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Traffic4cast at NeurIPS 2020

Abstract

The IARAI Traffic4cast competition at NeurIPS 2019 showed that neural networks can
successfully predict future traffic conditions 15 minutes into the future on simply aggregated
GPS probe data in time and space bins, thus interpreting the challenge of forecasting traffic
conditions as a movie completion task. U-nets proved to be the winning architecture then,
demonstrating an ability to extract relevant features in the complex, real-world, geo-spatial
process that is traffic derived from a large data set. The IARAI Traffic4cast challenge at
NeurIPS 2020 build on the insights of the previous year and sought to both challenge
some assumptions inherent in our 2019 competition design and explore how far this neural
network technique can be pushed. We found that the prediction horizon can be extended
successfully to 60 minutes into the future, that there is further evidence that traffic depends
more on recent dynamics than on the additional static or dynamic location specific data
provided and that a reasonable starting point when exploring a general aggregated geo-
spatial process in time and space is a U-net architecture.

1. Introduction

In our first edition of our Traffic4cast competition at NeurIPS 2019, we encouraged con-
testants to predict traffic flow volumes, velocities, and dominant flow directions 15 minutes
into the future on a unique, large, real world data set (Kreil et al., 2019). Although such
forecasts are thought to be the basis for building and managing our cities to provide efficient
and sustainable mobility (Bucher et al., 2019; Lee et al., 2018; Jonietz et al., 2018), this
form of traffic prediction is still largely considered to be an unsolved problem (Guo et al.,
2019). An innovation of our Traffic4cast 2019 competition was the chosen representation:
we aggregated our traffic data from individual sensor measurements in space and time bins.
The values of the spatial representation of each time bin could be interpreted and visualized
as a ‘movie’ frame and thus our traffic prediction task was effectively a video frame predic-
tion task. This is a highly active field with promising distinct approaches (Srivastava et al.,
2015; Lee et al., 2018; Kwon and Park, 2019; Walker et al., 2016; Xue et al., 2016; Han
et al., 2019; Oprea et al., 2020) which we hoped could be harvested by the traffic prediction
community as well. Our 2019 competition yielded the following insights (Kreil et al., 2019).

• Re-phrasing traffic forecasting as a video prediction problem turned out to be of merit
and – as independent work has shown on precipitation prediction (Agrawal et al., 2019)
– should be considered a promising new technique in tackling complex geo-spatial
processes. Capturing the complex spatio-temporal dependencies of such processes is
known to be a hard problem, usually referred to as ‘spatial is special’ (Anselin, 1989),
and our 2019 competition contributed evidence that neural network techniques in this
simple video frame prediction setting yield promising results.

• Anecdotal evidence stemming from the attempt by some contestants indicated that
trying to add additional prior static or dynamic location knowledge about the spa-
tial bins did not seem to improve results significantly (Martin et al., 2019; Herruzo
and Larriba-Pey, 2020), suggesting that such information was already encoded in the
complex traffic data itself. Moreover, no successful strategies in our competition used
recurring traffic patterns based on time of day or day of week, which would have been
possible in the competition design, providing further anecdotal evidence that traffic
is ‘quasi-markovian’, i.e. mostly dependent on the immediate past only.
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• Most successful solutions indicated (Choi, 2019; Martin et al., 2019; Yu et al., 2019)
that our discretized ‘majority heading’ channel was the least informative and was also
hardest to predict.

For the Traffic4cast competition at NeurIPS 2020, we set out to examine further some of
the findings discussed and challenge our assumptions in the design of the 2019 competition.
For instance, the literature presents empirical evidence that the performance of numerous
traffic prediction models would typically decrease significantly past a 15min horizon, and a
majority of studies of ‘short-term prediction’ thus focus on such time horizons (Ermagun
and Levinson, 2018a; Dunne and Ghosh, 2011; Ermagun and Levinson, 2018b; Lana et al.,
2018). In line with common practice, we therefore restricted our 2019 competition to that
horizon. The great success of neural techniques in extracting complex traffic patterns from
our Traffic4cast 2019 large real world competition data in our chosen representation and
the fact that most of the submitted solutions could easily be extended to predict past that
time horizon, led us in our 2020 competition to test that hypothesis by asking participants
to predict up to 60min into the future. Given the unexpected success of phrasing our traffic
forecasting problem as a movie prediction task, we decided to maintain our simple spatial
and temporal aggregation approach, but modify it due to the findings above. Furthermore,
we wanted to double down on the implicit question thrown up by Martin et al. (2019) and
Bucher et al. (2019) of whether additional static and dynamic data potentially relevant to
the geo-spatial process of traffic could improve predictions. Here, we set out these ideas
and learnings from our Traffic4cast competition at NeurIPS 2020. In the following section
we describe our competition in detail including our new data format. In section 3 a short
presentation of selected competition entries is given. We finally conclude with a summary
of what we learned from Traffic4cast at NeurIPS 2020 and provide an outlook to possible
exciting next steps in the coming year.

2. Competition Overview

2.1. The data

Building up-on the previous Traffic4cast 2019 competition (Kreil et al., 2019) we again
provided a unique real-world industrial-scale data set. In addition to dynamic channels
derived from trajectories of raw GPS position fixes (consisting of a latitude, a longitude,
a time stamp, as well as the vehicle speed and driving direction recorded at the time) we
also provided a dynamic channel containing information about incidents such as accidents,
construction sites and other events that influence traffic. In addition, for each city, static
channels that give additional contextual information about the densities of certain POI
(point-of-interest) categories as well as about general road network topology and complexity
properties was provided. The data is made available by HERE Technologies (www.here.com)
with the GPS data originating from a large fleet of vehicles recorded throughout the course
of the entire year 2019.

An unprecedented number of over 1011 GPS points were used to generate the data
sets for Berlin, Moscow, and Istanbul. These three cities represent culturally and socially
diverse metropolitan areas and, furthermore, they are also exhibiting a broad variety of
road network topologies as it can be seen in Figure 1.
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Figure 1: The cities Berlin, Istanbul and Moscow.

We aggregated the GPS measurements in spatial cell bins of approximately 100x100
meters size and 5-minute time bins. Figure 2 shows a simplified spatial tessellation as well
as typical scenarios of what portions of a road network such a 100x100 meter cell contains
in a dense city area. The output of this aggregation can be encoded as described below
as an ‘8 channel movie’ with each 5 minute bin representing a time frame and with the
densities and other aggregate features of the cells being mapped to generalized pixel values
in different channels. Hence, as output we receive such a generalized movie with 288 frames
for a single day.

Figure 2: Spatial tessellation of the road network and GPS recordings.

2.1.1. Dynamic channels

Unlike the Traffic4cast at NeurIPS 2019 competition where we aggregated GPS features
using 3 channels (Volume, mean speed and main heading) and hence even allowed an easy
visualization treating the three channels as RGB values, this year we chose an 8-channel en-
coding (see Figure 3) where two features are calculated for each heading direction quadrant
of North-East (0-90), South-East (90-180), South-West (180-270) and North-West (270-0):

• Volume: The number of probes points recorded from the collection of HERE sources
capped both above and below and normalized and discretized to an integer number
between 0 and 255.

• Mean speed: The average speed from the collected probe points. The values are
capped at a maximum level and then discretized to {1, 2, . . . , 255}, by linearly scaling
the capping speed to 255 and rounding the resulting values to the nearest integer.

In addition, we provided a 9th dynamic channel with the incident level for each cell
and time bin. This channel was generated using information from the HERE Traffic API
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Figure 3: The 8 probe channels, 2 for each heading quadrant.

Incident Data which provides dynamic information both about short and long-term in-
cidents such as accidents, congestion, road hazards, road closure, construction, planned
events or weather. The incident level for the channel was encoded as follows. We used a
static mapping of incident type and the incident criticality (minor, major, critical), then
aggregated these over the same 100m× 100m× 5min spatio-temporal bins as used for the
GPS data and, finally, mapping the sum of the resulting outcome into the discrete values
{0, 50, 60, 70, . . . , 240, 250, 255} in such a way that a higher number represents more severe
incidents.

2.1.2. Static channels

For the static channels only a spatial tessellation into the 100x100 meter cells was applied per
city in order to encode contextual information about the cell. Thus, per city, 5 channels are
provided to encode major POI (point-of-interest) categories. These heatmaps were gener-
ated using normalized counts of places in the HERE Places database (https://developer.
here.com/documentation/places/dev_guide/topics/categories.html). The categories,
selected to represent the predominant usage and activities in a cell or in the vicinity, were
‘Eat, drink and entertainment’, ‘Hospital’, ‘Parking’, ‘Shopping’ and ‘Transport’, respec-
tively. Two further channels were generated to represent the general topology and com-
plexity of the road network in each cell. The junction cardinality as well as the junction
count per road class can be seen as a proxy to differentiate cells with e.g. a single complex
junction from a cell with many small junctions. A simplified schema of the aggregation and
encoding can be seen in Figure 4.

Figure 4: The road topology and complexity channels.
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2.1.3. Output and data provisioning

Data was made available in HDF5 format. For each city, the data consisted of

• One file (h5) encoding a (495, 436, 7) tensor of static information

• The dynamic part of the training set consisting of 181 dynamic layer files (h5) each
containing a (288, 495, 436, 9) tensor.

• The validation set contains 18 full days in the same format.

• The test set asking to make 500 predictions spread over 163 days for each city of
the dynamic probe data portion, thus predicting 8-channels and 6 time slots per
prediction (5min, 10min, 15min, 30min, 45min and 60min into the future). The test
times, buffered by a 3h period, were randomly distributed across all possible time
slots in these 163 test days as shown in Figure 5.

Figure 5: Distribution of number of test time slots chosen for each day in our test set.

2.2. Task and metric

As outlined above, for each city contestants had to predict for 500 time slots (same for all
cities), given the last 12 time bins (corresponding to one hour) of dynamic data (tensor
for shape (12, 495, 436, 9)) a tensor of shape (6, 495, 436, 8) representing predicting the time
bins 5min, 10min, 15min, 30min, 45min and 60min into the future. The metric used was
average mean squared error (MSE).

2.3. Competition results - statistical analysis

We determined the ultimate ranking for our Traffic4cast competition by assigning to each
team its best leaderboard score. Since the differences among top scoring submissions were
very small we were keen to understand whether the observed ranking was statistically
significant. This problem can be framed as a problem of comparing the performance of
multiple algorithms over multiple datasets; a problem for which the solution is already
well established in the machine learning community. As suggested by the work of Demšar
(2006), in order to assess if there are any significant differences among submissions we can
apply the Friedman rank test (Friedman, 1937). Since the result of the Friedman test does
not indicate which submissions are statistically different from each other, if it rejects the
null hypothesis, we subsequently need to apply a mean rank post-hoc test for pairwise
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comparison between submissions. Multiple testing correction is required for the typically
large number of pairwise comparisons to be made (Garcia and Herrera, 2008).

Typically, the competition leaderboard includes one score for each team (submission)
and obviously no meaningful statistical analyses can be performed having only single score
per team. However, having access to individual scores per city and test slots we can obtain
a set of scores large enough to overcome the otherwise low power of the Friedman test. Two
main assumptions of the Friedman test are block test independence and homogeneity of
variance between blocks (Laurent and Turk, 2013; Pereira et al., 2015).

In order to assure that the Friedman test assumptions are fulfilled, we selected test days
having at least two predictions, which gave us 127 test days. For each selected day we then
randomly choose two prediction times. By averaging over 6 prediction time bins and over
the 3 cities we obtained a total of 254 independent scores, which were then used to assess the
statistical significance of the Traffic4cast leaderboard. The results of the Friedman test (p-
value < 2.2e-16) allowed us to reject the null hypotheses indicating that the score differences
among submissions are indeed not random. Results of the mean rank post-hoc test show
that scores for three top ranked submissions are statistically significantly different from one
another as well as from the runner up on rank 4, fully justifying the competition awards
to the three best ranked teams. The p-values of the pairwise post-hoc test, after applying
the Benjamini-Hochberg multiple testing correction procedure (Benjamini and Hochberg,
1995), can be observed in the left figure of Figure 6. Most submissions ranked outside the
top 3 fall into pairs of submissions with performance scores so similar that they cannot be
called significantly different and thus cannot be distinguished reliably, as presented in the
right figure of Figure 6.

Figure 6: Left figure represents p-values of the pairwise post-hoc test between each sub-
mission. The right figure is a graphical representation of statistical similarity
among submissions. Separated nodes represent submissions statistically different
from the others, while overlapping nodes represent submissions where the null
hypothesis of being equal cannot be rejected (p-value cutoff = 0.05). The number
in brackets represent rank of a submission (team) and the number below team
name represents mean rank of the submission across scores.

331



Traffic4cast at NeurIPS 2020

3. Standout solutions

3.1. Utilizing U-net for the Future Traffic Map Prediction

Our winning submission utilized a U-net (Ronneberger et al., 2015) based model with skip
connections on the encoder and decoder side. Such architectures have been widely used in
various tasks including image classification and segmentation (Li et al., 2018; Weng et al.,
2019; Chen et al., 2018; Zhou et al., 2019; Qamar et al., 2020). Training was done using
MSE and the Adam optimizer scheme (Kingma and Ba, 2014). The final outcome was the
combination of an ensemble of three U-net models (Model 1,2 and 3) whose architecture
was found empirically.

3.1.1. Encoder structure

Model 1 has a similar structure to our last year’s experimentation (Choi, 2019). In each
encoding block, each convolution layer is densely connected to every other layer in a feed
forward fashion (Huang et al., 2017). In Model 2, the max pooling layer is attached in
parallel to the dense convolution layers and both their outputs are concatenated before
being fed into the last convolution layer. At the end of each block, a convolutional pooling
layer is used instead of an average pooling layer. In Model 3, the max pooling layer is added
firsthand, followed by densely connected convolutional layers.

3.1.2. Decoder structure

In Model 1 and 2, each decoding block has one deconvolution layer, followed by one convo-
lution layer.

In Model 3, linear interpolation layer is attached in parallel to the deconvolution layer
and both their outputs are concatenated before being fed into the densely connected con-
volutional layers.

3.1.3. Combining three U-net models prediction

The predictions from three U-net models were combined by averaging. Although every
single model showed practically similar performance, each model likely captured different
aspects of the ground truth that leading to complementary features being considered. Com-
bining predictions like this likely reduces the error, assuming each model has a separate,
independent error distribution.

3.2. Traffic Map Movie Forecasting Based on HR-NET

By interpreting our challenge as a multi-task learning problem of predicting two channels
in each direction, our second placed team found a non Unet based approach (see Wu et al.
(2020a) and code at https://github.com/wufanyou/Traffic4Cast-2020-TLab).

3.2.1. Models

HR-NET as model architecture: HR-NET (Wang et al., 2020) was introduced to our com-
petition, where HR-NET is an advanced network architecture for image segmentation that
has demonstrated extraordinary performance on many tasks. Based on our experiments,
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we can conclude that, in general, HR-NET performs better than Unet (Ronneberger et al.,
2015).
ELU as hidden layer activation function: Given limited RAM, the focus was on in-place
activation functions only. ELU performed surprisingly better than any other activation
function. Therefore, ELU was used as the hidden layer activation function in most places
of the final solution.

3.2.2. Features

In addition to the given 12× 9 spatio-temporal channels and nine fixed spatial channels as
the inputs, extra features were also incorporated and valued. In summary, we introduce
three different types of features:
Periodic features: The similarity between traffic states of two different days can be at-
tributed to the periodic characteristics of traffic states, which typically repeat every 24
hours. In total, 10× 8 daily average statistics from {D − 7}

⋃
[D − 3, D − 1]

⋃
[D + 1, D +

3]
⋃
{D + 7} were used, where D is the predicted day.

Time, Weekday and Holiday Features: Time, weekday, and holiday features are definitely
useful in traffic flow prediction tasks. We used a two-dimensional vector to represent time
in one day by projecting [0, 287] to a unit circle. A one-hot vector to represent weekday
and a Boolean value to represent the holiday was used.
Geo-Embedding features: Based on work in (Liu et al., 2020), embedding technique to
generate regional ’personalized’ temporal information and feed it into the convolutional
neural network were employed. In this competition, a further method of geo-embedding to
learn the inherent attributes of each location (i.e., pixel) was proposed. A learnable tensor
C ×N ×M was concatinated to each input and optimized using the model.

3.2.3. Training

Due to device issues, most of the models were trained on a mini-batch size of 3 × 4 with
3× 2080Ti GPU. Each model was trained for 15 epochs with an initial learning rate of 0.01
and a linear learning rate decay. The LAMB (You et al., 2020) optimizer and warm-up
train was mainly found to yield better outcomes. Model training typically took 16-20 hours
even with using SyncBatchNorm to stabilize and speed up the training. Also, in the final
solution, half of the models are trained by both the training set and the validation set.

3.3. Towards Good Practices of U-net for Traffic Forecasting

One competitor, the LDS group, considered the traffic forecasting problem as a future frame
prediction task with relatively weak temporal dependencies (due to stochastic urban traffic
dynamics) and strong prior knowledge, i.e., the roadmaps of the cities. For these reasons,
a U-net as the backbone model was used, and a roadmap generation method proposed
to make the predicted traffic flows more consistent. A fine-tuning strategy based on the
validation set was used to prevent over-fitting, effectively improving the prediction results.
The code is available at https://github.com/ZJianjin/Traffic4cast2020_LDS.
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3.3.1. Approach

Network architecture. Based on the winning U-net (Ronneberger et al., 2015) architec-
ture of Traffic4cast 2019. It consists of 8 dense blocks and 7 transpose convolutional layers.
The output of the n-th dense block will be input to the (7− n)-th transpose convolutional
layer, which is a shortcut to retrieval of more information from the original image. A similar
shortcut is used inside the dense blocks: each dense block has 4 convolutional layers, each
layer will take the output of the previous layer and the original input of the dense block
as inputs, following Huang et al. (2017). Dense blocks are followed by average pooling to
half the size of the feature maps. The last dense block is followed by a single convolutional
layer.
Two-stage training strategy. The pattern of traffic flow might be very different dur-
ing different seasons and, in particular, between the period of the training data provided
(January to June 2019) and the period of the test set (July to December 2019). Seasonal
information to facilitate remedy that was provided, which, however, got no obvious gain.
Noting that the validation set is from the second half of the year, a two-stage training
strategy was employed. After pre-trained on the training set, the model will be fine-tuned
on validation data.

3.3.2. Training

The mean square error was chosen as the loss function during training and Adam optimiza-
tion with a 3e−4 learning rate was used. For each city, we have 181 train data files which
contain traffic data of half a year, and 18 files for validation. The 12 consequent frames were
used as inputs and predict 6 frames as the outputs. In addition to the original frames, the
static data, which represents road intersections, were added as additional input features.
All the input frames are normalized to 0–1.

For each city an independent model was trained with the two-stage training process
outlined above. All of them were trained for 5 epochs and then fine-tuned for 1 epoch.

3.4. Graph Ensemble Net and the Importance of Feature & Loss Function
Design for Traffic Prediction

The work submitted by Qi and Kwok (see Qi and Kwok (2020) and code https://github.

com/ivans-github/traffic4cast) explores two different approaches to tackling the traffic
prediction challenge. Firstly, they enhanced the winning U-net solution from last year (Choi,
2019) through improved feature and loss function design. Furthermore, they proposed
a novel ensemble Graph Neural Network (GNN) architecture which, although unable to
compete with the U-net solution, improved on the Graph-ResNets (Martin et al., 2020)
from last year’s competition.

3.4.1. Models

U-net: Having experimented with several U-net derivative architectures, the final U-net
largely resembled last year’s top-performing solution (Choi, 2019). Modifications were in-
troduced mainly around the input and output layers to handle the increased numbers of
input and output channels.
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Graph Ensemble Net: We introduce a GNN architecture which takes advantage of the
wide-ranging type of convolutional filters that were developed in recent years. To implement
this, we adapted the Graph-ResNet (Martin et al., 2020), replacing the res-block with a
new ensemble block. In the ensemble block, the inputs are passed through three different
convolutional filters (Defferrard et al., 2016; Hamilton et al., 2017; Wu et al., 2019) with
the outputs averaged before being fed into the next layer/block.

3.4.2. Features

Aside from collapsing the temporal dimension of the inputs into channels (resulting in a
channel size of 108), some key feature designs which we implemented are summarised as:
Time of Day features: Since we know that there are large variations in traffic behaviour
during the day (e.g. commuting hours), we decided to create an additional time of day
feature which encoded the starting hour of the input.
Aggregation Features: For the U-net, we added extra features encoding the pixel-wise
range, mean and standard deviations across the 12 timeframes. For the GNN, we condensed
the data for the first 6 timeframes into mean, min and max features, which reduced the
model size without losing performance.

3.4.3. Loss Function

The competition called for predicting 6 forward prediction time frames at 5, 10, 15, 30, 45
and 60 minutes. However, during training, a loss function calculated from all 12 frames
across the 60-minute prediction window was used which enhanced the predictive accuracy.

3.4.4. Training

Most of the training was done on Paperspace notebook using a single P5000 GPU

3.5. Temporal Autoencoder for Frame Prediction

Santokhi et al. (2020)’s approach was to see our competition challenge as an image-to-
image translation problem and they developed a Temporal Autoencoder using a U-Net
style architecture (see also https://gitlab.com/alchera/traffic4cast_2020)

3.5.1. Model Architecture

In order to capture both spatial and temporal features, Convolutional LSTM layers (Shi
et al., 2015) were used to build up the Autoencoder structure with 3 layers acting as the
encoder and 3 acting as the decoder. Down-sampling via 3D Max-Pooling was used to
reduce dimensionality and in turn ease training workload given compute resources avail-
able. Transposed Convolutions were used over standard interpolation up-sampling methods
allowing the network to learn the up-sampling optimally via learnable parameters. To en-
sure topological features of the cities were not lost from down-sampling to a latent space
and subsequent reconstructing via Transposed Convolutions, skip-connections were added.
These were utilised in a similar way to how they are presented in standard U-Net archi-
tectures. The Temporal Autoencoder architecture can be seen in Figure 7 with the tensor
shapes given at each stage (frames, height, width, channels).

335

https://gitlab.com/alchera/traffic4cast_2020


Traffic4cast at NeurIPS 2020

Figure 7: Model Architecture

3.5.2. Training

The model described was trained using 4 NVIDIA 1080 Titans with a batch size of 4 for
28 epochs taking a total of 9.5 hours. An ADAM optimiser paired with a cyclical learning
rate (Smith, 2017) proved to be the optimal approach. A total of seven triangular oscillations
(with minimum and maximum learning rates of 1 × 10−7 and 2 × 10−3 respectively) were
made during the training cycle. This approach led to improved training efficiency, achieving
lower loss scores in fewer epochs than standard approaches.
Given each city has significantly different topological features, driving behaviour and driving
culture stemming from being in different countries, three separate models were trained; one
for each city as it did not seem wise to encompass these factors into a single ‘all-in-one’
model. Model architecture, training procedure and hyper-parameters were kept exactly the
same.

3.6. Traffic Flow Prediction Using Deep Sedenion Networks

The creators of this solution (see (Bojesomo et al., 2020)) used the spatio-temporal nature
of the problem thus viewing it as a multi-modal and multi-task problem due to the variety
of information presented in input channels and the need to forecast more than one time
step in the future. Hypercomplex networks provide efficient means for representing multi-
modal data. They have been previously used for solving multi-task problems (Wu et al.,
2020b) with promising results. Hypercomplex networks are often used when the number of
input channels (i.e. components) match or less than the dimensionality of hypercomplex
numbers (Parcollet et al., 2019). This section describes the use of sedenion convolutions
in a U-Net based model for tackling the multitask segmentation problem. The proposed
model was described in more details in (Bojesomo et al., 2020) and implemented in https:

//github.com/bojesomo/Traffic4Cast2020-DeepSedanionNetwork. This model having
just 628,592 trainable parameters achieved competitive result while being trained with
limited resources.

3.6.1. Sedenion Convolution

A sedenion can be defined as a 16-dimensional algebraic structure, i.e., X = x0+
∑15

k=1 xkik,
where x0 is the real part and xk, k ∈ (1, 15) are the imaginary parts with i2k = −1. Sede-
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nion based convolution can be represented as the multiplication of two sedenion numbers
(Bojesomo et al., 2020; Saoud and Al-Marzouqi, 2020). Each component of the sedenion
weight vector is re-used 16 times and this leads to a significant reduction in the number
of network parameters. This reduction does not come at the expense of representational
ability because all input feature maps of the sedenion convolution are used in representing
each of the 16 sedenion outputs (Bojesomo et al., 2020). In the proposed sedenion neural
network, input data is represented using 16 dimensions, where each dimension represents a
single component of the sedenion complex vector.

3.6.2. Model Architecture

The proposed model uses a U-NET based architecture (Bojesomo et al., 2020). The model
uses sedenion convolutions except for the learnVectorBlock which uses conventional convo-
lution. The learnVectorBlock helps in getting the static input (7 channels) into an equal
channel dimension as the dynamic input (9 channels).

3.6.3. Training

Our model was trained using two GeForce RTX 2080 Ti GPUs. We used mean squared
error (MSE) as the loss function, with the Adam optimizer. The learning rate was initially
set to 1e − 4 and was manually reduced to 1e − 6, when performance plateaued on the
validation set. The proposed model was trained for 15 epochs.

4. Conclusion and Outlook

The Traffic4cast competitions aim to bring together scientists from the fields of ML, GISc,
and transportation science. In this year’s edition at NeurIPS 2020, we set out to explore
the following research questions.

1. Sticking with our way of representing the underlying sensor data as aggregated in space
and time bins, will providing additional ancillary static and dynamic information per
spatial and spatio-temporal bin, respectively, add to the prediction accuracy?

2. Can modern ML-based traffic prediction techniques on large amounts of simply ag-
gregated data in space and time avoid the decrease in prediction accuracy frequently
reported for horizons larger than 15min (Ermagun and Levinson, 2018a; Dunne and
Ghosh, 2011; Ermagun and Levinson, 2018b; Lana et al., 2018)?

3. Do the results from this year’s competition provide further support for the role of
the U-net and related encoder-decoder models as promising one-solves-all candidate
architectures (Kreil et al., 2019) for geospatial processes?

The first question was heavily explored by our contestants. Choi (2020) and Qi and Kwok
(2020) report that their models could only make limited use of the static data provided.
Several participants tried to exploit apparent repeating patterns in traffic data. Wu et al.
(2020a) report a small improvement in their model performance by adding features derived
from traffic states over the previous week, adjusted by a random procedure due to the fact
that our test set this year did not allow to derive this information. Moreover, a feature
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indicating to the model whether the prediction was during a holiday or weekend yielded
a small improvement. Xu et al. (2020) report that their method of exploiting seasonal in-
formation by training on similar climate periods to those one wants to predict is effective
in Moscow, but fails in Berlin and Istanbul, although their final model did not make use
of this technique. Wu et al. (2020a) and Qi and Kwok (2020) allow location information
to be added and learned, but report little improvement to their current models. There is
anecdotal evidence only that the provided incidents information was of little help. Many
participants discarded this channel as an input all together (e.g. Santokhi et al. (2020))
but still reached competitive scores. The results of our competition points to a strong affir-
mative answer to our second question. Similar and improved architectures from last year’s
competition (e.g. Choi (2020), Wu et al. (2020a)) show little deterioration over the longer
time horizon. Nevertheless, as noted by Qi and Kwok (2020), a visual inspection of the
actual predictions raises the question as to what part of the dynamics our MSE loss met-
ric encourages solutions to capture. Although U-net architectures featured heavily in this
year’s competition amongst the highest scoring entries (Choi, 2020; Xu et al., 2020; Qi and
Kwok, 2020; Santokhi et al., 2020) other approaches or combination with other approaches
showed promise, too. Wu et al. (2020a) used HR-NET, an adaptation of Wang et al. (2020)
originally designed for high resolution representation learning. Bojesomo et al. (2020) uses
a sedenion based network architecture, achieving competitive results with few trainable
parameters. Moreover, Qi and Kwok (2020) reports that merging the results of a U-net ar-
chitecture with that of a Graph Ensemble Network (GEN) (extending the GNN in Martin
et al. (2020)) leads to a performance improvement, indicating that their GEN can captures
different dynamic aspects to their U-net approach. Taking into account the success of U-net
architectures in precipitation prediction (Agrawal et al., 2019) on similarly spatially and
temporally aggregated data, our competition results indicate that U-net architectures cap-
ture relevant parts of the dynamics and should thus be candidate architectures when faced
with predicting geo-spatial processes aggregated in a similar way. Exploring and quantifying
this further on different types of processes and tracking successful architectures could open
the way to being able to predict such processes even if the underlying laws are unknown,
known but unhelpful for real world scenarios or contain a large random element. Moreover,
this aggregated approach also allows to learn pattern similarities between different process
observations. Thus, one could feasibly try and predict 2-wheeler traffic from 4-wheeler traf-
fic, or model the influence of weather on traffic as planned for Traffic4cast 2021. We will
similarly extend this approach to other domains, such as multi-channel weather prediction
(www.traffic4cast.ai launching shortly).
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fic4cast-traffic map movie forecasting–Team MIE-Lab. arXiv preprint arXiv:1910.13824,
2019.

Henry Martin, Ye Hong, Dominik Bucher, Christian Rupprecht, and René Buffat. Graph-
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