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One1 of the primary goals of learning theory is to understand how the sample complexity of
learning depends on the complexity of the model. Classically, much of the research focused on
the case where data are drawn independently from some population distribution. The mismatch
between sample and population inevitably leads to questions of uniform convergence. To answer
such questions, the theory of empirical processes was developed, with seminal papers establishing
non-asymptotic rates of convergence in terms of Rademacher complexity, covering numbers, chain-
ing, VC dimension, and scale-sensitive combinatorial parameters. More recently, there has been
interest in extending the classical theory to the world of online learning, where there can be depen-
dencies among the data; as in the classical case, the online regime requires guarantees of uniform
convergence, with sequential analogues of the aforementioned complexity measures. Despite the
recent development of such sequential counterparts to classical complexities, there have remained
challenging open questions in the relations between these measures. One of the problems in extend-
ing the classical results to the sequential setting is the lack of covering-packing duality, a technical
tool used in many classical methods to bound covering numbers by other quantities, such as the
VC dimension using the technique of Dudley extraction. In this work, we draw inspiration from
yet another classical notion of complexity, majorizing measures, and prove the exact analogues of
many classical bounds in the online setting, bypassing the need for Dudley extraction. Furthermore,
we relate the majorizing measures approach to the recently introduced notion of fractional covering
numbers. More precisely, using this relation, we show that sequential Rademacher complexity is
bounded by majorizing measures, which are dominated by chaining with respect to fractional cov-
ering numbers, which we in turn control by sequential, scale-sensitive, combinatorial parameters.
Finally, we establish a tight contraction inequality for worst-case sequential Rademacher complex-
ity. The above constitutes the resolution of a number of outstanding open problems in extending
the classical theory of empirical processes to the sequential case, and, in turn, establishes sharp re-
sults for online learning. Furthermore, the introduction of majorizing measures to the online regime
provides an additional tool in theorists’ approaches to proving uniform convergence bounds in the
sequential setting.

1. Extended abstract. Full version appears on arXiv as 2102.01729
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