Proceedings of Machine Learning Research 131:5-14, 2020 IWSSL

Generating Natural Behaviors using
Constructivist Algorithms

Olivier L. Georgeon OGEORGEON@UNIV-CATHOLYON.FR
UR CONFLUENCE, Sciences et Humanits - UCLy, LIRIS CNRS UMR5205, Lyon, France

Paul Robertson PAULR@DOLLABS.COM
Doll inc. Lezington, MA 02421, USA

Jianyong Xue JIANYONG.XUE@QLIRIS.CNRS.FR

Universit Claude Bernard Lyon 1, LIRIS CNRS UMR5205, F-69622 Villeurbanne, France

Editors: Minsky, H. and Robertson, P. and Georgeon, O. L. and Minsky, M. and Shaoul, C.

Abstract

We present a project to design interactive devices (smart displays, robots, etc.) capable
of self-motivated learning through non-goal-directed interactive behaviors (e.g., curious,
emotional, playful behaviors). We use and improve algorithms inspired by constructivist
epistemology that we have designed previously. These algorithms incrementally learn se-
quential hierarchies of control loops in a bottom-up and open-ended fashion, and continu-
ously reuse the learned higher-level control loops to generate increasingly complex behaviors
that exhibit self-motivation. This project contributes to research in self-supervised learning
because the learning is driven by low-level preferences that under-determine the devices fu-
ture behaviors, leaving room for individuation, which, in turn, opens the way to autonomy
in learning.

Keywords: Cognitive architecture, constructivist learning, enactive Al, self-motivation,
control loop, constitutive autonomy.

1. Introduction

How to create a little robot that would behave like a kitten? Besides being able to solve
simple problems (e.g., finding a path to a specific location, finding the appropriate sequence
of actions to obtain energy, etc), it should also exhibit open-ended, exploratory, and playful
behaviors. Many authors refer to the latter as non-goal directed behaviors, that is, behaviors
that external observers or software developers would not interpret or conceive as directed
towards a specific terminal goal. For example, the robot may be playing with fellow little
robots or toys; explore its environment; follow people; perform somersaults as if it merely
enjoyed it, etc. Sometimes, those behaviors may go wrong and these robots would look
endearing or hilarious. If we were able to create such robots, the internet would surely be
full of videos of them just as it is full of videos of kitten today.

We believe that generating some level of animal-like behavior is not out of reach with the
current hardware resources at our disposal, given the appropriate software design approach.
Moreover, it could be useful for reasons both practical and theoretical. The practical ap-
plications to humans are comparable to the role of domestic animals. Mankind is willing

© 2020 O.L. Georgeon, P. Robertson & J. Xue.

GENERATING NATURAL BEHAVIORS USING CONSTRUCTIVIST ALGORITHMS

to spend huge amounts of money to enjoy the company of domestic animals, suggesting
that they fulfill many needs at various levels: social, emotional, recreational, etc. Devices
capable of similar behaviors might fulfill some of these needs. As for the theoretical utility,
it would help understand better the role that open-ended behaviors play in the development
of intelligence. Most current research on Al is focusing on solving problems modeled a pri-
ori, and categorizing data in predefined categories, but a lot remains to discover on how to
generate behaviors in the absence of a pre-modeled problem and predefined categories.

In this paper, we examine the hypothesis that devices equipped with algorithms based
on constructivist design principles could generate animal-like behaviors. Constructivist
principles are drawn from constructivist epistemology and applied to Al software design.
The three constructivist principles we consider the most important are the following:

1) Input data is the outcome! resulting from actions, as opposed to being a direct
representation of predefined features of the environment (“percepts”). Actions coupled
with their expected outcomes form control loops. Control loops relate to Wiener (1948)’s
feedback loops in cybernetics theory except that we do not necessarily use control loops to
maintain a set point.

2) Knowledge is about possibilities of interaction rather than about the world “in itself”.
This principle follows Kants idea that cognitive beings do not know the noumenal world
but only know the phenomenal world. In compliance with principle 1, a constructivist
algorithm learns increasingly sophisticated regularities of control loops in an open-ended
fashion. This learning relates to enactive AI (Froese and Ziemke, 2009) in that it occurs from
enacting interactions rather than from interpreting passively-received input data supposedly
representing a pre-given world.

3) The algorithms purpose is to generate interesting non-goal directed behaviors in an
unknown environment (or, ultimately, to pursue goals that it has defined by itself), as
opposed to reaching predefined goals defined by the designer under the form of particular
states in a predefined problem space. In compliance with principles 1 and 2, the algorithm
has no access to a representation of predefined goals and problem space.

Upon these principles, we have developed learning algorithms that go beyond cybernetics
control theory by learning hierarchies of control loops in a bottom-up and open-ended
fashion. In this paper, we outline a roadmap that aims to demonstrate that we could
use these algorithms in a device to generate animal-like behaviors. Section 2 outlines the
principle of these algorithms in reference to our previous publications. The next sections
sketch a roadmap to demonstrate the capabilities of these algorithms when used in smart
displays and domestic robots. Section 3 presents a short-term roadmap that will exploit
our current existing algorithms. Section 4 presents a middle term roadmap that involves
developing a new cognitive architecture based on the constructivist principles.

2. Constructivist learning

As introduced in Section 1, our algorithms control the devices behavior through control
loops rather than perceptual data. The designer predefines a set of possible control loops by

1. We use the term outcome to refer to input data resulting from action in a similar way as quantum
physics uses it to refer to data collected from experiment. The experiment, the outcome data, and the
experimenters representation of reality are interrelated since the experimenter is a part of reality.

GENERATING NATURAL BEHAVIORS USING CONSTRUCTIVIST ALGORITHMS

specifying the commands to actuators along with the outcome data expected from sensors.
For example, a control loop may consist of controlling the trajectory of the touch sensor
while maintaining the outcome within a certain range that corresponds to feeling an object.
If the object is indeed present, the outcome achieved will comply with that expected. If
the object is absent, the outcome will belong to a different range that will match another
predefined control loop. The algorithm has no notion of the object in itself but uses the
set of control loops that were enacted to estimate the possibility of enacting further control
loops. All the predefined control loops are limited in time, either through a preset maximum
duration or through an exit condition depending on the outcome. The learning occurs by
recording hierarchical sequences of control loops as illustrated in Figure 1.

@ '@> @J ‘@fﬂfl ES r@ ”@l
A

6 7

Figure 1: learning hierarchical sequences of control loops. Bottom: the shapes on Steps 0
to 4 represent predefined primitive control loops enacted by the device over time.
On each step, a higher-level control loop is recorded consisting of a sequence of
the last two enacted control loops. Top: the squared arrowhead loops represent
the higher-level control loops learned on each step, containing the sequence of
their two sub-control loops. The second-order control loop learned on Step 1 is
enacted on Step 5 (lasting as long time as Step 0 plus Step 1). The third-order
control loop learned on step 6 is enacted on step 7. After that, the algorithm can
continue recursively learning higher-level control loops.

It is crucial that the behavior selection mechanism does not use any interpretation of
the meaning of the control loops. This is compliant with constructivist principle 1 that the
agent implements no presupposed interpretation of input data, and with principles 2 and 3
that the agent implements no presupposed representation of the world and of goals. This
stands in sharp contrast with non-constructivist Al approaches.

Figure 2 illustrates the mechanism of control loop selection: on Step 4, the human
designer can implement different action selection criteria depending on the kind of behaviors
she wishes the device to exhibit. For example, if the algorithm selects an action associated
with a control loop that has the least been tried in a given situation, then we expect the
device to behave as if it were curious to try new things. If the algorithm selects an action
associated with the control loop that has the highest probability to result in the most
anticipated control loop, then we expect the device to appear to prefer being in the flow
(Steels, 2004). The designer can also associate a predefined numerical valence with each
predefined control loop, and implement criteria to select actions associated with control

GENERATING NATURAL BEHAVIORS USING CONSTRUCTIVIST ALGORITHMS

D =) | @p| (@ b ?j i @\@
_EIE ’_JE @E & -

E >3
252> | [|
o

@ Possible enacte(>
control loop 1
Timeline of enacted @ ’_4—1
control loops @>
o Possible enacted
control loop 2

<—

5]

Figure 2: control loop selection. Step 1: previously-learned higher-level control loops are
activated in memory when their left-hand element matches the control loops that
have just been enacted by the device. The figure shows nine higher-level control
loops activated by the last two enacted control loops, the last enacted control
loop alone, and the right-hand part of the last enacted control loop alone. Step
2: the right-hand parts of the activated higher-level control loops are considered
afforded in the current context. The figure shows seven afforded control loops.
Step 3: afforded control loops are aggregated into possible actions. The figure
shows 3 proposed actions represented as crosshatched shapes. Step 4: an action
is selected from the set of proposed action upon criteria that depend on the kind
of behavior the designer wants the device to exhibit. Step 5: The device tries
to enact a control loop associated with the selected action, which may result
in different enacted control loops depending on the outcome received from the
environment. The figure shows two possible control loops that the algorithm can
expect. Only one of them is actually enacted depending on the situation of the
device in its environment. The cycle will recommence on the basis of the last
enacted control loop.

GENERATING NATURAL BEHAVIORS USING CONSTRUCTIVIST ALGORITHMS

loops that have the highest valence. The device will appear to enjoy interactions that have
a positive valence and to dislike interactions that have a negative valence—a motivational
drive we have called interactional motivation (Georgeon et al., 2012).

For a more precise description of this algorithm, we refer the reader to our previous
papers (Georgeon and Riegler, 2019). We have reported preliminary demonstrations in sim-
ulated environments in videos (e.g., https://youtu.be/t1R05S4mBEY) showing interesting
behaviors in a noisy setting. The next section presents how we will use these algorithms in
interactive devices to demonstrate natural behaviors.

3. Six-month roadmap

On a six-month term, we will develop two demonstrations in parallel: a robotic demonstra-
tion and an interactive display (smartphone, tablet, etc.) demonstration. Later, we will re-
unite these two demonstrations by installing an android interactive display on the robot. For
the robotic demonstration, we have chosen Turtlebot (https://www.turtlebot.com/) be-
cause it is a fairly widespread robot that runs on an open source operating system (Ubuntu)
with the standard Robotic Operating System (ROS), and offers significant flexibility for con-
figuration and evolution. For the interactive display demonstration, we will develop an app
using a multiplatform framework such as Flutter in order to run on android and iOS devices
(Figure 3).

_ B>

Figure 3: the turtlebot and the smart display running the Hoomy app by Hoomano.

For each of the two demos, the roadmap is split into four tasks:

- Implement a set of primitive control loops.

- Implement the interface with our constructivist algorithm.

- Implement the interface with our visualization and behavior analysis software tool.

- Run, record, and report the demonstrations.

The constructivist algorithm and the behavior visualization and analysis software tool
will be available on a server. The robot and the smart display will interface with this server
through a REST APIL.

Table 1 presents an initial list of primitive control loops to implement in the robot.
Table 2 presents an initial list of actions and outcomes that can be associated in various
combinations to form primitive control loops in the smart display.

https://youtu.be/t1RO5S4mBEY
https://www.turtlebot.com/

GENERATING NATURAL BEHAVIORS USING CONSTRUCTIVIST ALGORITHMS

Name

Description

Move forward

Spin
Snort
Shoot

Move forward for a certain distance and stop if an obstacle is encountered
Spin in place of a certain angle and stop if facing a standalone object

Move in place (forward/backward, or left/right) and detect a sign of the user.
Move forward and detect contact with an object through touch sensor.

Table 1: example primitive control loops implemented in the robot.

Action performed by the device

Outcome detected by the device

Play a sound
Display an image
Vibrate

Show an animation

The screen is being stared at
A button is being pressed
The device is being shaken
Some words are heard

Table 2:

Composite Interaction

Intended Interaction

Enacted Interaction

Interaction Step Number

Valence

Figure 4:

example categories of actions and outcomes implemented in the smart display. In
each category, various primitive actions and outcomes can be implemented: various
sounds, images, vibration patterns, animations, buttons, words recognized, etc.

preciivity: -12 D l:‘ >
u u preciivity: 16 ‘j preciivity: 4 DD =
proclivity: -16 ‘ proclivity: 4 I:H:j
\: L" | e I:‘wj O
o PO o SN 1 o i

— E
126

.\ _ ~ J/
1 ™\ - ™y
u R R R . .
R 2, 2, \ \
|y L H L |1 / — vy
114 115 116 117 118 119 120 121 122 123 124 125

-1 -1 5 -1 5 -1 5 -2 -3 -2 -10 -1 -3 -1

screenshot of the behavior visualization and analysis tool. A second order control
loop is enacted on step 119. By clicking on it, the user opens a tip window
showing the intended and enacted control loops (in this example, they are the
same), and other tip windows showing various information helping understand
why this control loop was selected at this step.

10

GENERATING NATURAL BEHAVIORS USING CONSTRUCTIVIST ALGORITHMS

Figure 4 shows a screenshot of the behavior visualization and analysis tool. In our
experience, this kind of tool proved indispensable to design and debug the algorithm, and
to report the results of experiments.

4. Five-year roadmap

The constructivist algorithm presented in Section 2 implements sequential /temporal be-
havior control, but, to generate more sophisticated behaviors, we need not only to control
behaviors in time but also in the 3D space.

Towards this goal, the five-year roadmap involves four tasks:

-Defining advanced control loops involving 3D spatial control.

-Extending the constructivist algorithm into a constructivist cognitive architecture ca-
pable of simulating and organizing control loops in the 3D space.

-Improving the behavior visualization and analysis tool to display behaviors in time and
space.

-Run, record and report the demonstrations.

4.1. Defining advanced control loops

We will program additional primitive control loops in the robot using more displays and
sensors: leds, speaker, touch sensors, microphones, etc. We will also assemble the smart
display with the robot. This will allow more sophisticated user-robot interactions. We will
generate more complex outcomes through advanced algorithms such as image, sound, and
gesture recognition.

We will exploit the possibilities of the Inertial Measurement Unit (IMU) available in the
Turtlebot and in most smart displays to control the control loops in the 3D space.

4.2. Improving the cognitive architecture

We will extend the constructivist algorithm into a constructivist cognitive architecture to
make it capable of organizing behavior in the 3D space. Figure 5 shows the structure of
this cognitive architecture.

Some may argue that implementing the presupposition of the 3D spatial structure of the
world in the cognitive architecture contradicts the constructivist principle 2. We, however,
believe that this is acceptable for two reasons. Firstly, this presupposition is consistent
with what we know about animal and human brain, namely that it incorporates many
spatial memory structures (superior colliculus, hippocampus, etc. e.g., Gross and Graziano
(1995)). Secondly, this presupposition is not restrictive as long as we seek to control devices
in the 3D world.

The five-year project will work on improving the interactions between the different
modules of the cognitive architecture. In particular, spatial memory will help deal with
persistence of objects, and will allow a form of reflexivity consisting in simulating different
possible spatial interactions before selecting one. We will build upon our previous work
on a 2D cognitive architecture (Georgeon et al., 2013), which already produced preliminary
results in a simple simulated environment shown in video https://youtu.be/Lj0ck5ts_2g.

11

https://youtu.be/LjOck5ts_2g

GENERATING NATURAL BEHAVIORS USING CONSTRUCTIVIST ALGORITHMS

Cognitive architecture

(Phenomenal \
ontology lﬁb’] D’.] @ @&” @ @ @

|50 B> @ & @] 2]

Allocentric spatial
memory

Hierarchical learning

Behavior
selection

‘%;)n
Timeline of =4 _
enacted @ }% @ ‘%) ’

control loops Enact

Figure 5: constructivist cognitive architecture to generate natural behaviors in 3D space.
control loops are represented as 3D blocks to highlight the fact that they involve
control in the 3D space. The cognitive architecture incorporates the hierarchical
learning component presented in Section 2 (top right). It also incorporates differ-
ent kinds of spatial memory (egocentric and allocentric) used to localize and track
the position of control loops (center). The phenomenal ontology (top left) is a
memory of categories of phenomena (objects as they appear through interaction)
defined by the control loops that they afford. Among other types of phenomena,
it contains a learned representation of the robot and its own kind.

12

GENERATING NATURAL BEHAVIORS USING CONSTRUCTIVIST ALGORITHMS

5. Conclusion

In previous studies, we have proposed constructivist design principles to create Al algo-
rithms, and we have implemented a constructivist-learning algorithm based on these princi-
ples. The motivation for this work was theoretical: we wanted to examine and demonstrate
the implication of constructivist epistemology to artificial intelligence. In particular, we
argued that this algorithm allows constitutive autonomy through self-programming, and
individuation—features that many authors consider a requirement for cognition (Georgeon
and Riegler, 2019). We have run experiments in simple simulated environments showing
some interesting behaviors, albeit rudimentary.

In this paper, we propose the hypothesis that these constructivist principles and algo-
rithms could be used in a robot or a smart display to generate natural interactive behaviors
in the real world. We outline a roadmap to create demonstrations to validate this hypoth-
esis.

If we can confirm this hypothesis, we expect to open the way to commercial products in
the domain of entertainment and hi-tech. These products will have interesting behavioral
traits such as curiosity, emotional behaviors, co-adaptation with their user. This will make
them somewhat similar to animals; they will be able to generate empathy from their users
and will fuel societal and ethical debates related to the status of devices that will appear
increasingly sentient as we make progress in open-ended artificial intelligence.

Acknowledgments

This paper greatly benefitted from discussions with Xavier Basset from Hoomano. Olivier
Georgeon acknowledges financial support by ANR under contract ANR-11-DPBS-0001.

References

Tom Froese and Tom Ziemke. Enactive artificial intelligence: Investigating the systemic
organization of life and mind. Artificial Intelligence, 173(3-4):466-500, 2009.

Olivier L. Georgeon and Alexander Riegler. Cash only: Constitutive autonomy through
motorsensory self-programming. Cognitive Systems Research, 58:366-374, 2019.

Olivier L Georgeon, James B Marshall, and Simon Gay. Interactional motivation in arti-
ficial systems: Between extrinsic and intrinsic motivation. In 2012 IEEE International
Conference on Development and Learning and Epigenetic Robotics (ICDL), pages 1-2.
IEEE, 2012.

Olivier L. Georgeon, James B Marshall, and Riccardo Manzotti. Eca: An enactivist cognitive
architecture based on sensorimotor modeling. Biologically Inspired Cognitive Architec-
tures, 6:46-57, 2013.

Charles G Gross and Michael SA Graziano. Review: Multiple representations of space in
the brain. The Neuroscientist, 1(1):43-50, 1995.

Luc Steels. The autotelic principle. In Embodied artificial intelligence, pages 231-242.
Springer, 2004.

13

GENERATING NATURAL BEHAVIORS USING CONSTRUCTIVIST ALGORITHMS

Norbert Wiener. Cybernetics or Control and Communication in the Animal and the Ma-
chine. Technology Press, 1948.

14

	Introduction
	Constructivist learning
	Six-month roadmap
	Five-year roadmap
	Defining advanced control loops
	Improving the cognitive architecture

	Conclusion

