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Abstract
Differentially private (DP) stochastic convex optimization (SCO) is a fundamental problem, where
the goal is to approximately minimize the population risk with respect to a convex loss function,
given a dataset of i.i.d. samples from a distribution, while satisfying differential privacy with respect
to the dataset. Most of the existing works in the literature of private convex optimization focus on
the Euclidean (i.e., `2) setting, where the loss is assumed to be Lipschitz (and possibly smooth)
w.r.t. the `2 norm over a constraint set with bounded `2 diameter. Algorithms based on noisy
stochastic gradient descent (SGD) are known to attain the optimal excess risk in this setting.

In this work, we conduct a systematic study of DP-SCO for `p-setups. For p “ 1, under a
standard smoothness assumption, we give a new algorithm with nearly optimal excess risk. This
result also extends to general polyhedral norms and feasible sets. For p P p1, 2q, we give two new
algorithms, for which a central building block is a novel privacy mechanism, which generalizes the
Gaussian mechanism. Moreover, we establish a lower bound on the excess risk for this range of p,
showing a necessary dependence on

?
d, where d is the dimension of the space. Our lower bound

implies a sudden transition of the excess risk at p “ 1, where the dependence on d changes from
logarithmic to polynomial, resolving an open question in prior work (Talwar et al., 2015) . For
p P p2,8q, noisy SGD attains optimal excess risk in the low-dimensional regime; in particular, this
proves the optimality of noisy SGD for p “ 8. Our work draws upon concepts from the geometry
of normed spaces, such as the notions of regularity, uniform convexity, and uniform smoothness.
Keywords: Differential privacy, stochastic convex optimization, non-Euclidean norms.

1. Introduction

Stochastic Convex Optimization (SCO) is one of the most fundamental problems in optimization,
statistics, and machine learning. In this problem, the goal is to minimize the expectation of a
convex loss w.r.t. a distribution given samples from that distribution. In particular, given n i.i.d.
samples z1, . . . , zn from a distribution D, we wish to output a solution x P X Ď Rd that minimizes
the population loss FDpxq fi Ez„Drfpx, zqs for a convex function f over X . A closely related
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problem is known as Empirical Risk Minimization (ERM), where the goal to minimize the empirical
average of a loss with respect to a dataset S, i.e. output a solution that minimizes the empirical loss,
FSpxq “

1
n

ř

zPS fpx, zq, subject to x P X . In this work, we focus on `p-setups, where we consider
the losses are Lipschitz and smooth w.r.t the `p norm over a constraint set with bounded `p diameter.
(See Section 2 for a more formal description.)

There has been a long line of works that studied the differentially private analogs of these prob-
lems known as DP-SCO and DP-ERM, e.g., (Chaudhuri and Monteleoni, 2008; Chaudhuri et al.,
2011; Kifer et al., 2012; Jain and Thakurta, 2014; Bassily et al., 2014a; Talwar et al., 2014; Wang
et al., 2017; Bassily et al., 2019; Feldman et al., 2020). Nevertheless, the existing theory does not
capture a satisfactory understanding of private convex optimization in non-Euclidean settings, and
particularly with respect to general `p norms. Almost all previous works that studied the general
formulations of DP-ERM and DP-SCO under general convex losses focused on the Euclidean set-
ting, where both the constraint set and the subgradients of the loss are assumed to have a bounded
`2-norm. In this setting, algorithms with optimal error rates are known for DP-ERM (Bassily et al.,
2014a) and DP-SCO (Bassily et al., 2019; Feldman et al., 2020; Bassily et al., 2020). On the other
hand, (Talwar et al., 2014, 2015) is the only work we are aware of that studied non-Euclidean set-
tings under a fairly general setup in the context of DP-ERM (see “Other Related Work” section
below for other works that studied special cases of this problem). However, this work does not ad-
dress DP-SCO; moreover, for p ą 1, it only provides upper bounds on the error rate for DP-ERM.

Without privacy constraints, convex optimization in these settings is fairly well-understood in
the classical theory. In particular, there exists a universal algorithm that attains optimal rates for
ERM as well as SCO over general `p spaces, namely, the stochastic mirror descent algorithm (Ne-
mirovski and Yudin, 1983; Nemirovski et al., 2009). By contrast, the landscape of private convex
optimization is quite unclear in these settings. Closing this gap in the existing theory is not of purely
intellectual interest: the flexibility of non-Euclidean norms permits polynomial (in the dimension)
acceleration for stochastic first-order methods (see, e.g., discussions in (Sra et al., 2011, Sec. 5.1.1)).

In this work, we focus on DP-SCO in non-Euclidean settings, particularly under the `p se-
tups. Our work provides upper and lower bounds, which are either nearly optimal, or have small
polynomial gaps (see Table 1 for a summary of our bounds). To achieve this, we develop several
techniques for differential privacy in non-Euclidean optimization, which we believe could be also
useful in other applications of differential privacy.
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Table 1: Bounds for excess risk of pε, δq-DP-SCO. Here d is dimension, n is sample size, and κ “

mint1{pp ´ 1q, e2rlnpdq ´ 1su; dependence on other parameters is omitted. Õp¨q hides loga-
rithmic factors in n and 1{δ. Existing lower bounds are for nonprivate SCO: NY’83 (Nemirovski
and Yudin, 1983), ABRW’12 (Agarwal et al., 2012). p˚q: Bound shown for `1-ball feasible set.
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NON-EUCLIDEAN DP-SCO

An important instance of this framework is the polyhedral `1-setup, where we consider a poly-
hedral feasible set with bounded } ¨ }1 radius and the losses are convex and smooth w.r.t. } ¨ }1. This
setting has several practical applications in machine learning especially when sparsity assumptions
are invoked (Tibshirani, 1996; Candès et al., 2006). Furthermore, the `1 setting is the only `p setting
where DP-ERM is known to enjoy nearly dimension-independent rates (Talwar et al., 2015). For
this case, we provide an algorithm with nearly optimal excess population risk.

1.1. Overview of Results

We formally study DP-SCO beyond Euclidean setups. More importantly, we identify the appropri-
ate structures that suffice to attain nearly optimal rates in these settings. A crucial ingredient of our
algorithms and lower bounds are the concepts of uniform convexity and uniform smoothness in a
normed space. More concretely, we use the notion of κ-regularity of a normed space (Juditsky and
Nemirovski, 2008), which quantifies how (close to) smooth is its squared norm (see Section 2 for
a formal definition). This concept has been applied in (nonprivate) convex optimization to design
strongly convex regularizers, and to bound the deviations of independent sums and martingales in
normed spaces. In this work we make use of these ideas, and we further show that κ-regular spaces
have a natural noise addition DP mechanism that we call the generalized Gaussian mechanism (see
Section 4). We remark that this mechanism may be of independent interest. Now we focus on
`p-setups, and describe our results for the different values of 1 ď p ď 8:

Case of p “ 1: In this case, we provide an algorithm with nearly-optimal excess population
risk. Our algorithm is based on the variance-reduced one-sample stochastic Frank-Wolfe algorithm
(Zhang et al., 2020a). This algorithm enjoys many attractive features: it is projection free and
makes implicit use of gradients through a linear optimization oracle; it uses a single data point per
iteration, allowing for larger number of iterations; and it achieves the optimal excess risk in non-
private SCO in the Euclidean setting. Despite its advantages, this algorithm does not immediately
apply to DP-SCO for `1-setup. The most important reason being that this algorithm was designed
for the `2-setup, so our first goal is to show that a recursive gradient estimator used in (Zhang et al.,
2020a) (which is a variant of the Stochastic Path-Integrated Differential EstimatoR, SPIDER (Fang
et al., 2018)) does indeed work in the `1-setup. This requires controlling the variance of a martingale
in `8 which is a Opln dq-regular space. Then, using variance estimates based on κ-regularity, we
are able to extend the SFW method to the `1-setup.
A second challenge comes from the differential privacy requirement. First, we use the fact that at
each iteration, only a linear optimization oracle is required, and when the feasible set is polyhe-
dral, we can construct such an oracle privately by the report noisy max mechanism (Dwork and
Roth, 2014; Bhaskar et al., 2010). This technique was first used by Talwar et al. (2015) in their
construction for the DP-ERM version of this problem which was based on “ordinary” full-batch
FW. However, the recursive estimator in our construction is queried multiple times where a grow-
ing batch is used each time. In order to certify privacy for the whole trajectory, we carry out a
novel privacy analysis for the recursive gradient estimator combined with report noisy max. Our
privacy analysis uses the fact that, unlike the non-private version of SFW, our construction uses a
large batch in the first iteration and uses a small, constant step size to reduce the sensitivity of the
gradient estimate.

Case of 1 ă p ă 2: It is interesting to investigate the risk of DP-SCO between p “ 1 and p “ 2.
This question is intriguing since for p “ 1 we have shown nearly dimension-independent rates,

3



BASSILY GUZMÁN NANDI

whereas for p “ 2 it is known optimal rates grow polynomially with d. In this work, we prove
lower bounds for DP-SCO and DP-ERM in this setting, which hold even in the smooth case. Our
lower bounds show a surprising phenomenon: there is a sharp phase transition of the excess risk
around p “ 1. In fact, when 1`Ωp1q ă p ă 2, our lower bounds are essentially the same as those of
the `2 case. This shows that the dependence on

?
d is necessary in this regime, thus solving an open

question posed in (Talwar et al., 2015). Our proof for the lower bound is based on the fingerprinting
code argument due to Bun et al. (2018). In particular, we prove a reduction from DP-ERM in this
setting to privately estimating 1-way marginals. Our lower bound does not follow from prior work
that used a similar reduction argument, e.g., (Bassily et al., 2014a), as it requires new tools beyond
what is readily available in the `2 setting. In particular, our reduction crucially relies on the strong
convexity properties of `p spaces for 1 ă p ď 2 (Ball et al., 1994).
We complement the lower bound result with upper bounds for DP-ERM and DP-SCO. Our upper
bound for DP-ERM is tight. Our upper bound for DP-SCO matches the lower bound when n ě d2,
and otherwise, is far from the lower bound by a small polynomial gap. The upper bounds are
obtained by two structurally different algorithms. The first is a new noisy stochastic mirror-descent
(SMD) algorithm based on our novel generalized Gaussian (GG) mechanism. This algorithm attains
the optimal error rate for DP-ERM. For comparison, Talwar et al. (2014) proposed a batch mirror
descent method combined with the Gaussian mechanism. Our use of the (GG) mechanism allows
to remove the assumption of } ¨ }2-Lipschitzness of the loss (used in (Talwar et al., 2014)), which
is necessary for the optimality of SMD for DP-ERM. Moreover, using the generalization properties
of differential privacy, we show that it yields excess risk Õpd1{4{

?
nq. Our second algorithm is a

variant of noisy SFW where the linear optimization subroutine is based on noisy gradients using
the generalized Gaussian mechanism. The resulting excess risk of this algorithm is Op 1?

n
`

?
d

n3{4 q,
which is strictly better than SMD in the low-dimensional regime, when n ě d, and is in fact optimal
when n ě d2. Combining the excess-risk upper bounds of these two algorithms gives our upper
bound for DP-SCO in Table 1. Sharpening these bounds is an interesting direction for future work.

Case of 2 ă p ď 8: Another interesting question is what happens in the range of p ą 2. For
comparison, it is known that non-privately the excess risk behaves as Θp 1

n1{p `
d1{2´1{p
?
n
q. We show

that in the low dimensional regime, n “ Ω̃pdq, the noisy SGD method (Bassily et al., 2014b, 2020)
achieves the optimal excess risk. This implies that for p “ 8, noisy SGD is essentially optimal.

To conclude our overview, we note that the SFW-based algorithms for the cases p “ 1 and 1 ă p ă 2
run in time linear in the dataset size n, which is a desirable property for the large data size regime.

Other Related Work: Before (Talwar et al., 2015), there have been a few works that studied DP-
ERM and DP-SCO in special cases of the `1 setting. Kifer et al. (2012) and Smith and Thakurta
(2013) studied DP-ERM for `1 regression problems; however, they make strong assumptions about
the model (e.g., restricted strong convexity). Jain and Thakurta (2014) studied DP-ERM and DP-
SCO in the special case of generalized linear models (GLMs). Their bound for DP-ERM was
suboptimal, and their generalization error bound relies on the special structure of GLMs, where
such a bound can be obtained via a standard uniform-convergence argument. We note that such an
argument does not lead to optimal bounds for general convex losses.

In independent and concurrent work, Asi et al. Asi et al. (2021) provide sharp upper bounds for
DP-SCO in `1 setting, for both smooth and nonsmooth objectives. Their algorithm for the smooth
case is similar to our polyhedral Stochastic Frank-Wolfe method, where their improvements are
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obtained by a more careful privacy accounting using a binary-tree technique. On the other hand,
their work also provides nearly-optimal risk for the `p setting, when 1 ă p ă 2. Interestingly,
their sequential regularization approach can be further refined by using our generalized Gaussian
mechanism, removing the additional poly-logarithmic factors in dimension present by their use of
the standard Gaussian mechanism. We observe that the optimality of this method is certified by our
lower bounds in Section 7. To conclude our comparison, we observe that our Generalized Gaussian
mechanism allows us to substantially extend the applicability of the Noisy Mirror-Descent and
Noisy Stochastic Frank-Wolfe method (in Section 5) to arbitrary normed spaces with a regular dual.

2. Preliminaries

Normed Spaces and Regularity. Let pE, } ¨ }q be a normed space of dimension d, and let x¨, ¨y
an arbitrary inner product over E (not necessarily inducing the norm } ¨ }). Given x P E and r ą 0,
let B}¨}px, rq “ ty P E : }y ´ x} ď ru. The dual norm over E is defined as usual, }y}˚ :“
max}x}ď1xy, xy. With this definition, pE, } ¨ }˚q is also a d-dimensional normed space. As a main

example, consider the case of `dp fi pRd, }¨}pq, where 1 ď p ď 8 and }x}p fi
`
ř

jPrds |xj |
p
˘1{p. As

a consequence of the Hölder inequality, one can prove that the dual of `dp corresponds to `dq , where
1 ď q ď 8 is the conjugate exponent of p, determined by 1

p `
1
q “ 1.

The algorithms we consider in this work can be applied to general spaces whose dual has a
sufficiently smooth norm. To quantify this property, we use the notion of regular spaces, following
Juditsky and Nemirovski (2008). Given κ ě 1, we say a normed space pE, } ¨}q is κ-regular, if there
exists 1 ď κ` ď κ and a norm } ¨ }` such that pE, } ¨ }`q is κ`-smooth, i.e.,

}x` y}2` ď }x}
2
` ` x∇p} ¨ }2`qpxq, yy ` κ`}y}2` p@x, y P Eq, (1)

and } ¨ } and } ¨ }` are equivalent with constant
a

κ{κ`:

}x}2 ď }x}2` ď pκ{κ`q}x}
2 p@x P Eq. (2)

As basic example, Euclidean spaces are 1-regular. Other examples of regular spaces are `dq where
2 ď q ď 8: these spaces are κ-regular with κ “ mintq ´ 1, e2rlnpdq ´ 1su and κ` “ mintq ´

1, lnpdq ´ 1u; in this case, }x}` “
`
ř

jPrds |xj |
κ`
˘1{κ` (smoothness of this function is proved

e.g. in (Beck, 2017, Example 5.11).) Finally, consider a polyhedral norm } ¨ } with unit ball
B}¨} “ convpVq. Then pE, } ¨ }˚q is pe2rln |V| ´ 1sq-regular. More precisely, note that }x}˚ “

maxvPV |xv, xy|, hence the norm }x}` :“
`
ř

vPV |xv, xy|
q
˘1{q, with q “ ln |V|, satisfies (1) with

κ` “ pq ´ 1q (e.g., follows from (Beck, 2017, Example 5.11)), and satisfies (2) with
a

κ{κ` “
expt1

q ln |V|u “ e (using the equivalence of } ¨ }q and } ¨ }8), thus κ “ e2κ` “ e2rln |V| ´ 1s.

Definition 1 (Differential Privacy (Dwork et al., 2006a,b; Dwork and Roth, 2014)) Let ε, δ ą 0.
A (randomized) algorithm M : Zn Ñ R is pε, δq-differentially private if for all pairs of datasets
S, S1 P Z that differ in exactly one entry, and every measurable O Ď R, we have:

Pr pMpSq P Oq ď eε ¨ Pr
`

MpS1q P O
˘

` δ.

When δ “ 0, M is referred to as ε-differentially private.

Lemma 2 (Advanced composition (Dwork et al., 2010; Dwork and Roth, 2014)) For any ε ą
0, δ P r0, 1q, and δ1 P p0, 1q, the class of pε, δq-differentially private algorithms satisfies pε1, kδ`δ1q-
differential privacy under k-fold adaptive composition, for ε1 “ ε

a

2k logp1{δ1q ` kεpeε ´ 1q.
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Differentially Private Stochastic Convex Optimization. Let pE, } ¨ }q be a normed space, and
X Ď E a closed convex set of diameter M ą 0. Given L0, L1 ą 0, denote CpL0, L1q the class
of functions f : X ÞÑ R which are convex; L0-Lipschitz, i.e., fpxq ´ fpyq ď L0}x ´ y} for all
x, y P X ; and L1-smooth, i.e., }∇fpxq ´ ∇fpyq}˚ ď L1}x ´ y} for all x, y P X . Given a loss
function f : X ˆZ ÞÑ R s.t. fp¨, zq P CpL0, L1q for all z P Z , and a distribution D over Z , the SCO
problem corresponds to the minimization of the population risk, FDpxq fi Ez„Drfpx, zqs over X .
Let F ˚D :“ minxPX FDpxq. Given an algorithm A : Zn ÞÑ E, define its excess population risk as

RDrAs “ E
S„Dn,A

rFDpApSqq ´ F ˚Ds . (3)

The DP-SCO problem in the pE, } ¨ }q-setup corresponds to the setting above, where algorithms are
constrained to satisfy pε, δq-differential privacy.

We distinguish the problem above from its empirical counterpart (DP-ERM), where we are
interested in minimizing the empirical risk, min

 

FSpxq “
1
n

ř

zPS fpx, zq : x P X
(

“: F ˚S , and
accuracy is measured by the excess empirical risk, RSrAs :“ EArFSpApSqq ´ F ˚S s.

3. Private Stochastic Frank-Wolfe with Variance Reduction for Polyhedral Setup

In this section, we consider DP-SCO in the polyhedral setup. Let K be a positive integer, and
consider pE, } ¨ }q a normed space, where the unit ball of the norm, B}¨} “ convpVq is a polytope
with at most K vertices. Further, the feasible set X , is a polytope with at most K-vertices and
} ¨ }-diameter M ą 0. Notice that since the norm its polyhedral, its dual norm is also polyhedral.
Moreover, pE, } ¨ }˚q is OplnKq-regular (see discussion in Section 2).

We give a differentially private stochastic Frank-Wolfe algorithm that is based on the variance
reduction approach proposed in (Zhang et al., 2020b). We define the gradient variation for a given
sample point zt P Z and xt, xt´1 P X as

∆tpztq fi ∇fpxt, ztq ´∇fpxt´1, ztq.

Note that ∆tpztq also depends on xt, xt´1, for notational brevity we will drop this dependence as it
is clear from the context. In our algorithm we will construct a private unbiased gradient estimator
dt of FDpx

tq. At iteration t, for averaging parameter ρt P r0, 1s, we use the following recursive
gradient estimator:

dt fi p1´ ρtq pdt´1 `∆tpztqq ` ρt∇fpxt, ztq. (4)

Here, for all t we choose ρt “ η, where η is the step size. Next, we compute a private version of
dt via the Report Noisy Max mechanism (Dwork and Roth, 2014; Bhaskar et al., 2010). Then, the
next iterate xt`1 is obtained via the update step of conditional gradient methods. Hence, given the
step size η, gradient estimate dt, the set of vertices V , and the global sensitivity of xv,dty, that we
call st, we have the following private update step:

xt`1 “ p1´ ηqxt ` η vt, where vt “ arg minvPV txv,dty ` u
t
vu, utv „ Lapp2st

a

n logp1{δq{εq.

In Algorithm 1 we describe our Private Polyhedral Stochastic Frank-Wolfe Algorithm.
The privacy guarantee and expected excess population risk of Algorithm ApolySFW are given by the
following theorems.

Theorem 3 (Privacy Guarantee of ApolySFW) Algorithm 1 is pε, δq-differentially private.
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Algorithm 1 ApolySFW: Private Polyhedral Stochastic Frank-Wolfe Algorithm
Require: Private dataset S “ pz1, . . . znq P Zn, privacy parameters pε, δq, polyhedral set X with

a set of K vertices V “ pv1, . . . , vKq

1: Set step size η :“ logpn{ logpKqq
n

2: Choose an arbitrary initial point x0 P X
3: Let B0 “ pz

0
1 , . . . , z

0
n{2q be an initial batch of n2 data points from S

4: Compute d0 “
2
n

řn{2
i“1 ∇fpx0, z0

i q

5: v0 “ arg min
vPV

txv,d0y ` u
0
vu, where u0

v „ Lap

ˆ

4L0M
?

logp1{δq

ε
?
n

˙

6: x1 Ð p1´ ηqx0 ` ηv0

7: Let pS “ pz1, . . . , zn{2q be the remaining n
2 data points in S that are not in B0

8: for t “ 1 to n
2 do

9: Set st :“ max
 

p1´ ηqt ¨ 2L0M
n , 2η pL1M

2 ` L0Mq
(

10: Compute ∆tpztq “ ∇fpxt, ztq ´∇fpxt´1, ztq
11: dt “ p1´ ηq pdt´1 `∆tpztqq ` η∇fpxt, ztq

12: @v P V, γv Ð xv,dty ` u
t
v, where utv „ Lap

ˆ

2st
?
n logp1{δq

ε

˙

13: Compute vt “ arg minvPV γv
14: xt`1 Ð p1´ ηqxt ` ηvt
15: Output xpriv “ xn{2`1

Theorem 4 (Accuracy Guarantee of ApolySFW) Let D be any distribution over Z . Then, for the
polyhedral setup,

RDrApolySFWs “ O

˜

MpL1M ` L0q ¨
logpKq log pn{ logpKqq

a

logp1{δq

ε
?
n

¸

.

We start by stating and prove the following useful lemma.

Lemma 5 For Algorithm 1 (Algorithm ApolySFW), let st be the global sensitivity of xv,dty, namely
st “ maxvPV maxS»S1 |xv,dt ´ d1ty| . Then

st ď max

"

p1´ ηqt ¨
2L0M

n
, 2η pL1M

2 ` L0Mq

*

p@t P rn{2sq.

Proof Let S, S1 P Zn be neighboring datasets. Let dt and d1t denote the gradient estimates corre-
sponding to S and S1, respectively. Then, st “ maxvPV maxS»S1 |xv,dt ´ d1ty| ď M}dt ´ d1t}˚.
Now we upper bound the global } ¨ }˚ sensitivity of dt. First, by Step 4 in Algorithm 1, we have that
the } ¨ }˚ sensitivity of d0 is at most 2L0

n . For t ě 1, by expanding the recursion (4) we have

dt “ p1´ ηq
t d0 ` p1´ ηq

řt´1
j“0p1´ ηq

j ∆t´jpzt´jq ` η
řt´1
j“0p1´ ηq

j ∇fpxt´j , zt´jq.

We have two cases: either the data point where S and S1 differ lies in the initial batch B0 and
B10 (where B10 is the initial batch when the input dataset is S1), or in the remaining portions of the
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datasets, denoted as pS and pS1, respectively. If the data point where S and S1 differ lies in the initial
batch, then }d0 ´ d10}˚ ď p1´ ηq

t 2L0{n. Else, suppose that zi˚ P pS and z1i˚ P pS1. Then

}dt ´ d1t}˚ “ p1´ ηq
t´i˚}p1´ ηq

`

∆i˚pzi˚q ´∆i˚pz
1
i˚q

˘

` η
´

∇fpxi˚ , zi˚q ´∇fpxi˚ , z1i˚q
¯

}˚.

Now, using that fp¨, zq is L0-Lipschitz and L1-smooth w.r.t } ¨ }:

}dt ´ d1t}˚ ď 2ηp1´ ηqt´i
˚`1 L1M ` 2ηp1´ ηqt´i

˚

L0 ď 2η pL1M ` L0q

Hence, in summary we obtain, st ď max
 

p1´ ηqt ¨ 2L0M
n , 2η pL1M

2 ` L0Mq
(

.

Proof of Theorem 3 By the privacy guarantee of the Report Noisy Max mechanism (Dwork and
Roth, 2014; Bhaskar et al., 2010), first note that Step 5 is ε?

n logp1{δq
-DP since the global sensitivity

of xv,d0y is 2L0M
n . At any iteration t P rn2 s, we add Laplace noise utv „ Lap

ˆ

2st
?
n logp1{δq

ε

˙

,

where st denotes the global sensitivity of xv,dty (upper bounded in Lemma 5). Hence, Steps 9-14
are ε?

n logp1{δq
-DP. Thus, by Lemma 2, Algorithm ApolySFW is pε, δq-DP.

Now we prove the excess risk guarantee in Theorem 4. The proof relies on the following lemma
which recursively bounds the variance of the gradient estimator. We defer its proof to Appendix A.

Lemma 6 Let D be any distribution over Z . Let S „ Dn be the input dataset of Algorithm
ApolySFW (Algorithm 1). For t P r0, n2 s, the recursive gradient estimator dt satisfies

E
S„Dn,ApolySFW

“

}dt ´∇FDpx
tq}˚

‰

ď

c

2 logpKq

n
2eL0p1´ ηq

t ` 4η
a

logpKqt pL1M ` L0q .

Proof of Theorem 4 Let αt fi xvt,dty ´minvPV xv,dty. By smoothness and convexity of FD:

FDpx
t`1q ď FDpx

tq ` x∇FDpx
tq, xt`1 ´ xty ` L1

2 }x
t`1 ´ xt}2

ď FDpx
tq ` ηx∇FDpx

tq ´ dt, vt ´ x
ty `

L1η2M2

2 ` ηxdt, vt ´ x
ty

ď FDpx
tq ` ηM}∇FDpx

tq ´ dt}˚ `
L1η2M2

2 ` ηxdt, x
˚ ´ xty ` ηαt

ď FDpx
tq ` 2ηM}∇FDpx

tq ´ dt}˚ `
L1η2M2

2 ` ηx∇FDpx
tq, x˚ ´ xty ` ηαt

ď FDpx
tq ` 2ηM}∇FDpx

tq ´ dt}˚ `
L1η2M2

2 ` η
`

FDpx
˚q ´ FDpx

tq
˘

` ηαt.

Taking expectations, and letting Γt “ FDpx
tq ´ FDpx

˚q, we obtain the following recursion

E rΓt`1s ď p1´ ηqE rΓts ` 2ηM E
“

}∇FDpx
tq ´ dt}˚

‰

`
L1η2M2

2 ` ηE rαts .

Note that E rαts ď 2st logpKq
a

n logp1{δq{ε, by standard analysis (Dwork et al., 2014). Hence,

E rΓt`1s ď p1´ ηqE rΓts ` 2ηM E
“

}∇FDpx
tq ´ dt}˚

‰

`
L1η2M2

2 `
2ηst logpKq

?
n logp1{δq

ε .

8
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Hence, by Lemma 5 and Lemma 6, for t P r0, n2 s:

E rΓt`1s ďp1´ ηqE rΓts ` 4eηL0M

b

logpKq
n p1´ ηqt ` 8η2M

a

logpKqt pL1M ` L0q

`
L1η2M2

2 `
2η logpKq

?
n logp1{δq

ε ¨max
 

p1´ ηqt 2L0M
n , 2η pL1M

2 ` L0Mq
(

ďp1´ ηqE rΓts ` 4eηL0M
´

b

logpKq
n `

logpKq
ε

b

logp1{δq
n

¯

p1´ ηqt

` 8η2MpL1M ` L0q

´

a

logpKqt`
logpKq

?
n logp1{δq

ε

¯

`
L1η2M2

2 .

Next, by expanding the above recursion we have

E
”

Γn
2
`1

ı

ď p1´ ηq
n
2
`1L0M `

4eηp1´ηq
n
2 L0M n

2

´

b

logpKq
n `

logpKq
ε

b

logp1{δq
n

¯

` 1
η

”

8η2MpL1M ` L0q

´

a

logpKqn`
logpKq

?
n logp1{δq

ε

¯

`
L1η2M2

2

ı

ď e´ηp
n
2
`1qL0M ` 2e ¨ e´ηp

n
2 qηL0M n

´

b

logpKq
n `

logpKq
ε

b

logp1{δq
n

¯

` 8ηMpL1M ` L0q

´

a

logpKqn`
logpKq

?
n logp1{δq

ε

¯

`
L1ηM2

2 .

Choosing η “ 1
n log

`

n
logpKq

˘

, we get

E
”

Γn
2
`1

ı

ďL0M

b

logpKq
n ` 2eL0M log

´

n
logpKq

¯

ˆ

logpKq
n `

log3{2pKq
?

logp1{δq

ε n

˙

` 8MpL1M ` L0q log
´

n
logpKq

¯

ˆ

b

logpKq
n `

logpKq
ε

b

logp1{δq
n

˙

` L1M2

2n log
´

n
logpKq

¯

.

By assuming n ą logpKq (which is necessary to achieve non-trivial error even in the non-private
setting), we obtain E

”

Γn
2
`1

ı

“ O
´

MpL1M`L0q

ε
?
n

¨ logpKq log pn{ logpKqq
a

logp1{δq
¯

, which is
the desired bound on the excess population risk.

4. Generalized Gaussian Distribution and Mechanism

One important requirement for the application of DP stochastic first-order methods is designing the
proper private mechanism for an iterative method. If we want to achieve privacy by adding noise
to gradients, then we need to do it in a way to achieve privacy from gradient sensitivity, w.r.t. the
dual norm. With this purpose in mind, we design a new noise addition mechanism that leverages
the regularity of the dual space pE, } ¨ }˚q.

Definition 7 (Generalized Gaussian distribution and mechanism) Let pE, }¨}˚q be a d-dimensional
κ-regular space with smooth norm } ¨ }`. We define the generalized Gaussian (GG) distribution
GG}¨}`pµ, σ2q, as the one with density gpzq “ Cpσ, dq expt´}z ´ µ}2`{r2σ

2su, where Cpσ, dq “
“

Areapt}x}` “ 1uq p2σ
2qd{2

2 Γpd{2q
‰´1, and Area is the ppd´ 1q-dim.q surface measure on Rd.

Given an algorithm A : Sn ÞÑ E with bounded }¨}˚-sensitivity: supS»S1 }ApSq´ApS1q}˚ ď s,
we define the generalized Gaussian mechanism of A with noise variance σ2 as

AGGpSq „ GG}¨}`pApSq, σ
2q.

9
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We observe that, despite the generality of the norm }¨}`, when integrating on level sets we obtain
explicit formulae for the moments of the distribution. On the other hand, the privacy properties of
this mechanism can be established by leveraging the smoothness of its negative log-density.

Proposition 8

(a) If z „ GG}¨}`pµ, σ2q, then Er}z}2˚s ď Er}z}2`s ď dσ2.

(b) The generalized Gaussian mechanism applied to a function with } ¨ }˚-sensitivity bounded by
s ą 0 is pε, δq-DP for σ2 “ 2κ logp1{δqs2{ε2.

Proof For (a) we refer to Appendix B. For (b), let P “ GGpµ1, σ
2q and Q “ GGpµ2, σ

2q. Then1

exptpα´ 1qDαpP||Qqu “ Cpσ, dq
ş

Rd

´

dP
dQ

¯α
dQ

“ Cpσ, dq
ş

Rd exp
!

´ α
2σ2 }z ´ µ1}

2
` `

α´1
2σ2 }z ´ µ2}

2
`

)

dz

“ Cpσ, dq
ş

Rd exp
!

´ α
2σ2 }z ´ µ1 ` µ2}

2
` `

α´1
2σ2 }z}

2
`

)

dz.

Let now µ “ µ1 ´ µ2 and pp¨q “ } ¨ }2`. Now, by convexity and smoothness of } ¨ }2`

´α}z ´ µ}2` ď ´α}z}
2
` ` x∇ppzq, αµy ď ´α}z}2` ` r}z}2` ´ }z ´ αµ}2` ` κ`}αµ}2`s.

Plugging this in the integral above, we get

exptpα´ 1qDαpP||Qqu ď exp
 κ`α2

2σ2 }µ}
2
`

(

Cpσ, dq
ş

Rd exp
 

´
}z´αµ}2`

2σ2

(

dz ď exp
 

κα2

2σ2 }µ}
2
˚

(

,

i.e., DαpP||Qq ď κα2

2σ2pα´1q
}µ}2˚. The result can be obtained now by using a known reduction from

Rényi DP to DP (Mironov, 2017) (for details see Appendix B).

5. Differentially Private SCO: `p-setup for 1 ă p ă 2

Our goal now is to upper bound the excess risk of DP-SCO in the `p-setup when 1 ă p ă 2. For
this, we will prove the following upper bound on the excess risk, using two different algorithms,
explored in Sections 5.1 and 5.2, respectively.

Theorem 9 Let 1 ă p ă 2 and κ “ mint1{pp ´ 1q, 2 ln du. The expected excess population risk
of DP-SCO in the `p-setup is upper bounded by2

O

˜

min

#

L0M
?
κrd logp1{δqs1{4
?
n

,
κL0M ` L1M

2 log n
?
n

`
κL1M

2 log n
a

d logp1{δq

εn3{4

+¸

.

1. Here DαpP||Qq is the α-Rényi divergence between P and Q.

2. To simplify the bound, here we assume ε “ Ω
´?

κ rd logp1{δqs1{4
?
n

¯

.

10
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5.1. Noisy Stochastic Mirror-Descent

As a first application of the GG mechanism, we provide a simple algorithm for DP-SCO, in the
`p-setup when 1 ă p ă 2 (this algorithm also works for spaces with κ-regular dual). This is the
noisy stochastic mirror-descent (SMD) method, which turns out to be optimal for DP-ERM, and
using the generalization properties of differential privacy we can derive bounds for DP-SCO. We
also note that this algorithm does not require smoothness of the objectives, and thus works in the
nonsmooth convex setting as well. Here we provide a pseudocode of the algorithm in Algorithm 2.
The analysis of this approach is an adaptation of techniques used in Bassily et al. (2019) and Bassily
et al. (2014a) for noisy SGD, which we defer to Appendix C. We emphasize the importance of the
GG mechanism for this result. For comparison, the sequential regularization approach in Asi et al.
(2021) uses the Gaussian mechanism, hence requiring Lipschitzness w.r.t. } ¨ }2, which leads to
additional poly-logarithmic in d factors in the `p-setup. Moreover, using Generalized Gaussian
mechanism we can extend the applicability of the noisy SMD method to arbitrary normed spaces
with a κ-regular dual.

Algorithm 2 AnoisySMD: Noisy minibatch SMD for nonsmooth convex losses
Require: Private dataset S “ pz1, . . . , znq P Zn; step size η; privacy parameters ε ď 1, δ ! 1{n

1: Set noise variance σ2 “ 8κL2
0 logp1{δq{pεnq2

2: Set batch size m :“ maxtn
a

ε{p4T q, 1u
3: Choose an arbitrary initial point x1 P X
4: for t “ 1 to T ´ 1 do
5: Sample Bt “ tziuiPIt with It „ Unifprnsmq (i.e., Bt is sampled with replacement.)
6: xt`1 :“ arg minxPX txηr∇FBtpxtq ` gts, x ´ xty ` Φpxq ´ Φpxtq ´ x∇Φpxtq, x ´ xtyu,

where gt „ GGp0, σ2q drawn independently each iteration
7: return xT “ 1

T

řT
t“1 x

t

Theorem 10 Let 1 ă p ă 2, κ “ min
 

1
p´1 , 2 lnpdq

(

, and κ˚ “ κ{pκ ´ 1q, and consider
the `p-setup of DP-SCO. Then AnoisySMD (Algorithm 2) with regularizer Φp¨q “ κ

2 } ¨ }
2
κ˚ , T “

t
pεnq2

16d κ logp1{δq u, and stepsize η “ M
L0

a

κ
2T is pε, δq-DP. Moreover, for any dataset S P Zn,

RSrAnoisySMDs “ O
´

L0M ¨
κ
?
d logp1{δq

εn

¯

,

and for any distribution D supported on Z ,

RDrAnoisySMDs “ O

ˆ

L0M ¨

ˆ

max

ˆ

?
κrd logp1{δqs1{4

?
n

,
κ
?
d logp1{δq

εn

˙˙˙

.

5.2. Noisy Variance-Reduced Stochastic Frank-Wolfe

In this section, we describe another variant of the variance-reduced stochastic Frank-Wolfe algo-
rithm algorithm, AnoisySFW, (Algorithm 3). This algorithm differs from the polyhedral SFW (Al-
gorithm 1) in various ways: first, it uses gradient noise addition as privacy-preserving mechanism,
perticularly our GG mechanism; second, it uses large minibatches of size Ωp

?
nq across iterations,

11
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which is crucial to control the sensitivity of gradient queries; and third, the recursive gradient es-
timator is closer to the original SPIDER estimator (Fang et al., 2018), which didn’t use averaging
factors 0 ă ρ ă 1, and simply accumulates the gradient variations.

In Algorithm 3, first we compute the initial gradient estimate using an initial batch of size n{2
as given in Step 5. Next, in Step 11 we compute the private version of the gradient variation (∆t)
with respect to a mini-batch of size

?
n{2, by adding generalized Gaussian noise to it. Hence,

the recursive gradient estimator is given by Step 12. Finally, the next iterate is given by xt`1 “

p1´ ηqxt ` η arg minvPX xr∇t, vy.

Algorithm 3 AnoisySFW: Noisy Private Stochastic Frank-Wolfe Algorithm
Require: Private dataset: S “ pz1, . . . znq P Zn, privacy parameters: pε, δq

1: Set step size η :“ logpnq
2
?
n
, κ :“ min

!

1
p´1 , e

2 lnpdq
)

.

2: Choose an arbitrary initial point x0 P X .
3: Let B0 “ pz

0
1 , . . . , z

0
n{2q be an initial batch of n2 data points from S.

4: Set σ2
0 :“

32κL2
0 logp1{δq
n2ε2

.

5: Compute r∇0 “
2
n

řn{2
i“1 ∇fpx0, z0

i q ` g0, where g0 „ GG}¨}`p0, σ2
0q.

6: x1 Ð p1´ ηqx0 ` η arg min
vPX

xr∇0, vy.

7: Let pS “ pz1, . . . , zn{2q be the remaining n
2 data points in S that are not in B0.

8: Set noise variance σ2 :“
32κL2

1M
2η2 logp1{δq
nε2

.
9: for t “ 1 to

?
n do

10: Let Bt “ pzt1, . . . , z
t?
n{2
q be a batch of

?
n

2 data points from pS

11: Compute ∆̃t “
2?
n

ř

?
n{2

i“1

`

∇fpxt, ztiq ´∇fpxt´1, ztiq
˘

` gt, where gt „ GG}¨}`p0, σ2q.

12: r∇t “ r∇t´1 ` ∆̃t.
13: Compute vt “ arg min

vPX
xr∇t, vy.

14: xt`1 Ð p1´ ηqxt ` ηvt.
15: Output xpriv “ x

?
n`1.

Theorem 11 (Privacy Guarantee of AnoisySFW) Algorithm 3 is pε, δq-differentially private.

The proof of the above theorem follows from a global sensitivity bound on the gradient queries,
together with the privacy guarantee of the generalized Gaussian mechanism (Proposition 8) and
parallel composition. We defer the formal proof of Theorem 11 to Appendix D.1.

Theorem 12 (Accuracy Guarantee of AnoisySFW) Let p P p1, 2q, and κ “ min
!

1
p´1 , e

2 lnpdq
)

,
and consider the `p-setup of DP-SCO. Then, for any distribution D supported on Z ,

RDrAnoisySFWs “ O

˜

L1M
2 logpnq ` L0Mκ

?
n

`
κL1M

2 logpnq
a

d logp1{δq

ε n3{4

¸

.

The proof of the above theorem follows similar lines to the proof of Theorem 4. Due to space
considerations, we defer the full proof of the theorem to Appendix D.2.
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6. Differentially Private SCO: `p-setup for 2 ă p ď 8

The proposed analyses, when applied to `p-settings, only appear to provide useful bounds when
1 ď p ď 2. This limitation comes from the fact that when p ą 2 the regularity constant of the
dual, `q, grows polynomially on the dimension, more precisely as d1´2{p. This additional factor in
the analysis substantially degrades the resulting excess risk bounds, unless p « 2. This leaves the
question of what are the optimal rates for DP-SCO in such settings.

It is instructive to recall the optimal excess risk bounds for nonprivate SCO (Nemirovski and
Yudin, 1983; Agarwal et al., 2012). These bounds have the form Θpmintd

1{2´1{p
?
n

, 1
n1{p uq, and are

attained by the combination of two different algorithms: first, stochastic gradient descent, for the
low dimensional d ă n regime, with rate Opd

1{2´1{p
?
n
q; and second, stochastic mirror descent (with

regularizer 1
p}x}

p
p), for the high dimensional d ě n regime, with rate Op 1

n1{p q. We now show that
in the low dimensional case, the multipass noisy SGD method is essentially optimal (Bassily et al.,
2014a, 2020). The proof of this simple result is deferred to Appendix E.

Proposition 13 Consider the problem of DP-SCO in the `p “ pRd, } ¨ }pq-setup, with p ą 2. Then
the multipass noisy SGD method (Bassily et al., 2020, Algorithm 2) attains excess population risk

O
`

L0M
`

d1{2´1{p
?
n

`
d1´1{p

?
logp1{δq

εn

˘˘

.

We conclude this section observing that in the low-dimensional regime: n ě d logp1{δq{ε2, the
above upper bound is optimal since it matches the optimal non-private lower bound of Ω

´

d1{2´1{p
?
n

¯

(Agarwal et al., 2012). Note that in the `8 setting, the regime n ą d is the only interesting regime
since the excess risk is Ωp1q if n ď d. Hence, our result implies that SGD attains essentially optimal
excess risk for DP-SCO in the `8 setting. We formally state this observation below.

Corollary 14 Let 2 ă p ď 8 and X “ B}¨}pp0,Mq. If d logp1{δq{ε2 ď n, then Multipass Noisy
SGD attains the optimal excess population risk for DP-SCO in the `p-setup.

7. Lower Bound for DP-ERM and DP-SCO in the `p setup for 1 ă p ă 2

We provide lower bounds on the excess risk for DP-ERM and DP-SCO in the `p setting for 1 ă
p ă 2. In our argument, we first prove a lower bound on DP-ERM, then use the reduction in (Bass-
ily et al., 2019, Appendix C) to assert that essentially the same lower bound (up to a logarithmic
factor in 1{δ) holds for DP-SCO. Our final lower bound for DP-SCO follows from combining this
bound with the non-private Ωp1{

?
nq lower bound for SCO when 1 ă p ă 2 (Nemirovski and

Yudin, 1983). Below, we formally state our lower bound for DP-SCO and provide an outline of our
argument. We defer the full details of our construction and the statement of the lower bound for DP-
ERM to Appendix F. We remark that our lower bound for DP-ERM (Theorem 19 in Appendix F)
implies that our upper bound for DP-ERM resulting from the noisy SMD algorithm (Theorem 10)
is tight when 1` Ωp1q ă p ă 2.

Theorem 15 (Lower Bound for DP-SCO for p P p1, 2q) Let p P p1, 2q and n, d P N. Let ε ą 0
and 0 ă δ ă 1

n1`Ωp1q . Let X “ Bdp , where Bdp is the unit `p ball in Rd, and Z “ t´ 1
d1{q ,

1
d1{q u

d,

13
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where q “ p
p´1 . There exists a distribution D over Z such that for any pε, δq-DP-SCO algorithm

A : Zn Ñ X , we have

RDrAs “ Ω̃

˜

max

˜

1
?
n
, pp´ 1q

?
d

εn

¸¸

.

As mentioned earlier, to prove this theorem, it suffices to construct a lower bound for DP-ERM.
To do so, we consider an a linear instance of the loss given by fpx, zq “ ´xx, zy, x P X , z P Z,
where X and Z as defined in the above theorem. For any dataset S “ pz1, . . . , znq P Zn, let
z̄ “ 1

n

řn
i“1 zi, and let x˚ denote the minimizer of the empirical risk FSpxq, x P X with respect

to the loss f . The first step of our proof is to show that for any S P Zn and any α ą 0 if we

have px P X such that FSppxq ´ FSpx
˚q ď α then }px ´ x˚}p “ O

ˆ

b

α
pp´1q}z̄}q

˙

. This step is a

crucial ingredient in our proof since it allows us to transform a lower bound on the `p distance to the
minimizer into a lower bound on the excess risk. We remark that this step requires new tools than
what is readily available in the Euclidean setting (considered in the lower bound of Bassily et al.
(2014a)). In particular, it relies on the strong convexity property of the `p spaces for 1 ă p ă 2.

Next, we show the existence of dataset S with }z̄}q “ Ω
´

a

d logp1{δq{pεnq
¯

for which any
pε, δq-DP-ERM algorithm A must satisfy }ApSq ´ x˚}p “ Ωp1q. Note that, given the first step
above, this would then imply the desired lower bound on the excess risk. To do so, we use the
fingerpriniting code argument from (Bun et al., 2018) that shows the existence of a dataset of n
elements from t´1, 1ud such that any pε, δq-differentially private algorithm for estimating the em-
pirical average of S (1-way marginals) must make error Ωp

a

d logp1{δq{pεnqq in Ωpdq coordinates
of the resulting d-dimensional vector. Via a careful argument that uses the properties of this dataset
and those of our instance of the optimization problem, we show that solving the DP-ERM problem
w.r.t. a normalized version of this dataset implies privately estimating the 1-way marginals based on
this dataset. This leads us to the Ωp1q lower bound on the distance to the minimizer, which suffices
to prove our lower bound on the excess risk as described above.
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Appendix A. Proof of Lemma 6 from Section 3

To bound the variance of the gradient estimator, we first compute

dt ´∇FDpx
tq “ p1´ ηq

“

dt´1 ´∇FDpx
t´1q

‰

` p1´ ηq∇FDpx
t´1q ´∇FDpx

tq

` p1´ ηq∆tpztq ` η∇fpxt, ztq
“ p1´ ηq

“

dt´1 ´∇FDpx
t´1q

‰

` p1´ ηq
“

∆tpztq ´
`

∇FDpx
tq ´∇FDpx

t´1q
˘‰

` η
“

∇fpxt, ztq ´∇FDpx
tq
‰

.

For a compact notation, let s∆t fi ∇FDpx
tq ´ ∇FDpx

t´1q. Recall that } ¨ }˚ is κ-regular, with
κ “ pe2 lnKq. Denote } ¨ }` the corresponding κ`-smooth norm, where κ` “ rlnpKq ´ 1s, and
κ{κ` ď e2. First we will bound the variance on } ¨ }`, and then we will derive the result using the
equivalence property (2). Let Ft be the σ-algebra generated by the randomness in the data and the
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algorithm up until iteration t. By property (1), we observe that

Er}dt ´∇FDpx
tq}2`|Ft´1s

ď p1´ ηq2E
“

}dt´1 ´∇FDpx
t´1q}2`|Ft´1

‰

`

E rx∇p} ¨ }2`q
`

dt´1 ´∇FDpx
t´1q

˘

, p1´ ηq
`

∆tpztq ´ s∆t

˘

` η
`

∇fpxt, ztq ´∇FDpx
tq
˘

y|Ft´1s

` κ`E
“

}p1´ ηq
`

∆tpztq ´ s∆t

˘

` η
`

∇fpxt, ztq ´∇FDpx
tq
˘

}2`|Ft´1

‰

“ p1´ ηq2E
“

}dt´1 ´∇FDpx
t´1q}2`|Ft´1

‰

`

` κ`E
“

}p1´ ηq
`

∆tpztq ´ s∆t

˘

` η
`

∇fpxt, ztq ´∇FDpx
tq
˘

}2`|Ft´1

‰

ď p1´ ηq2E
“

}dt´1 ´∇FDpx
t´1q}2`|Ft´1

‰

` 2κ`p1´ ηq
2E

“

}∆tpztq ´ s∆t}
2
`|Ft´1

‰

` 2κ`η
2E

“

}∇fpxt, ztq ´∇FDpx
tq}2`|Ft´1

‰

.

In the second equality we have used the fact that for any x P X , E
z„D

r∇fpx, zqs “ ∇FDpxq, and

E
z„D

r∆tpztqs “ s∆t, and that the two terms
`

dt´1 ´∇FDpx
t´1q

˘

and p1 ´ ηq
`

∆tpztq ´ s∆t

˘

`

η
`

∇fpxt, ztq ´∇FDpx
tq
˘

, conditioned on Ft´1 are independent. The last inequality follows by
triangle inequality and the fact that pa ` bq2 ď 2a2 ` 2b2 for a, b P R. Hence, using (2) and that
fp¨, zq is L0-Lipschitz and L1-smooth:

E
“

}∆tpztq ´ s∆t}
2
`|Ft´1

‰

ď
κ

κ`
E
“

}∆tpztq ´ s∆t}
2
˚|Ft´1

‰

ď 4e2 pL1Mq
2 η2 (5)

E
“

}∇fpxt, ztq ´∇FDpx
tq}2`|Ft´1

‰

ď 4e2L2
0. (6)

Let rt fi }dt ´∇FDpx
tq}2`. Thus, by (5) and (6) we get the following recursion:

Errt|Ft´1s ď p1´ ηq
2E rrt´1|Ft´1s ` 8κ`η

2
´

p1´ ηq2 pL1Mq
2
` L2

0

¯

. (7)

Next, we show the bound by induction. For the base case t “ 0, using a similar approach as the
above:

E rr0s “ E
”

} 2
n

řn{2
i“1

`

∇fpx0, z0
i q ´∇FDpx

0q
˘

}2`

ı

ď 4
n2

´

E
”

}
řn{2´1
i“1

`

∇fpx0, z0
i q ´∇FDpx

0q
˘

}2`

ı

` κ`E
“

}∇fpx0, z0
n{2q ´∇FDpx

0q}2`

‰

¯

ď
4κ`
n2

n{2
ÿ

i“1

E
“

}∇fpx0, z0
i q ´∇FDpx

0q}2`

‰

ď
8κL2

0

n
.

Let C “ 8κ`η
2
´

p1´ ηq2 pL1Mq
2
` L2

0

¯

. Now, for the inductive step use the recursion (7), to
obtain

E rrts ď p1´ ηq2t E rr0s ` C
t´1
ÿ

j“0

p1´ ηq2j

ď
8κL2

0

n
p1´ ηq2t ` C

1´ p1´ ηq2t

η
.
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Note that since η P p0, 1q, we have p1´ ηq2t ą 1´ 2tη. Hence, we get

Er}dt ´∇FDpx
tq}2`s ď

8κL2
0

n
p1´ ηq2t ` 16κ`η

2t
´

p1´ ηq2 pL1Mq
2
` L2

0

¯

.

We obtain the result using the equivalence of norms and Jensen’s inequality

Er}dt ´∇FDpx
tq}˚s ď

2
?

2κL0
?
n

p1´ ηqt ` 4η
a

κ`t pp1´ ηqL1M ` L0q

ď
2e
a

2 logpKqL0
?
n

p1´ ηqt ` 4η
a

logpKqt pL1M ` L0q ,

where in the last step we used upper bounds on κ and κ`.

Appendix B. Missing proofs from Section 4

B.1. Part (a) of Proposition 8

Notice that for any m (below Γp¨q is the Gamma function),
ż `8

0
exp

 

´
r2

2σ2

(

rmdr “
p2σ2qm`1{2

2

ż `8

0
e´uum´1{2du “

p2σ2qpm`1q{2

2
Γ
`m` 1

2

˘

.

This implies that the m-th moment w.r.t. } ¨ }` can be computed as follows

Er}z}m` s “ Cpσ, dq

ż

Rd
}z}m` exp

!

´
}z}2`
2σ2

)

dz

“ Cpσ, dqAreapt}x}` “ 1uq

ż 8

0
rm`d´1 exp

 

´
r2

2σ2

(

dr

“ Cpσ, dqAreapt}x}` “ 1uq
p2σ2qpm`dq{2

2
Γ
`m` d

2

˘

“ p2σ2qm{2Γ
`m` d

2

˘

{Γ
`d

2

˘

.

We conclude using that }z}˚ ď }z}`. On the other hand, the bounds for the second moment are
obtained by using that Γp1` d{2q “ pd{2qΓpd{2q.

B.2. Missing RDP to DP reduction from Proposition 8, part (b)

The missing part of Proposition 8 is a consequence of the following result.

Corollary 16 The generalized Gaussian mechanism applied to a function with } ¨ }˚-sensitivity
bounded by s ą 0 is pα, ρq-RDP, where ρ “ κα2s2{r2σ2pα ´ 1qs. In particular, choosing σ “
2κ logp1{δqs2{ε2, the generalized Gaussian mechanism is pε, δq-DP.

Proof We first prove that the mechanism is pα, ρq-RDP. For this, consider two neighboring datasets
S, S1. Then, by the Rényi divergence estimate proved earlier in part (b)

Dα

`

A}¨}`pSq||A}¨}`pS
1q
˘

ď
κα2s2

2σ2pα´ 1q
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where we used that A has } ¨ }˚-sensitivity bounded by s. This proves the mechanism is pα, ρq-
RDP. The second part can be obtained from the first part, together with the DP/RDP reduction in
(Mironov, 2017, Proposition 3).

Appendix C. Proof of Theorem 10

Proof of Theorem 10 First, this algorithm is pε, δq-DP by following known analyses of mini-
batch SGD (see, e.g., (Bassily et al., 2019, Thm. 3.1)), together with the privacy guarantees for the
GG mechanism in Proposition 8. Next, observe that by definition of } ¨ }` and by the duality be-
tween strong convexity and smoothness (Zalinescu, 1983), Φp¨q is 1-strongly convex w.r.t. } ¨ }, and
maxx,yPX rΦpxq ´ Φpyqs ď κM2

2 , hence by the standard SMD analysis (Nemirovski et al., 2009)
(here we use the fact that the minibatches are i.i.d. from the empirical distribution)

RSpAnoisySMDq ď
κM2

2ηT
`
ηL2

0

2
r1` 16

κdT logp1{δq

pnεq2
s.

We now use our choices η “ M
L0

a

κ
2T , and T “ t

pεnq2

16κd logp1{δq u, obtaining

RSpAnoisySMDq ď 4L0M ¨
κ
a

d logp1{δq

εn
.

To bound the excess population risk of the algorithm, we can use the generalization properties of
differential privacy Bassily et al. (2016); Dwork et al. (2015) (see also a similar application that
appeared earlier in (Bassily et al., 2014a, Lemma F.5)):

RDrAnoisySMDs “ RSrAnoisySMDs ` L0M ¨O
`

ε1
˘

“ L0M ¨O

˜

κ
a

d logp1{δq

εn
` ε1

¸

where, without loss of privacy, we replace ε in Algorithm AnoisySMD with ε1 “ mintε,
?
κd1{4plogp1{δqq1{4

?
n

u.
Hence, we get

RDrAnoisySMDs “ L0M ¨O

˜

max

˜?
κd1{4 plogp1{δqq1{4

?
n

,
κ
a

d logp1{δq

εn

¸¸

,

which proves the desired bound. Note that when ε ě
?
κd1{4plogp1{δqq1{4

?
n

, which subsumes the typical

setting for the privacy parameter (i.e., ε “ Θp1q), the above bound yieldsL0M ¨O
´?

κd1{4plogp1{δqq1{4
?
n

¯

.

On the other hand, if ε ă
?
κd1{4plogp1{δqq1{4

?
n

, the bound becomes L0M ¨ O

ˆ

κ
?
d logp1{δq

εn

˙

, which,

given our lower bound in Section 7, is essentially tight when 1` Ωp1q ď p ă 2.
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Appendix D. Proofs from Section 5.2

D.1. Proof of Theorem 11

Let ∇0 “
2
n

řn{2
i“1 ∇fpx0, z0

i q denote the initial gradient estimate. Note that the global } ¨ }˚-
sensitivity of ∇0 is bounded by 4L0

n . Hence, by Proposition 8 we obtain that Step 5 in Algorithm 3
is pε, δq-DP.

For iteration t P r
?
ns, let Bt denote the mini-batch given in Step 10 in Algorithm 3, and let

∆t “
2?
n

ř

?
n{2

i“1

`

∇fpxt, ztiq ´∇fpxt´1, ztiq
˘

. Also, let B1t,∆
1
t denote the corresponding quanti-

ties in Algorithm AnoisySFW when the input dataset is S1. Suppose that Bt and B1t differ in at most
one data point, say zi˚ ‰ z1i˚ . Then

}∆t ´∆1
t}˚ “

2
?
n
}
`

∇fpxt, zi˚q ´∇fpxt´1, zi˚q
˘

´
`

∇fpxt, z1i˚q ´∇fpxt´1, z1i˚q
˘

}˚

Hence, by the smoothness of f w.r.t. } ¨ }, the global } ¨ }˚ sensitivity of ∆t is bounded by 4ηL1M?
n

.
Again, using Proposition 8 we have that Step 11 in Algorithm 3 is pε, δq-DP. Note that at any given
iteration t, the gradient estimate r∇t´1 from the previous iteration is already computed privately.
Since differential privacy is closed under post-processing, the current iteration t is pε, δq-DP. Since
the batches of the dataset used in different iterations are disjoint, then by parallel composition,
Algorithm AnoisySFW is pε, δq-differentially private.

D.2. Proof of Theorem 12

We start by proving a recursive bound on the first moment of the gradient estimator.

Lemma 17 Let D be a distribution over Z , and S „ Dn be the input to Algorithm AnoisySFW. For

t P r0,
?
ns and κ “ min

!

1
p´1 , e

2 lnpdq
)

, the recursive gradient estimate r∇t satisfies

E
S„Dn

”

}∇FDpx
tq ´ r∇t}˚

ı

ď 4L0

c

κ

n
`

4κL1Mη
?
t

n1{4
`

8 κ
a

d logp1{δq

ε

´L0

n
` L1Mη

c

t

n

¯

.

Proof Consider any iteration t ě 1 of AnoisySFW. Similar to the proof of Lemma 6, we first show
the second moment bound for the smooth norm } ¨ }` associated with the dual norm, and then we
will conclude by the equivalence property (2). Let rt fi }∇FDpx

tq ´ r∇t}
2
`. Then

rt “ }∇FDpx
t´1q ´ r∇t´1 `∇FDpx

tq ´∇FDpx
t´1q ´ ∆̃t}

2
`

Let Ft be the σ-algebra induced by the randomness in the data i.e. the mini-batches B0, B1, . . . , Bt

and the the noise vectors g0,g1, . . . ,gt up until iteration t. Note that conditioned on Ft´1, E
”

∆̃t|Ft´1

ı

“

∇FDpx
tq ´ ∇FDpx

t´1q. Now, let ∆t “
2?
n

ř

?
n{2

i“1

`

∇fpxt, ztiq ´∇fpxt´1, ztiq
˘

. Then ∆̃t “

∆t ` gt. Thus, by property (1), we observe that

E rrt|Ft´1s ď E
”

}∇FDpx
t´1q ´ r∇t´1}

2
`|Ft´1

ı

` κ`E
”

}∇FDpx
tq ´∇FDpx

t´1q ´ ∆̃t}
2
`|Ft´1

ı

ď E rrt´1|Ft´1s ` 2κ`E
“

}∇FDpx
tq ´∇FDpx

t´1q ´∆t}
2
`|Ft´1

‰

` 2κ`E
“

}gt}
2
`|Ft´1

‰

.
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Using a similar reasoning as given in the proof of Lemma 6, we can show that

E
“

}∇FDpx
tq ´∇FDpx

t´1q ´∆t}
2
`|Ft´1

‰

ď
κ

κ`

ď
8κL2

1M
2η2

?
n

.

Also, by Proposition 8 we have E
“

}gt}
2
`

‰

ď σ2d, where σ2 “
32κL2

1M
2η2 logp1{δq
nε2

. Thus, given the
fact that κ` ď κ, we have the following recursion

E rrt|Ft´1s ď E rrt´1|Ft´1s `
16κ2L2

1M
2η2

?
n

`
64κ2L2

1M
2η2d logp1{δq

nε2
. (8)

We proceed by induction: using the same approach as before, for the base case t “ 0 and noise
variance σ2

0 “
32κL2

0 logp1{δq
n2ε2

we have

E rr0s “ E
”

}∇FDpx
0q ´ r∇0}

2
`

ı

ď
8κ`
n2

n{2
ÿ

i“1

E
“

}∇FDpx
0q ´∇fpx0, z0

i q}
2
`

‰

` 2κ`E
“

}g0}
2
`

‰

ď
16κL2

0

n
`

64κ2L2
0d logp1{δq

n2ε2
.

Thus, by induction on (8) we obtain

E rrts ď E rr0s `
16κ2L2

1M
2η2t

?
n

`
64κ2L2

1M
2tη2d logp1{δq

nε2

ď
16κL2

0

n
`

64κ2L2
0d logp1{δq

n2ε2
`

16κ2L2
1M

2η2t
?
n

`
64κ2L2

1M
2η2td logp1{δq

nε2
.

Therefore, by the equivalence of the norms and the Jensen’s inequality

Er}∇FDpx
tq ´ r∇t}˚s ď 4L0

c

κ

n
`

4κL1Mη
?
t

n1{4
`

8 κ
a

d logp1{δq

ε

˜

L0

n
` L1Mη

c

t

n

¸

.

Proof of Theorem 12 For t P r0,
?
ns, by following a similar argument as used in the proof of

Theorem 4, we have

FDpx
t`1q ´ F ˚D ď p1´ ηq

`

FDpx
tq ´ F ˚D

˘

` 2ηM}∇FDpx
tq ´ r∇t}˚ `

L1η
2M2

2

Let Γt “ FDpx
tq ´ F ˚D, and let qt “ }∇FDpx

tq ´ r∇t}˚. Hence, taking expectation we get

E rΓt`1s ď p1´ ηqE rΓts ` 2ηME rqts `
L1η

2M2

2
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Thus, for
?
n iterations we have

E
“

Γ?n`1

‰

ď p1´ ηq
?
n`1L0M ` 2ηM

?
n

ÿ

j“0

p1´ ηqjE
“

q?n´j
‰

`
L1ηM

2

2
. (9)

By Lemma 17 observe that
?
n

ÿ

j“0

p1´ ηqjE
“

q?n´j
‰

ď
1

η

˜

4L0

c

κ

n
`

8 κL0

a

d logp1{δq

ε n

¸

` 4L1Mη

˜ ?
κ

n1{4
`

2κ
a

d logp1{δq

ε
?
n

¸

n1{4

?
n

ÿ

j“0

p1´ ηqj

ď
1

η

˜

4L0

c

κ

n
`

8 κL0

a

d logp1{δq

ε n

¸

` 4L1M

˜

?
κ`

2κ
a

d logp1{δq

ε n1{4

¸

.

Substituting this in (9) and setting η “ logpnq
2
?
n

, we get

E
“

Γ?n`1

‰

ď
L0M
?
n
` 8L0M

c

κ

n
`

16κL0M
a

d logp1{δq

ε n
` 4L1M

2 logpnq

c

κ

n

`
16κL1M

2 logpnq
a

d logp1{δq

ε n3{4
`
L1M

2 logpnq

4
?
n

Hence, the expected excess risk is

RDrAnoisySFWs “ O

˜

L1M
2 logpnq ` L0Mκ

?
n

`
κL1M

2 logpnq
a

d logp1{δq

ε n3{4

¸

.

Appendix E. Proof of Proposition 13 from Section 6

We start by bounding the } ¨ }2-diameter and Lipschitz constant for the `p-setup. First, since the
} ¨ }p-diameter of X is bounded byM , then the } ¨ }2-diameter of X is bounded by d1{2´1{pM . Next,
if f is L0-Lipschitz w.r.t. } ¨ }p, i.e.

Ť

xPX Bfpxq Ď B}¨}p˚ p0, L0q, then f is also L0-Lipschitz w.r.t.
} ¨ }2. Therefore, (Bassily et al., 2020, Remark 5.3) implies

RDrAnoisySGDs “ d
1
2
´ 1
pL0M ¨O

´

max
!

1?
n
,

?
d logp1{δq

εn

)¯

“ L0M ¨O
´

d
1
2´

1
p

?
n
`

d
1´ 1

p
?

logp1{δq

εn

¯

.
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Appendix F. Full Details of the Lower Bound in Section 7

In this section, we give the full details for our lower bounds on the excess risk of DP-SCO and
DP-ERM in the `p setup when 1 ă p ă 2. Our lower bound for DP-SCO is given in Theorem 18.
The first term follows directly from the non-private lower bound for SCO in the same setting (Ne-
mirovski and Yudin, 1983). To establish a lower bound of Ω̃ppp ´ 1q

?
d{pεnqq, we show a lower

bound of essentially the same order (up to a logarithmic factor in 1{δ) on the excess empirical error
for DP-ERM in the `p setting (Theorem 19). Given the reduction in (Bassily et al., 2019, Appendix
C), this implies the claimed lower bound on DP-SCO.

Problem setup: Let p P p1, 2q and d P N. Let X “ Bdp , where Bdp is the unit `p ball in Rd, and let
Z “ t´ 1

d1{q ,
1
d1{q u

d where q “ p
p´1 . Let f : X ˆ Z Ñ r´1, 1s defined as:

fpx, zq “ ´xx, zy, x P X , z P Z.

Note that for every z P Z , fp¨, zq is convex, smooth, and 1-Lipschitz w.r.t. } ¨ }p over X . Recall
that for any distribution D over Z , we define the population risk of x P X w.r.t. D as FDpxq fi
E
z„D

rfpx, zqs, and for any dataset S “ pz1, . . . , znq P Zn, we define the empirical risk of x P X

w.r.t. S as FSpxq fi 1
n

řn
i“1 fpx, ziq.

Our lower bound for DP-SCO is formally stated in the following theorem.

Theorem 18 Let p P p1, 2q and n, d P N. Let ε ą 0 and 0 ă δ ă 1
n1`Ωp1q . Let X ,Z, and f be as

defined in the setup above. There exists a distribution D over Z such that for any pε, δq-DP-SCO
algorithm A : Zn Ñ X , we have

E
S„Dn,A

rFDpApSqqs ´min
xPX

FDpxq “ Ω̃

˜

max

˜

1
?
n
, pp´ 1q

?
d

εn

¸¸

.

As mentioned earlier, given the reduction described in Bassily et al. (2019), it suffices to prove
a lower bound of essentially the same order for DP-ERM w.r.t. the problem described above. The
remainder of this section will be devoted to this goal. Namely, we will prove the following theorem.

Theorem 19 Under the same setup in Theorem 18, there exists a dataset S P Zn such that for any
pε, δq-DP-ERM algorithm A : Zn Ñ X , we have

E
A
rFSpApSqqs ´min

xPX
FSpxq “ Ω

˜

pp´ 1q

a

d logp1{δq

εn

¸

.

Proof Let the spaces X ,Z, and the loss function f be as defined in the problem setup above. For
any x P X , let xj denote the j-th coordinate of x, where j P rds. Let S “ pz1, . . . , znq P Zn, and
let zij denote the j-th coordinate of zi, where i P rns, j P rds. Define z̄ fi 1

n

řn
i“1 zi, and similarly,

let z̄j denote the j-th coordinate of z̄.
Let x˚ fi arg min

xPX
FSpxq “ arg max

xPX
xx, z̄y. Note that we have

x˚j “
|z̄j |

q´1

}z̄}q´1
q

signpz̄jq, j P rds (10)
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where } ¨ }q denote the `q norm (recall that q fi
p
p´1 ). To see this, note that by Hölder’s inequality

@x P X , FSpxq ě ´}z̄}q, and on the other hand, note that x˚ P X since }x˚}p “ 1 and FSpx˚q “
´}z̄}q. Next, we make the following claim.

Claim 20 Let α ą 0. Let px P X be such that FSppxq´FSpx˚q ď α. Then, }px´x˚}p ď
b

8α
pp´1q}z̄}q

.

The proof of this claim relies on the uniform convexity property of the `p norms for p P p1, 2s (see
Ball et al. (1994)). We formally restate this property below:

Fact 21 (see Eq. (1.6) in (Ball et al., 1994)) Let x, y be any elements of an `p-normed space pX , } ¨ }pq,
where 1 ă p ď 2. We have }x`y2 }p ď 1´ p´1

8 }x´ y}
2
p.

Now, observe that for any px P X such that FSppxq ´ FSpx˚q ď α, we have

1´
α

2}z̄}q
ď x

px` x˚

2
,
z̄

}z̄}q
y ď }

px` x˚

2
}p ď 1´

p´ 1

8
}px´ x˚}2p,

where the last inequality follows from the above fact. Rearranging terms lead to the above claim.
Fix values for ε and δ as in the theorem statement. Next, we will show the existence of a dataset

S “ pz1, . . . , znq P Zn with }z̄}q “ Ω

ˆ?
d logp1{δq

εn

˙

such that for any pε, δq-DP-ERM algorithm

for the above problem that outputs a vector px P X , we must have }px´x˚}p “ Ωp1q with probability
2{3 over the algorithm’s random coins. Note that, by Claim 20, this implies the desired lower bound.
To see this, suppose, for the sake of a contradiction, that there exists an pε, δq-DP-ERM algorithm A

that outputs px P X such that E
pxÐA

rFSppxqs´FSpx
˚q “ o

ˆ

pp´ 1q

?
d logp1{δq

εn

˙

. Then, by Markov’s

inequality, with probability ě 0.9, we have FSppxq ´ FSpx
˚q “ o

ˆ

pp´ 1q

?
d logp1{δq

εn

˙

. Hence,

Claim 20 would imply that, with probability ě 0.9, }px ´ x˚}p “ op1q, which contradicts with the
claimed Ωp1q lower bound on }px´ x˚}. Hence, to conclude the proof of Theorem 19, it remains to
show the claimed lower bound on }px´ x˚}, which we do next.

In the final step of the proof, we resort to a construction based on the fingerprinting code argu-
ment due to Bun et al. (2018). We use the following lemma, which is implicit in the constructions
of Bun et al. (2015); Steinke and Ullman (2015).

Lemma 22 Let n, d P N. Let ε ą 0 and 0 ă δ ă 1
n1`Ωp1q . Let T “ t´1, 1ud. There exists a

dataset T “ pv1, . . . , vnq P T n where } 1
n

řn
i“1 vi}8 ď c

?
d logp1{δq

εn for some universal constant
c ą 0 such that for any pε, δq-differentially private algorithm M : T n Ñ r´1, 1sd, the following is
true with probability 2{3 over the random coins of M: DJ Ď rds with |J | “ Ωpdq such that

p@j P Jq,
∣∣∣MjpT q ´

1

n

n
ÿ

i“1

vij

∣∣∣ “ Ω
´

a

d logp1{δq

εn

¯

and
∣∣∣ n
ÿ

i“1

vij

∣∣∣ “ c ¨

a

d logp1{δq

εn
,

where MjpT q denotes the j-th coordinate of MpT q and vij denotes the j-th coordinate of vi.

We consider a normalized version of the dataset T “ pv1, . . . , vnq in the above lemma. Namely,
we consider a dataset S “ pz1, . . . , znq P Zn, where zi “ vi

d1{q , i P rns. Note that the above lemma
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implies the existence of a subset J Ď rds with |J | “ Ωpdq such that for all j P J, |z̄j | “ c
d1{q ¨?

d logp1{δq

εn for some universal constant c ą 0. Note also that @ j P rdszJ, |z̄j | ď c
d1{q ¨

?
d logp1{δq

εn

since } 1
n

řn
i“1 vi}8 ď c

?
d logp1{δq

εn . This implies that

|J |

d
cq

˜

a

d logp1{δq

εn

¸q

ď }z̄}qq ď cq

˜

a

d logp1{δq

εn

¸q

,

which, given the fact that |J | “ Ωpdq, implies that }z̄}qq “ c1
?
d logp1{δq

εn for some universal constant

c1 ą 0. Hence, by the fact that q ą 2, we have }z̄}q “ Θ

ˆ?
d logp1{δq

εn

˙

. Moreover, note that for all

j P rJs, we have |z̄j |
q´1

}z̄}q´1
q

“
p cc1 q

1´ 1
q

d
1´ 1

q
“ c2

d1{p for some universal constant c2, where the last equality

follows from the fact that q ą 2 and 1
q “ 1´ 1

p .
Let v̄ fi 1

n

řn
i“1 vi, and let v̄j denote the j-th coordinate of v̄ for j P rds. Given the above

observations and the expression of the minimizer x˚ in eq. (10), it is not hard to see that for all
j P J,

x˚j “
c2

d1{p
signpv̄jq “

c2

d1{p
¨
v̄j
|v̄j |

“
c2

c
¨

εn

d1{2`1{p
a

logp1{δq
v̄j . (11)

Let A be any pε, δq-DP-ERM algorithm that takes the dataset S described above as input, and
let px P X denote its output. Construct an pε, δq-differentially private algorithm M for the dataset
T of Lemma 22 by first running A on S “ 1

d1{q ¨ T , which outputs px, then releasing MpT q “

c
c2 ¨

d1{2`1{p
?

logp1{δq

ε n ¨ px. Now, using (11) and given the description of M, observe that

}px´ x˚}p “
c2

c ¨
εn

d1{2`1{p
?

logp1{δq
¨ }MpT q ´ v̄}p

ě c2

c ¨
εn

d1{2`1{p
?

logp1{δq
¨

´

ř

jPJ |MjpT q ´ v̄j |
p
¯1{p

“ Ω

ˆ

εn

d1{2`1{p
?

logp1{δq
d1{p

?
d logp1{δq

ε n

˙

“ Ωp1q

where the third step follows from Lemma 22 and the fact that M is pε, δq-differentially private. This
establishes the desired lower bound on }px´ x˚}p, and hence by the argument described earlier, the
proof of Theorem 19 is now complete.
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