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Abstract
In this paper, we study the problem of estimating smooth Generalized Linear Models (GLM) in
the Non-interactive Local Differential Privacy (NLDP) model. Different from its classical setting,
our model allows the server to access some additional public but unlabeled data. By using Stein’s
lemma and its variants, we first show that there is an (ε, δ)-NLDP algorithm for GLM (under some
mild assumptions), if each data record is i.i.d sampled from some sub-Gaussian distribution with
bounded `1-norm. Then with high probability, the sample complexity of the public and private data,
for the algorithm to achieve an α estimation error (in `∞-norm), is O(p2α−2) and O(p2α−2ε−2),
respectively, if α is not too small (i.e., α ≥ Ω( 1√

p )), where p is the dimensionality of the data. This
is a significant improvement over the previously known exponential or quasi-polynomial in α−1, or
exponential in p sample complexity of GLM with no public data. We then extend our idea to the
non-linear regression problem and show a similar phenomenon for it. Finally, we demonstrate the
effectiveness of our algorithms through experiments on both synthetic and real world datasets. To
our best knowledge, this is the first paper showing the existence of efficient and effective algorithms
for GLM and non-linear regression in the NLDP model with public unlabeled data.
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1. Introduction

Generalized Linear Model (GLM) is one of the most fundamental models in statistics and machine
learning. It generalizes ordinary linear regression by allowing the linear model to be related to
the response variable via a link function and by allowing the magnitude of the variance of each
measurement to be a function of its predicted value. GLM was introduced as a way of unifying
various statistical models, including linear, logistic and Poisson regressions. It has a wide range of
applications in various domains, such as social sciences (Warne, 2017), genomics research (Takada
et al., 2017), finance (McNeil and Wendin, 2007) and medical research (Lindsey and Jones, 1998).
The model can be formulated as follows.

GLM: Let y ∈ [0, 1] be the response variable that belongs to an exponential family with natural
parameter η. That is, its probability density function can be written as p(y|η) = exp(ηy−Φ(η))h(y),
where Φ is the cumulative generating function. Given observations y1, · · · , yn such that yi ∼ p(yi|ηi)
for η = (η1, · · · , ηn), the maximum likelihood estimator (MLE) can be written as p(y1, y2, · · · |η) =
exp(

∑n
i=1 yiηi − Φ(ηi))Π

n
i=1h(yi). In GLM, we assume that η is modeled by linear relations, i.e.,

ηi = 〈xi, w∗〉 for some w∗ ∈ Rp and feature vector xi. Thus, maximizing MLE is equivalent
to minimizing 1

n

∑n
i=1[Φ(〈xi, w〉) − yi〈xi, w〉]. The goal is to find w∗, which is equivalent to

minimizing its population version

w∗ = arg min
w∈Rp

E(x,y)[Φ(〈x,w〉)− y〈x,w〉].

One often encountered challenge for using GLM in real world applications is how to handle
sensitive data, such as those in social science and medical research. As a commonly-accepted
approach for preserving privacy, Differential Privacy (DP) (Dwork et al., 2006) provides provable
protection against identification and is resilient to arbitrary auxiliary information that might be
available to attackers.

As a popular way of achieving DP, Local Differential Privacy (LDP) has received considerable
attentions in recent years and been adopted in industry (Ding et al., 2017; Erlingsson et al., 2014;
Tang et al., 2017). In LDP, each individual manages his/her proper data and discloses them to a
server through some DP mechanisms. The server collects the (now private) data of each individual
and combines them into a resulting data analysis. Information exchange between the server and each
individual could be either only once or multiple times. Correspondingly, protocols for LDP are called
non-interactive LDP (NLDP) or interactive LDP. Due to its ease of implementation (e.g. no need
to deal with the network latency problem), NLDP is often preferred in practice. Formally LDP is
defined as following.

Definition 1 (Local Differential Privacy (Kasiviswanathan et al., 2011)) A randomized algorithm
Q is (ε, δ)-locally differentially private (LDP) if for all pairs x, x′ ∈ D, and for all events E in the
output space of Q, we have

P(Q(x) ∈ E) ≤ eεP(Q(x′) ∈ E) + δ.

When δ = 0, A is ε-LDP. A multi-player protocol is (ε, δ)/ε-LDP if for all possible inputs and runs
of the protocol, the transcript of player i’s interaction with the server is (ε, δ)/ε-LDP. If T = 1, we
say that the protocol is (ε, δ)/ε non-interactive LDP (NLDP).
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While there are many results on GLM in the DP and interactive LDP models (Chaudhuri et al.,
2011; Bassily et al., 2014; Jain and Thakurta, 2014; Kasiviswanathan and Jin, 2016), GLM in NLDP
is still not well understood due to the limitation of the model. (Smith et al., 2017; Wang et al., 2018;
Zheng et al., 2017) and (Wang et al., 2019a) comprehensively studied this problem. However, all
of these results are on the negative side. More specifically, they showed that to achieve an error of
α, the sample complexity needs to be quasi-polynomial or exponential in α−1 (based on different
assumptions) (Wang et al., 2019a; Zheng et al., 2017; Wang et al., 2020) or exponential in the
dimensionality p (Smith et al., 2017; Wang et al., 2018) (see Related Work section for more details).
Recently, (Dagan and Feldman, 2020) showed that an exponential lower bound (either in p or α−1)
on the number of samples for solving the standard task of learning a large-margin linear separator in
the NLDP model. Due to these negative results, there is no study on the practical performance of
these algorithms.

To address this high sample complexity issue of NLDP, a possible way is to make use of some
recent developments on the central DP model. Quite a few results (Bassily and Nandi, 2019; Hamm
et al., 2016; Papernot et al., 2016, 2018; Bassily et al., 2018) have suggested that by allowing the
server to access some public but unlabeled data in addition to the private data, it is possible to reduce
the sample complexity in the central DP model, under the assumption that these public data have
the same marginal distribution as the private ones. It has also shown that such a relaxed setting is
likely to enable better practical performance for problems like Empirical Risk Minimization (ERM)
(Hamm et al., 2016; Papernot et al., 2016). Thus, it would be interesting to know whether the relaxed
setting can also help reduce sample complexity in the NLDP model.

With this thinking, our main questions now become the follows. Can we further reduce
the sample complexity of GLM in the NLDP model if the server has additional public but
unlabeled data? Moreover, is there any efficient algorithm for this problem in the relaxed
setting?

In this paper, we provide positive answers to the above two questions. Specifically, we focus on
the GLM estimation problem in the NLDP model with public but unlabeled data:

Our Model: Different from the above classical NLDP model where only one private dataset
{(xi, yi)}ni=1 exists, the NLDP model in our setting allows the server to have an additional public
but unlabeled dataset D′ = {xj}n+m

j=n+1 ⊂ Xm, where each xj is sampled from Px, which is the
marginal distribution of P (i.e., they have the same distribution as {xi}ni=1). Our contributions can
be summarized as follows:

1. We first show that when the feature vector x of GLM is sub-Gaussian with bounded `1-norm,
there is an (ε, δ)-NLDP algorithm for GLM (under some mild assumptions) whose sample
complexities of the private and public data, for achieving an error of α (in `∞-norm), are
O(p2ε−2α−2) and O(p2α−2) (with other terms omitted), respectively, if α is not too small
(i.e., α ≥ Ω( 1√

p)). Specifically, we show that

Theorem 2 Under some assumption of the data distribution and the loss function, for suffi-
ciently large m,n such that

m ≥ Ω
(
‖Σ‖2‖w∗‖2∞max{1, ‖w∗‖2∞}ρ2ρ

2
∞p

2
)
,

n ≥ Ω
(ρ2ρ

2
∞‖Σ‖22p2‖w∗‖2∞max{1, ‖w∗‖2∞} log 1

δ log p
ξ

ε2λmin(Σ) min{λmin(Σ), 1}
)
,
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there is an (ε, δ)-NLDP algorithm whose output ŵglm satisfies the following with probability
at least 1− exp(−Ω(p))− ξ,

‖ŵglm − w∗‖∞ ≤ O
(‖w∗‖2∞max{1, ‖w∗‖2∞}p√

m

+
‖w∗‖2∞max{1, ‖w∗‖2∞}p

√
log 1

δ log p
ξ2

ε
√
n

+
‖w∗‖3∞max{1, ‖w∗‖∞}√

p

)
,

whereG,L, τ,M, c̄, r, κx,
1
cΦ

are assumed to beO(1) and thus omitted in the Big-O notations.

We note that this is the first result that achieves a fully polynomial sample complexity for a
general class of loss functions in the NLDP model with public unlabeled data. We also provide
several examples that satisfy those assumptions.

2. We then extend our idea to the non-linear regression problem. We assume that there is an
underlying vector w∗ ∈ Rp with ‖w∗‖2 ≤ 1 such that

y = f(〈x,w∗〉) + σ,

where x is the feature vector sampled from some distribution (for simplicity, we assume that
the mean is zero) and y is the response. σ is the zero-mean noise which is independent of x
and bounded by some constant C = O(1) (i.e., σ ∈ [−C,C]). f is some known differentiable
link function with f(0) 6=∞ By using the zero-bias transformation (Goldstein et al., 1997),
we show that when x is sub-Gaussian with bounded `1-norm, it exhibits the same phenomenon
as GLM.

3. Finally, we provide an experimental study of our algorithms on both synthetic and real world
datasets. The experimental results suggest that our methods are efficient and effective, which
is consistent with our theoretical analysis.

2. Related Work

Private learning with public unlabeled data has been studied previously in (Hamm et al., 2016;
Papernot et al., 2016, 2018; Bassily et al., 2018). These results differ from ours in quite a few ways.
Firstly, all of them consider either the multiparty setting or the centralized model. Consequently,
none of them can be used to solve our problems. Specifically, (Hamm et al., 2016) considered the
multiparty setting where each party possesses several data records and each party uses their data
to get a classifier, however, this approach could not be extended to local DP model since now each
party only has just one data point and it is impossible to get any useful classifier based one data
point. (Papernot et al., 2016, 2018) investigated the DP model, used sub-sample and aggregate to
train some deep learning models, but provided no provable sample complexity. (Bassily et al., 2018)
also studied the DP model by combining the distance to instability and the sparse vector techniques,
and showed some theoretical guarantees. However, both the sub-sample/aggregate and the sparse
vector methods cannot be used in the NLDP model. Moreover, public data in their methods are also
used quite differently from ours. Secondly, all of the above results use the private data to label the
public data and conduct the learning process on the public data, while we use the public data to
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approximate some crucial constants. Finally, all of the previous methods rely on the known model or
loss functions, while in our algorithms the loss functions could be unknown to the users; also the
server could use multiple loss functions with the same sample complexity.

The problems considered in this paper can be viewed as restricted versions of the general ERM
problem in the NLDP model. Due to its challenging nature, ERM in NLDP has only been considered
in a few papers, such as (Smith et al., 2017; Wang et al., 2018, 2019a; Zheng et al., 2017; Daniely
and Feldman, 2018; Wang and Xu, 2019). (Smith et al., 2017) gave the first result on convex ERM
in NLDP and provided an algorithm with a sample complexity of O(2pα−(p+1)ε−2). They showed
that the exponential dependency on the dimensionality p is not avoidable for general loss functions.
Later, (Wang et al., 2018) showed that when the loss function is smooth enough, the exponential
term of α−Ω(p) can be reduced to polynomial, but not the other exponential terms. Recently, (Wang
et al., 2019a; ?) further showed that the sample complexity for any 1-Lipschitz convex GLM can
be reduced to linear in p and exponential in α−1, which extends the work in (Zheng et al., 2017),
whose sample complexity is linear in p and quasi-polynomial in α−1 for smooth GLM. In this paper,
we show, for the first time, that the sample complexity of GLM can be reduced to fully polynomial
with the help of some public but unlabeled data and some mild assumptions on GLM. There are
also works on some special loss functions. For example, (Wang and Xu, 2019, 2021) studied the
high dimensional sparse linear regression problem and (Daniely and Feldman, 2018) considered
the problem of learning halfspaces with polynomial samples. Since these results are only for some
special loss functions (instead of a family of functions), they are incomparable with ours.
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