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Abstract

Machine learning and artificial intelligence play an ever more crucial role in mitigating
important societal problems, such as the prevalence of hate speech. We describe the Hateful
Memes Challenge competition, held at NeurIPS 2020, focusing on multimodal hate speech.
The aim of the challenge is to facilitate further research into multimodal reasoning and
understanding.
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1. Introduction

At the sheer scale of the internet, malicious content cannot be tackled by having humans
inspect every data point. Consequently, machine learning and artificial intelligence play an
ever more important role in mitigating important societal problems, such as the prevalence
of hate speech. Hate speech is understood to mean “any communication that disparages a
target group of people based on some characteristic such as race, colour, ethnicity, gender,
sexual orientation, nationality, religion, or other characteristic” (Nockleby, 2000).
Detecting hate speech is a difficult problem, as it often relies heavily on context, requires
world knowledge, and can be rather subtle. It is also an important problem, in how it has
the potential to affect everyone in our society. One particularly challenging type of hate
speech is found in multimodal internet memes—mnarrowly defined, images overlaid with text,
designed to spread from person to person via social networks, often for (perceived) humorous
purposes. For this competition, we proposed a new challenge task and dataset: detecting
hatefulness in multimodal memes. The long-term hope for the challenge and corresponding
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datasets is to facilitate breakthroughs in multimodal methods that can be applied to a very
broad set of problems, going far beyond hate speech.

Memes pose an interesting multimodal fusion problem, i.e., their understanding requires
a very specific combination of information from different modalities (the text and the image).
Consider, as an illustration, a sentence like “you smell nice today” paired with an image
of a skunk, or “look how many people love you” with a picture of a tumbleweed in the
desert. Unimodally, these examples are boring and harmless, but when the modalities are
combined the meaning changes and they suddenly become mean—which is easy for humans
to detect, but (so far) challenging to Al systems.

A primary motivation for the challenge, in addition to the obvious importance of tackling
hate speech, is that we believe there is room for vision-and-language tasks to extend beyond
the popular tasks of visual question answering (Antol et al., 2015; Johnson et al., 2017) and
image captioning (Chen et al., 2015; Young et al., 2014; Krishna et al., 2017). While these
tasks are very important and have contributed immensely to the progress of the field, one
could argue that they are different from many of the problems in industry, using real-world
internet data, where the goal might be to classify a tweet, post or comment.

A crucial characteristic of the challenge is that we include so-called “benign confounders”
to counter the possibility of models exploiting unimodal priors: for every hateful meme,
we find alternative images or captions that make the label flip to not-hateful. Using the
examples above, for example, if we replaced the skunk and tumbleweed images with pictures
of roses or people, the memes become harmless again. Similarly, we can flip the label by
keeping the original images but changing the text to “look how many people hate you” or
“skunks have a very particular smell”. Thus, the challenge is designed such that it should
only be solvable by models that are successful at sophisticated multimodal reasoning and
understanding.

The Hateful Memes Challenge task has obvious direct real-world applicability, and can-
not be solved by only looking at the image or the text, instead requiring sophisticated
multimodal fusion. It is difficult and requires subtle reasoning, yet is easy to evaluate as
a binary classification task. The challenge can thus be said to serve the dual purpose of
measuring progress on multimodal understanding and reasoning, while at the same time
facilitating progress in a real-world application of hate speech detection.’

2. Related Work

Hate speech There has been a lot of work in recent years on detecting hate speech in net-
work science (Ribeiro et al., 2018) and natural language processing (Waseem et al., 2017;
Schmidt and Wiegand, 2017; Fortuna and Nunes, 2018). Several text-only hate speech
datasets have been released, mostly based on Twitter (Waseem, 2016; Waseem and Hovy,
2016; Davidson et al., 2017; Golbeck et al., 2017; Founta et al., 2018), and various architec-
tures have been proposed for classifiers (Kumar et al., 2018; Malmasi and Zampieri, 2018,
2017). Hate speech detection has proven to be difficult, and for instance subject to un-
wanted bias (Dixon et al., 2018; Sap et al., 2019; Davidson et al., 2019). One issue is that
not all of these works have agreed on what defines hate speech, and different terminology

1. The dataset is available at https://hatefulmemeschallenge.com, which also hosts the leaderboard.
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has been used, ranging from offensive or abusive language, to online harassment or aggres-
sion, to cyberbullying, to harmful speech, to hate speech (Waseem et al., 2017). Here, we
focus exclusively on hate speech in a narrowly defined context (see Section 3.1).

Multimodal hate speech There has been surprisingly little work related to multimodal
hate speech, with only a few papers including both images and text. Yang et al. (Yang
et al., 2019) report that augmenting text with image embedding information immediately
boosts performance in hate speech detection. Hosseinmardi et al. (Hosseinmardi et al., 2015)
collect a dataset of Instagram images and their associated comments, which they then label
with the help of Crowdflower workers. They asked workers two questions: 1) does the
example constitute cyberaggression; and 2) does it constititute cyberbullying. Where the
former is defined as “using digital media to intentionally harm another person” and the
latter is a subset of cyber-aggression, defined as “intentionally aggressive behavior that is
repeatedly carried out in an online context against a person who cannot easily defend him or
herself” (Hosseinmardi et al., 2015). They show that including the image features improves
classification performance. The dataset consisted of 998 examples, of which 90% was found
to have high-confidence ratings, of which 52% was classified as bullying. Singh et al. (Singh
et al., 2017) conduct a detailed study, using the same dataset, of the types of features that
matter for cyber-bullying detection in this task. Similarly, Zhong et al. (Zhong et al., 2016)
collected a dataset of Instagram posts and comments, consisting of 3000 examples. They
asked Mechanical Turk workers two questions: 1) do the comments include any bullying;
and 2) if so, is the bullying due to the content of the image. 560 examples were found
to be bullying. They experiment with different kinds of features and simple classifiers for
automatically detecting whether something constitutes bullying.

Our work differs from these works in various ways: our dataset is larger and explicitly
designed to be difficult for unimodal architectures; we only include examples with high-
confidence ratings from trained annotators and carefully balance the dataset to include
different kinds of multimodal fusion problems; we focus on hate speech, rather than the
more loosely defined cyberbullying; and finally we test more sophisticated models on this
problem. Vijayaraghavan et al. (Vijayaraghavan et al., 2019) propose methods for inter-
preting multimodal hatespeech detection models, where the modalities consist of text and
socio-cultural information rather than images. Concurrently, Gomez et al. (Gomez et al.,
2020) introduced a larger (and arguably noisier) dataset for multimodal hate speech detec-
tion based on Twitter data, which also contains memes and which would probably be useful
as pretraining data for our task.

Vision and language tasks Multimodal hate speech detection is a vision and language
task. Vision and language problems have gained a lot of traction is recent years (see
Mogadala et al. (Mogadala et al., 2019) for a survey), with great progress on important
problems such as visual question answering (Antol et al., 2015; Goyal et al., 2017) and image
caption generation and retrieval (Chen et al., 2015; Young et al., 2014; Krishna et al., 2017;
Sidorov et al., 2020; Gurari et al., 2020), with offshoot tasks focusing specifically on visual
reasoning (Johnson et al., 2017), referring expressions (Kazemzadeh et al., 2014), visual
storytelling (Park and Kim, 2015; Huang et al., 2016), visual dialogue (Das et al., 2017;
De Vries et al., 2017), multimodal machine translation (Elliott et al., 2016; Specia et al.,
2016), visual reasoning (Suhr et al., 2018; Hudson and Manning, 2019; Singh et al., 2019;
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Xie et al., 2019; Gurari et al., 2018), visual common sense reasoning (Zellers et al., 2019)
and many others.

A large subset of these tasks focus on (autoregressive) text generation or retrieval objec-
tives. One of the two modalities is usually dominant. They often rely on bounding boxes or
similar features for maximum performance, and are not always easy to evaluate (Vedantam
et al., 2015). While these tasks are of great interest to the community, they are different
from the kinds of real-world multimodal classification problems one might see in industry—
a company like Facebook or Twitter, for example, needs to classify a lot of multimodal
posts, ads, comments, etc for a wide variety of class labels. These use cases often involve
large-scale, text-dominant multimodal classification similar to what is proposed in this task.

Related multimodal classification tasks exist; for instance, there has been extensive
research in multimodal sentiment (Soleymani et al., 2017), but there is no agreed-upon
standard dataset or benchmark task. Other datasets using internet data include Food101
(Wang et al., 2015), where the goal is to predict the dish of recipes and images; various
versions of Yelp reviews (Ma et al., 2018); Walmart and Ferramenta product classification
(Zahavy et al., 2016; Gallo et al., 2017); social media name tagging (Twitter and Snapchat)
(Lu et al., 2018); social media target-oriented sentiment (Yu and Jiang, 2019); social media
crisis handling (Alam et al., 2018); various multimodal news classification datasets (Ramisa,
2017; Shu et al., 2017); multimodal document intent in Instagram posts (Kruk et al., 2019);
and predicting tags for Flickr images (Thomee et al., 2015; Joulin et al., 2016). Other
datasets include grounded entailment, which exploits the fact that one of the large-scale
natural language inference datasets was constructed using captions as premises, yielding
a image, premise, hypothesis triplet with associated entailment label (Vu et al., 2018); as
well as MM-IMDB, where the aim is to predict genres from posters and plots (Arevalo
et al., 2017); and obtaining a deeper understanding of multimodal advertisements, which
requires similarly subtle reasoning (Hussain et al., 2017; Zhang et al., 2018). Sabat et
al. (Sabat et al., 2019) recently found in a preliminary study that the visual modality can
be more informative for detecting hate speech in memes than the text. The quality of
these datasets varies substantially, and their data is not always readily available to different
organizations. Consequently, there has been a practice where authors opt to simply “roll
their own” dataset, leading to a fragmented status quo. We believe that our dataset fills
up an important gap in the space of multimodal classification datasets.

3. The Competition

The original Hateful Memes dataset was proposed by Kiela et al. (2020) as a means to
measure progress in research on multi-modal reasoning and understanding. It incorporates
benign confounders in an attempt to tease apart differences between models that are only su-
perficially multimodal and models that can truly conduct sophisticated multimodal fusion.
The dataset is hoped to be particularly useful for evaluating large scale models pre-trained
on other data. The original paper describes the collection and annotation procedure, the
various splits, and the performance of state of the art vision-and-language systems as base-
lines. For this competition, an “unseen” test set was constructed specifically for the purpose
of evaluating solutions using new source material, ensuring that competition participants
would be evaluated on the actual task (which would in the real world include completely
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novel unseen examples) and also to mitigate the risk of participants exploiting inadvertent
biases. The competition underwent two “phases”: the first phase using the seen test set,
which lasted from May to October with one submission allowed per day; and the second
phase using the unseen test set, lasting for the month of October, with three submissions
allowed in total.

3.1. Task Formulation

Hate speech, in the context of this paper and the challenge set, is strictly defined as follows:

A direct or indirect attack on people based on characteristics, including ethnic-
ity, race, nationality, immigration status, religion, caste, sex, gender identity,
sexual orientation, and disability or disease. We define attack as violent or
dehumanizing (comparing people to non-human things, e.g. animals) speech,
statements of inferiority, and calls for exclusion or segregation. Mocking hate
crime is also considered hate speech.

There are some notable but subtle exceptions in this definition, i.e., attacking individu-
als/famous people is allowed if the attack is not based on any of the protected characteris-
tics. Also, attacking groups perpetrating hate (e.g. terrorist groups) is not considered hate.
The definition resembles (but is a very simplified version of) community standards on hate
speech employed by e.g. Facebook?.

The task is to classify a meme—i.e., an image and some text (the text is pre-extracted
from the image in lieu of having to do optical character recognition)—based on whether it
is hateful according to the above definition, or not.

3.2. Metrics

The primary metric for the competition, and the metric we encourage the community to use,
is the area under the receiver operating characteristic curve (AUROC; Bradley, 1997). We
also encourage the community to report the accuracy as a secondary metric, since it is easily
interpretable and the dev and test sets are not extremely unbalanced?, so accuracy gives a
reasonable (though imperfect) signal of model performance. The competition winners were
decided based on AUROC, which gives a fine-grained sense of classifier performance.

3.3. Data

The dataset construction procedure is discussed in detail in Kiela et al. (2020). In summary,
it consisted of four phases: 1) data filtering; 2) meme reconstruction; 3) hatefulness ratings;
4) benign confounder construction. In order to ensure that the dataset would be freely
distributable for research purposes, we partnered with Getty Images for sourcing the images,
synthetically constructing memes using those source images as the background upon which
text was overlaid.

There are different types of memes in the dataset. Hateful examples can be multimodal
in nature, meaning that the classification relies on both modalities, or unimodal, meaning

2. https://wuw.facebook.com/communitystandards/hate_speech
3. Note that in real-world data, the prevalence of hate speech would be much lower.
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Total ‘ Not-hate Hate | MM Hate UM Hate ‘ Img Conf Txt Conf Rand Benign

Train 8500 | 5481 3019 | 1100 1919 | 1530 1530 2421
Dev seen 500 253 247 200 47 100 100 53
Dev uneen 540 340 200 200 0 170 170 0
Test seen 1000 510 490 380 110 190 190 130
Test unseen 2000 1250 750 750 0 625 625 0

Table 1: Dataset splits

Unseen Dev Unseen Test

Type Model Acc. AUROC Acc. AUROC
Unimodal Image-Region 61.48  53.54 | 60.2840.18 54.64-0.80
Text BERT 60.37  60.88 | 63.60+0.54 62.65-+0.40
Late Fusion 61.11  61.00 | 64.0640.02 64.44-1.60
Concat BERT 64.81  65.42 | 65.90+0.82 66.28-+0.66
. MMBT-Grid 67.78  65.47 | 66.85+1.61 67.24+2.53
Multimodal MMBT-Regi 70.04  71.54 | 70.104€1.39 72.2140.20

(Unimodal Pretraining) . -hieglon : : : : : ‘

ViLBERT 69.26  72.73 | 70.86+0.70 73.39+1.32
Visual BERT 69.67  71.10 | 71.3040.68 73.23+1.04
Multimodal ViLBERT CC 70.37  70.78 | 70.03£1.07 72.7840.50
(Multimodal Pretraining)  Visual BERT COCO | 70.77  73.70 | 69.95+1.06 74.59+1.56

Table 2: Unseen dev and test set performance for baseline models (see Kiela et al. (2020)
for baseline model performance on the “seen” dev and test sets).

that one modality is enough to obtain the correct classification label. In addition, the
dataset contains “confounders” that are constructed such that minimal changes to one of
the modalities cause the label to flip. To balance out the data, we also include random
benign examples, which in practice is by far the most common meme category in the wild.

During the early stages of the competition, discrepancies were found in the hatefulness
annotations, mostly as a result of noisy examples from the original reconstruction procedure
and annotator confusion. This was addressed by having the entire dataset reannotated with
better training and stricter guidelines for the “second phase” of the competition.

3.4. Splits

Table 1 shows how the dataset breaks down into various categories. In phase 1 of the
competition, dev “seen” and test “seen” were used. Unlike the train set, which is dominated
by unimodal violating contents, dev “seen” and test “seen” set are dominated by multimodal
contents. Moreover, the labels distribution is balanced. For phase 2 (the prize wining phase)
“unseen” dev and “Unseen” test set were constructed. There are no unimodal violating
contents in these two new sets. This encouraged the competitors to push accuracy of their
multimodal models.
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Phase Start End Participants Submissions Sub. Part. Constraints
1- “seen” May 10th  Oct. 1st 3,532 3,646 510 1 per day
2 - “unseen”  Oct. 1st Oct. 31th 3,173 276 105 3 total

Table 3: Participation Statistics. “Participants” is the number of people who registered on
the competition page. “Sub. Part” is the number of participants who submitted
at least one solution.

3.5. Baselines and starter kit

Baseline scores for various unimodal and several state-of-the-art multimodal models on this
task were established at the start of the competition. Starter kit code was provided to all
participants, and is available as a part of the MMF multi-modal framework at:
https://github.com/facebookresearch/mmf/tree/master/projects/hateful _memes.

4. Results & Analysis
4.1. Participation

Table 3 shows the overall competition statistics. The competition had a large number
of participants, which narrowed down towards the later stages due to stricter submission
constraints.

An issue that emerged during the competition was that some teams considered “pseudo
labelling” on the test set to be a valid approach. Pseudo labelling can in some cases be
perfectly legitimate, e.g. for semi-supervised learning where a small set of supervised data
can be used to impute labels for unsupervised data that may be used in subsequent training,
but for obvious reasons this approach should not be applied to test set examples. Some
contestants also exploited knowledge about the dataset construction process, basing test set
example predictions on other test set example labels, which also obviously violates test set
integrity. Both approaches were actively discouraged, but these issues constitute a weakness
in the dataset that is important to explicitly acknowledge: the construction process led
to “triplets” of one hateful memes and two similar non-hateful confounder memes. This
knowledge can be trivially exploited by comparing a given example to other examples in the
test set, effectively classifying the most-probably-hateful meme as hateful and the others as
automatically wholly not-hateful. Obviously, this approach defeats the purpose of the test
set (for measuring generalization to novel examples) and violates standard machine learning
practice. Solutions that employed this approach were disqualified from the competition.

4.2. Winning solutions

The competition had a prize pool of 100k USD, divided over the top 5 winning teams. As
a requirement for prize eligibility, the winning teams were asked to open-source all their
code and write an academic paper outlining how to reproduce their results. We hope others
across the Al research community will build on their work and be able to improve their own
systems.
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Team AUROC Acc.

Ron Zhu 0.844977 0.7320
Niklas Muennighoff ~ 0.831037 0.6950
Team HateDetectron 0.810845 0.7650
Team Kingsterdam 0.805254 0.7385
Vlad Sandulescu 0.794321 0.7430

UL W N = #t

Table 4: Competition winners

#1 Ron Zhu: Enhancing Multimodal Transformers with External Labels And
In-Domain Pretraining Zhu (2020) won first prize.* The solution stood apart for a
number of reasons. It employed a diverse ensemble of VL-BERT (Su et al., 2019), UNITER-
ITM (Chen et al., 2019), VILLA-ITM (Gan et al., 2020), and ERNIE-Vil (Yu et al., 2020)
models. In addition to the text and image inputs, the models were given entity, race and
gender classifications. Entity labels were obtained via the Google Cloud vision API’s web
detection tool®>. Race and gender labels were obtained by extracting faces using Mask-
RCN (Ren et al., 2015) and classifying them.

#2 Niklas Muennighoff: State-of-the-art Visio-Linguistic Models applied to
Hateful Memes Muennighoff (2020) won second prize.® The implementation fits vision-
and language models into a uniform framework and adds specific enhancements. Specifically,
masked pre-training helps the models adapt to the Hateful Memes dataset before being
trained on classification. A visual token type is added to ease differentiation between text
and visual content. Stochastic Weight Averaging (Izmailov et al., 2018) is used to stabilize
training and make performance seed-independent. ERNIE-Vil (Yu et al., 2020), UNITER
(Chen et al., 2019), OSCAR (Li et al., 2020) and VisualBERT (Li et al., 2019) models are
ensembled in a loop to produce the final score.

#3 Team HateDetectron: Detecting Hate Speech in Memes Using Multimodal
Deep Learning Approaches Velioglu and Rose (2020) won third prize.” The solu-
tion has a lower complexity compared to other solutions as it only uses a single model—
VisualBERT (Li et al., 2019). Singh et al. (2020b) showed that the source domain of the
pre-training dataset highly impacts the model’s capability. For this reason, VisualBERT is
pre-trained on Conceptual Captions (Sharma et al., 2018), which are similar to this compe-
tition’s memes in the sense of multimodality between text and image, and fine-tuned on an
aggregated dataset where a part of the Memotion dataset (Sharma et al., 2020) was added
to the Hateful Memes dataset. As a result of hyper-parameter tuning, an ensemble of 27
models are used to classify memes using majority voting technique.

#4 Team Kingsterdam: A Multimodal Framework for the Detection of Hateful
Memes Lippe et al. (2020) won fourth prize.® The solution combined UNITER (Chen

. https://github.com/Himari0/HatefulMemesChallenge
https://cloud.google.com/vision/docs/internet-detection
https://github.com/Muennighoff/vilio
https://github.com/rizavelioglu/hateful _memes-hate_detectron
. https://github.com/Nithin-Holla/meme_challenge

® N o
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et al., 2019) with a number of techniques for improved learning. The text confounders
in the dataset were upsampled during training to help improve the model’s multimodal
reasoning capabilities, while a loss re-weighting strategy was applied to favour the minority
class. This was followed by an ensemble of 15 UNITER models trained on different splits
of the data such that subsets from the development set were included in the training folds.
This ensured that the high percentage of truly multimodal examples in the development
set was utilised during training. The final predictions were obtained via a weighted linear
combination of the ensemble predictions, optimised using an evolutionary algorithm on the
development set.

#5 Vlad Sandulescu: Detecting Hateful Memes Using a Multimodal Deep En-
semble Sandulescu (2020) won fifth prize.” They experiment with both single-stream
Transformer architectures: VL-BERT (Su et al., 2019), VLP (Zhou et al., 2019) and
UNITER (Chen et al., 2019) as well as dual-stream models such as LXMERT (Tan and
Bansal, 2019), showing single-stream models outperform the two-stream ones on this task.
These large architectures are chosen such that by ensembling them one could exploit the fact
they are pre-trained on a wide spectrum of datasets from different domains. The highest
scoring solution involves an ensemble of UNITER models, each including an extra bidi-
rectional cross-attention mechanism to couple inferred caption information using the Show
and Tell model from (Vinyals et al., 2016) to the already supplied meme text. Finally, deep
ensembles (Lakshminarayanan et al., 2017), a simple yet very powerful trick, improve on
single model predictions by a significant margin.

4.3. Take-aways

In our assessment, the competition was a huge success. We had a large number of partic-
ipants, a lively competition community and interesting novel solutions to this important
problem as prize winners. Here, we list some take-aways from the competition and winning
solutions.

Frameworks matter We provided an easy starter kit codebase using MMF Singh et al.
(2020a), so that participants would not have to worry about implementational details and
could immediately focus on innovating on e.g. the architecture. Most participants used
this codebase, but interestingly not all winning teams did so. Muennighoff (2020) for
example built a framework from scratch. Zhu (2020) manually ported ERNIE-Vil from
PaddlePaddle!'® to PyTorch, a herculean effort that was credited at the competition event
as one of the reasons behind their success. Overall, solutions were engineering heavy and
the easy availability (or not) of particular methods made a clear difference in giving some
participants an edge over the otherwise relatively level playing field.

Pretrained models Bugliarello et al. (2020) recently described intriguing results showing
that differences between various “Vision and Language BERTSs” are mostly due to training
data and hyperparameters. The winning solutions used a wide variety of such models. Some
participants argued that specific architectures were better than others—notably UNITER,
VILLA and ERNIE-ViL—Dbut this remains mostly speculative. Similarly, there did appear

9. https://github.com/vladsandulescu/hatefulmemes
10. https://github.com/PaddlePaddle/Paddle
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to be a recency bonus for models, where newly released models (even ones released when
the competition was long underway) gave participants an upper hand, like in the case of
ERNIE-ViL.

Ensembles As is usually the case in competition, all winning solutions employed en-
sembles. Interestingly, the ensembles were not necessarily of different model architectures.
This does raise issues for deploying solutions in production, which has heavy computational
constraints.

Entities, Faces and External knowledge Understanding memes often requires subtle
world knowledge, which many participants tried to exploit. The winning solutions’ reliance
on a concept detection pipeline is illustrative of this, and we speculate that incorporating
rich conceptual knowledge (e.g. not only knowing that the object is a “car” but that it’s a
“Volkswagen Beetle Type 2”) will be very helpful. Given the nature of the dataset, having
explicit knowledge of hate speech target features (like race and gender) also helped, however
incorporating such features in practice raises important ethical dilemmas.

5. Conclusion & Outlook

We described the Hateful Memes Challenge competition, the newly collected “unseen”
datasets and the winning solutions. Open competitions around important common problems
are some of the Al research community’s most effective tools for accelerating progress. Hate
speech remains a crucially important challenge, and multimodal hate speech in particular
continues to be an especially difficult machine learning problem. The Hateful Memes Chal-
lenge competition is over, but the real challenge is far from solved: A lot of work remains
to be done in multimodal Al research, and we hope that this work can play an important
role in evaluating new solutions that the field comes up with. The dataset design makes it a
good candidate for evaluating the power of next-generation multimodal pretrained models,
as well as currently still unimagined advances in the field. We hope that this task and these
datasets will continue to inform new approaches and methods going forward.
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