.

Figure 1 considers the setting with a varying number of hidden neurons m, when f∗ is the teacher neural network
and d = 500. Similar to the case with d = 5, Figure 1a shows that the averaged prediction error convergences
faster when m increases from 100 to 1000, but there is not much difference when m is increased further. Again,
this is consistent with our theory, because when m is large enough, the random kernel Ht is already well
approximated by the Neural Tangent Kernel Φ. We also observe a small proportion of sign changes from figure
1b when m is above 1000, which leads to a small approximation error εt in view of Lemma A.8 and Lemma A.5.
Figure 1c shows the relative deviation of the weight matrix at each iteration from the initialization. Following

Lemma A.1, we see ‖W (t) − W (0)‖F = O(t) while ‖W (0)‖F = O(
√
md). As a result, we see ‖W (t)−W (0)‖F

‖W (0)‖F
decreases as m increases for fixed t and ‖W (t)−W (0)‖F

‖W (0)‖F increases as t grows for fixed m.

The same experiment is performed on the linear f∗ and the results are shown in Figure 2 for d = 5 and Figure
3 for d = 500. We again see an increase in the convergence rate, a decrease in the number of sign changes,
and a decrease in the relative deviation of the weight matrix from the initialization as m increases. In addition,
we observe a smaller convergence rate when d = 500 compared to d = 5. This is due to the following reason.
Compared to d = 5, when d = 500, λr is smaller and thus the contraction factor

∏t
s=0(1 − ηsλr) is larger,

resulting in a slower convergence rate, as is shown in Corollary 1.

C.2 Real Data

We also run a numerical experiment on the MNIST dataset. We only use the classes of images 0 and 1 for
simplicity. We treat the empirical distribution of 14780 images with 28 × 28 pixels as the underlying true data
distribution. We reshape the data to have each xi ∈ R784. For each xi ∈ R784 in the dataset, we assign yi = 1 if
the corresponding image is 1 and yi = −1 if the image is 0. We then normalize xi to have ‖xi‖2 = 1. We run the
SGD on streaming data with step size η = 0.02 to learn the model. At each iteration, we randomly draw one xi
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Figure 1: comparison of different number of neurons with teacher neural network f∗ with d = 500
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Figure 2: comparison of different number of neurons with linear f∗ with d = 5
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Figure 3: comparison of different number of neurons with linear f∗ with d = 500

from the dataset to obtain (xi, yi). The averge prediction error is estimated using freshly drawn 200 data points,
and the resulting error is further averaged over 20 independent runs. Figure 4 shows the result with m = 10000.
Figure 4a shows that the overparametrized two-layer ReLU neural network under the one-pass SGD can learn f∗

in the handwritten digit recognition scenario. Figure 4b and Figure 4c show a small proportion of sign changes
and a small relative deviation of the weight matrix from the initialization.
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Figure 4: Results on the MNIST dataset with m = 10000
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