Supplementary Materials

A Analysis

Here, we present the complete proof of our main result. For reader's conveninence, we restate the theorem, lemmas and propositions.
We condition on the initialization $W(0)$ and the outer weight a. The expectation $\mathbb{E}[\cdot]$ is taken over the randomness of the samples drawn at iterations, unless specified otherwise.
Theorem 1. Suppose the step size $\eta_{t} \leq \frac{\theta}{t+1}$ with $\theta<\frac{1}{4}$. For any $T<\infty$, if

$$
m \geq c\left(d^{2}+\max \left\{\left(\frac{(T+1)^{2 \theta}}{\theta}\right)^{9},\left(\frac{\theta \log (T)}{\delta}\right)^{9}\right\}\right)
$$

for some universal constant $c>0$, then with probability at least $\left.1-2 \exp \left(-2 m^{1 / 3}\right)\right)-\delta$,

$$
\begin{equation*}
\mathbb{E}\left[\left\|\Delta_{t}\right\|_{2}\right] \leq \inf _{\ell}\left\{\prod_{k=0}^{t-1}\left(1-\eta_{k} \lambda_{\ell}\right)\left\|\Delta_{0}\right\|_{2}+\mathcal{R}\left(\Delta_{0}, \ell\right)\right\}+2 c_{1}, \quad \forall 0 \leq t \leq T \tag{1}
\end{equation*}
$$

where $c_{1}=\sigma_{0} \sqrt{\frac{e^{4 \theta} \theta^{2}(2-4 \theta)}{1-4 \theta}}$.

A. 1 Proof Overview

We prove (1) via induction over iteration t.
The base case $t=0$ trivially holds as $\left\|\Delta_{0}\right\|_{2} \leq\left\|\Delta_{0}\right\|_{2}+2 c_{1}$. Assume (1) holds for any $s \leq t \leq T$, we show $\mathbb{E}\left[\|W(s+1)-W(0)\|_{\mathrm{F}}\right]$ is small for any $s \leq t$.
Lemma A.1. For any $t \geq 0$,

$$
\begin{equation*}
\mathbb{E}\left[\|W(t+1)-W(0)\|_{\mathrm{F}}\right] \leq \sum_{s=0}^{t} \eta_{s}\left(\mathbb{E}\left[\left\|\Delta_{s}\right\|_{2}\right]+\tau\right) \tag{2}
\end{equation*}
$$

Proof. By the SGD update,

$$
\begin{equation*}
W_{j}(t+1)-W_{j}(t)=\frac{\eta_{t} a_{j}}{\sqrt{m}}\left[f^{*}\left(X_{t}\right)+e_{t}-f\left(X_{t} ; W(t)\right)\right] \mathbf{1}_{\left\{\left\langle W_{j}(t), X_{t}\right\rangle \geq 0\right\}} X_{t} \tag{3}
\end{equation*}
$$

where $X_{t} \in \mathbb{R}^{d}$ is the fresh sample drawn at iteration t and e_{t} is the random noise.
In view of (3), for any s,

$$
\begin{equation*}
\|W(s+1)-W(s)\|_{\mathrm{F}}=\frac{\eta_{s}}{\sqrt{m}}\left|\Delta_{s}\left(X_{s}\right)+e_{s}\right|\left\|D_{s} a X_{s}^{\top}\right\|_{\mathrm{F}} \tag{4}
\end{equation*}
$$

where $D_{s} \in \mathbb{R}^{m \times m}$ is a diagonal matrix with diagonal entries given by $\left\{\mathbf{1}_{\left\{\left\langle W_{1}(s), X_{s}\right\rangle \geq 0\right\}}, \cdots,\left\{\mathbf{1}_{\left\{\left\langle W_{m}(s), X_{s}\right\rangle \geq 0\right\}}\right\}\right.$, $a \in \mathbb{R}^{m}$ is the outer weight, and $\Delta_{s}\left(X_{s}\right) \in \mathbb{R}$ is the prediction error at iteration s given input X_{s}.

Note that $D_{s} a X_{s}^{\top}$ is a rank-one matrix and thus $\left\|D_{s} a X_{s}^{\top}\right\|_{\mathrm{F}}=\left\|D_{s} a\right\|_{2}\left\|X_{s}\right\|_{2} \leq \sqrt{m}$, where the last inequality holds since $\left\|D_{s}\right\|_{2} \leq 1,\|a\|_{2}=\sqrt{m}$, and $\left\|X_{s}\right\|_{2}=1$. Thus, by triangle inequality,

$$
\|W(t+1)-W(0)\|_{\mathrm{F}} \leq \sum_{s=0}^{t}\|W(s+1)-W(s)\|_{\mathrm{F}} \leq \sum_{s=0}^{t} \eta_{s}\left|\Delta_{s}\left(X_{s}\right)+e_{s}\right|
$$

Taking expectation on both hand sides, we have

$$
\begin{align*}
\mathbb{E}\left[\|W(t+1)-W(0)\|_{\mathrm{F}}\right] & \leq \sum_{s=0}^{t} \eta_{s} \mathbb{E}\left[\left|\Delta_{s}\left(X_{s}\right)+e_{s}\right|\right] \\
& \stackrel{(a)}{\leq} \sum_{s=0}^{t} \eta_{s} \mathbb{E}\left[\sqrt{\mathbb{E}_{X_{s}, e_{s}}\left[\left(\Delta_{s}\left(X_{s}\right)+e_{s}\right)^{2}\right]}\right] \\
& \stackrel{(b)}{\leq} \sum_{s=0}^{t} \eta_{s}\left(\mathbb{E}\left[\left\|\Delta_{s}\right\|_{2}\right]+\tau\right) \tag{5}
\end{align*}
$$

where (a) holds by Cauchy-Schwartz inequality; (b) holds by independence of X_{s} and e_{s}.

We now claim that for any $s \leq t$,

$$
\begin{equation*}
\mathbb{E}\left[\left\|\Delta_{s}\right\|_{2}\right] \leq\left\|\Delta_{0}\right\|_{2}+2 c_{1} \tag{6}
\end{equation*}
$$

To see this, note for any $\varepsilon>0, \mathcal{R}\left(\Delta_{0}, \ell\right)<\varepsilon$ for sufficiently large ℓ. Thus,

$$
\mathbb{E}\left[\left\|\Delta_{s}\right\|_{2}\right] \leq \prod_{k=0}^{s-1}\left(1-\eta_{k} \lambda_{\ell}\right)\left\|\Delta_{0}\right\|_{2}+\epsilon+2 c_{1} \leq\left\|\Delta_{0}\right\|_{2}+\epsilon+2 c_{1}
$$

Since ϵ can be arbitrarily small, (6) holds.
Pugging (6) into (2), when $\eta_{s} \leq \frac{\theta}{s+1}$, we get

$$
\begin{equation*}
\mathbb{E}\left[\|W(s+1)-W(0)\|_{\mathrm{F}}\right] \leq[\theta(\log (T)+1)]\left(\left\|\Delta_{0}\right\|_{2}+\tau+2 c_{1}\right) \tag{7}
\end{equation*}
$$

The induction is then completed by the following proposition.
Proposition A.2. Suppose the conditions in Theorem 1 hold. If (7) holds for any $s \leq t \leq T-1$, then (1) holds for $t+1$ with probability at least $1-2 \exp \left(-m^{1 / 3}\right)-\delta$ over the initialization $W(0)$ and the outer weight a.

In Section A.2, we present the proof of Proposition A. 2 in details. As a brief overview, we first follow [Su and Yang, 2019] to derive a recursive relation of Δ_{t}. Afterwards, we recursively replace Δ_{t} and bound $\left\|\Delta_{t}\right\|_{2}$ by the sum of four terms. We then carefully analyze each of the four terms to complete the proof.

A. 2 Proof of Proposition A. 2

Following [Su and Yang, 2019], we first analyze how the prediction values evolve over iterations. Denote $A=$ $\left\{j: a_{j}=1\right\}$ and $B=\left\{j: a_{j}=-1\right\}$. By definition,

$$
\begin{align*}
f(x ; W(t+1))-f(x ; W(t)) & =\frac{1}{\sqrt{m}} \sum_{j \in A}\left[\sigma\left(\left\langle W_{j}(t+1), x\right\rangle\right)-\sigma\left(\left\langle W_{j}(t), x\right\rangle\right)\right] \\
& -\frac{1}{\sqrt{m}} \sum_{j \in B}\left[\sigma\left(\left\langle W_{j}(t+1), x\right\rangle\right)-\sigma\left(\left\langle W_{j}(t), x\right\rangle\right)\right] \tag{8}
\end{align*}
$$

We now bound (8) from both above and below. By the SGD update,

$$
\begin{equation*}
W_{j}(t+1)-W_{j}(t)=\frac{\eta_{t} a_{j}}{\sqrt{m}}\left[f^{*}\left(X_{t}\right)+e_{t}-f\left(X_{t} ; W(t)\right)\right] \mathbf{1}_{\left\{\left\langle W_{j}(t), X_{t}\right\rangle \geq 0\right\}} X_{t} \tag{9}
\end{equation*}
$$

where $X_{t} \in \mathbb{R}^{d}$ is the fresh sample drawn at iteration t and e_{t} is the random noise. Since $\mathbf{1}_{\{v \geq 0\}}(u-v) \leq$ $\sigma(u)-\sigma(v) \leq \mathbf{1}_{\{u \geq 0\}}(u-v)$ for $u, v \in \mathbb{R}$, it follows that

$$
\begin{aligned}
& \sigma\left(\left\langle W_{j}(t+1), x\right\rangle\right)-\sigma\left(\left\langle W_{j}(t), x\right\rangle\right) \leq \frac{\eta_{t} a_{j}}{\sqrt{m}}\left[f^{*}\left(X_{t}\right)+e_{t}-f\left(X_{t} ; W(t)\right)\right]\left\langle X_{t}, x\right\rangle \mathbf{1}_{\left\{\left\langle W_{j}(0), X_{t}\right\rangle \geq 0\right\}} \mathbf{1}_{\left\{\left\langle W_{j}(t+1), x\right\rangle \geq 0\right\}} \\
& \sigma\left(\left\langle W_{j}(t+1), x\right\rangle\right)-\sigma\left(\left\langle W_{j}(t), x\right\rangle\right) \geq \frac{\eta_{t} a_{j}}{\sqrt{m}}\left[f^{*}\left(X_{t}\right)+e_{t}-f\left(X_{t} ; W(t)\right)\right]\left\langle X_{t}, x\right\rangle \mathbf{1}_{\left\{\left\langle W_{j}(t), X_{t}\right\rangle \geq 0\right\}} \mathbf{1}_{\left\{\left\langle W_{j}(t), x\right\rangle \geq 0\right\}}
\end{aligned}
$$

For notation simplicity, define the following functions:

$$
\begin{aligned}
& \Phi_{t}^{+}(x, \widetilde{x})=\frac{1}{m} \sum_{j \in A}\langle x, \widetilde{x}\rangle \mathbf{1}_{\left\{\left\langle W_{j}(t), \widetilde{x}\right\rangle \geq 0\right\}} \mathbf{1}_{\left\{\left\langle W_{j}(t), x\right\rangle \geq 0\right\}}, \\
& \Psi_{t}^{+}(x, \widetilde{x})=\frac{1}{m} \sum_{j \in A}\langle x, \widetilde{x}\rangle \mathbf{1}_{\left\{\left\langle W_{j}(t), \widetilde{x}\right\rangle \geq 0\right\}} \mathbf{1}_{\left\{\left\langle W_{j}(t+1), x\right\rangle \geq 0\right\}} .
\end{aligned}
$$

Similarly we define Φ_{t}^{-}and Ψ_{t}^{-}in terms of the summation over B. Then $H_{t}=\Phi_{t}^{+}+\Phi_{t}^{-}$. Define $M_{t}=\Psi_{t}^{-}-\Phi_{t}^{-}$ and $L_{t}=\Psi_{t}^{+}-\Phi_{t}^{+}$.
With the above notation, we obtain the following upper bound:

$$
\begin{align*}
& f(x ; W(t+1))-f(x ; W(t)) \\
& \leq \eta_{t} \Psi_{t}^{+}\left(x, X_{t}\right)\left(f^{*}\left(X_{t}\right)+e_{t}-f\left(X_{t} ; W(t)\right)\right)+\eta_{t} \Phi_{t+1}^{-}\left(x, X_{t}\right)\left[f^{*}\left(X_{t}\right)+e_{t}-f\left(X_{t} ; W(t)\right)\right] \\
& =\eta_{t}\left(\Psi_{t}^{+}\left(x, X_{t}\right)+\Phi_{t}^{-}\left(x, X_{t}\right)\right)\left[f^{*}\left(X_{t}\right)+e_{t}-f\left(X_{t} ; W(t)\right)\right] \\
& =\eta_{t}\left[H_{t}\left(x, X_{t}\right)+L_{t}\left(x, X_{t}\right)\right]\left[f^{*}\left(X_{t}\right)+e_{t}-f\left(X_{t} ; W(t)\right)\right] \tag{10}
\end{align*}
$$

Similarly, we can obtain a lower bound as

$$
\begin{align*}
f(x ; W(t+1))-f(x ; W(t)) & \geq \eta_{t}\left(\Psi_{t}^{-}\left(x, X_{t}\right)+\Phi_{t}^{+}\left(x, X_{t}\right)\right)\left[f^{*}\left(X_{t}\right)+e_{t}-f\left(X_{t} ; W(t)\right)\right] \\
& =\eta_{t}\left[H_{t}\left(x, X_{t}\right)+M_{t}\left(x, X_{t}\right)\right]\left[f^{*}\left(X_{t}\right)+e_{t}-f\left(X_{t} ; W(t)\right)\right] \tag{11}
\end{align*}
$$

In view of (10) and (11), if M_{t} and L_{t} are small, then the evolution of the prediction values is mainly determined by the kernel function H_{t}. To capture this idea, define

$$
\begin{equation*}
\epsilon_{t}\left(x, x^{\prime} ; W(t)\right) \triangleq f(x ; W(t))-f(x ; W(t+1))+\eta_{t} H_{t}\left(x, x^{\prime}\right)\left[f^{*}\left(x^{\prime}\right)+e_{t}-f\left(x^{\prime} ; W(t)\right)\right] \tag{12}
\end{equation*}
$$

For simplicity, we use $\epsilon_{t}\left(x, x^{\prime}\right)$ to denote $\epsilon_{t}\left(x, x^{\prime} ; W(t)\right)$. Then from the definition of ϵ_{t}, we have that

$$
\begin{equation*}
f^{*}(x)-f(x ; W(t+1))=f^{*}(x)-f(x ; W(t))-\eta_{t} H_{t}\left(x, X_{t}\right)\left[f^{*}\left(X_{t}\right)+e_{t}-f\left(X_{t} ; W(t)\right)\right]+\epsilon_{t}\left(x, X_{t}\right) . \tag{13}
\end{equation*}
$$

Moreover, by (10) and (11),

$$
\begin{equation*}
-\eta_{t} L_{t}\left(x, X_{t}\right)\left[f^{*}\left(X_{t}\right)+e_{t}-f\left(X_{t} ; W(t)\right)\right] \leq \epsilon_{t}\left(x, X_{t}\right) \leq-\eta_{t} M_{t}\left(x, X_{t}\right)\left[f^{*}\left(X_{t}\right)+e_{t}-f\left(X_{t} ; W(t)\right)\right] \tag{14}
\end{equation*}
$$

Thus, we get

$$
\begin{equation*}
\Delta_{t+1}(x)=\left(\mathrm{I}-\eta_{t} \mathrm{H}_{t}\right) \circ \Delta_{t}\left(X_{t}\right)-v_{t}\left(x, X_{t}\right)+\epsilon_{t}\left(x, X_{t}\right) \tag{15}
\end{equation*}
$$

where

$$
\begin{aligned}
v_{t}\left(x, X_{t}\right) & \equiv v_{t}\left(x, X_{t} ; W(t)\right) \\
& \triangleq \eta_{t} H_{t}\left(x, X_{t}\right)\left[f^{*}\left(X_{t}\right)+e_{t}-f\left(X_{t} ; W(t)\right)\right]-\eta_{t} \mathbb{E}_{X_{t}}\left[H_{t}\left(x, X_{t}\right)\left(f^{*}\left(X_{t}\right)-f\left(X_{t} ; W(t)\right)\right)\right]
\end{aligned}
$$

characterizes the deviation of the stochastic gradient from its expectation.
For notation simplicity, we define operators:

$$
\mathrm{K}_{t}=\mathrm{I}-\eta_{t} \Phi, \quad \mathrm{Q}_{t}=\mathrm{I}-\eta_{t} \mathrm{H}_{t}, \quad \mathrm{D}_{t}=\mathrm{Q}_{t}-\mathrm{K}_{t}
$$

Note that $\left\|\mathrm{D}_{t}\right\|_{2}=\left\|\mathrm{Q}_{t}-\mathrm{K}_{t}\right\|_{2} \leq \eta_{t}\left\|\Phi-H_{t}\right\|_{\infty}$. Since H_{t} is positive semi-definite and $\left\|H_{t}\right\|_{\infty} \leq 1$, we get that $0 \leq \gamma_{j} \leq 1$ for all j, where γ_{i} is the i-th largest eigenvalue of H_{t}. Therefore, as $0 \leq \eta_{t} \leq 2$,

$$
\begin{equation*}
\left\|Q_{t}\right\|_{2} \leq\left\|Q_{t}\right\|_{\infty} \leq \sup _{1 \leq i<\infty}\left|1-\eta_{t} \gamma_{i}\right| \leq 1 \tag{16}
\end{equation*}
$$

Similarly, we can get that $\left\|\mathrm{K}_{t}\right\|_{2} \leq 1$.

With the above notation, we can simplify (15) as

$$
\begin{equation*}
\Delta_{t+1}=\mathrm{Q}_{t} \circ \Delta_{t}-v_{t}+\epsilon_{t} \tag{17}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\Delta_{t+1}=\prod_{s=0}^{t} \mathrm{Q}_{s} \circ \Delta_{0}-\sum_{r=0}^{t} \prod_{s=r+1}^{t} \mathrm{Q}_{s} \circ v_{r}+\sum_{r=0}^{t} \prod_{s=r+1}^{t} \mathrm{Q}_{s} \circ \epsilon_{r} \tag{18}
\end{equation*}
$$

Here Q_{s} is random due to the randomness of H_{s}. We want to decompose (18) into deterministic terms which involve K_{s} and the remaining part. Intuitively, we want to show the remaining part is small so the dynamic of the prediction error is mainly determined by K_{s}. Note $\mathrm{Q}_{s}=\mathrm{K}_{s}+\mathrm{D}_{s}$ by definition. For any t, by recursively replacing Q_{s} by $\mathrm{K}_{s}+\mathrm{D}_{s}$ from $s=0$ to $s=t$, we get that $\prod_{s=0}^{t} \mathrm{Q}_{s}=\prod_{s=0}^{t} \mathrm{~K}_{s}+\sum_{r=0}^{t} \prod_{i=r+1}^{t} \mathrm{Q}_{i} \mathrm{D}_{r} \prod_{j=0}^{r-1} \mathrm{~K}_{j}$. Thus,

$$
\Delta_{t+1}=\prod_{s=0}^{t} \mathrm{~K}_{s} \circ \Delta_{0}+\sum_{r=0}^{t}\left(\prod_{i=r+1}^{t} \mathrm{Q}_{i} \mathrm{D}_{r} \prod_{j=0}^{r-1} \mathrm{~K}_{j} \circ \Delta_{0}\right)+\sum_{r=0}^{t}\left(\prod_{s=r+1}^{t} \mathrm{Q}_{s} \circ\left(\epsilon_{r}-v_{r}\right)\right)
$$

Taking the L_{2} norm over both hand sides and using the triangle inequality, we get

$$
\begin{align*}
\left\|\Delta_{t+1}\right\|_{2} & \leq\left\|\prod_{s=0}^{t} \mathrm{~K}_{s} \circ \Delta_{0}\right\|_{2}+\sum_{r=0}^{t}\left\|\prod_{i=r+1}^{t} \mathrm{Q}_{i} \mathrm{D}_{r} \prod_{j=0}^{r-1} \mathrm{~K}_{j} \circ \Delta_{0}\right\|_{2}+\left\|\sum_{r=0}^{t} \prod_{s=r+1}^{t} \mathrm{Q}_{s} \circ v_{r}\right\|_{2}+\sum_{r=0}^{t}\left\|\prod_{s=r+1}^{t} \mathrm{Q}_{s} \circ \epsilon_{r}\right\|_{2} \\
& \leq\left\|\prod_{s=0}^{t} \mathrm{~K}_{s} \circ \Delta_{0}\right\|_{2}+\sum_{r=0}^{t}\left\|\mathrm{D}_{r}\right\|_{2}\left\|\Delta_{0}\right\|_{2}+\left\|\sum_{r=0}^{t} \prod_{s=r+1}^{t} \mathrm{Q}_{s} \circ v_{r}\right\|_{2}+\sum_{r=0}^{t}\left\|\epsilon_{r}\right\|_{2} \tag{19}
\end{align*}
$$

where the last inequality holds due to $\left\|\mathrm{Q}_{s}\right\|_{2} \leq 1$ and $\left\|\mathrm{K}_{s}\right\|_{2} \leq 1$.
Note that the first term in (19) does not depend on the sample drawn in SGD. The second term corresponds to the approximation error of using K_{s} instead of Q_{s}. The third term measures the accumulation of the noise brought by stochastic gradient descent. The last term measures the accumulation of the approximation error of using kernel functions H_{t} shown in (13).
We will analyze (19) term by term, and then combine them to prove Proposition A.2.
First term: Recall $\lambda_{1} \geq \lambda_{2} \cdots$ are the eigenvalues of Φ with corresponding eigenfunction ϕ_{i} and $\mathcal{R}(g, \ell)=$ $\sum_{i \geq \ell+1}\left\langle g, \phi_{i}\right\rangle^{2}$ is the L_{2} norm of the projection of function g onto the space spanned by the $l+1, l+2, \cdots$ eigenfunctions of Φ.

The following lemma derives an upper bound of the first term of (19) via the eigendecomposition of Φ.
Lemma A.3. Suppose $\eta_{s} \lambda_{1}<1$ for any $s \leq t$, then,

$$
\left\|\prod_{s=0}^{t} \mathrm{~K}_{s} \circ \Delta_{0}\right\|_{2} \leq \inf _{r}\left\{\prod_{s=0}^{t}\left(1-\eta_{s} \lambda_{r}\right)\left\|\Delta_{0}\right\|_{2}+\mathcal{R}\left(\Delta_{0}, r\right)\right\}
$$

Proof. Fix any t. By the eigendecomposition of Φ, we know $\prod_{s=0}^{t} \mathrm{~K}_{s} \circ \Delta_{0}=\sum_{i=1}^{\infty} \rho_{i}(t)\left\langle\Delta_{0}, \phi_{i}\right\rangle \phi_{i}$, where $\rho_{i}(t) \triangleq \prod_{s=0}^{t}\left(1-\eta_{s} \lambda_{i}\right)$. Thus, for arbitrary $r \in \mathbb{N}$, we have

$$
\begin{aligned}
\left\|\prod_{s=0}^{t} \mathrm{~K}_{s} \circ \Delta_{0}\right\|_{2}^{2} & =\sum_{i=1}^{\infty} \rho_{i}^{2}(t)\left\langle\Delta_{0}, \phi_{i}\right\rangle^{2} \\
& \stackrel{(a)}{\leq} \sum_{i=1}^{r} \rho_{r}^{2}(t)\left\langle\Delta_{0}, \phi_{i}\right\rangle^{2}+\sum_{i=r+1}^{\infty}\left\langle\Delta_{0}, \phi_{i}\right\rangle^{2} \\
& \leq \rho_{r}^{2}(t)\left\|\Delta_{0}\right\|_{2}^{2}+\mathcal{R}^{2}\left(\Delta_{0}, r\right)
\end{aligned}
$$

where (a) holds by $\rho_{i}(t) \leq 1$ and the fact that $\rho_{i}(t) \leq \rho_{r}(t)$ for any t. The conclusion then follows.

Second term: To bound the second term of (19), it remains to bound $\sum_{r=0}^{t}\left\|\mathrm{D}_{r}\right\|_{2}$. Note that $\left\|\mathrm{D}_{r}\right\|_{2}=$ $\left\|\mathrm{Q}_{r}-\mathrm{K}_{r}\right\|_{2} \leq \eta_{r}\left\|H_{r}-\Phi\right\|_{\infty}$. Lemma A. 4 and Lemma A. 5 below together provide an upper bound of $\left\|H_{r}-\Phi\right\|_{\infty}$ under event $\Omega_{1} \cap \Omega_{2}$, where

$$
\Omega_{1}=\left\{\sup _{x, R}\left|\frac{1}{m} \sum_{i=1}^{m} \mathbf{1}_{\left\{\left|\left\langle W_{i}(0), x\right\rangle\right| \leq R\right\}}-\mathbb{E}_{w \sim N\left(0, I_{d}\right)}\left[\mathbf{1}_{\{|\langle w, x\rangle| \leq R\}}\right]\right| \leq \frac{1}{m^{1 / 3}}+C_{2} \sqrt{\frac{d}{m}}\right\}
$$

and

$$
\left.\left.\Omega_{2}=\left\{\sup _{x, \widetilde{\widetilde{x}}} \left\lvert\, \frac{1}{m} \sum_{i=1}^{m} \mathbf{1}_{\left\{\left\langle W_{i}(0), x\right\rangle \geq 0\right\}} \mathbf{1}_{\left\{\left\langle W_{i}(0), \tilde{x}\right\rangle \geq 0\right\}}-\mathbb{E}_{w \sim N\left(0, I_{d}\right)}\left[\mathbf{1}_{\{\langle w, x\rangle \geq 0\}} \mathbf{1}_{\{\langle w, \widetilde{x}\rangle \geq 0\}}\right)\right.\right] \right\rvert\, \leq \frac{1}{m^{1 / 3}}+C_{3} \sqrt{\frac{d}{m}}\right\}
$$

for some universal constants C_{2} and C_{3}.
Both events are defined with respect to the initial randomness $W(0)$, and require the sample mean of some function of $W_{i}(0)$ to be close to the expectation. Since $W_{i}(0)$'s are i.i.d. Gaussian, using uniform concentration inequalities, we will show later in Lemma A. 9 that both Ω_{1} and Ω_{2} occur with high probability when m is large.
Denote

$$
O_{t}(x)=\left\{i: \operatorname{sgn}\left(\left\langle W_{i}(t), x\right\rangle\right) \neq \operatorname{sgn}\left(\left\langle W_{i}(0), x\right\rangle\right)\right\}
$$

as the set of neurons that have sign flips at iteration t when the input data is x. Denote $S_{t}(x)$ as the cardinality of $O_{t}(x)$.
Lemma A.4. Under Ω_{2}, for any $t \geq 0$,

$$
\left\|H_{t}-\Phi\right\|_{\infty} \leq \frac{2}{m}\left\|S_{t}\right\|_{\infty}+C_{3} \sqrt{\frac{d}{m}}+\frac{1}{m^{1 / 3}}
$$

Proof. We first show $\left\|H_{t}-H_{0}\right\|_{\infty} \leq \frac{2}{m}\left\|S_{t}\right\|_{\infty}$ and then show $\left\|H_{0}-\Phi\right\|_{\infty} \leq \frac{1}{m^{1 / 3}}+C_{3} \sqrt{\frac{d}{m}}$. The conclusion follows by the triangle inequality.
To see $\left\|H_{t}-H_{0}\right\|_{\infty} \leq \frac{2}{m}\left\|S_{t}\right\|_{\infty}$, note

$$
\begin{aligned}
\left|H_{t}(x, \widetilde{x})-H_{0}(x, \widetilde{x})\right| & =\left|\langle x, \widetilde{x}\rangle \frac{1}{m} \sum_{i=1}^{m}\left(\mathbf{1}_{\left\{\left\langle W_{i}(t), x\right\rangle \geq 0\right\}} \mathbf{1}_{\left\{\left\langle W_{i}(t), \widetilde{x}\right\rangle \geq 0\right\}}-\mathbf{1}_{\left\{\left\langle W_{i}(0), x\right\rangle \geq 0\right\}} \mathbf{1}_{\left\{\left\langle W_{i}(0), \widetilde{x}\right\rangle \geq 0\right\}}\right)\right| \\
& \leq \frac{1}{m} \sum_{i=1}^{m}\left|\mathbf{1}_{\left\{\left\langle W_{i}(t), x\right\rangle \geq 0\right\}} \mathbf{1}_{\left\{\left\langle W_{i}(t), \widetilde{x}\right\rangle \geq 0\right\}}-\mathbf{1}_{\left\{\left\langle W_{i}(0), x\right\rangle \geq 0\right\}} \mathbf{1}_{\left\{\left\langle W_{i}(0), \widetilde{x}\right\rangle \geq 0\right\}}\right| \\
& \leq \frac{1}{m} \sum_{i=1}^{m}\left|\mathbf{1}_{\left\{\left\langle W_{i}(t), \widetilde{x}\right\rangle \geq 0\right\}}-\mathbf{1}_{\left\{\left\langle W_{i}(0), \widetilde{x}\right\rangle \geq 0\right\}}\right|+\frac{1}{m} \sum_{i=1}^{m}\left|\mathbf{1}_{\left\{\left\langle W_{i}(t), x\right\rangle \geq 0\right\}}-\mathbf{1}_{\left\{\left\langle W_{i}(0), x\right\rangle \geq 0\right\}}\right| \\
& \leq \frac{1}{m}\left(S_{t}(x)+S_{t}(\widetilde{x})\right) .
\end{aligned}
$$

The conclusion follows by taking the supremum over x and \widetilde{x} on both hand sides.
To see $\left\|H_{0}-\Phi\right\|_{\infty} \leq \frac{1}{m^{1 / 3}}+C_{3} \sqrt{\frac{d}{m}}$, note

$$
\begin{aligned}
\left|H_{0}(x, \widetilde{x})-\Phi(x, \widetilde{x})\right| & =\left|\langle x, \widetilde{x}\rangle\left(\frac{1}{m} \sum_{i=1}^{m} \mathbf{1}_{\left\{\left\langle W_{i}(0), x\right\rangle \geq 0\right\}} \mathbf{1}_{\left\{\left\langle W_{i}(0), \widetilde{x}\right\rangle \geq 0\right\}}-\mathbb{E}_{w \sim N\left(0, I_{d}\right)}\left[\mathbf{1}_{\{\langle w, x\rangle \geq 0\}} \mathbf{1}_{\{\langle w, \widetilde{x}\rangle \geq 0\}}\right]\right)\right| \\
& \leq \left\lvert\, \frac{1}{m} \sum_{i=1}^{m} \mathbf{1}_{\left\{\left\langle W_{i}(0), x\right\rangle \geq 0\right\}} \mathbf{1}_{\left\{\left\langle W_{i}(0), \widetilde{x}\right\rangle \geq 0\right\}}-\mathbb{E}_{w \sim N\left(0, I_{d}\right)}\left[\mathbf{1}_{\{\langle w, x\rangle \geq 0\}} \mathbf{1}_{\{\langle w, \widetilde{x}\rangle \geq 0\}}\right]\right.
\end{aligned}
$$

which completes the proof by taking the supremum of (x, \widetilde{x}) and invoking the definition of Ω_{2}.
The next lemma further shows that when $\|W(t)-W(0)\|_{F}$ is small and m is large, $\frac{1}{m}\left\|S_{t}\right\|_{\infty}$ is small under Ω_{1}.

Lemma A.5. Under Ω_{1},

$$
\frac{1}{m}\left\|S_{t}\right\|_{\infty} \leq \frac{1}{m^{1 / 3}}+C_{2} \sqrt{\frac{d}{m}}+\frac{2^{\frac{4}{3}}\|W(t)-W(0)\|_{\mathrm{F}}^{\frac{2}{3}}}{m^{1 / 3} \pi^{1 / 3}}
$$

Proof. Fix any R and input x. Denote $B_{R}(x)=\left\{i:\left|\left\langle W_{i}(0), x\right\rangle\right| \leq R\right\}$. Then $S_{t}(x) \leq\left|B_{R}(x)\right|+\left|O_{t}(x) \cap B_{R}^{c}(x)\right|$. If neuron $i \in O_{t}(x) \cap B_{R}^{c}(x)$, then $\left|\left\langle W_{i}(t), x\right\rangle-\left\langle W_{i}(0), x\right\rangle\right|>R$. Thus, $\|W(t)-W(0)\|_{\mathrm{F}}^{2} \geq R^{2}\left|O_{t}(x) \cap B_{R}^{c}(x)\right|$. Under Ω_{1}, we have

$$
\sup _{x}\left|B_{R}(x)\right| \leq m^{2 / 3}+C_{2} \sqrt{m d}+m \mathbb{E}_{w \sim N\left(0, I_{d}\right)}\left[\mathbf{1}_{\{|\langle w, x\rangle| \leq R\}}\right] \leq m^{2 / 3}+C_{2} \sqrt{m d}+\frac{2 m R}{\sqrt{2 \pi}}
$$

Thus, we get

$$
\left\|S_{t}\right\|_{\infty} \leq m^{2 / 3}+C_{2} \sqrt{m d}+\frac{2 m R}{\sqrt{2 \pi}}+\frac{\|W(t)-W(0)\|_{\mathrm{F}}^{2}}{R^{2}}
$$

Optimally choosing R to be $\left(\frac{\sqrt{2 \pi}\|W(t)-W(0)\|_{\mathrm{F}}^{2}}{2 m}\right)^{1 / 3}$, we get that

$$
\begin{aligned}
\left\|S_{t}\right\|_{\infty} & \leq m^{2 / 3}+C_{2} \sqrt{m d}+\frac{4 m}{\sqrt{2 \pi}}\left(\frac{\sqrt{2 \pi}}{2 m}\|W(t)-W(0)\|_{\mathrm{F}}^{2}\right)^{1 / 3} \\
& =m^{2 / 3}+C_{2} \sqrt{m d}+\frac{2^{4 / 3} m^{2 / 3}\|W(t)-W(0)\|_{\mathrm{F}}^{2 / 3}}{\pi^{1 / 3}}
\end{aligned}
$$

The conclusion follows by dividing both hand sides by m.

Third term: Next we derive an upper bound of the third term of (19). Recall $\sigma_{t}^{2}=\mathbb{E}\left[\left\|\Delta_{t}\right\|_{2}^{2}\right]+\tau^{2}$.
Lemma A.6. Suppose $0 \leq \eta_{s} \leq 2$ for any $s \geq 0$, then,

$$
\mathbb{E}\left[\left\|\sum_{s=0}^{t} \prod_{i=s+1}^{t} \mathrm{Q}_{i} \circ v_{s}\right\|_{2}\right] \leq \sqrt{\sum_{s=0}^{t} \eta_{s}^{2} \sigma_{s}^{2}}
$$

Proof. Denote F_{t} as the filtration of $\left\{X_{1}, \cdots, X_{t}\right\}$. Let $q_{t}=\sum_{r=0}^{t} \prod_{i=r+1}^{t} \mathrm{Q}_{i} \circ v_{r}$ and $h_{t}=\mathrm{Q}_{t} \circ q_{t-1}$. Thus, $q_{t}=v_{t}+h_{t}$. Then

$$
\mathbb{E}\left[\left\|q_{t}\right\|_{2}^{2}\right]=\mathbb{E}\left[\left\|v_{t}+h_{t}\right\|_{2}^{2}\right] \stackrel{(a)}{=} \mathbb{E}\left[\left\|v_{t}\right\|_{2}^{2}\right]+\mathbb{E}\left[\left\|h_{t}\right\|_{2}^{2}\right] \stackrel{(b)}{\leq} \mathbb{E}\left[\left\|v_{t}\right\|_{2}^{2}\right]+\mathbb{E}\left[\left\|q_{t-1}\right\|_{2}^{2}\right]
$$

where (a) uses the fact that $\mathbb{E}\left[\left\langle v_{t}, h\right\rangle\right]=\mathbb{E}\left[\mathbb{E}\left[\left\langle v_{t}, h\right\rangle \mid F_{t-1}\right]\right]=\mathbb{E}\left[\left\langle\mathbb{E}\left[v_{t} \mid F_{t-1}\right], h\right\rangle\right]=0$; (b) follows from (16). Recursively applying the last displayed equation yields that $\mathbb{E}\left[\left\|q_{t}\right\|_{2}^{2}\right] \leq \sum_{r=0}^{t} \mathbb{E}\left[\left\|v_{r}\right\|_{2}^{2}\right]$.
Furthermore, note that

$$
\begin{align*}
& \mathbb{E}\left[v_{t}^{2}\left(x, X_{t} ; W_{t}\right)\right] \\
& =\eta_{t}^{2} \mathbb{E}\left[\left(H_{t}\left(x, X_{t}\right)\left(\Delta_{t}\left(X_{t}\right)+e_{t}\right)-\mathbb{E}_{X_{t}}\left[H_{t}\left(x, X_{t}\right) \Delta_{t}\left(X_{t}\right)\right]\right)^{2}\right] \\
& =\eta_{t}^{2} \mathbb{E}_{F_{t-1}}\left[\mathbb{E}_{X_{t}, e_{t}}\left[H_{t}^{2}\left(x, X_{t}\right)\left(\Delta_{t}\left(X_{t}\right)+e_{t}\right)^{2} \mid F_{t-1}\right]-\eta_{t}^{2}\left\{\mathbb{E}_{X_{t}}\left[H_{t}\left(x, X_{t}\right) \Delta_{t}\left(X_{t}\right) \mid F_{t-1}\right]\right\}^{2}\right] \\
& \leq \eta_{t}^{2} \mathbb{E}_{F_{t-1}}\left[\mathbb{E}_{X_{t}, e_{t}}\left[H_{t}^{2}\left(x, X_{t}\right)\left(\Delta_{t}\left(X_{t}\right)+e_{t}\right)^{2} \mid F_{t-1}\right]\right] \\
& \leq \eta_{t}^{2}\left(\mathbb{E}\left[\left\|\Delta_{t}\right\|_{2}^{2}\right]+\tau^{2}\right) \\
& =\eta_{t}^{2} \sigma_{t}^{2} \tag{20}
\end{align*}
$$

where the last inequality holds from $\left\|H_{t}\right\|_{\infty} \leq 1$ and independence of e_{t} and F_{t}. Therefore, $\mathbb{E}\left[\left\|v_{t}\right\|_{2}^{2}\right] \leq \eta_{t}^{2} \sigma_{t}^{2}$ for any $t \geq 0$. The conclusion follows by applying Cauchy-Schwartz inequality.

Remark A.1. One key technical challenge is how to control the accumulation of the noise v_{t} due to the stochasticity of the gradients. Unlike the conventional SGD analysis such as [Nemirovski et al., 2009], there is no deterministic upper bound on $\left\|v_{t}\right\|_{2}$. In the existing neural networks literature on $S G D$ such as [Allen-Zhu et al., 2019], a vanishing step size with order $\Theta\left(\frac{1}{\log m}\right)$ is used to ensure a small accumulation of the noise v_{t}, which is particularly undesirable in the overparameterized regime when m is large. In contrast, we utilize the fact that v_{t} is a sequence of martingale difference and carefully bound the accumulation of v_{t} in expectation in Lemma A. 6 when $\eta_{t}=O(1 / t)$.

Next, we show an recursive formula of σ_{t}^{2}.
Lemma A.7. For any $t \geq 0$,

$$
\sigma_{t+1}^{2} \leq \prod_{s=0}^{t}\left(1+2 \eta_{s}\right)^{2} \sigma_{0}^{2}
$$

Proof. Recall from (17), $\Delta_{t+1}=\mathrm{Q}_{t} \circ \Delta_{t}-v_{t}+\epsilon_{t}$. Therefore,

$$
\begin{align*}
\left\|\Delta_{t+1}\right\|_{2}^{2} & =\left\|\mathrm{Q}_{t} \circ \Delta_{t}-v_{t}+\epsilon_{t}\right\|_{2}^{2} \\
& =\left\|\mathrm{Q}_{t} \circ \Delta_{t}\right\|_{2}^{2}+\left\|v_{t}\right\|_{2}^{2}+\left\|\epsilon_{t}\right\|_{2}^{2}-2\left\langle\mathrm{Q}_{t} \circ \Delta_{t}, v_{t}\right\rangle-2\left\langle v_{t}, \epsilon_{t}\right\rangle+2\left\langle\mathrm{Q}_{t} \circ \Delta_{t}, \epsilon_{t}\right\rangle \\
& \leq\left\|\Delta_{t}\right\|_{2}^{2}+\left\|v_{t}\right\|_{2}^{2}+\left\|\epsilon_{t}\right\|_{2}^{2}+2\left\|\Delta_{t}\right\|_{2}\left\|v_{t}\right\|_{2}+2\left\|v_{t}\right\|_{2}\left\|\epsilon_{t}\right\|_{2}+2\left\|\Delta_{t}\right\|_{2}\left\|\epsilon_{t}\right\|_{2} \tag{21}
\end{align*}
$$

where the last inequality holds by $\left\|\mathrm{Q}_{t}\right\|_{2} \leq 1$ and Cauchy-Schwartz inequality.
Note $\left\|L_{t}\right\|_{\infty} \leq 1$ and $\left\|M_{t}\right\|_{\infty} \leq 1$ for any t. Thus, by (14), $\left\|\epsilon_{t}\right\|_{2}^{2} \leq \eta_{t}^{2}\left(\Delta_{t}\left(X_{t}\right)+e_{t}\right)$ and hence

$$
\begin{equation*}
\mathbb{E}\left[\left\|\epsilon_{t}\right\|_{2}^{2}\right] \leq \eta_{t}^{2}\left(\mathbb{E}\left[\left\|\Delta_{t}\right\|_{2}^{2}\right]+\tau^{2}\right)=\eta_{t}^{2} \sigma_{t}^{2} \tag{22}
\end{equation*}
$$

Conditioning on the initialization $W(0)$, taking expectation over both hand sides of (21), adding τ^{2} on both hand sides, and applying the upper bound of $\mathbb{E}\left[\left\|\epsilon_{t}\right\|_{2}^{2}\right]$ in (22) and $\mathbb{E}\left[\left\|v_{t}\right\|_{2}^{2}\right]$ in (20), we get

$$
\begin{aligned}
\sigma_{t+1}^{2} & \leq \sigma_{t}^{2}+\eta_{t}^{2} \sigma_{t}^{2}+\eta_{t}^{2} \sigma_{t}^{2}+2 \mathbb{E}\left[\left\|\Delta_{t}\right\|_{2}\left\|v_{t}\right\|_{2}\right]+2 \mathbb{E}\left[\left\|v_{t}\right\|_{2}\left\|\epsilon_{t}\right\|_{2}\right]+2 \mathbb{E}\left[\left\|\Delta_{t}\right\|_{2}\left\|\epsilon_{t}\right\|_{2}\right] \\
& \leq\left(2 \eta_{t}^{2}+1\right) \sigma_{t}^{2}+2 \sqrt{\mathbb{E}\left[\left\|\Delta_{t}\right\|_{2}^{2}\right]} \sqrt{\mathbb{E}\left[\left\|v_{t}\right\|_{2}^{2}\right]}+2 \sqrt{\mathbb{E}\left[\left\|v_{t}\right\|_{2}^{2}\right]} \sqrt{\mathbb{E}\left[\left\|\epsilon_{t}\right\|_{2}^{2}\right]}+2 \sqrt{\mathbb{E}\left[\left\|\Delta_{t}\right\|_{2}^{2}\right]} \sqrt{\mathbb{E}\left[\left\|\epsilon_{t}\right\|_{2}^{2}\right]} \\
& \leq\left(2 \eta_{t}^{2}+1\right) \sigma_{t}^{2}+2 \eta_{t} \sigma_{t}^{2}+2 \eta_{t}^{2} \sigma_{t}^{2}+2 \eta_{t} \sigma_{t}^{2} \\
& =\left(1+2 \eta_{t}\right)^{2} \sigma_{t}^{2}
\end{aligned}
$$

where the second inequality holds by Cauchy-Schwartz inequality.

By Lemma A.7, we get

$$
\begin{align*}
\eta_{r} \sigma_{r} & \leq \frac{\theta}{r+1} \prod_{k=0}^{r-1}\left(1+\frac{2 \theta}{(k+1)}\right) \sigma_{0} \\
& \leq \frac{\theta}{r+1} \exp (2 \theta(\log (r+1)+1)) \sigma_{0} \\
& \leq \theta(r+1)^{2 \theta-1} e^{2 \theta} \sigma_{0} \tag{23}
\end{align*}
$$

Plugging (23) into Lemma A.6, we get

$$
\begin{align*}
\sqrt{\sum_{r=0}^{t} \mathbb{E}\left[\left\|v_{r}\right\|_{2}^{2}\right]} & \leq \sqrt{\sum_{r=0}^{t} \eta_{r}^{2} \sigma_{r}^{2}} \\
& \leq \sqrt{\sum_{r=0}^{t} \frac{e^{4 \theta} \theta^{2} \sigma_{0}^{2}}{(r+1)^{2}} \exp (4 \theta \log (r+1))} \\
& \leq \sqrt{\sum_{r=0}^{t} \sigma_{0}^{2} e^{4 \theta} \theta^{2}(r+1)^{4 \theta-2}} \\
& \leq \sqrt{\theta^{2} e^{4 \theta}\left(\frac{1}{1-4 \theta}+1\right) \sigma_{0}^{2}}=c_{1} \tag{24}
\end{align*}
$$

where the last inequality holds since $\sum_{r=0}^{t}(r+1)^{4 \theta-2} \leq \int_{1}^{t+1} x^{4 \theta-2} d x+1 \leq\left.\frac{1}{4 \theta-1} x^{4 \theta-1}\right|_{1} ^{t+1}+1 \leq \frac{1}{1-4 \theta}+1$.
Fourth term: For the fourth term of (19), taking the L_{2} norm and the conditional expectation of (14), by Cauchy-Schwartz inequality, we have

$$
\begin{equation*}
\mathbb{E}\left[\left\|\epsilon_{r}\right\|_{2}\right] \leq \eta_{r} \sigma_{r} \sqrt{\mathbb{E}\left[\left\|L_{r}\right\|_{\infty}^{2}+\left\|M_{r}\right\|_{\infty}^{2}\right]} \tag{25}
\end{equation*}
$$

It remains to bound $\mathbb{E}\left[\left\|L_{r}\right\|_{\infty}^{2}\right]$ and $\mathbb{E}\left[\left\|M_{r}\right\|_{\infty}^{2}\right]$. Note

$$
\left.\begin{array}{rl}
\mathbb{E}\left[\left\|L_{r}\right\|_{\infty}^{2}\right] & =\mathbb{E}\left[\left\|L_{r}\right\|_{\infty}^{2} \mathbf{1}_{\left\{\|W(r+1)-W(0)\|_{\mathrm{F}} \leq m^{1 / 3},\|W(r)-W(0)\|_{\mathrm{F}} \leq m^{1 / 3}\right\}}\right] \\
& +\mathbb{E}\left[\left\|L_{r}\right\|_{\infty}^{2} \mathbf{1}_{\left\{\|W(r+1)-W(0)\|_{\mathrm{F}}>m^{1 / 3}\right.} \text { or }\|W(r)-W(0)\|_{\mathrm{F}}>m^{1 / 3}\right\}
\end{array}\right] .
$$

where the inequality holds by $\left\|L_{r}\right\|_{\infty} \leq 1$.
Through Lemma A. 5 and the following Lemma A.8, we can upper bound the first component of (26) as

$$
\begin{equation*}
\mathbb{E}\left[\left\|L_{r}\right\|_{\infty}^{2} \mathbf{1}_{\left\{\|W(r+1)-W(0)\|_{\mathrm{F}} \leq m^{1 / 3},\|W(r)-W(0)\|_{\mathrm{F}} \leq m^{1 / 3}\right\}}\right] \leq\left[\frac{2}{m^{1 / 3}}+2 C_{2} \sqrt{\frac{d}{m}}+\frac{2^{10 / 3}}{\pi^{1 / 3} m^{1 / 9}}\right]^{2} \tag{27}
\end{equation*}
$$

Lemma A.8.

$$
\begin{aligned}
\left\|L_{t}\right\|_{\infty} & \leq \frac{1}{m}\left\|S_{t}\right\|_{\infty}+\frac{1}{m}\left\|S_{t+1}\right\|_{\infty} \\
\left\|M_{t}\right\|_{\infty} & \leq \frac{1}{m}\left\|S_{t}\right\|_{\infty}+\frac{1}{m}\left\|S_{t+1}\right\|_{\infty}
\end{aligned}
$$

Proof. Fix x and \widetilde{x}, we have

$$
\begin{aligned}
\left|L_{t}(x, \widetilde{x})\right| & =\frac{1}{m}\left|\langle x, \widetilde{x}\rangle \sum_{j \in A} \mathbf{1}_{\left\{\left\langle W_{j}(t), \widetilde{x}\right\rangle \geq 0\right\}}\left(\mathbf{1}_{\left\{\left\langle W_{j}(t+1), x\right\rangle \geq 0\right\}}-\mathbf{1}_{\left\{\left\langle W_{j}(t), x\right\rangle \geq 0\right\}}\right)\right| \\
& \leq \frac{1}{m} \sum_{j \in A}\left|\mathbf{1}_{\left\{\left\langle W_{j}(t), \widetilde{x}\right\rangle \geq 0\right\}}\left(\mathbf{1}_{\left\{\left\langle W_{j}(t+1), x\right\rangle \geq 0\right\}}-\mathbf{1}_{\left\{\left\langle W_{j}(t), x\right\rangle \geq 0\right\}}\right)\right| \\
& \leq \frac{1}{m} \sum_{j \in A}\left|\mathbf{1}_{\left\{\left\langle W_{j}(t+1), x\right\rangle \geq 0\right\}}-\mathbf{1}_{\left\{\left\langle W_{j}(t), x\right\rangle \geq 0\right\}}\right| \\
& \leq \frac{1}{m} \sum_{j \in A}\left|\mathbf{1}_{\left\{\left\langle W_{j}(t+1), x\right\rangle \geq 0\right\}}-\mathbf{1}_{\left\{\left\langle W_{j}(0), x\right\rangle \geq 0\right\}}\right|+\frac{1}{m} \sum_{j \in A}\left|\mathbf{1}_{\left\{\left\langle W_{j}(t), x\right\rangle \geq 0\right\}}-\mathbf{1}_{\left\{\left\langle W_{j}(0), x\right\rangle \geq 0\right\}}\right| \\
& \leq \frac{1}{m}\left(S_{t+1}(x)+S_{t}(x)\right) .
\end{aligned}
$$

Thus, by taking the supremum on both hand sides, we get the desired bound on $\left\|L_{t}\right\|_{\infty}$. The conclusion for $\left\|M_{t}\right\|_{\infty}$ follows analogously.

For the second component of (26), note by (7) and Markov's inequality, we have for $s \in\{r, r+1\}$

$$
\begin{align*}
& \mathbb{P}\left[\|W(s)-W(0)\|_{\mathrm{F}}>m^{1 / 3}\right] \\
& \leq \frac{\left(\left\|\Delta_{0}\right\|_{2}+\tau+2 c_{1}\right) \theta(\log (s)+1)}{m^{1 / 3}} \tag{28}
\end{align*}
$$

Combining (26), (27) and (28), we have

$$
\begin{equation*}
\mathbb{E}\left[\left\|L_{r}\right\|_{\infty}^{2}\right] \leq\left[\frac{2}{m^{1 / 3}}+2 C_{2} \sqrt{\frac{d}{m}}+\frac{2^{10 / 3}}{\pi^{1 / 3} m^{1 / 9}}\right]^{2}+\frac{2\left[\left\|\Delta_{0}\right\|_{2}+\tau+2 c_{1}\right] \theta(\log (t+1)+1)}{m^{1 / 3}} \tag{29}
\end{equation*}
$$

Denote $\Omega_{3}=\left\{\left\|\Delta_{0}\right\|_{2} \leq \frac{\sqrt{\left\|f^{*}\right\|_{2}+1}}{\delta}\right\}$ where $0<\delta<1$. Under Ω_{3}, we can further bound the RHS of (29) in terms of δ.
The upper bound for $\mathbb{E}\left[\left\|M_{t}\right\|_{\infty}^{2}\right]$ can be obtained analogously.
Plugging (29) and (23) into (25), we get

$$
\begin{align*}
\sum_{r=0}^{t} \mathbb{E}\left[\left\|\epsilon_{r}\right\|_{2}\right] & \leq \frac{2 \sqrt{14} \sigma_{0}}{m^{1 / 9}} \sum_{r=0}^{t} \frac{\theta}{r+1} \prod_{k=0}^{r-1}\left(1+\frac{2 \theta}{k+1}\right) \\
& \leq \frac{\sqrt{14} e^{2 \theta}(t+2)^{2 \theta} \sigma_{0}}{m^{1 / 9}} \tag{30}
\end{align*}
$$

for $m \geq \max \left\{\left[\left(\frac{\sqrt{\left\|f^{*}\right\|_{2}^{2}+1}}{\delta}+\tau+2 c_{1}\right) \theta(\log (T)+1)\right]^{9}, 2^{14} C_{2}^{3} d^{2}\right\}$.
Combining Lemma A.3, Lemma A.4, Lemma A.5, (24) and (30), we get that conditioning on $W(0)$ and the outer weight a such that $\Omega_{1} \cap \Omega_{2} \cap \Omega_{3}$ holds,

$$
\begin{aligned}
\mathbb{E}\left[\left\|\Delta_{t+1}\right\|_{2}\right] & \leq \inf _{\ell}\left\{\prod_{k=0}^{t}\left(1-\eta_{k} \lambda_{\ell}\right)\left\|\Delta_{0}\right\|_{2}+\mathcal{R}\left(\Delta_{0}, \ell\right)\right\}+\frac{\theta}{m^{1 / 3}}(\log (t+1)+1)\left\|\Delta_{0}\right\|_{2}+\frac{\sqrt{14} e^{2 \theta} \sigma_{0}}{m^{1 / 9}}(t+2)^{2 \theta}+c_{1} \\
& \leq \inf _{\ell}\left\{\prod_{k=0}^{t}\left(1-\eta_{k} \lambda_{\ell}\right)\left\|\Delta_{0}\right\|_{2}+\mathcal{R}\left(\Delta_{0}, \ell\right)\right\}+2 c_{1}
\end{aligned}
$$

for $m \geq \max \left\{27\left(2 C_{2}+C_{3}\right)^{3} d^{2},\left\{24 \theta(\log (T)+1)\left(\frac{\sqrt{\left\|f^{*}\right\|_{2}^{2}+1}}{\delta}+\tau+2 c_{1}\right)\right\}^{9 / 2},[10 \theta(\log T+1)]^{3}, 14^{5}\left[\frac{(T+1)^{2 \theta}}{\theta}\right]^{9}\right\}$.

Ω_{1}, Ω_{2} and Ω_{3} occur with high probability :

Lemma A.9.

$$
\begin{aligned}
& \mathbb{P}\left[\Omega_{1}\right] \geq 1-\exp \left(-2 m^{1 / 3}\right) \\
& \mathbb{P}\left[\Omega_{2}\right] \geq 1-\exp \left(-2 m^{1 / 3}\right)
\end{aligned}
$$

Proof. We show the conclusion for Ω_{2}; the conclusion for Ω_{1} follows analogously. Denote

$$
\phi\left(w_{1}, \cdots, w_{m}\right)=\sup _{x, x^{\prime}}\left|\frac{1}{m} \sum_{i=1}^{m} \mathbf{1}_{\left\{\left\langle w_{i}, x\right\rangle \geq 0\right\}} \mathbf{1}_{\left\{\left\langle w_{i}, x^{\prime}\right\rangle \geq 0\right\}}-\mathbb{E}_{w}\left[\mathbf{1}_{\{\langle w, x\rangle \geq 0\}} \mathbf{1}_{\left\{\left\langle w, x^{\prime}\right\rangle \geq 0\right\}}\right]\right|
$$

By the triangle inequality, we have

$$
\left|\phi\left(w_{1}, \cdots, w_{i-1}, w_{i}, w_{i+1}, w_{m}\right)-\phi\left(w_{1}, \cdots, w_{i-1}, w_{i}^{\prime}, w_{i+1}, \cdots, w_{m}\right)\right| \leq \frac{1}{m}
$$

Let W_{1}, \ldots, W_{m} denote m i.i.d. $\mathcal{N}\left(0, \mathbf{I}_{d}\right)$. Thus, by McDiarmid's inequality, we get

$$
\mathbb{P}\left[\phi\left(W_{1}, \cdots, W_{m}\right) \geq m^{-1 / 3}+\mathbb{E}\left[\phi\left(W_{1}, \cdots, W_{m}\right]\right] \leq \exp \left(-2 m^{1 / 3}\right)\right.
$$

The proof is then completed by invoking the following claim

$$
\mathbb{E}\left[\phi\left(W_{1}, \cdots, W_{m}\right)\right] \leq C_{3} \sqrt{\frac{d}{m}}
$$

To prove the claim, by Proposition B.2, it suffices to show the VC dimension of \mathcal{F}_{1} is upper bounded by $11 d$, where $\mathcal{F}_{1}=\left\{g_{x, x^{\prime}}: g_{x, x^{\prime}}(w)=\mathbf{1}_{\{\langle w, x\rangle \geq 0\}} \mathbf{1}_{\left\{\left\langle w, x^{\prime}\right\rangle \geq 0\right\}}\right\}$.
To see $\operatorname{VC}\left(\mathcal{F}_{1}\right) \leq 11 d$, we first show $\operatorname{VC}\left(\mathcal{F}_{1}\right) \leq 11 \mathrm{VC}(\mathcal{G})$ where $\mathcal{G}=\left\{g_{x}: g_{x}(w)=\mathbf{1}_{\{\langle w, x\rangle \geq 0\}}\right\}$ and then show $\mathrm{VC}(\mathcal{G})=d$.
Now we show $\operatorname{VC}\left(\mathcal{F}_{1}\right) \leq 11 \mathrm{VC}(\mathcal{G})$. For any class of Boolean functions \mathcal{F} on \mathbb{R}^{d}, we define $\mathcal{C}_{\mathcal{F}}=\left\{D_{f}, f \in \mathcal{F}\right\}$ where $D_{f}=\left\{x: x \in \mathbb{R}^{\bar{d}}, f(x)=1\right\}$.
We claim $\mathcal{C}_{\mathcal{F}_{1}}=\mathcal{C}_{\mathcal{G}} \sqcap \mathcal{C}_{\mathcal{G}}$ where $\sqcap_{i=1}^{N} \mathcal{C}_{i}=\left\{\cap_{j=1}^{N} C_{j}: C_{j} \in \mathcal{C}_{j}, 1 \leq j \leq N\right\}$. To see this, note that for any $f \in \mathcal{F}_{1}$, we can find g_{1} and g_{2} in \mathcal{G} such that $D_{f}=D_{g_{1}} \cap D_{g_{2}}$. In particular, if $f=\mathbf{1}_{\left\{\left\langle w, x_{1}\right\rangle \geq 0\right\}} \mathbf{1}_{\left\{\left\langle w, x_{2}\right\rangle \geq 0\right\}}$, then we can take $g_{1}=\mathbf{1}_{\left\{\left\langle w, x_{1}\right\rangle \geq 0\right\}}$ and $g_{2}=\mathbf{1}_{\left\{\left\langle w, x_{2}\right\rangle \geq 0\right\}}$. Similarly, for any $g_{1}, g_{2} \in \mathcal{G}, D_{g_{1}} \cap D_{g_{2}}=D_{f}$ for some $f \in \mathcal{F}_{1}$. Then by Proposition B.1,

$$
\begin{equation*}
\mathrm{VC}\left(\mathcal{F}_{1}\right) \leq 5 \log (8) \mathrm{VC}(\mathcal{G}) \leq 11 \mathrm{VC}(\mathcal{G}) \tag{31}
\end{equation*}
$$

Next, we show $\operatorname{VC}(\mathcal{G})=d$ following the idea of [Hajek and Raginsky, 2019, Proposition 7.1].
Choose $\left\{w_{1}, w_{2}, \cdots, w_{d}\right\}$ to be linearly independent vectors in \mathbb{R}^{d}. Fix an arbitrary binary valued vector $b \in$ $\{ \pm 1\}^{d}$.
Consider the linear system $w_{i}^{T} x=b_{i}$ for $1 \leq i \leq d$. Since $\left\{w_{1}, w_{2}, \cdots, w_{d}\right\}$ are linearly independent, we can always find $x_{b}=W^{-1} b$ where $W=\left[w_{1}, w_{2}, \cdots, w_{d}\right]^{T}$. Thus, $g_{x_{b}}\left(w_{i}\right)=\mathbf{1}_{\left\{b_{i}=1\right\}}$ for all i. This shows $\operatorname{VC}(\mathcal{G}) \geq d$.
Now we show $\operatorname{VC}(\mathcal{G})<d+1$. Fix arbitrary $\left\{w_{1}, w_{2}, \cdots, w_{d+1}\right\}$. Suppose for any binary valued vector $b=$ $\{ \pm 1\}^{d+1}, \exists x_{b}$ such that $g_{x_{b}}\left(w_{i}\right)=\mathbf{1}_{\left\{b_{i}=1\right\}}$ for all i. Define $V=\left\{\left(\left\langle w_{1}, x\right\rangle,\left\langle w_{2}, x\right\rangle, \cdots,\left\langle w_{d+1}, x\right\rangle\right): x \in \mathbb{R}^{d}\right\}$ which is a linear subspace in \mathbb{R}^{d+1}. Since $x \in \mathbb{R}^{d}, \operatorname{dim}(V) \leq d$. Therefore, $\exists v \neq 0 \in V^{\perp}$ s.t. for any $x \in \mathbb{R}^{d}$,

$$
\sum_{i=1}^{d+1} v_{i}\left\langle w_{i}, x\right\rangle=0
$$

where v_{i} is the i-th coordinate of v.
WLOG we can assume that $v_{j}<0$ for some j. To see this, since $v \neq 0$, there must exist some $v_{k} \neq 0$. If $v_{k} \geq 0$ for all k, then we consider $-v_{k}$ for any k. Thus, we can always assume $v_{j}<0$ for some j.
Let $b_{k}=\mathbf{1}_{\left\{v_{k} \geq 0\right\}}-\mathbf{1}_{\left\{v_{k}<0\right\}}$ for all k. Denote $x_{0} \in \mathbb{R}^{d}$ which solves $g_{x_{0}}\left(w_{k}\right)=\mathbf{1}_{\left\{b_{k}=1\right\}}$ for all k. This implies

$$
\mathbf{1}_{\left\{\left\{w_{k}, x_{0}\right\rangle \geq 0\right\}}=\mathbf{1}_{\left\{v_{k} \geq 0\right\}}
$$

for any k.
Thus, $v_{k}\left\langle w_{k}, x_{0}\right\rangle \geq 0$ for any k. However, $\sum_{i=1}^{d+1} v_{i}\left\langle w_{i}, x_{0}\right\rangle=0$ which implies

$$
v_{k}\left\langle w_{k}, x_{0}\right\rangle=0
$$

for any k.
Since $v_{j}<0,\left\langle w_{j}, x_{0}\right\rangle<0$. This contradicts the fact that $v_{k}\left\langle w_{k}, x_{0}\right\rangle=0$ for any k. Thus, we conclude that $\mathrm{VC}(\mathcal{G})<d+1$.

Lemma A.10. For any $0<\delta<1$,

$$
\mathbb{P}\left[\Omega_{3}\right] \geq 1-\delta .
$$

Proof. Recall that a_{i} 's are i.i.d. Rademacher random variables. Thus,

$$
\begin{aligned}
\mathbb{E}_{a, W(0)}\left[\left\|\Delta_{0}\right\|_{2}^{2}\right] & =\left\|f^{*}\right\|_{2}^{2}-2 \mathbb{E}_{a, W(0)}\left\{\left\langle f^{*}, f\right\rangle\right\}+\mathbb{E}_{a, W(0)}\left[\|f\|_{2}^{2}\right] \\
& \stackrel{(a)}{=}\left\|f^{*}\right\|_{2}^{2}+\mathbb{E}_{a, W(0)}\left[\|f\|_{2}^{2}\right] \\
& \stackrel{(b)}{=}\left\|f^{*}\right\|_{2}^{2}+\mathbb{E}_{W(0), X}\left[\frac{1}{m} \sum_{i=1}^{m} \sigma^{2}\left(\left\langle W_{i}(0), X\right\rangle\right)\right] \\
& \stackrel{(c)}{\leq}\left\|f^{*}\right\|_{2}^{2}+\mathbb{E}_{W(0), X}\left[\left\langle W_{1}(0), X\right\rangle^{2}\right]=\left\|f^{*}\right\|_{2}^{2}+1,
\end{aligned}
$$

where (a) holds since $\mathbb{E}_{a}[f] \equiv 0$; (b) holds by $\mathbb{E}\left[a_{i} a_{j}\right]=0$ for $i \neq j ;(c)$ holds due to $\sigma^{2}(x) \leq x^{2}$; and the last equality holds because $\left\langle W_{1}(0), X\right\rangle \sim \mathcal{N}(0,1)$. The conclusion then follows by Markov's inequality and Cauchy-Schwartz inequality.

B Auxiliary Results

B. 1 VC dimension

Let \mathcal{C} be a collection of subsets of \mathbb{R}^{d}. For any set A consisting of finite points in \mathbb{R}^{d}, we denote $\mathcal{C}_{A}=$ $\{C \cap A: C \in \mathcal{C}\}$. We say \mathcal{C} shatters A if $\left|\mathcal{C}_{A}\right|=2^{|A|}$. Let $\mathcal{M}_{\mathcal{C}}(n)=\max \left\{\left|\mathcal{C}_{F}\right|: F \subset \mathbb{R}^{d},|F|=n\right\}$ and $\mathcal{S}(\mathcal{C})=\sup \left\{n: \mathcal{M}_{\mathcal{C}}(n)=2^{n}\right\}$ which is the largest cardinality of a set that can be shattered by \mathcal{C}.
Consider a class of Boolean functions \mathcal{F} on \mathbb{R}^{d}. For each $f \in \mathcal{F}$, we denote $D_{f}=\left\{x: x \in \mathbb{R}^{d}, f(x)=1\right\}$. As a result, the collection $\mathcal{C}_{\mathcal{F}} \triangleq\left\{D_{f}, f \in \mathcal{F}\right\}$ forms a collection of subsets of \mathbb{R}^{d}. The VC dimension of \mathcal{F} is defined as $\operatorname{VC}(\mathcal{F}) \triangleq \mathcal{S}\left(\mathcal{C}_{\mathcal{F}}\right)$.

We now present the propositions that are used in Lemma A.9.
Proposition B.1. [Van Der Vaart and Wellner, 2009, Theorem 1.1]

$$
\mathcal{S}\left(\sqcap_{i=1}^{N} \mathcal{C}_{i}\right) \leq \frac{5}{2} \log (4 N) \sum_{i=1}^{N} \mathcal{S}\left(\mathcal{C}_{i}\right),
$$

where $\sqcap_{i=1}^{N} \mathcal{C}_{i}=\left\{\cap_{j=1}^{N} C_{j}: C_{j} \in \mathcal{C}_{j}, 1 \leq j \leq N\right\}$.

Proposition B. 1 is used to bound the VC dimension of the function class of the product of two Boolean functions. Another application of VC dimension used in Lemma A. 9 is the following proposition.
Proposition B.2. [Vershynin, 2019, Theorem 8.3.23] Let \mathcal{F} be a class of Boolean functions on a probability space (Ω, Σ, μ) with finite $V C$ dimension $V C(\mathcal{F}) \geq 1$. Let $X_{1}, X_{2}, \cdots, X_{n}$ be independent random points in Ω. Then

$$
\mathbb{E}\left[\sup _{f \in \mathcal{F}}\left|\frac{1}{n} \sum_{i=1}^{n} f\left(X_{i}\right)-\mathbb{E}_{X}[f(X)]\right|\right] \leq C \sqrt{\frac{V C(\mathcal{F})}{n}}
$$

for some constant C.

B. 2 Eigen-decomposition of Φ when data is uniform on \mathbb{S}^{d-1}

Here, we present a way to compute the eigenvalues λ_{ℓ} and the projection $\mathcal{R}\left(f^{*}, \ell\right)$ in Corollary 1 and Corollary 2. Both can be viewed as the applications of the following Theorem 2.

Define the space of homogeneous harmonic polynomials of order ℓ on the sphere as

$$
H_{\ell}=\left\{P: \mathbb{S}^{d-1} \rightarrow \mathbb{R}: P(x)=\sum_{|\alpha|=\ell} c_{\alpha} x^{\alpha}, \Delta P=0\right\}
$$

where $x^{\alpha}=x_{1}^{\alpha_{1}} \cdots x_{d}^{\alpha_{d}},|\alpha|=\sum_{i=1}^{d} \alpha_{i}, c_{\alpha} \in \mathbb{R}$ and $\Delta=\sum_{i=1}^{d} \frac{\partial^{2}}{\partial x_{i}^{2}}$ is the Laplacian operator.
Denote for all $\ell \geq 0,\left\{Y_{\ell, i}\right\}_{i=1}^{N_{\ell}}$ as some orthonormal basis of H_{ℓ} where N_{ℓ} is the dimension of H_{ℓ}, i.e., $\left\langle Y_{\ell, i}, Y_{\ell, j}\right\rangle=0$ for $i \neq j$. Moreover, from [Dai and Xu, 2013, Theorem 1.1.2] for $\ell \neq \ell^{\prime}, H_{\ell}$ and $H_{\ell^{\prime}}$ are orthogonal. Hence, $\left\{Y_{\ell, i}\right\}$ are orthogonal across different ℓ as well.
We now derive in Theorem 2 an expansion for functions with the form $\mathcal{K}(x, y)=h(\langle x, y\rangle), x, y \in \mathbb{S}^{d-1}, d \geq 3$ in terms of $\left\{Y_{\ell, i}\right\}, 1 \leq i \leq N_{\ell}, \ell \geq 0$. A similar result is obtained in [Su and Yang, 2019] without a full proof. We provide a proof here for completeness.
Theorem 2. Suppose the function \mathcal{K} has the form $\mathcal{K}(x, y)=h(\langle x, y\rangle)$ where h is analytic on $[-1,1], x, y \in \mathbb{S}^{d-1}$ and $d \geq 3$. Then

$$
\mathcal{K}(x, y)=\sum_{\ell \geq 0} \beta_{\ell}(h) \sum_{i=1}^{N_{\ell}} Y_{\ell, i}(x) Y_{\ell, i}(y)
$$

where

$$
\begin{equation*}
\beta_{\ell}(h)=\frac{d-2}{2} \sum_{m=0}^{\infty} \frac{h_{\ell+2 m}}{2^{\ell+2 m} m!\left(\frac{d-2}{2}\right)_{\ell+m+1}} \tag{32}
\end{equation*}
$$

with $h_{\ell+2 m}$ is the $(\ell+2 m)$-th derivative of h at 0 and $(\cdot)_{n}$ is the Pochhammer symbol recursively defined as $(a)_{0}=1,(a)_{k}=(a+k-1)(a)_{k-1}$ for $k \geq 1$.
Remark B.1. The case $d=2$ can be analyzed using Fourier analysis. Since this is not of particular interest in our study, we do not provide the analysis here. One can refer to [Dai and Xu, 2013, Section 1.6] if interested.

Before presenting the proof of Theorem 2, we first show a key result that will be used in the proof of Theorem 2.
Proposition B.3. [Cantero and Iserles, 2012, Theorem 2, eq (2.1)] Let h be analytic in [-1,1]. Letting $h_{n}=h^{(n)}(0)$ be n-th order derivative, then for any $\alpha>-1, \alpha \neq-\frac{1}{2}$,

$$
\begin{equation*}
h(x)=\sum_{n=0}^{\infty} \widetilde{h}_{n} C_{n}^{\alpha+1 / 2}(x), x \in[-1,1] \tag{33}
\end{equation*}
$$

where

$$
C_{n}^{\alpha+1 / 2}(x)=\frac{(2 \alpha+1)_{n}}{n!} \sum_{k=0}^{n}(-1)^{k}\binom{n}{k} \frac{(n+2 \alpha+1)_{k}}{(\alpha+1)_{k}}\left(\frac{1-x}{2}\right)^{k}
$$

is the Gegenbauer polynomial, and

$$
\begin{equation*}
\widetilde{h}_{n}=(\alpha+n+1 / 2) \sum_{m=0}^{\infty} \frac{h_{n+2 m}}{2^{n+2 m} m!(\alpha+1 / 2)_{n+m+1}} \tag{34}
\end{equation*}
$$

with $h_{n+2 m}=h^{(n+2 m)}(0)$, the $n+2 m$-th derivative of h at 0 .

Remark B.2. Gegenbauer polynomials are orthogonal across different n, i.e., for $m \neq n, d \geq 3$ and any fixed $y \in \mathbb{S}^{d-1},\left\langle C_{n}^{\frac{d-2}{2}}(\langle\cdot, y\rangle), C_{m^{\frac{d-2}{2}}}(\langle\cdot, y\rangle)\right\rangle_{\mathbb{S}^{d-1}}=0$. The proof is based on the orthogonality of H_{ℓ}. One can check [Dai and Xu, 2013, Corollary 2.8] for a detailed proof.

The form of $\beta_{\ell}(h)$ in (32) depends on the specific function h. Throughout this section, we abbreviate $\beta_{\ell}(h)$ as β_{ℓ}.

Now we proceed to the proof of Theorem 2.

Proof. From [Dai and Xu, 2013, eq(2.8)], we know for any $l \geq 0$,

$$
\begin{equation*}
\frac{\ell+\lambda}{\lambda} C_{\ell}^{\lambda}(\langle x, y\rangle)=\sum_{i=1}^{N_{\ell}} Y_{\ell, i}(x) Y_{\ell, i}(y) \tag{35}
\end{equation*}
$$

where $\lambda=\frac{d-2}{2}, x, y \in \mathbb{S}^{d-1}$.
Plug (35) in (33) and note that $\alpha+1 / 2=\lambda=\frac{d-2}{2}$, we get

$$
h(\langle x, y\rangle)=\sum_{\ell \geq 0} \widetilde{h}_{\ell} \frac{\lambda}{\ell+\lambda} \sum_{i=1}^{N_{\ell}} Y_{\ell, i}(x) Y_{\ell, i}(y)=\beta_{\ell} \sum_{i=1}^{N_{\ell}} Y_{\ell, i}(x) Y_{\ell, i}(y)
$$

where

$$
\beta_{\ell}=\widetilde{h}_{\ell} \frac{\lambda}{\ell+\lambda}=\frac{d-2}{2} \sum_{m=0}^{\infty} \frac{h_{\ell+2 m}}{2^{\ell+2 m} m!\left(\frac{d-2}{2}\right)_{\ell+m+1}} .
$$

Theorem 2 directly implies the following corollary. Recall that the eigenvalues of Φ are denoted as $\left\{\lambda_{i}\right\}_{i=1}^{\infty}$ with $\lambda_{1} \geq \lambda_{2} \geq \cdots$.
Corollary 1. Let $\Phi\left(x, x^{\prime}\right)=h\left(\left\langle x, x^{\prime}\right\rangle\right)$ with $h(u)=\frac{u}{2 \pi}(\pi-\arccos (u)), u \in[-1,1]$. Then the eigenfunctions of Φ is $\left\{Y_{\ell, i}\right\}, 1 \leq i \leq N_{\ell}, \ell \geq 0$ with corresponding eigenvalues β_{ℓ} with the same form as (32) and multiplicity N_{ℓ} for each ℓ. More specifically, $\lambda_{1}=\beta_{1}$ and $\lambda_{k}=\beta_{2(k-2)}, k \geq 2$.

Proof. From the orthonormality of $\left\{Y_{\ell, i}\right\}$, it remains to show $\beta_{2 k+1}=0$ for any $k \geq 1, \beta_{\ell} \leq \beta_{\ell-2}$ for any $l \geq 2$, and $\beta_{1} \geq \beta_{0}$.

Firstly, we derive a common form of $h_{l+2 m}$. Note $h(0)=0$. By induction, we can get

$$
\begin{equation*}
h^{(k)}(u)=\frac{1}{2} \mathbf{1}_{\{k=1\}}-\frac{1}{2 \pi}\left[k \arccos ^{(k-1)}(u)+u \arccos ^{(k)}(u)\right] \tag{36}
\end{equation*}
$$

for any $k \geq 1$.
Thus, $h_{k}=\frac{1}{2} \mathbf{1}_{\{k=1\}}-\frac{1}{2 \pi} k \arccos ^{(k-1)}(0)$.
Note $\arccos ^{(2 i-1)}(0)=-[(2 i-3)!!]^{2}$ and $\arccos ^{(2 i)}(0)=0$ for $i \geq 1$. Thus, we get $h_{1}=\frac{1}{4}, h_{2 i}=\frac{i}{\pi}[(2 i-3)!!]^{2}$ and $h_{2 i+1}=0$ for all $i \geq 1$.
Plugging $h_{2 k+1}$ into (32), we get $\beta_{2 k+1}=0$ for any $k \geq 1$.
Now we show $\beta_{k} \geq \beta_{k+2}$ for any k. Fix any $d \geq 3$, from (32), we get

$$
\begin{aligned}
\beta_{k} & =\frac{d-2}{2} \sum_{m=0}^{\infty} \frac{h_{k+2 m}}{2^{k+2 m} m!\left(\frac{d-2}{2}\right)_{k+m+1}} \\
& =\frac{d-2}{2} \frac{h_{k}}{2^{k}\left(\frac{d-2}{2}\right)_{k+1}}+\frac{d-2}{2} \sum_{m=0}^{\infty} \frac{1}{m+1} \frac{h_{k+2+2 m}}{2^{k+2+2 m}(m)!\left(\frac{d-2}{2}\right)_{k+2+m}} .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\beta_{k+2} & =\frac{d-2}{2} \sum_{m=0}^{\infty} \frac{h_{k+2+2 m}}{2^{k+2+2 m} m!\left(\frac{d-2}{2}\right)_{k+2+m+1}} \\
& =\frac{d-2}{2} \sum_{m=0}^{\infty} \frac{1}{\frac{d-2}{2}+k+m+2} \frac{h_{k+2+2 m}}{2^{k+2+2 m} m!\left(\frac{d-2}{2}\right)_{k+2+m}} .
\end{aligned}
$$

For any term involving $h_{k+2+2 m}$, the coefficient in β_{k} is large than the coefficient in β_{k+2}. Since $h_{k+2+2 m}$ are non-negative for any $m \geq 0$ and $h_{k} \geq 0$, we get $\beta_{k} \geq \beta_{k+2}$.
Lastly, we show $\beta_{0} \leq \beta_{1}$. By (32) and (36), we get

$$
\begin{equation*}
\beta_{1}=\frac{d-2}{2} \frac{h_{1}}{2\left(\frac{d-2}{2}\right)_{2}}=\frac{1}{4 d}, \tag{37}
\end{equation*}
$$

and

$$
\begin{align*}
\beta_{0} & =\frac{d-2}{2} \sum_{m=0}^{\infty} \frac{h_{2 m}}{4^{m} m!\left(\frac{d-2}{2}\right)_{m+1}} \\
& =\frac{d-2}{2 \pi}\left[\frac{1}{4\left(\frac{d-2}{2}\right)_{2}}+\sum_{m \geq 2} \frac{((2 m-3)!!)^{2}}{4^{m}(m-1)!\left(\frac{d-2}{2}\right)_{m+1}}\right] \\
& =\frac{1}{2 \pi d}+\sum_{m \geq 2} a_{m} \tag{38}
\end{align*}
$$

where $a_{m}=\frac{d-2}{2 \pi} \frac{[(2 m-3)!!]^{2}}{4^{m}(m-1)!\left(\frac{d-2}{2}\right)_{m+1}}$ for $m \geq 2$.
Note for any $d \geq 3$ and $m \geq 2$,

$$
\frac{a_{m+1}}{a_{m}}=\frac{(2 m-1)^{2}}{4 m\left(m+1+\frac{d-2}{2}\right)} \leq \frac{m^{2}}{(m+1)^{2}}
$$

Thus,

$$
\begin{equation*}
\sum_{m \geq 2} a_{m} \leq 4 a_{2}\left(\sum_{m \geq 2} \frac{1}{m^{2}}\right) \stackrel{(a)}{\leq} \frac{1}{\pi d(d+2)}\left(\frac{\pi^{2}}{6}-1\right) \tag{39}
\end{equation*}
$$

where (a) holds by $a_{2}=\frac{1}{4 \pi d(d+2)}$.
Combining (37), (38) and (39), we get

$$
\beta_{1}-\beta_{0} \geq \frac{1}{4 d}-\left[\frac{1}{2 \pi d}+\frac{1}{\pi d(d+2)}\left(\frac{\pi^{2}}{6}-1\right)\right]>0
$$

With the eigendecomposition of Φ, we now compute the projection $\mathcal{R}(f, r)$.
Corollary 2. Suppose the function f has the form $f(x)=h(\langle w, x\rangle)$ where $w \in \mathbb{S}^{d-1}$ is the parameter, then

$$
\mathcal{R}(f, r)=\sqrt{\sum_{k=r-1}^{\infty} \beta_{2 k}^{2} \frac{2 k+\lambda}{\lambda} C_{2 k}^{\lambda}(1)}
$$

where β_{ℓ} has the same form as (32) and $\lambda=\frac{d-2}{2}$.

Proof. Since $\left\{Y_{\ell, i}, 1 \leq i \leq N_{\ell}\right\}$ forms an orthonormal basis of H_{ℓ}, it follows from Theorem 2 that $\left\langle f, Y_{\ell, i}\right\rangle=$ $\beta_{\ell} Y_{\ell, i}(w)$ which gives the orthogonal projection of $f(x)$ on H_{ℓ} as $\sum_{i=1}^{N_{\ell}} \beta_{\ell} Y_{\ell, i}(w) Y_{\ell, i}(x)$. Then by the definition of $\mathcal{R}(f, \ell)$ and the fact that $\beta_{\ell}=0$ for $\ell=2 j+1, j \geq 1$, we have

$$
\begin{equation*}
\mathcal{R}(f, r)=\sqrt{\sum_{k=r-1}^{\infty} \beta_{2 k}^{2} \sum_{i=1}^{N_{2 k}} Y_{2 k, i}^{2}(w)} . \tag{40}
\end{equation*}
$$

By (35), we get

$$
\sum_{i=1}^{N_{\ell}} Y_{\ell, i}^{2}(w)=\frac{\ell+\lambda}{\lambda} C_{\ell}^{\lambda}(1)
$$

Plug it back into (40), we get the desired conclusion.

C Additional numerical experiments

C. 1 Simulations

We focus on two specific settings:

- Linear: $f^{*}(x)=\langle b, x\rangle$ with $b \sim N\left(0, I_{d}\right)$.
- Teacher neural network: $f^{*}(x)=\sum_{i=1}^{3} b_{i} \psi\left(\left\langle v_{i}, x\right\rangle\right)$, where $\psi(z)=\frac{1}{1+e^{-z}}$ is the sigmoid function, b_{i} 's are i.i.d. Rademacher random variables, and $v_{i} \sim N\left(0, I_{d}\right)$.

We run SGD on the streaming data with constant step size $\eta=0.2$. We assume the symmetric initialization to ensure the initial prediction error $\Delta_{0}=f^{*}$. At each iteration, we randomly draw data X uniformly from \mathbb{S}^{d-1} to obtain (X, y) where $y=f^{*}(X)$. The average prediction error is estimated using freshly drawn 400 data points, and the resulting error is further averaged over 20 independent runs.

Figure 1 considers the setting with a varying number of hidden neurons m, when f^{*} is the teacher neural network and $d=500$. Similar to the case with $d=5$, Figure 1a shows that the averaged prediction error convergences faster when m increases from 100 to 1000, but there is not much difference when m is increased further. Again, this is consistent with our theory, because when m is large enough, the random kernel H_{t} is already well approximated by the Neural Tangent Kernel Φ. We also observe a small proportion of sign changes from figure 1b when m is above 1000 , which leads to a small approximation error ϵ_{t} in view of Lemma A. 8 and Lemma A.5. Figure 1c shows the relative deviation of the weight matrix at each iteration from the initialization. Following Lemma A.1, we see $\|W(t)-W(0)\|_{\mathrm{F}}=O(t)$ while $\|W(0)\|_{\mathrm{F}}=O(\sqrt{m d})$. As a result, we see $\frac{\|W(t)-W(0)\|_{\mathrm{F}}}{\|W(0)\|_{\mathrm{F}}}$ decreases as m increases for fixed t and $\frac{\|W(t)-W(0)\|_{\mathrm{F}}}{\|W(0)\|_{\mathrm{F}}}$ increases as t grows for fixed m.
The same experiment is performed on the linear f^{*} and the results are shown in Figure 2 for $d=5$ and Figure 3 for $d=500$. We again see an increase in the convergence rate, a decrease in the number of sign changes, and a decrease in the relative deviation of the weight matrix from the initialization as m increases. In addition, we observe a smaller convergence rate when $d=500$ compared to $d=5$. This is due to the following reason. Compared to $d=5$, when $d=500, \lambda_{r}$ is smaller and thus the contraction factor $\prod_{s=0}^{t}\left(1-\eta_{s} \lambda_{r}\right)$ is larger, resulting in a slower convergence rate, as is shown in Corollary 1.

C. 2 Real Data

We also run a numerical experiment on the MNIST dataset. We only use the classes of images 0 and 1 for simplicity. We treat the empirical distribution of 14780 images with 28×28 pixels as the underlying true data distribution. We reshape the data to have each $x_{i} \in \mathbb{R}^{784}$. For each $x_{i} \in \mathbb{R}^{784}$ in the dataset, we assign $y_{i}=1$ if the corresponding image is 1 and $y_{i}=-1$ if the image is 0 . We then normalize x_{i} to have $\left\|x_{i}\right\|_{2}=1$. We run the SGD on streaming data with step size $\eta=0.02$ to learn the model. At each iteration, we randomly draw one x_{i}

Figure 1: comparison of different number of neurons with teacher neural network f^{*} with $d=500$

Figure 2: comparison of different number of neurons with linear f^{*} with $d=5$

Figure 3: comparison of different number of neurons with linear f^{*} with $d=500$
from the dataset to obtain $\left(x_{i}, y_{i}\right)$. The averge prediction error is estimated using freshly drawn 200 data points, and the resulting error is further averaged over 20 independent runs. Figure 4 shows the result with $m=10000$. Figure 4a shows that the overparametrized two-layer ReLU neural network under the one-pass SGD can learn f^{*} in the handwritten digit recognition scenario. Figure 4 b and Figure 4 c show a small proportion of sign changes and a small relative deviation of the weight matrix from the initialization.

Figure 4: Results on the MNIST dataset with $m=10000$

References

[Allen-Zhu et al., 2019] Allen-Zhu, Z., Li, Y., and Song, Z. (2019). A convergence theory for deep learning via over-parameterization. In International Conference on Machine Learning, pages 242-252. 7
[Cantero and Iserles, 2012] Cantero, M. J. and Iserles, A. (2012). On rapid computation of expansions in ultraspherical polynomials. SIAM Journal on Numerical Analysis, 50(1):307-327. 12
[Dai and Xu, 2013] Dai, F. and Xu, Y. (2013). Approximation theory and harmonic analysis on spheres and balls, volume 23. Springer. 12, 13
[Hajek and Raginsky, 2019] Hajek, B. and Raginsky, M. (2019). Statistical learning theory. Lecture Notes, 387. 10
[Nemirovski et al., 2009] Nemirovski, A., Juditsky, A., Lan, G., and Shapiro, A. (2009). Robust stochastic approximation approach to stochastic programming. SIAM Journal on optimization, 19(4):1574-1609. 7
[Su and Yang, 2019] Su, L. and Yang, P. (2019). On learning over-parameterized neural networks: A functional approximation perspective. In Advances in Neural Information Processing Systems, pages 2641-2650. 2, 12
[Van Der Vaart and Wellner, 2009] Van Der Vaart, A. and Wellner, J. A. (2009). A note on bounds for vc dimensions. Institute of Mathematical Statistics collections, 5:103. 11
[Vershynin, 2019] Vershynin, R. (2019). High-dimensional probability. Cambridge, UK: Cambridge University Press. 12

