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Abstract

The clinical time-series setting poses a unique combination of challenges to data mod-
elling and sharing. Due to the high dimensionality of clinical time series, adequate de-
identification to preserve privacy while retaining data utility is difficult to achieve using
common de-identification techniques. An innovative approach to this problem is synthetic
data generation. From a technical perspective, a good generative model for time-series
data should preserve temporal dynamics; new sequences should respect the original rela-
tionships between high-dimensional variables across time. From the privacy perspective,
the model should prevent patient re-identification. The NeurIPS 2020 Hide-and-Seek Pri-
vacy Challenge was a novel two-tracked competition to simultaneously accelerate progress
in tackling both problems. In our head-to-head format, participants in the generation track
(“hiders”) and the patient re-identification track (“seekers”) were directly pitted against
each other by way of a new, high-quality intensive care time-series dataset: the Amsterda-
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mUMCdb dataset. In this paper we present an overview of the competition design, as well
as highlighting areas we feel should be changed for future iterations of this competition.

Keywords: Clinical Time-series Data; Data Privacy; Synthetic Data Generation; Patient
Re-identification; Membership Inference Attack.

1. Introduction

Coupled with advances in machine learning, the vast quantities of clinical data now stored
in machine-readable form have the potential to revolutionize healthcare. At the same time,
this enterprise is threatened by the fact that patient data are inherently highly sensitive,
and privacy concerns have recently been thrown into sharp relief by several high-profile data
breaches that have greatly undermined public confidence (see e.g. Shah (2017); Price and
Cohen (2019)). We seek novel methods capable of bridging the gap between data-hungry
techniques in machine learning and privacy-conscious applications in healthcare settings.

The Vision for Synthetic Data Perhaps the most attractive use cases for synthetic data
are that of synthetic data clearing houses and for running algorithm-finding competitions (in
the same spirit as this competition was run). Synthetic data clearing houses are an attractive
idea that involve setting up an institution responsible for the generation of synthetic data on
the basis of real data. Such institutions would then be entrusted by existing data holders to
generate synthetic data for a variety of use-cases that could then be made publicly available,
allowing the ML community at large to push advancements for a wide range of problems.
Closely related is the idea that synthetic data could be used for the purpose of finding
(the) group(s) that are most appropriate for developing a model for a given task (Jordon
et al., 2018). Such synthetic data would need to be reflective of the real data in terms of
model performance for the task at hand, but can be generated at varying levels of privacy
as participants advance through the competition, with the winner(s) being given access to
the full data to develop the final models.

Clinical Time-series Central among this balancing act is the development of techniques
for modeling and sharing synthetic patient records in lieu of real data. However, the setting
of clinical time-series data poses a unique combination of challenges to data modeling and
sharing. From a technical perspective, the learning problem in question is one of synthetic
data generation—a good generative model for time-series data should preserve temporal
dynamics, in the sense that new sequences respect the original relationships between high-
dimensional variables across time. Simultaneously from a social perspective, the privacy
problem in question is one of patient re-identification—a good generation technique should
have the effect of preserving membership privacy, in the sense that the algorithm limits
vulnerability of individual training instances to the risk of membership inference attacks.

Time-series Generation Purely from the standpoint of generative modeling, the se-
quential setting of clinical time-series data already presents a distinctive learning challenge.
A model is not only tasked with capturing the distributions of patient features at each point
in time, but it should also adequately reflect the potentially complex evolution of those vari-
ables over time. Existing methods directly apply the generative adversarial network (GAN)
framework to temporal data, primarily by instantiating recurrent neural network (RNN)

207



Hide-and-Seek Privacy Challenge

models as generators and discriminators (e.g. Esteban et al. (2017); Mogren (2016); Ram-
poni et al. (2018)). Such straightforward approaches neglect to leverage the autoregressive
prior, and have been shown insufficient for ensuring that the network dynamics efficiently
capture stepwise dependencies in the original training data (Yoon et al. (2019)).

Privacy and Identification Most importantly, the question of synthetic data generation
cannot be divorced from concerns of privacy. While de-identified data are commonly used for
model development, existing notions of anonymity are often limited in scope: k-anonymity,
l-diversity, and τ -closeness are only aimed at protecting “sensitive” data (e.g. diagnoses)
from an attack on a small number of quasi-identifiers (see Sweeney (2002); Machanavajjhala
et al. (2007) and Li et al. (2007) respectively), and differential privacy (see Dwork et al.
(2014)) does not directly correspond to well-understood notions of leakage—such as vul-
nerability to membership inference attacks. In other directions, attempts to match GDPR
with a mathematical notion of privacy have been attempted (Yoon et al., 2020), though
whether the notion properly aligns with GDPR or whether the defined notion is robust
to privacy attacks has not been investigated thoroughly. In practice, the risk of patient
re-identification is a pressing concern: Consider a rogue insurance company discriminating
against high-risk patients per financial incentive. Such concerns caution medical institu-
tions against releasing data for public research, hampering progress in the validation of
novel computational models for real-world clinical applications.

Hide-and-Seek Challenge The NeurIPS 2020 Hide-and-Seek Privacy Challenge1 was a
novel two-tracked competition to simultaneously accelerate progress in tackling both prob-
lems. In our head-to-head format, participants in the synthetic data generation track
(“hiders”) and the patient re-identification track (“seekers”) were directly pitted against
each other: The latter submitted methods for launching membership inference attacks,
while the former submitted methods for synthesizing patient data that are robust to such
attacks—all while maintaining faithfulness to the original data. Importantly, rather than
falling back on fixed theoretical notions of anonymity, we allowed participants on both sides
to uncover the best approaches in practice for launching or defending against privacy at-
tacks. We sought to advance generative techniques for dense, high-dimensional temporal
data streams that are clinically meaningful in terms of fidelity and predictivity, as well as ca-
pable of minimizing privacy risks in terms of the concrete notion of patient re-identification.

2. Two-Track Format

The competition involved a two-sided platform (hosted on CodaLab) for synthetic data
generation and patient re-identification methods to compete among and against each other.
Participants were invited to compete in either or both tracks of the interactive challenge:
(1) the hider (synthetic data generation) track, and (2) the seeker (re-identification) track.

2.1. Hider track

In the generation track, participants were tasked with developing an algorithm that gener-
ates synthetic data. Submissions were an algorithm MG (i.e. not just a trained model),

1. https://www.vanderschaar-lab.com/privacy-challenge/

208

https://competitions.codalab.org/competitions/


Hide-and-Seek Privacy Challenge

whose input will be random subsets of an unseen subset of the dataset,

Dreal ⊂ D ,

and whose output is a synthetic dataset,

Dsyn =MG(Dreal) .

2.2. Seeker Track

In the patient re-identification track, participants were tasked with developing an algorithm
that performs membership inference on synthetic data generation algorithms. Submissions
were an algorithm, MR (which may contain trained models from the public data), whose
input should be tuples of the form

(MG,Dsyn,Denl
real) (1)

where MG is an indicator for the generation algorithm used, Dsyn is generated by MG

and Denl
real is a random subset of D that contains the real data, Dreal, used to generate

Dsyn = MG(Dreal) (i.e. a randomly enlarged copy of Dreal). The output must be a
classification of each element of Denl

real, in which the goal is to classify the elements as:

‘in Dreal’ or ‘not in Dreal’

or equivalently the output must be a subset Dpred ⊂ Denl
real corresponding to the elements

the algorithm classifies as being ‘in Dreal’.

2.3. Scoring and Ranking

Suppose M1
G, ...,MNG

G are submissions to the generation track and M1
R, ...,MNR

R are sub-

missions to the re-identification track. Let Di
real ⊂ Denl

real
i ⊂ Dpriv be 10 random subsets

(and enlarged subsets) of the private data. For each generation algorithm and each real
dataset we generate a synthetic dataset Di,j

syn =Mj
G(Di

real).

2.3.1. Evaluating Hiders

Evaluating hiders is not a straightforward task. There is a natural trade-off between privacy
and fidelity - any submission will demonstrate a certain level of privacy and a certain level of
fidelity, and as one increases the other likely decreases. In order to determine a ranking for
hider algorithms we were required to translate these two quantities into a single comparable
quantity. In this instance, we chose to fix a minimum fidelity threshold that hider algorithms
must exceed in order to qualify for ranking. Ranking was then performed according to the
privacy attained by each submission. This makes the question we asked “How private can
we make the data while maintaining usefulness?” rather than “How useful can we make
the data while maintaining privacy?”. Both questions have merit, and in an ideal world
the trade-off would be explored more thoroughly, but as a first competition in this space,
we chose to keep the metric simple so as to ensure the competition was as accessible as
possible.
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Utility threshold To measure the quality of a generated synthetic dataset, Dsyn, we use
the train-on-synthetic-test-on-real paradigm (Esteban et al., 2017). Abstractly, we consider
a task, T , that can be performed on the dataset D, which can be performed by some
algorithm MT and for which there is an increasing performance metric CT that maps an
algorithm, train data, test data tuple to a scalar performance value, (MT ,Dtrain,Dtest) 7→
C ∈ R. A synthetic dataset’s utility score for task T is then defined by

ST (Dsyn) =
CT (MT ,Dsyn,Dtest

real)

CT (MT ,Dtrain
real ,Dtest

real)
(2)

which we can require is above some minimum threshold. Given several tasks, T1, ..., TnT , we
required that a dataset passes all tasks. For the competition we considered 2 tasks that the
synthetic data must be suitable for: (1) feature prediction, and (2) sequential prediction.

Feature prediction For the first task we randomly selected 10 features. For each of these
features, the task was to predict this feature given all of the remaining other features, which
we denote by Tl, l = 1, ..., 10. As metric, CT , we use 1

RMSE for continuous features (to create
an increasing performance metric), AUROC for binary and accuracy for categorical.

Sequential prediction For the second task, the goal is to perform 1-step-ahead predic-
tion, denoted by T11. The prediction model will predict the feature values at time step t+1
based on the entire history up to and including time step t. As metric we use the sum of
errors across the different features, using 1

RMSE for continuous features (again to create an
increasing performance metric), AUROC for binary and accuracy for categorical.

Passing the threshold In order for an algorithm, Mj
G, to pass the threshold, the fol-

lowing must hold

STl(Di,j
syn) > p for all j ∈ {1, ..., 10}, l ∈ {1, ..., 11} (3)

for some threshold value p. In the competition, we set p = 0.2, where all metrics involved
were RMSE and thus this corresponded to requiring that the RMSE produced by synthetic
data was at most 5 times larger than the RMSE produced by the real data.

Privacy Ranking Models that pass the utility threshold were ranked according to their
robustness to re-identification (the quality scores are no longer relevant once the bar has
been passed). The re-identification score, Rj , of generation algorithm Mj

G is given by

Rj = max
k

10∑
i=1

Si,j,k (4)

where Si,j,k is defined below. We note that a lower score is better. This score corresponds
to how well the best performing re-identification algorithm (for the given generation model)
is able to re-identify on average across the different synthetic datasets generated by MG.
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2.3.2. Evaluating Seekers

For each i = 1, ..., 10 and j = 1, ..., NG, a re-identification algorithm, Mk
R, is assigned a

score Si,j,k ∈ [0, 1] according to its classification accuracy, given by:

Si,j,k =
|Di,j,k

pred ∩ Di
real|+ |D

i,j,k
pred

c ∩ Di
real

c|
|Denl

real
i|

(5)

where c denotes the compliment of the set (withinDenl
real

i
) andDi,j,k

pred =Mk
R(Mj

G,D
i,j
syn,Denl

real
i
).

To create an overall score for a re-identification algorithm, we will average the score
of the algorithm across the 10 synthetic datasets for each generation algorithm that passed
the utility threshold. Let PG = {j : STl(Di,j

syn) > p,∀j = 1, ..., 10,∀l = 1, ..., 11} be the
indexing set of hiders that passed the utility bar. The overall score, SO, of re-identification
algorithm, Mk

R, is given by

SkO =
1

10NG

∑
i∈PG

10∑
j=1

Si,j,k , (6)

where for the seekers, a higher score is better.

3. Dataset

This challenge introduced a new dataset. AmsterdamUMCdb was developed and released by
Amsterdam UMC in the Netherlands and the European Society of Intensive Care Medicine
(ESICM). It is the first freely accessible comprehensive and high resolution European in-
tensive care database. It is also first to have addressed compliance with General Data Pro-
tection Regulation (GDPR, EU 2016/679) using an extensive risk-based de-identification
approach. However, both ESICM and Amsterdam UMC aim to continuously evaluate and
if necessary improve privacy while maintaining usability.

AmsterdamUMCdb contains real data from critically ill patients from a mixed surgical-
medical tertiary referral centre for intensive care medicine with up to 32 intensive care
beds and up to 10 high dependency beds. It was released in early 2020 as comma separated
value files, with a total uncompressed size of approximately 78 GB. Access may be requested
through https://www.amsterdammedicaldatascience.nl and downloaded from https://

doi.org/10.17026/dans-22u-f8vd. Detailed descriptions of the data schema and sample
code to interact with the data are available on the AmsterdamUMCdb GitHub repository
at https://github.com/AmsterdamUMC/AmsterdamUMCdb.

AmsterdamUMCdb contains approximately 1 billion clinical data points related to
23,106 admissions of 20,109 unique patients between 2003 and 2016. The released data
points include patient monitor and life support device data, laboratory measurements, clin-
ical observations and scores, medical procedures and tasks, medication, fluid balance, diag-
nosis groups and clinical patient outcomes. Data granularity depends on the type of data
and admission year, but is up to 1 value every minute for data from patient monitor and
life support devices. The data is much richer and granular than those in other well known
freely available intensive care databases, such as MIMIC and is comprised of patients with
higher illness acuity than is found in US datasets.
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lines denote the tasks of participants in sub-
mitting algorithms (blue boxes). Red lines
denote the flow of input and output datasets
(red boxes) to and from algorithms. Gray
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a collection of standard prediction tasks.

Figure 1: Schematics and descriptions for the mechanics of submissions and evaluations.
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An accessible competition In order to make this first competition more accessible,
we downsampled the dataset, selecting a subset of features and of time points in order to
ensure that the competition was accessible to a variety of teams, but also to ensure that the
computational complexity of hider algorithms was kept low. In particular, because hider
teams were required to submit algorithms rather than trained models, using the full dataset
would have been computationally infeasible.

4. Results

In total we received 23 hider submissions and 12 seeker submissions, from a total of 13
different teams. Of these, 9 and 8 were disqualified, respectively (e.g. for not providing
documentation for their code, or being duplicate submissions). Of the 14 remaining hider
submissions, only 4 passed the quality threshold outlined in Section 2.3.1. Table 1 contains
the re-identification scores of these 4 hiders against the 6 (4 submitted + 2 baseline) seekers,
with only the best submission from each team included.

Team Name Mikan k-NN* GenSynDS realHider iCAIRD BP*

Mikan1 0.5029 0.5017 0.5036 0.5000 0.4982 0.4992
Golden Fleece1 0.5037 0.5019 0.5027 0.5000 0.5000 0.4940

Mikan2 0.4947 0.5066 0.4997 0.5000 0.4945 0.5006
Golden Fleece2 0.8131 0.7508 0.7216 0.5000 0.4969 0.4944

Mean seeker score 0.5777 0.5650 0.5553 0.5000 0.4992 0.4950

Table 1: Results (* indicates a baseline algorithm and bold denotes the best performing
seeker against the given hider)

In both sides of the competition, team Mikan won, with an noise-injection based ap-
proach on the hider side and a kNN based approach on the seeker side. The Mikan kNN
approach differs from the baseline kNN in its preprocessing of the data. While the baseline
kNN imputes missing data using medians, the Mikan submission imputes the missing data as
zeros. Though we see that, overall, seeker scores are very close to 0.5 for all submissions ex-
cept Golden Fleece2, for which k-NN based scores are very high. If the Golden Fleece2 hider
submission is excluded, then all seeker scores except for the baseline k-NN, Golden Fleece
and realHider, drop below 0.5. We do not feel that these results are particularly meaningful,
which will be discussed in the following section.

5. Lessons Learned

Structure Participants were given around 4 months to submit algorithms to both sides
of the track. Both tracks were open for the full window. It was originally the hope that
the two-tracked nature of the competition would allow for an evolving competition in which
seekers would be able to target their algorithms to specific hiders. Unfortunately, because
of this, hiders were not incentivised to submit their algorithms early (in fact the opposite -
the later a hider was submitted, the less time the seekers have to hack it). This meant that
seekers were not able to target specific hiders as was the original hope. In future iterations
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of the competition, an incentive is needed for the hiders to submit early. At the very
least, hider submissions should be closed before seeker submissions, to allow seekers time
to ”hack” the final hider submissions. Incentivising early submission also has the added
benefit of ensuring bugs can be discovered early.

Hiders As noted in Section 4, many hiders failed to pass the quality bar. We believe this is
due to the complex nature of the dataset, and thus in the next iteration of the competition,
a simpler (perhaps more granular) dataset could be used, to allow the competition to
really evaluate privacy preserving methods (instead, this competition mostly told us that
generating high quality time-series data is hard). Moreover, the quality bar itself needs to
be rethinked, with a more robust measure used, such as in Alaa et al. (2021).

Seekers As noted above, seeker submissions were originally intended to be able to run
against specific hiders if they so wished. As we see in Section 4, no seeker algorithm
performed well, with most having an almost 50% accuracy, equivalent to random guessing.
This could, in part, be due to the complexity of the time-series dataset, and the lack of
ability to target specific hiders.

6. Conclusion

Ultimately, the competition has highlighted the need not only for high quality synthetic
data generation methods but also good, robust metrics for evaluating such data. It is our
hope that a future competition involving such metrics, alongside a slightly revamped design,
will create a strong platform through which we can evaluate existing ideas within the realm
of private synthetic data generation.

Acknowledgments

We thank the Office for Naval Research (ONR), Alzheimer’s Research UK and EPSRC for
funding this research. We thank Microsoft Research for providing prizes and compute for
the competition.

References

Ahmed M Alaa, Boris van Breugel, Evgeny Saveliev, and Mihaela van der Schaar. How
faithful is your synthetic data? sample-level metrics for evaluating and auditing generative
models. arXiv preprint arXiv:2102.08921, 2021.

Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy.
Foundations and Trends R© in Theoretical Computer Science, 9(3–4):211–407, 2014.
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