
Proceedings of Machine Learning Research vol 134:1–54, 2021 34th Annual Conference on Learning Theory

Learning and Testing Junta Distributions with Subcube Conditioning

Xi Chen XICHEN@CS.COLUMBIA.EDU
Columbia University.

Rajesh Jayaram RKJAYARA@CS.CMU.EDU
Carnegie Mellon University.

Amit Levi AMIT.LEVI@UWATERLOO.CA
University of Waterloo.

Erik Waingarten EAW@CS.COLUMBIA.EDU

Stanford University.

Editors: Mikhail Belkin and Samory Kpotufe

Abstract
We study the problems of learning and testing junta distributions on {−1, 1}n with respect to the
uniform distribution, where a distribution p is a k-junta if its probability mass function p(x) depends
on a subset of at most k variables. The main contribution is an algorithm for finding relevant
coordinates in a k-junta distribution with subcube conditioning Bhattacharyya and Chakraborty
(2018); Canonne et al. (2019). We give two applications:

• An algorithm for learning k-junta distributions with Õ(k/ε2) log n+O(2k/ε2) subcube conditioning
queries, and

• An algorithm for testing k-junta distributions with Õ((k +
√
n)/ε2) subcube conditioning queries.

All our algorithms are optimal up to poly-logarithmic factors.
Our results show that subcube conditioning, as a natural model for accessing high-dimensional

distributions, enables significant savings in learning and testing junta distributions compared to the
standard sampling model. This addresses an open question posed by Aliakbarpour et al. (2016).
Keywords: List of keywords

1. Introduction

We consider the problems of learning and testing k-junta distributions, as first studied by Aliak-
barpour, Blais, and Rubinfeld (Aliakbarpour et al. (2016)). Given n ∈ N and k ≤ n, a distribution
p supported on {−1, 1}n is a k-junta distribution (with respect to the uniform distribution) if the
probability mass function p(x) = Prz∼p[z = x] is a k-junta.1 The goal of the learning problem
is to design algorithms which, given access to an unknown k-junta distribution p over {−1, 1}n,
output a hypothesis distribution p̂ that satisfies dTV(p, p̂) ≤ ε. In the testing problem, the goal is

1. We say a function f(x) over {−1, 1}n is a k-junta (function) if it depends on a subset of no more than k variables.
More generally, Aliakbarpour et al. (2016) defines k-junta distributions with respect to a fixed distribution q. For
n ∈ N, k ≤ n, and a fixed distribution q supported on {−1, 1}n, a distribution p over {−1, 1}n is a k-junta
distribution with respect to q if there exist k coordinates i1, . . . , ik ∈ [n] such that for every x ∈ {−1, 1}k, the
distributions p and q conditioned on coordinates i1, . . . , ik being set according to x are equal. When q is the uniform
distribution, the above definition is equivalent to the requirement that p(x) is a k-junta function.

c© 2021 X. Chen, R. Jayaram, A. Levi & E. Waingarten.

CHEN JAYARAM LEVI WAINGARTEN

to design algorithms which, given access to an arbitrary distribution p, can distinguish between p
being a k-junta distribution, and being ε-far from a k-junta distribution.2

The study of computational aspects of juntas has spawned a large body of work (for instance,
see Mossel et al. (2003); Fischer et al. (2004); Chockler and Gutfreund (2004); Lipton et al. (2005);
Arpe and Reischuk (2007); Arpe and Mossel (2008); Arvind et al. (2009); Valiant (2015); Blais
(2008, 2009, 2010); Servedio et al. (2015); Bshouty and Costa (2016); Blais et al. (2019a); Chen
et al. (2017); Saglam (2018); Liu et al. (2018); Levi and Waingarten (2019); De et al. (2019);
Pallavoor et al. (2020) and references therein). These problems are motivated by the feature se-
lection problem in machine learning (see e.g. Guyon and Elisseeff (2003); Liu and Motoda (2012);
Chandrashekar and Sahin (2014)), and are classically referred to in theoretical computer science as
“learning in the presence of irrelevant information” Blum (1994); Blum and Langley (1997). The
landmark (open) problem is the “junta problem” Blum (2003); Mossel et al. (2003); Valiant (2015):
given an unknown k-junta f : {−1, 1}n → {−1, 1}, an algorithm receives independent samples
(x, f(x)) where x ∼ {−1, 1}n is uniform, and the task is to learn f (with respect to the uniform
distribution). Aliakbarpour et al. (2016) study the analogous problem for distributions: for an un-
known k-junta distribution p over {−1, 1}n, an algorithm receives independent samples x ∼ p,
and the task is to learn p to within small distance in total variation. They obtain an algorithm with
sample complexity Õ(22k) log n/ε4 and running time Õ(22k) min{nk, 2n}/ε4, and observed that
any algorithm for learning k-junta distributions may be used to solve the “junta problem.” Hence,
running time significantly better than nk (in particular, polynomial upper bounds for k = O(log n))
would constitute a major breakthrough in computational learning theory.

Turning to testing k-junta distributions, Aliakbarpour et al. (2016) give a tight bound of Θ̃(2n/2/ε2)
for the number of samples x ∼ p needed. We note that this “curse of dimensionality” is not unique
to the problem of testing junta distributions, and already appears for the most basic testing task:
testing whether a distribution on {−1, 1}n is uniform Paninski (2008); Valiant and Valiant (2017),
which can be viewed as testing k-junta distributions with k = 0. Works addressing this state-
of-affairs have proceeded by either analyzing restricted classes of high dimensional distributions
Rubinfeld and Servedio (2009); Canonne et al. (2017); Daskalakis and Pan (2017); Daskalakis et al.
(2019); Gheissari et al. (2018); Bezáková et al. (2020); Diakonikolas et al. (2019), or by augmenting
the oracle Batu et al. (2005); Canonne and Rubinfeld (2014); Canonne et al. (2015); Chakraborty
et al. (2016); Acharya et al. (2018); Bhattacharyya and Chakraborty (2018); Onak and Sun (2018).

Membership queries. It has been observed Blum and Langley (1997); Mossel et al. (2003);
Blum (2003) that the classic “junta problem” becomes significantly easier when allowing member-
ship queries.3 In particular, a simple algorithm making O(k log n/ε) queries will find at most k
relevant variables such that the function is ε-close to a junta function over those variables.4 For the
problem of testing junta functions (with membership queries), the state-of-the-art algorithm Blais
(2009) only has query complexity Õ(k/ε) with no dependency on n. This leads to the following
question that motivates our work:

What is an appropriate “membership query” model for learning and testing junta
distributions, and would such query access admit significant complexity savings?

2. Here, two distributions p and q are ε-far if dTV(p, q) ≥ ε, and p is ε-far from being a k-junta distribution if every
k-junta distribution is ε-far from p.

3. In learning theory, a membership query refers to an oracle which returns f(x) upon a query x ∈ {−1, 1}n.
4. The algorithm iteratively builds a set J ⊂ [n] of relevant variables by sampling pairs of points x,y ∼ {−1, 1}n with

xJ = yJ ; when f(x) 6= f(y), the algorithm performs a binary search to find a new relevant variable to add to J .

2

LEARNING AND TESTING JUNTA DISTRIBUTIONS WITH SUBCUBE CONDITIONING

Subcube conditioning queries. This paper considers the subcube conditioning model, first
studied by Bhattacharyya and Chakraborty (2018). A subcube conditioning query on a distribution
p over {−1, 1}n is specified by a string (or a restriction as we call in the paper) ρ ∈ {−1, 1, ∗}n.
The oracle returns a sample x ∼ p conditioned on every i ∈ [n] with ρi 6= ∗ having xi = ρi.
Equivalently, ρ encodes a subcube of {−1, 1}n by fixing non-∗ coordinates in ρ; the oracle returns
a sample x ∼ p conditioned on x lying in the subcube.5 When the subcube encoded by ρ is not
supported in p, the oracle under the model of Bhattacharyya and Chakraborty (2018) returns a point
drawn uniformly from the subcube. We remark that this modeling choice is not important for this
paper: our algorithms only make queries ρ that are consistent with a sample x previously drawn
from p (i.e., ρi = xi for every non-∗ coordinate i).6

The subcube conditioning model seems particularly appropriate for computational tasks over
distributions supported on (high-dimensional) product domains, and was suggested in Canonne
et al. (2015) as an open direction for learning and testing distributions over {−1, 1}n. From the
purely theoretical perspective, we find two aspects of subcube conditioning especially compelling.
The first is that restrictions of distributions over product domains are themselves distributions over
product domains, which enable algorithms and their analyses to proceed recursively. The second is
that algorithms may proceed via the method of (random) restrictions, exploiting properties of dis-
tributions apparent only by considering subcubes. See more discussions on random restrictions in
Section 1.2.

From a practical perspective, subcube conditional queries arise in a number of applications. An
important example is sampling from large joins in a relational database. For database joins, subcube
conditioning has a natural interpretation: a sample from a join conditioned on a subcube (defined
by fixing certain attributes in the join) can be represented as a sample from another join, where
conditioning is first applied to each relation individually.7 Thus, subcube conditional sampling from
a join can be implemented in the same time as uniform sampling from a join with a minor overhead.
Moreover, efficiently sampling from joins is an important task in database theory Chaudhuri et al.
(1999); Acharya et al. (1999); Zhao et al. (2018); Chen and Yi (2020), and can often be implemented
substantially faster than the time required to compute the entire query (which may be exponential
in the number of relations given as input to the join).

Other query models. We briefly discuss other proposed access oracles for distributions. The
evaluation oracle Batu et al. (2005); Canonne and Rubinfeld (2014) allows algorithms to query the
probability mass function of an input, in addition to receiving random samples. We note the same
“binary search” strategy prescribed for finding relevant variables in a k-junta function works well
in this setting, making it too strong for learning juntas. Onak and Sun (2018) considers probability-
revealing samples, where the algorithm receives pairs (x, p(x)) with x ∼ p. This model is too

5. We note that while this paper considers distributions supported on {−1, 1}n, Bhattacharyya and Chakraborty (2018)
study subcube conditioning in a general product domain Σn. There, a subcube conditioning query is specified by a
sequence of n subsets A1 × · · · × An where each Ai ⊂ Σ, and a sample x ∼ p conditioned on xi ∈ Ai for all
i ∈ [n]. Extending results from {−1, 1}n to Σn is a direction for future work.

6. This gives our algorithms a flavor of those under the active learning / testing model Dasgupta (2005); Settles (2009);
Balcan et al. (2012), adapted to the setting of distribution testing: an algorithm can only zoom in onto a subcube
using conditioning queries after it is discovered by samples drawn from the distribution. Our lower bounds, on the
other hand, apply to the original subcube conditioning model, which only makes them stronger.

7. For example, a sample from a large multi-way join J = R1 1 · · · 1 Rm of relations R1, . . . , Rm conditioned on
fixing a subset of attributes according to a restriction ρ corresponds to a sample from the join query J ′ = R′1 1

. . . R′m, where each R′i is the restriction of the relation Ri where attributes are fixed according to ρ.

3

CHEN JAYARAM LEVI WAINGARTEN

weak for the learning problem, since the reduction of Aliakbarpour et al. (2016) from the k-junta
problem to the k-junta distribution problem applies to this oracle as well.8 Lastly, and most relevant
to this paper, is the (general) conditional sampling model, introduced in Chakraborty et al. (2013,
2016); Canonne et al. (2014, 2015), where an algorithm is allowed to specify a (arbitrary) subset A
of the domain and receive a sample conditioned on it lying in A. This model is more powerful than
subcube conditioning, yet, looking ahead, our lower bounds for learning k-junta distributions will
apply to this model as well, showing that conditioning on arbitrary sets A ⊆ {−1, 1}n is no more
powerful than that on subcubes for the learning problem.

1.1. Our results

Learning k-junta distributions. Our main algorithmic contribution is a procedure that can, given
subcube conditioning query access to a k-junta distribution p over {−1, 1}n, identify a set J ⊂ [n]
of at most k relevant variables such that p is close to a k-junta over J . The number of queries needed
to identify each relevant variable, on average, is roughly log n/ε2. (We emphasize though that the
main idea behind the algorithm is not based on binary search; see Section 1.2 for an overview of the
algorithm.)

Theorem 1 (Identifying relevant variables) There is a randomized algorithm, which takes sub-
cube conditioning query access to an unknown distribution p over {−1, 1}n, an integer k ∈ N,
and a parameter ε ∈ (0, 1/4]. The algorithm makes Õ(k/ε2) · log n queries, runs in time Õ(k/ε2) ·
n log n and outputs a set J ⊂ [n] with the following guarantee. If p is a k-junta distribution then
|J| ≤ k and p is ε-close to a junta distribution over variables in J with probability at least 2/3.

It is known as folklore that, once such a set J is identified, the unknown k-junta distribution p
can be learnt easily using another batch ofO(2k/ε2) samples from p and the same amount of running
time. Together we obtain the following corollary, showing that subcube conditioning queries enable
significant speedup compared to state-of-the-art learning algorithms under the sampling model.

Corollary 2 (Learning junta distributions) Under the subcube conditioning query model, there is
a learning algorithm for k-junta distributions with query complexity Õ(k/ε2) · log n + O(2k/ε2)
and running time Õ(k/ε2) · n log n+O(2k/ε2).

We show that query complexities of both algorithms are almost tight. Indeed they are al-
most tight even under the more powerful general conditioning query model, which was introduced
simultaneously by Chakraborty et al. (2013, 2016) and Canonne et al. (2014, 2015). A general con-
ditioning query to p is specified by an arbitrary subset A of {−1, 1}n (which is not necessarily a
subcube) and the oracle returns a sample x ∼ p conditioned on x ∈ A.

Theorem 3 Let 0 < ε ≤ 1/8, n ∈ N and 0 < k ≤ n− 1. Suppose an algorithm receives as input
conditional query access to an unknown k-junta distribution p supported on {−1, 1}n and outputs
a set J ⊂ [n] with |J| ≤ k such that with probability at least 4/5, p is ε-close to a junta distribution
over J. Then, the algorithm must make Ω(log

(
n
k

)
/ε2) queries.

8. In particular, consider an unknown k-junta function f : {−1, 1}n → {−1, 1}, and notice that with poly(2k) random
samples, we may know exactly how many inputs x ∈ {−1, 1}n have f(x) = 1. Then, the reduction of Aliakbarpour
et al. (2016) constructs the distribution which is uniform over the inputs where f(x) = 1, so knowing the probability
mass function at these points gives no additional information.

4

LEARNING AND TESTING JUNTA DISTRIBUTIONS WITH SUBCUBE CONDITIONING

Theorem 4 Let 0 < ε ≤ 1/120, n ∈ N and 0 < k ≤ n − 1. Suppose an algorithm receives as
input conditional query access to an unknown k-junta distribution p over {−1, 1}n and outputs a
distribution p̂ such that with probability at least 4/5, p is ε-close to p̂. Then, the algorithm must
make Ω(log

(
n
k

)
/ε2) + Ω(2k/ε2) queries.

Testing k-junta distributions For the problem of testing junta distributions, we obtain matching
upper and lower bounds for the query complexity under the subcube conditioning query model.

Theorem 5 (Testing junta distributions) There is an algorithm, which takes subcube condition-
ing access to an unknown distribution p over {−1, 1}n, an integer k ∈ N, and ε ∈ (0, 1/4]. It
makes

Õ

(
k +
√
n

ε2

)
queries, runs in time Õ(n(k +

√
n)2/ε4) and achieves the following guarantee: It accepts with

probability at least 2/3 if p is a k-junta distribution, and rejects with probability at least 2/3 if p is
ε-far from a k-junta.

Theorem 6 (Lower bound for junta testing) There exist two absolute constants ε0 > 0 and C0 ∈
N such that for any setting of 0 < ε ≤ ε0, n ≥ C0 and 0 ≤ k ≤ n/2, any algorithm which receives
as input subcube conditioning query access to an unknown distribution p supported on {−1, 1}n
and distinguishes with probability at least 2/3 between the case when p is a k-junta distribution
and the case when p is ε-far from any k-junta distribution must make at least Ω̃(k +

√
n)/ε2 many

queries. Furthermore, the lower bound holds even when p is promised to be a product distribution.

An open problem posed by Aliakbarpour et al. (2016) is whether their exponential lower bound
for testing junta distributions under the sampling oracle can be bypassed using general conditioning
queries. We answer the question positively with subcube conditioning queries.

1.2. Technical overview

We give an overview of our results for learning and testing junta distributions. All our algorithms
heavily use random restrictions drawn using samples from the unknown distribution. We start with
some notation for restrictions and how we apply them on a distribution.

Let p be a distribution over {−1, 1}n and let ρ ∈ {−1, 1, ∗}n be a restriction. We write p|ρ to de-
note the distribution obtained by applying the restriction ρ on p: it is supported on {−1, 1}stars(ρ) where
stars(ρ) is the set of i ∈ [n] with ρi = ∗, and y ∼ p|ρ is drawn by first drawing x ∼ p conditioned
on xi = ρi for all i /∈ stars(ρ) and then setting y = xstars(ρ). There will be mainly two ways we
draw a random restriction ρ. In the first scenario, we fix a set S ⊂ [n] and draw a random restriction
ρ by first drawing x ∼ p and then setting ρi = xi for each i /∈ S and ρi = ∗ otherwise. We
denote this distribution of restrictions by DS(p). The more sophisticated way of drawing a random
restriction ρ, given a parameter σ ∈ (0, 1), is to first draw x ∼ p and a random set S ⊆ [n] by
including each element independently with probability σ. We then set ρi = xi for each i /∈ S and
ρi = ∗ otherwise. We denote this distribution of restrictions by Dσ(p)

Algorithm for identifying relevant variables. Given access to a distribution p, the algorithm
proceeds by maintaining a set J (initially empty) of relevant9 variables found, and iteratively adding

9. Unlike the Boolean function setting, we only know that variables in J are relevant with high probability.

5

CHEN JAYARAM LEVI WAINGARTEN

to J until no more relevant variables are found. Hence, the key challenge is discovering new relevant
variables when p remains ε-far from any k-junta distribution over J . The latter condition implies

Eρ∼DJ (p)

[
dTV

(
p|ρ,U

)]
≥ ε,

where U denotes the uniform distribution (of the right dimension). Assume, for convenience, that
the algorithm samples a restriction ρ with dTV(p|ρ,U) ≥ ε. The major difficulty is that arbitrary
correlations among (yet unknown) k relevant variables may hide the non-uniform nature of p|ρ.10

For this, we leverage a set of recently-developed tools from Canonne et al. (2019) for analyzing
mean vectors of random restrictions of distributions. Specifically, for an arbitrary distribution p
over {−1, 1}n, we denote µ(p) ∈ [−1, 1]n as the mean vector,

µ(p)
def
= E

x∼p
[x] ∈ [−1, 1]n.

We prove the following structural lemma for distributions which are far-from k-juntas. At a high
level, this lemma allows us to find relevant variables by only considering the marginal distributions
on specific coordinates after applying random restrictions.

Lemma 7 (Main structural lemma) There is a universal constant c > 0 such that the following
holds. Let p be any probability distribution supported over {−1, 1}n for some n ∈ N. Let J ⊂
[n] be a subset of variables such that p is ε-far from being a junta distribution over variables in J
for some ε ∈ (0, 1/4].11 Then for σ = 1/2 we have

dlog2 2ne∑
j=1

E
ρ∼DJ (p)

[
E

ν∼D
σj

(p|ρ)

[∥∥µ((p|ρ)|ν)
∥∥

2

]]
≥ ε

logc(n/ε)
. (1)

We will apply the main structural lemma to the distribution p projected onto its k relevant
variables (so n in Lemma 7 becomes k), which suggests the following algorithm: for each j =
1, . . . , dlog2 2ke, draw ρ and ν as described above in the hopes that ‖µ((p|ρ)|ν)‖2 ≥ ε/ logc(k/ε).
Once this occurs, since µ((p|ρ)|ν) contains at most k non-zero coordinates, at least one coordinate
i ∈ stars(ν) will have mean at least ε/(

√
k logc(k/ε)) in magnitude. In other words, the i-th

variable is relevant, and the marginal distribution on the i-th coordinate of (p|ρ)|ν is biased by
at least Ω̃(ε/

√
k). Taking Õ(k/ε2) · log n random samples from (p|ρ)|ν is enough to identify all

relevant coordinates whose marginal is at least Ω̃(ε/
√
k) to include into J ; furthermore, (by the

extra (log n)-factor), we never include a non-biased coordinate in J . Notice, however, that all
guarantees are only in expectation, and we need to employ a budget doubling strategy to achieve the
nearly-optimal bound.

10. For example, consider the k-junta distribution p over {−1, 1}n which is parameterized by a subset S ⊂ [n] of size
k (denoting the relevant variables). A sample x ∼ p is uniform over all points y ∈ {−1, 1}n where

∏
i∈S yi = 1.

Notice that dTV(p,U) ≥ 1/2, however, the distribution given by projecting p onto any subset of coordinates which
does not completely include all S variables is exactly uniform. The silver lining (for this specific distribution) will
be that if a restriction ρ fixes all but one variable in S, i.e., S ∩ stars(ρ) = {i}, then every sample x ∼ p|ρ will have
xi always set to the same value.

11. We require ε ≤ 1/4 just so that log(n/ε) ≥ 2 even when n = 1; this helps avoid an extra multiplicative constant
needed on the right hand side of (1).

6

LEARNING AND TESTING JUNTA DISTRIBUTIONS WITH SUBCUBE CONDITIONING

Algorithm for testing junta distributions. The testing algorithm first runs the algorithm for
identifying relevant variables, and then tests whether the distribution depends only on the relevant
variables found. In particular, let J be the set of variables it returns, and notice that the algorithm
may immediately reject if |J | > k, since every variable in J found by the algorithm is relevant (with
high probability). The remaining task is distinguishing between the following two cases:

1. If p is ε-far from k-junta distributions, then by definition p is ε-far from any junta
distribution over J . By the main structural lemma, there is some j = 1, . . . , dlog2 2ne
such that ‖µ((p|ρ)|ν)‖2 is large (in expectation) when ρ ∼ DJ(p) and ν ∼ Dσj (p|ρ).

2. If p is a k-junta distribution, then for every j = 1, . . . , dlog2 2ne, (p|ρ)|ν will (trivially)
still be a k-junta distribution and ‖µ((p|ρ)ν)‖2 will tend to be small (in expectation).
The intuition for the latter condition is that otherwise, the algorithm for finding relevant
variables as sketched above would have identified more variables.

To this end, we design a “robust mean tester” for juntas distributions.

Theorem 8 (Robust mean testing for juntas) There is an algorithm which, given sample access to
a distribution p on {−1, 1}n, k ∈ N and a parameter ε ∈ (0, 1), has the following behavior:

1. If p is a k-junta distribution with ‖µ(p)‖2 ≤ ε
√
n/100, the algorithm returns “Is a

k-junta” with probability at least 2/3;

2. If p is a distribution that satisfies ‖µ(p)‖2 ≥ ε
√
n, the algorithm returns “Not a

k-junta” with probability at least 2/3.

Moreover, the algorithms draws

q = O

(
max

{
k +
√
n

ε2n
,
k +
√
n

ε
√
n

})
(2)

samples from p and runs in time O(q2n).

The above theorem improves on a (non-robust) mean tester from Canonne et al. (2019) (which
solves the case when k = 0) in two ways. The first is that since k 6= 0, the case p is a k-junta
may have non-zero mean vector, and our algorithm distinguishes a constant factor gap between the
`2-norm of mean vectors.12 The second is that the algorithm runs in time O(q2n) as opposed to
nO(logn), and gives optimal query complexity (whereas the result in Canonne et al. (2019) lost a
triply-logarithmic factor).

Lower bounds for identifying relevant variables and learning junta distributions. Both
proofs of Theorem 3 and Theorem 4 follow from a reduction to the one-way communication com-
plexity of the indexing problem: Alice receives a uniformly random string y ∼ {−1, 1}m; Bob
receives a uniformly random index i ∼ [m]; Alice needs to send a message to Bob so that Bob

12. This gives the robust mean tester a somewhat tolerant testing flavor. Removing the assumption of p being a k-junta
in the completeness case, and allowing arbitrary distributions with small `2-norms on the mean vector would result
in an Ω(1/ε2) lower bound (which is always much higher than (2)). Proof: for x ∈ {−1, 1}n, let p1 and p2 be
distributions over {x,−x} where p1 is uniform and p2 samples x with probability (1 + ε)/2. These exhibit a gap in
the mean vectors, but are indistinguishable with significantly fewer than 1/ε2 samples.

7

CHEN JAYARAM LEVI WAINGARTEN

outputs yi. This problem has a well known Ω(m) lower bound for any public-coin protocol that
succeeds with probability at least 2/3 Miltersen et al. (1995).

We focus on Theorem 3, as the proof of Theorem 4 follows a similar plan. We assume that
there is an algorithmA for identifying relevant variables of any k-junta distribution p over {−1, 1}n
with q general conditioning queries, and similarly to Blais et al. (2019b), we will give a communi-
cation protocol which simulates A to contradict communication complexity lower bounds. Given
an input string y ∈ {−1, 1}m where m = Ω(log

(
n
k

)
), Alice builds a k-junta distribution py over

{−1, 1}n such that Bob can decode y by learning relevant variables of py. By Harsha et al. (2010);
Braverman and Garg (2014) (specifically, Corollary 7.7 in Rao and Yehudayoff (2020)) and the na-
ture of distribution py, we compress the naive one-way communication protocol (where Alice sends
q samples using qn bits) into a public-coin protocol with O(qε2) +O(1) communication bits.

Lower bound for testing junta distributions. Our lower bound instances will always consist
of product distributions, which simplifies the lower bound proof in two ways. The first way is that
subcube conditioning queries may be simulated by random samples, so that it suffices to prove a
sample complexity lower bound. The second is that, even uniformity testing (which is the case of
k = 0), has a lower bound of Ω(

√
n/ε2) samples Canonne et al. (2017, 2019), so that it suffices to

prove a lower bound of Ω̃(k)/ε2. We prove an Ω̃(n)/ε2 sample complexity lower bound for testing
k-junta product distributions with k = n/2, and extend the result to all k ≤ n/2 with a padding
argument.

The two distributions of “hard” instances, Dyes and Dno, are quite delicate, as they must simul-
taneously satisfy the following guarantees. (i) A distribution p ∼ Dyes is an (n/2)-junta product
distribution with probability at least 1− on(1), i.e., µ(p) has at most n/2 non-zero coordinates (in
particular, these are the relevant coordinates). (ii) A distribution p ∼ Dno is ε-far from any (n/2)-
junta product distribution with probability 1 − on(1), i.e., letting µ′ be µ(p) after zeroing out the
top half of coordinates, ‖µ′‖2 ≥ ε. (iii) The joint distributions over significantly fewer than n/ε2

samples from a draw p ∼ Dyes and p ∼ Dno, respectively, are on(1) in total variation distance.
The constructions proceed by randomly and independently setting µ(p)i according to one of two
possible distributions (one forDyes and one forDno) such that the firstO(log n/ log logn) moments
of each µ(p)i match when p ∼ Dyes and p ∼ Dno, which we show suffices for condition (iii).13

2. Preliminaries

We use boldface symbols to represent random variables, and non-boldface symbols for fixed values
(potentially realizations of these random variables) — see, e.g., ρ versus ρ. Given n ∈ N, we let Un
denote the uniform distribution over {−1, 1}n. Usually, as the support of Un will be clear from the
context, we will drop the subscript and simply write U . We write f(n) . g(n) if, for some c > 0,
f(n) ≤ c · g(n) for all n ≥ 1 (the & symbol is defined similarly). We use the notation Õ(f(n))
to denote O(f(n) · polylog(f(n))), and Ω̃(f(n)) to denote Ω(f(n)/(1 + |polylog(f(n))|)). The
notation [k] denotes the set of integers {1, . . . , k}.

We introduce two useful operations on a distribution p supported on {−1, 1}n.

13. The method of matching moments for distribution testing tasks is a well-known technique Raskhodnikova et al.
(2009); Valiant (2011), where the core is analyzing the solution of a Vandermonde system to construct hard instances.
While our plan proceeds in a similar fashion, the specific technical details are rather intricate. In particular, seemingly
innocuous changes to the Vandermonde system result in constructions which would not work.

8

LEARNING AND TESTING JUNTA DISTRIBUTIONS WITH SUBCUBE CONDITIONING

Definition 9 (Projection) For any set S ⊆ [n], we write S = [n] \ S and define the projected
distribution pS supported on {−1, 1}S by letting y ∼ pS be drawn as y = xS for x ∼ p.

Definition 10 (Restriction) We refer to a string ρ ∈ {−1, 1, ∗}n as a restriction and use stars(ρ) to
denote the set of indices i ∈ [n] with ρi = ∗. We denote by p|ρ the restricted distribution supported
on {−1, 1}stars(ρ) given by xstars(ρ) where x is drawn from p conditioned on every i /∈ stars(ρ)
being set to ρi.

The majority of the results in this work consider restrictions ρ drawn randomly from one of the
distributions that we define next.

Definition 11 Let n ∈ N and p be a distribution supported on {−1, 1}n. Given a set S ⊆ [n] we let
DS(p) be the distribution over restrictions ρ ∈ {−1, 1, ∗}n given by letting ρ ∼ DS(p) be sampled
according to a sample x ∼ p, and setting for all i ∈ [n]: ρi = ∗ if i ∈ S and ρi = xi if i /∈ S.

For any σ ∈ (0, 1) and a ground set T , we let Sσ(T) be the distribution supported on subsets
S ⊆ T given by letting S ∼ Sσ(T) be the set which includes each i ∈ T in S independently with
probability σ. We oftentimes write Sσ = Sσ([n]) when n is clear from context. We let Dσ(p) be the
distribution supported on restrictions {−1, 1, ∗}n given by letting ρ ∼ Dσ(p) be sampled by first
sampling S ∼ Sσ and then outputting ρ ∼ DS(p).

3. Finding Relevant Variables

In this section we give our algorithm for identifying relevant variables from junta distributions. We
restate our main structural lemma but delay its proof to Section F.

Lemma 12 (Main structural lemma) There is a universal constant c > 0 such that the following
holds. Let p be any probability distribution supported over {−1, 1}n for some n ∈ N. Let J ⊂
[n] be a subset of variables such that p is ε-far from being a junta distribution over variables in J
for some ε ∈ (0, 1/4].14 Then for σ = 1/2 we have

dlog2 2ne∑
j=1

E
ρ∼DJ (p)

[
E

ν∼D
σj

(p|ρ)

[∥∥µ((p|ρ)|ν)
∥∥

2

]]
≥ ε

logc(n/ε)
. (1)

We emphasize that the parameter n in our structural lemma will be set to be the junta parameter
k later so we need it to hold for small n such as n = 1, which requires some care in its proof later.

We restate the main theorem of this section:

Theorem 1 (Identifying relevant variables) There is a randomized algorithm, which takes sub-
cube conditioning query access to an unknown distribution p over {−1, 1}n, an integer k ∈ N,
and a parameter ε ∈ (0, 1/4]. The algorithm makes Õ(k/ε2) · log n queries, runs in time Õ(k/ε2) ·
n log n and outputs a set J ⊂ [n] with the following guarantee. If p is a k-junta distribution then
|J| ≤ k and p is ε-close to a junta distribution over variables in J with probability at least 2/3.

Theorem 1 will follow by combining the main algorithmic component, Lemma 13 stated next,
with the main structural lemma (Lemma 7).

14. We require ε ≤ 1/4 just so that log(n/ε) ≥ 2 even when n = 1; this helps avoid an extra multiplicative constant
needed on the right hand side of (1).

9

CHEN JAYARAM LEVI WAINGARTEN

Lemma 13 There exists a randomized algorithm, FindRelevantVariables, which takes
subcube conditional query access to an unknown distribution p supported on {−1, 1}n, an inte-
ger k ∈ N and a parameter ε ∈ (0, 1/4]. The algorithm makes Õ(k/ε2) · log n queries and outputs
a set J ⊂ [n] that satisfies the following guarantees:

1. With probability at least 8/9, for every i ∈ J, there is a restriction ρ ∈ {−1, 1, ∗}n with
i ∈ stars(ρ) such that µ(p|ρ)i 6= 0 (and thus, i is a relevant variable of p);

2. Suppose p is a k-junta distribution and let σ = 1/2. With probability at least 8/9, J satisfies

E
ρ∼DJ(p)

[
E

ν∼D
σj

(p|ρ)

[∥∥µ((p|ρ)|ν
)∥∥

2

]]
≤ ε, for every j = 1, . . . , dlog2 2ke. (3)

Proof of Theorem 1 assuming Lemma 13: We execute FindRelevantVariables(p, k, ε̃)
for some parameter ε̃ to be specified shortly, and upon receiving J ⊂ [n] outputs J. We show that
when p is a k-junta distribution, J satisfies the condition of Theorem 1 with probability at least 2/3.
For this purpose it suffices to show that the condition of Theorem 1 follows from the two conditions
of Lemma 13 when ε̃ is set appropriately.

Let J ⊂ [n] be a set of variables for which both conditions of Lemma 13 hold (with ε̃ on
the right hand side in (2) instead of ε). Since p is a k-junta, we let I = {i1, . . . , ik} ⊂ [n] and
g : {−1, 1}k → [0, 1] be such that p(x) = g(xi1 , . . . , xik). By the first condition, we have J ⊆ I
and |J | ≤ k, since a restriction ρ ∈ {−1, 1, ∗}n with i ∈ stars(ρ) and µ(p|ρ)i 6= 0 certifies that
each i ∈ J is a relevant variable in p. Next consider the distribution h = pI supported on {−1, 1}I
and suppose for the sake of contradiction that h is ε-far from being a junta over variables in J . Then
by applying Lemma 7 on h and J with σ = 1/2 (and noting that parameter n in Lemma 7 is set to
k), we have

ε

logc(k/ε)
≤
dlog2 2ke∑
j=1

E
ρ∼DJ (h)

[
E

ν∼D
σj

(h|ρ)

[∥∥µ((h|ρ)|ν
)∥∥

2

]]
, (4)

where c > 0 is the universal constant from Lemma 7.
On the other hand, we claim that the right hand side of the inequality above is the same as

dlog2 2ke∑
j=1

E
ρ∼DJ (p)

[
E

ν∼D
σj

(p|ρ)

[∥∥µ((p|ρ)|ν
)∥∥

2

]]
,

after replacing h with p. This is because p is a k-junta over I and thus, the mean vector of (p|ρ)|ν
for any restrictions ρ and ν always has zeros in entries outside of those in I . As a result, we have

ε

logc(k/ε)
≤
dlog2 2ke∑
j=1

E
ρ∼DJ (p)

[
E

ν∼D
σj

(p|ρ)

[∥∥µ((p|ρ)|ν
)∥∥

2

]]
≤ dlog2 2ke · ε̃,

where we used the second condition of Lemma 13. Hence, choosing ε̃ = ε/polylog(k/ε) gives us
a contradiction. This shows that h is ε-close to being a junta over variables in J . Since p is a junta
over I and h = pI , p is ε-close to being a junta over variables in J as well.

10

LEARNING AND TESTING JUNTA DISTRIBUTIONS WITH SUBCUBE CONDITIONING

Subroutine FindRelevantVariables(p, k, ε)

Input: Subcube conditioning access to a distribution p supported on {−1, 1}n, an integer
k ∈ N and a proximity parameter ε ∈ (0, 1).
Output: A set J ⊂ [n] of variables.

1. Initialize J = ∅ (and B = 0, which is used only in the analysis), and let

ε0 =
ε

100 · log3(k/ε)
.

2. Execute the following while |J | ≤ k:

(a) Initialize b = 1.

(b) Repeat the following procedure while b ≤ 2k:

Increase B by b; run VariablesBudget(p, k, ε0, b, J), which outputs
J ′ ⊂ [n] \ J .

A. If |J ′| ≥ b, update J by adding b elements of J ′ to J and go to step 2.
B. If |J ′| < b, update b← 2b and repeat the loop of step 2b.

(c) If b > 2k, output J .

3. Output J .

Figure 1: The FindRelevantVariables subroutine.

To finish the proof we note that the bound on the query complexity follows from the fact that
we executed FindRelevantVariables(p, k, ε̃) with ε̃ picked as above.

We present FindRelevantVariables in Figure 1. It uses a subroutine VariablesBudget
which we describe in Figure 2 and analyze in the lemma below, whose proof deferred to Ap-
pendix A.

Lemma 14 There exists a randomized algorithm, VariablesBudget, which takes subcube
conditional query access to an unknown distribution p over {−1, 1}n, an integer k ∈ N, a pa-
rameter ε ∈ (0, 1/4], an integer b ∈ [k], and a set J ⊂ [n]. It makes

O

(
b

ε2
· log2

(
k

ε

)
· log

(n
ε

))
subcube conditional queries, and outputs a set J′ ⊂ [n] \ J satisfying the following guarantees:

1. With probability at least 1− (ε/n)9, for every coordinate i ∈ J′, there exists a restriction
ρ ∈ {−1, 1, ∗}n with i ∈ stars(ρ) such that µ(pρ)i 6= 0.

11

CHEN JAYARAM LEVI WAINGARTEN

Subroutine VariablesBudget(p, k, ε, b, J)

Input: Subcube conditioning access to a distribution p supported on {−1, 1}n, an integer
k ∈ N, a proximity parameter ε ∈ (0, 1/4], a parameter b ∈ [k] and a set J ⊂ [n].
Output: A set J ′ ⊂ [n] \ J which either has size at least b, or is empty.

• Repeat the following for j ∈ [dlog2 2ke] and a ∈ {0, . . . , blog2(
√
b/ε)c} with α = 2−a:

Sample tα many pairs ρ ∼ DJ(p) and ν ∼ Dσj (p|ρ), where

ta = 100 · 2a · log(k/ε) = 100 · log(k/ε)
/
α

(a) For each sampled pair (ρ,ν), take sa samples x1, . . . ,xsa ∼ (p|ρ)|ν with

sa = 100 ·
(
α2b

ε2

)
· log

(n
ε

)
(6)

(noting α2b/ε2 ≥ 1) and let µ̂ ∈ Rstars(ν) be their empirical mean given by

µ̂ =
1

sa

s∑
`=1

x`.

(b) Let J′ be the set of coordinates i ∈ stars(ν) satisfying

|µ̂i| ≥
ε

2α
√
b

and output J′ if |J′| ≥ b.

• If we have not yet produced an output at the end of the main loop, output ∅.

Figure 2: The VariablesBudget subroutine.

2. If there exist j ∈ [dlog2 2ke] and a real number α > 0 such that15

Pr
ρ∼DJ (p)
ν∼D

σj
(p|ρ)

[
µ
(
(p|ρ)|ν

)
contains at least b coordinates of magnitude ≥ ε

α
√
b

]
≥ α (5)

then the set J′ has size at least b with probability at least 1− (ε/k)9.

15. Note that a trivial necessary condition for the inequality to hold is α ≤ 1 and α ≥ ε/
√
b.

12

LEARNING AND TESTING JUNTA DISTRIBUTIONS WITH SUBCUBE CONDITIONING

References

Jayadev Acharya, Arnab Bhattacharyya, Constantinos Daskalakis, and Saravanan Kandasamy.
Learning and testing causal models with interventions. In Proceedings of Advances in Neural
Information Processing Systems (NeurIPS ’2018), 2018.

Swarup Acharya, Phillip B Gibbons, Viswanath Poosala, and Sridhar Ramaswamy. Join synopses
for approximate query answering. In Proceedings of the 1999 ACM SIGMOD international con-
ference on Management of data, pages 275–286, 1999.

Maryam Aliakbarpour, Eric Blais, and Ronitt Rubinfeld. Learning and testing junta distributions.
In Proceedings of the 29th Annual Conference on Learning Theory (COLT ’2016), pages 19–46,
2016.

Jan Arpe and Elchanan Mossel. Agnostically learning juntas from random walks. arXiv preprint
arXiv:0806.4210, 2008.

Jan Arpe and Rüdiger Reischuk. Learning juntas in the presence of noise. Theoretical Computer
Science, 384(1):2–21, 2007.

Vikraman Arvind, Johannes Köbler, and Wolfgang Lindner. Parameterized learnability of juntas.
Theoretical Computer Science, 410(47-49):4928–4936, 2009.

Maria-Florina Balcan, Eric Blais, Avrim Blum, and Liu Yang. Active property testing. In Proceed-
ings of the 52nd Annual IEEE Symposium on Foundations of Computer Science (FOCS ’2012),
pages 21–30, 2012.

Tugkan Batu, Sanjoy Dasgupta, Ravi Kumar, and Ronitt Rubinfeld. The complexity of approximat-
ing the entropy. SIAM Journal on Computing, 35(1):132–150, 2005.

Ivona Bezáková, Antonio Blanca, Zongchen Chen, Daniel Štefankovič, and Eric Vigoda. Lower
bounds for testing graphical models: Colorings and antiferromagnetic ising models. Journal of
Machine Learning Research, 21(25):1–62, 2020.

Rijirash Bhattacharyya and Sourav Chakraborty. Property testing of joint distributions using condi-
tional samples. ACM Transactions on Computation Theory, 10(4), 2018.

Eric Blais. Improved bounds for testing juntas. In Approximation, Randomization and Combinato-
rial Optimization. Algorithms and Techniques, pages 317–330. Springer, 2008.

Eric Blais. Testing juntas nearly optimally. In Proceedings of the 41st ACM Symposium on the
Theory of Computing (STOC ’2009), pages 151–158, 2009.

Eric Blais. Testing juntas: A brief survey. In Property Testing - Current Research and Surveys,
pages 32–40. 2010.

Eric Blais, Clément L Canonne, Talya Eden, Amit Levi, and Dana Ron. Tolerant junta testing and
the connection to submodular optimization and function isomorphism. ACM Transactions on
Computation Theory, 11(4):1–33, 2019a.

13

CHEN JAYARAM LEVI WAINGARTEN

Eric Blais, Clément L. Canonne, and Tom Gur. Distribution testing lower bounds via reductions
from communication complexity. ACM Transactions on Computation Theory, 12(2):1–37, 2019b.

Avrim Blum. Relevant examples and relevant features–thoughts from computational learning the-
ory. Technical report, AAAI Fall Symposium on Relevance, 1994.

Avrim Blum. Open problem: learning a function of r relevant variables. In Proceedings of the 16th
Annual Conference on Learning Theory (COLT ’2003), 2003.

Avrim Blum and Pat Langley. Selection of relevant features and examples in machine learning.
Artificial Intelligence, 97(1-2):245–271, 1997.

Mark Braverman and Ankit Garg. Public vs private coin in bounded-round information. In Au-
tomata, Languages, and Programming, pages 502–513, 2014.

Nader H Bshouty and Areej Costa. Exact learning of juntas from membership queries. In Proceed-
ings of the 27th International Conference on Algorithmic Learning Theory (ALT ’2016), 2016.

Clement Canonne and Ronitt Rubinfeld. Testing probability distributions underlying aggregated
data. In Proceedings of the 41st International Colloquium on Automata, Languages and Pro-
gramming (ICALP ’2014), pages 283–295, 2014.

Clement L. Canonne, Dana Ron, and Rocco A. Servedio. Testing equivalence between distribu-
tions using conditional samples. In Proceedings of the 25th ACM-SIAM Symposium on Discrete
Algorithms (SODA ’2014), 2014.

Clément L. Canonne, Dana Ron, and Rocco A. Servedio. Testing probability distributions using
conditional samples. SIAM Journal on Computing, 44(3):540–616, 2015.

Clement L. Canonne, Ilias Diakonikolas, Daniel M. Kane, and Alistair Stewart. Testing bayesian
networks. In Proceedings of the 30th Annual Conference on Learning Theory (COLT ’2017),
2017.

Clement L. Canonne, Xi Chen, Gautam Kamath, Amit Levi, and Erik Waingarten. Random restric-
tions of high-dimensional distributions and uniformity testing with subcube conditioning, 2019.

Sourav Chakraborty, Eldar Fischer, Yonatan Goldhirsh, and Arie Matsliah. On the power of condi-
tional samples in distribution testing. In ITCS2013, pages 561–580, 2013.

Sourav Chakraborty, Eldar Fischer, Yonatan Goldhirsh, and Arie Matsliah. On the power of condi-
tional samples in distribution testing. SIAM Journal on Computing, 45(4):1261–1296, 2016.

Girish Chandrashekar and Ferat Sahin. A survey on feature selection methods. Computers &
Electrical Engineering, 40(1):16–28, 2014.

Surajit Chaudhuri, Rajeev Motwani, and Vivek Narasayya. On random sampling over joins. ACM
SIGMOD Record, 28(2):263–274, 1999.

Xi Chen, Rocco A. Servedio, Li-Yang Tan, Erik Waingarten, and Jinyu Xie. Settling the query com-
plexity of non-adaptive junta testing. In Proceedings of the 32nd Conference on Computational
Complexity (CCC ’2017), 2017.

14

LEARNING AND TESTING JUNTA DISTRIBUTIONS WITH SUBCUBE CONDITIONING

Yu Chen and Ke Yi. Random sampling and size estimation over cyclic joins. In 23rd International
Conference on Database Theory, ICDT 2020, March 30-April 2, 2020, Copenhagen, Denmark,
pages 7:1–7:18, 2020.

Hana Chockler and Dan Gutfreund. A lower bound for testing juntas. Information Processing
Letters, pages 301–305, 2004.

Sanjoy Dasgupta. Analysis of a greedy active learning strategy. In Proceedings of Advances in
Neural Information Processing Systems, pages 337–344, 2005.

Constantinos Daskalakis and Qinxuan Pan. Square hellinger subadditivity for bayesian networks
and its applications to identity testing. In Proceedings of the 30th Annual Conference on Learning
Theory (COLT ’2017), pages 697–703, 2017.

Constantinos Daskalakis, Nishanth Dikkala, and Gautam Kamath. Testing ising models. IEEE
Transactions on Information Theory, 65(11):6829–6852, 2019.

Anindya De, Elchanan Mossel, and Joe Neeman. Junta correlation is testable. In Proceedings of
the 60th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2019’), 2019.

Ilias Diakonikolas, Daniel M. Kane, and John Peebles. Testing identity of multidimensional his-
tograms. In Proceedings of the 32nd Annual Conference on Learning Theory (COLT ’2019),
2019.

Eldar Fischer, Guy Kindler, Dana Ron, Shmuel Safra, and Alex Samordinsky. Testing juntas. Jour-
nal of Computer and System Sciences, 68(4):753–787, 2004.

Reza Gheissari, Eyal Lubetzky, and Yuval Peres. Concentration inequalities for polynomials of
contracting ising models. Electronic Communications in Probability, 23, 2018.

Isabelle Guyon and Andr’e Elisseeff. An introduction to variable and feature selection. Journal of
Machine Learning Research, 3:1157–1182, 2003.

Prahladh Harsha, Rahul Jain, David McAllester, and Jaikumar Radhakrishnan. The communication
complexity of correlation. IEEE Trans. Inf. Theor., 56(1):438–449, 2010.

Amit Levi and Erik Waingarten. Lower bounds for tolerant junta and unateness testing via rejection
sampling of graphs. In Proceedings of the 2019 ACM Conference on Innovations in Theoretical
Computer Science (ITCS ’2019), 2019.

Richard J Lipton, Evangelos Markakis, Aranyak Mehta, and Nisheeth K Vishnoi. On the fourier
spectrum of symmetric boolean functions with applications to learning symmetric juntas. In
CCC2005, pages 112–119, 2005.

Huan Liu and Hiroshi Motoda. Feature selection for knowledge discovery and data mining, volume
454. Springer Science & Business Media, 2012.

Zhengyang Liu, Xi Chen, Rocco A Servedio, Ying Sheng, and Jinyu Xie. Distribution-free junta
testing. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing,
2018.

15

CHEN JAYARAM LEVI WAINGARTEN

Peter Bro Miltersen, Noam Nisan, Shmuel Safra, and Avi Wigderson. On data structures and asym-
metric communication complexity. In Proceedings of the 27th ACM Symposium on the Theory of
Computing (STOC ’1995), pages 103–111, 1995.

Elchanan Mossel, Ryan O’Donnell, and Rocco A. Servedio. Learning juntas. In Proceedings of the
35th ACM Symposium on the Theory of Computing (STOC ’2003), pages 206–212, 2003.

Krzysztof Onak and Xiaorui Sun. Probability–revealing samples. In Proceedings of the 21st Inter-
national Conference on Artificial Intelligence and Statistics (AISTATS ’2018), 2018.

Ramesh Krishnan S. Pallavoor, Sofya Raskhodnikova, and Erik Waingarten. Approximating the
distance to monotonicity of boolean functions. In Proceedings of the 31st ACM-SIAM Symposium
on Discrete Algorithms (SODA ’2020), 2020.

Liam Paninski. A coincidence-based test for uniformity given very sparsely sampled discrete data.
IEEE Transactions on Information Theory, 54(10):4750–4755, 2008.

Anup Rao and Amir Yehudayoff. Communication Complexity and Applications. Cambridge Uni-
versity Press, 2020.

Sofya Raskhodnikova, Dana Ron, Amir Shpilka, and Adam D. Smith. Strong lower bounds for
approximating distribution support size and the distinct elements problem. SIAM Journal on
Computing, 39(3):813–842, 2009.

Ronitt Rubinfeld and Rocco A. Servedio. Testing monotone high-dimensional distributions. Ran-
dom Structures and Algorithms, 34(1):24–44, 2009.

Mert Saglam. Near log-convexity of measured heat in (discrete) time and consequences. In Proceed-
ings of the 59th Annual IEEE Symposium on Foundations of Computer Science (FOCS ’2018),
2018.

Rocco A Servedio, Li-Yang Tan, and John Wright. Adaptivity helps for testing juntas. In Pro-
ceedings of the 30th Conference on Computational Complexity (CCC ’2015), pages 264–279,
2015.

Burr Settles. Active learning literature survey. Computer Sciences Technical Report, 1648, 2009.

Gregory Valiant. Finding correlations in subquadratic time, with applications to learning parities
and the closest pair problem. Journal of the ACM, 62(2):13, 2015.

Gregory Valiant and Paul Valiant. Estimating the unseen: improved estimators for entropy and other
properties. Journal of the ACM, 64(6):37:1–37:41, 2017.

Paul Valiant. Testing symmetric properties of distributions. SIAM Journal on Computing, 40(6):
1927–1968, 2011.

Charles F Van Loan. The ubiquitous kronecker product. Journal of computational and applied
mathematics, 123(1-2):85–100, 2000.

Zhuoyue Zhao, Robert Christensen, Feifei Li, Xiao Hu, and Ke Yi. Random sampling over joins
revisited. In Proceedings of the 2018 International Conference on Management of Data, pages
1525–1539, 2018.

16

LEARNING AND TESTING JUNTA DISTRIBUTIONS WITH SUBCUBE CONDITIONING

Appendix A. Proof of Lemma 14

We start with the first condition. We observe that, for the output J′ to violate the condition, there
must be an execution of step (a) for some j, a, ρ and ν such that µ((p|ρ)|ν)i = 0 for some i ∈
stars(ν) but the same coordinate in the average of sa samples drawn from (p|ρ)|ν has magnitude
at least ε/(2α

√
b) with α = 2−a. Note that this coordinate in the average is just the average of sa

uniformly random bits.
Via a union bound over coordinates and a Chernoff bound, the probability that one round of step

(a) gives a J′ in step (b) that violates the condition is at most

n · Pr
z1,...,zsa∼{−1,1}

[∣∣∣∣∣1s
sa∑
`=1

z`

∣∣∣∣∣ ≥ ε

2α
√
b

]
≤ 2n · exp

(
− saε

2

8α2b

)
≤
(ε
n

)11
. (7)

With a union bound over all rounds of (a), the probability of J′ violating the condition is at most

dlog2 2ke ·

blog2(
√
b/ε)c∑

a=0

100 · 2a · log(k/ε)

 · (n
ε

)11
≤ O

(√
b

ε

)
· log2

(
k

ε

)
·
(ε
n

)11
≤
(ε
n

)9
.

We now turn to the second condition. By assumption there are parameters j ∈ [dlog2 ke]
and α∗ > 0 such that (5) holds (which implies that ε/

√
b ≤ α∗ ≤ 1). Let

0 ≤ a = blog(1/α∗)c ≤ blog(
√
b/ε)c and α = 2−a

so that α∗ ≤ α ≤ 2α∗. It suffices to show that during the main loop of VariablesBudget with
j and a, at least one of the ta pairs ρ and ν sampled leads to J′ with |J′| ≥ b with high probability.

For this purpose we say a pair (ρ, ν) of restrictions is good if the mean vector of (p|ρ)|ν has
at least b coordinates of magnitude at least ε/(α∗

√
b). It follows from (5) that ρ ∈ DJ(p) and

ν ∈ Dσj (p|ρ) are good with probability at least α∗. By virtue of step (a) being repeated

ta = 100 · log(k/ε)
/
α ≥ 50 · log(k/ε)

/
α∗

times, we have that with probability at least 1 − (ε/k)10, at least one of the pairs of restrictions ρ
and ν sampled in the main loop of j and a is good.

On the other hand, fix any such good pair (ρ, ν) and any coordinate i ∈ stars(ν) with∣∣µ((p|ρ)ν)i
∣∣ ≥ ε/(α∗

√
b) ≥ ε

/
(α
√
b)

sinceα ≥ α∗. It follows from a Chernoff bound similar to (7) that every such coordinate i is added to
J′ with probability at least 1−(ε/n)10. By a union bound over the two bad events, the main loop with
j and a outputs a set of size at least b with probability at least 1− (ε/n)10 − (ε/k)10 ≥ 1− (ε/k)9.

Finally, the query complexity is bounded by:

dlog2 2ke ·
blog2(

√
b/ε)c∑

a=0

tasa ≤ 1002 · dlog2 2ke
dlog2(

√
b/ε)e∑

a=0

2a · log

(
k

ε

)
· b

22aε2
· log

(n
ε

)
= O

(
b

ε2
· log2

(
k

ε

)
· log

(n
ε

))
.

17

CHEN JAYARAM LEVI WAINGARTEN

as required. This finishes the proof of the lemma.
Finally we use Lemma 14 to analyze FindRelevantVariables and prove Lemma 13:

Proof of Lemma 13: To analyze the query complexity, consider an execution of FindRelevantVariables(p, k, ε).
Given that all queries are made in calls to VariablesBudget, the number of queries made by
the subroutine at any time is captured by

B ·O
(

1

ε20
· log2

(
k

ε0

)
· log

(
n

ε0

))
=
B

ε2
· polylog

(
k

ε

)
· log n.

using ε0 = ε/polylog(k/ε). So it suffices to show that B = O(k) when the algorithm terminates.
To see this is the case we prove by induction that at the end of each loop of (b), we have

B ≤ 2|J |+ b.

This clearly holds at the beginning (before the first loop of (b)) because B = 0, b = 1 and |J | = 0.
For the induction step, note that each iteration of step (b) either (A) increases both B and |J | by b
and resets b to 1; or (B) increases B by b, b gets doubled and |J | remains the same. As a result, it
suffices to bound b and |J | when the algorithm terminates. If the algorithm terminates because of
line (c), then we can bound b by 4k and |J | by k; if the algorithm terminates because of line 3, then
we can bound b by 2k and |J | by k + b ≤ 3k.

In both cases we have B ≤ 2|J |+ b ≤ 8k. This finishes the analysis of the query complexity.
Towards proving the first guarantee, note that the total number of executions of VariablesBudget

is at most the value ofB when the algorithm terminates, and we know from the analysis above that it
is bounded by 8k. We take a union bound over all executions of VariablesBudget, and deduce
that with probability at least 8/9, every execution satisfies the first condition in Lemma 14, from
which J also satisfies the first condition in Lemma 13 since J only contains coordinates returned
by calls to VariablesBudget.

To prove the second guarantee, suppose p is a k-junta distribution. We can similarly take a union
bound over all executions of VariablesBudget and deduce that with probability at least 8/9, ev-
ery execution satisfies both conditions in Lemma 14. Let J be the output of FindRelevantVariables.
Then similar to the argument above, the first condition in Lemma 14 implies that J contains only
relevant variables of p and thus, |J | ≤ k. If |J | = k, the inequality (3) is immediate since all relevant
variables of p have been identified in J and hence for every ρ ∈ supp(DJ(p)), p|ρ is uniform.

Suppose then that |J | < k and note from Figure 1 that the algorithm terminates because of
line (c). This implies that for J , step (b) executed VariablesBudget(p, k, ε0, b, J) for every
b ≤ 2k being a power of 2 and |J ′| < b for every execution. It then follows from the second
guarantee of Lemma 14 that, for every j ∈ [dlog2 2ke], b = 2β with β = 0, . . . , blog2 2kc and every
α > 0, (5) does not hold:

Pr
ρ∼DJ (p)
ν∼D

σj
(p|ρ)

[∣∣∣µ((p|ρ)|ν
)
i

∣∣∣ ≥ ε0

α
√
b

for at least b coordinates
]
≤ α. (8)

We use (8) to show for each j ∈ [dlog2 2ke] that

E
ρ∼DJ (p)

[
E

ν∼D
σj

(p|ρ)

[∥∥µ((p|ρ)|ν
)∥∥

2

]]
≤ ε.

18

LEARNING AND TESTING JUNTA DISTRIBUTIONS WITH SUBCUBE CONDITIONING

To this end, we use

E
ρ∼DJ (p)

[
E

ν∼D
σj

(p|ρ)

[∥∥µ((p|ρ)|ν
)∥∥

2

]]
≤ ε0 +

∫ √k
ε0

Pr
ρ,ν

[∥∥µ((p|ρ)|ν
)∥∥

2
≥ γ

]
dγ (9)

and the following claim; the proof is elementary so we delay its proof to the end.

Claim 15 Let x ∈ [−1, 1]k with ‖x‖2 ≥ γ for some γ > 0. Let t = blog2 2kc. Then there must be
a β = 0, 1, . . . , t such that the number of i ∈ [k] with

|xi| ≥
γ

2
√

2βt

is at least 2β .

Letting t = blog2 2kc. Lemma 15 implies that

Pr
ρ,ν

[∥∥µ((p|ρ)|ν
)∥∥

2
≥ γ

]
≤

t∑
β=0

Pr
ρ,ν

[∣∣∣µ((p|ρ)|ν
)
i

∣∣∣ ≥ γ

2
√

2βt
for at least 2β coordinates

]
. (10)

Combining (8), (9) and (10), we have that the left hand side of (9) is at most

ε0+

t∑
β=0

∫ √k
ε0

Pr
ρ,ν

[∣∣∣µ((p|ρ)|ν
)
i

∣∣∣ ≥ γ

2
√

2βt
for at least 2β coordinates

]
dγ

≤ ε0 + 2ε0
√
t ·

t∑
β=0

∫ √k
ε0

1

γ
dγ ≤ ε0

(
1 + 2

√
t(t+ 1) · ln

(√
k

ε0

))
≤ ε,

using our choice of ε0 = ε/(100 · log3(k/ε)). This finishes the proof of the lemma.
Proof of Claim 15: Assume for contradiction that this is not the case for every β = 0, 1, . . . , t. In
particular, it means that no coordinate has |xi| ≥ γ/(2

√
t) using the case with β = 0. Therefore,

γ2 ≤ ‖x‖22 < 2 ·
t∑

β=1

2β · γ2

4 · 2βt
+ k · γ2

4 · 2tt
≤ γ2

2
+
γ2

4t
< γ2,

a contradiction.

Appendix B. Lower Bounds for Learning

The goal of this section is to prove the following lower bounds for the number of subcube condi-
tioning queries needed by an algorithm to solve the following two tasks (1) to learn a set of relevant
variables of a k-junta distribution and (2) to learn a distribution.

Note that our lower bounds hold for the general conditioning model Chakraborty et al. (2016);
Canonne et al. (2015) which allows the algorithm to condition on arbitrary subsets of the domain
{−1, 1}n, rather that only subcubes.

19

CHEN JAYARAM LEVI WAINGARTEN

Theorem 3 Let 0 < ε ≤ 1/8, n ∈ N and 0 < k ≤ n− 1. Suppose an algorithm receives as input
conditional query access to an unknown k-junta distribution p supported on {−1, 1}n and outputs
a set J ⊂ [n] with |J| ≤ k such that with probability at least 4/5, p is ε-close to a junta distribution
over J. Then, the algorithm must make Ω(log

(
n
k

)
/ε2) queries.

Theorem 4 Let 0 < ε ≤ 1/120, n ∈ N and 0 < k ≤ n − 1. Suppose an algorithm receives as
input conditional query access to an unknown k-junta distribution p over {−1, 1}n and outputs a
distribution p̂ such that with probability at least 4/5, p is ε-close to p̂. Then, the algorithm must
make Ω(log

(
n
k

)
/ε2) + Ω(2k/ε2) queries.

Both proofs of Theorem 3 and Theorem 4 follow from reductions from the communication
complexity lower bound of the following indexing problem:

• Alice receives a uniformly random string y ∼ {−1, 1}m.

• Bob receives a uniformly random index i ∼ [m].

• The task is for Alice to send a message to Bob so that Bob outputs yi.

This problem has a well known Ω(m) lower bound on the one-way communication of any protocol
in order for Bob to succeed with probability at least 2/3 Miltersen et al. (1995).

The plan for proving Theorem 3 is the following. Our main goal is to cast the indexing prob-
lem as the problem of finding relevant variables. Let A be a deterministic algorithm for the task
described in Theorem 3 with q general conditioning queries; it will become clear in the proof later
that this is without loss of generality (so A can be viewed as a depth-q decision tree; see Definition
21). Setting m = Ω(log

(
n
k

)
), we show that Alice can use its input string y ∈ {−1, 1}m to construct

a k-junta distribution py over {−1, 1}n with the following recovery property: any subset J ⊂ [n] of
no more than k variables such that py is ε-close to a junta distribution over J can be used to recover
y. Alice uses private randomness to simulate the execution of A on py and sends a message to Bob
that contains the sequence of q samples x1, . . . ,xq. The recovery property guarantees that when-
ever Bob succeeds in finding relevant variables using x1, . . . ,xq, which happens with probability
at least 4/5, he can use them to recover Alice’s string y and then yi.

However, the naive protocol described above has communication complexity qn and we only get
q ≥ Ω(m/n) which is insufficient for our goal. To compress this protocol, we note that distributions
py constructed from y are in some sense very close to the uniform distribution over {−1, 1}n. More
formally, we give the following definition of ε-almost uniform distributions.

Definition 16 Let p be a probability distribution over {−1, 1}n and ε ∈ (0, 1/2). We say that p is
ε-almost uniform if for every x ∈ {−1, 1}n, |p(x)− 2−n| ≤ ε2−n.

The intuition behind the compression is that a sample from an ε-almost uniform distribution
(even being conditioned on a subset of {−1, 1}n) carries with it very little information (roughly
O(ε2)). One can then use results from Harsha et al. (2010); Braverman and Garg (2014) (also see
Corollary 7.7 in Rao and Yehudayoff (2020)) to show that the naive one-way private-coin proto-
col described above can be compressed into a public-coin protocol with O(qε2) + O(1) one-way
communication bits. Formally we state the following lemma:

20

LEARNING AND TESTING JUNTA DISTRIBUTIONS WITH SUBCUBE CONDITIONING

Lemma 17 LetA be a deterministic algorithm on distributions over {−1, 1}n that makes q general
conditioning queries. Then there is a one-way public-coin protocol such that, upon receiving an ε-
almost uniform distribution p over {−1, 1}n, Alice sends a message M of length O(qε2) + O(1)
in the worst case. Bob can use M to compute a sequence of q strings x1, . . . ,xq ∈ {−1, 1}n such
that the distribution of (x1, . . . ,xq) is (1/20)-close to the distribution of the sequence of q samples
A receives when running on p.

We give a self-contained proof of Lemma 17 in Section B.3 since the setting we work on is more
explicit compared to those of Harsha et al. (2010); Braverman and Garg (2014). The flow of the
proof for Theorem 4 is similar. The key differences lie in the construction of py from y for Alice,
and the way Bob recovers yi using the hypothesis p̂ returned by the learning algorithm for k-junta
distributions. We prove Theorem 3 and Theorem 4 in Section B.1 and B.2, respectively.

B.1. Proof of Theorem 3

Suppose that A∗ is a randomized algorithm which, given general conditioning query access to any
unknown k-junta distribution p supported on {−1, 1}n, makes q queries and outputs with probabi-
lity at least 4/5 a subset J ⊂ [n] of at most k variables such that p is ε-close to a junta distribution
over J . So A∗ can be viewed as a distribution of deterministic algorithms A. Let

m =

⌊
log

(
n

k

)⌋
= Ω

(
log

(
n

k

))
. (11)

Alice will interpret her input string x ∈ {−1, 1}m in the indexing problem as a set S ⊂ [n] of size
k and use S to define the following probability distribution pS over {−1, 1}n:

pS(x) =

{
(1 + 4ε)2−n

∏
i∈S xi = 1

(1− 4ε)2−n o.w.
.

It follows directly from the definition that pS is O(ε)-almost uniform. The following claim gives us
the recovery property discussed earlier:

Claim 18 Suppose that S ⊂ [n] is a set of size k and J 6= S ⊂ [n] is a set of size at most k. Then
we have dTV(pS , g) ≥ 2ε for any junta distribution over variables in J .

Proof: Notice that since S is of size k and |J | ≤ k of size at most k, there exists an index i ∈ S
such that i /∈ J . Consider this fixed i ∈ S \ J . We will write the probability mass functions pS
and g as functions {−1, 1}J × {−1, 1}[n]\(J∪{i}) × {−1, 1} → R≥0, where the first |J | indices
correspond to settings of bits in J , the second n− |J | − 1 coordinates correspond to settings of bits
in [n] \ (J ∪ {i}), and the last bit determines i. We notice that since g is a junta over variables in J ,
for any y ∈ {−1, 1}J and any two u1, u2 ∈ {−1, 1}[n]\(J∪{i}) and v1, v2 ∈ {−1, 1}, g(y, u1, v1) =
g(y, u2, v2). Furthermore, by definition of pS , |pS(y, u1, v1) − pS(y, u1, v2)| = 8ε2−n whenever

21

CHEN JAYARAM LEVI WAINGARTEN

v1 6= v2. Hence,

dTV(pS , g) =
1

2

∑
x∈{−1,1}n

|pS(x)− g(x)|

=
1

2

∑
y∈{−1,1}J

∑
u∈{−1,1}[n]\(J∪{i})

(|pS(y, u, 1)− g(y, u, 1)|+ |pS(y, u,−1)− g(y, u,−1)|)

≥ 1

2

∑
y∈{−1,1}J

∑
u∈{−1,1}[n]\(J∪{i})

|pS(y, u, 1)− pS(y, u,−1)| = 2ε.

This finishes the proof of the claim.
As a consequence of Claim 18, we obtain the following corollary.

Corollary 19 Let S ⊂ [n] be any set of size k, and let J be any set of size at most k such that pS
is ε-close to a junta distribution over J . Then we must have J = S.

Proof: Let g be the closest junta over J to pS , and suppose for the sake of contradiction, that J 6= S.
Then, we apply Claim 18 which says that dTV(pS , g) ≥ 2ε, giving the desired contradiction.

We are now ready to prove Theorem 3 by following the plan described earlier.
Proof of Theorem 3: The proof proceeds via a reduction from the two-party one-way communi-
cation problem of indexing. With m chosen in (59) Alice and Bob agree on a fixed injective map
from {−1, 1}m to subsets of [n] of size k. Alice will interpret her input string x ∈ {−1, 1}n as a
subset S ⊂ [n] of size k using this map. Given that A∗ is a distribution of deterministic algorithms,
there exists a q-query deterministic algorithm A such that

Prx∼{−1,1}m
[
A(pS) returns S

]
≥ 4/5, (12)

where x is drawn uniformly at random and S ⊂ [n] is its corresponding subset of size k. Alice and
Bob agree on such a q-query deterministic algorithm A.

Now we describe the protocol. Given x ∈ {−1, 1}m, Alice uses it to construct pS over {−1, 1}m
which is O(ε)-almost uniform. She uses Lemma 17 to send a message M of length O(qε2) +O(1)
to Bob so that Bob can use M to obtain a sequence of q strings x1, . . . ,xq ∈ {−1, 1}n such that
the latter has distribution (1/20)-close to the distribution of the sequence of q samples A receives
when running on pS . It follows from (12) that when x ∼ {−1, 1}m, Bob successfully recovers S
(and thus, x using the map they agreed on) by simulating A on x1, . . . ,xq with probability at least
4/5−1/20 > 2/3. By the Ω(m) lower bound on the indexing problem, we obtain the desired claim
using (59).

B.2. Proof of Theorem 4

The lower bound Ω(log
(
n
k

)
/ε2) follows trivially from Theorem 3. To see this, we can first learn p

to within ε/2 total variation distance. Let p̂ be the hypothesis distribution that the algorithm returns.
Then we can find its closest k-junta distribution p′ and let S be the set of relevant variables of p′

with |S| ≤ k. The algorithm can return S since dTV(p, p′) ≤ dTV(p, p̂) + dTV(p̂, p′) ≤ ε.
We focus on the second part of the lower bound Ω(2k/ε2) in the rest of the proof. Note that

we may assume that k is asymptotically large; otherwise the second part is dominated by the first

22

LEARNING AND TESTING JUNTA DISTRIBUTIONS WITH SUBCUBE CONDITIONING

part. We follow the same flow. Suppose that A∗ is a randomized algorithm which, given general
conditioning query access to any unknown k-junta distribution p supported on {−1, 1}n, makes q
queries and outputs with probability at least 4/5 a hypothesis distribution p̂ such that dTV(p, p̂) ≤ ε.

We say a Boolean function f : {−1, 1}k → {−1, 1} is good if the number of 1-entries in f
is between 2k/3 and 2k+1/3. Let Gk be the set of good Boolean functions. Then it follows from
Chernoff bound that |Gk| ≥ 22k(1− ok(1)). We set m = 2k and Alice interprets her input string
y ∈ {−1, 1}m in the indexing problem as a good Boolean function f : {−1, 1}k → {−1, 1} by
fixing a bijection between [m] and {−1, 1}k and interpreting y as the truth table of f .

Given a string y ∈ {−1, 1}m and its corresponding f : {−1, 1}k → {−1, 1}, letting I(y) be
the number of 1-entries in f , Alice constructs the following k-junta distribution py over {0, 1}n:

py(x) =

2−n

(
1 + 40ε · 2k

I(y)

)
if f(x1, . . . , xk) = 1

2−n
(

1− 40ε · 2k

2k−I(y)

)
if f(x1, . . . , xk) = −1

Note that when f is good, py is an O(ε)-almost uniform k-junta distribution; as it becomes clear
later Alice constructs py only when f is good. The following claim gives us the recovery property:

Claim 20 Given a good y ∈ {−1, 1}m and py defined above, let p̂ be any distribution on {−1, 1}n
which has dTV(py, p̂) ≤ ε. Then,

Pr
x∼{−1,1}n

[
sign

(
p̂(x)− 2−n

)
6= sign

(
py(x)− 2−n

)]
≤ 1

20
.

Proof: Notice that for every x ∈ {−1, 1}n where sign (p̂(x)− 2−n) 6= sign (py(x)− 2−n), we
have |p̂(x)− py(x)| ≥ 40ε · 2−n. Hence,

ε ≥ dTV(py, p̂) =
1

2

∑
x∈{−1,1}n

|py(x)− p̂(x)| ≥ 20ε · Pr
x∼{−1,1}n

[
sign

(
p̂(x)− 2−n

)
6= sign

(
py(x)− 2−n

)]
.

This finishes the proof of the claim.
Proof of Theorem 4: Again, the proof proceeds via a reduction from the two-party one-way
communication problem of indexing over {−1, 1}m where m = 2k. Let y ∈ {−1, 1}m be the input
string of Alice. As alluded to earlier, in the case that y is not good, Alice just aborts the protocol and
they fail the task with probability ok(1) because y is drawn uniformly at random from {−1, 1}m.
In the case that y is good, Alice uses it to construct py, a k-junta distribution over {−1, 1}n that is
O(ε)-almost uniform. Given that A∗ is a randomized algorithm for learning k-junta distributions
over {−1, 1}n, there exists a deterministic algorithm with q general conditioning queries such that

Pry
[
A(py) returns a hypothesis that is ε-close to py

]
≥ 4/5,

where y is uniform over good strings. Alice and Bob agree on such an A.
The protocol goes as before. When y is good, Alice uses Lemma 17 to send a message

M of length O(qε2) + O(1) to Bob so that Bob can use M to obtain a sequence of q strings
x1, . . . ,xq ∈ {−1, 1}n such that their distribution is (1/20)-close to the distribution of the sequence
of q samples A receives when running on pS . It follows from (12) that when y ∼ {−1, 1}m, Bob
successfully learns a hypothesis distribution p̂ that is ε-close to py, by simulating A on x1, . . . ,xq,

23

CHEN JAYARAM LEVI WAINGARTEN

with probability at least 4/5−1/20−ok(1). We now apply Claim 20 to conclude that if this occurs,
Bob can output the correct i-th bit of y with probability at least 9/10 given that i is independent and
uniform.. As a result, over the randomness of y and i, Bob outputs the correct yi with probability
at least 4/5 − 1/20 − ok(1) − 1/20 ≥ 2/3. By the Ω(m) = Ω(2k) lower bound on the indexing
problem, we obtain the desired claim.

B.3. Compressing batches of conditional samples

We prove Lemma 17 in the rest of the section. Recall thatA is a deterministic (adaptive) algorithm,
where each query (a subset of {−1, 1}n) depends on all samples received from previous queries.

We use the following definition to capture such a q-query deterministic algorithm:

Definition 21 For n, q ∈ N, we say a q-query tree T is a rooted depth-q tree. Every non-leaf node
v ∈ T contains a subset Av ⊆ {−1, 1}n, as well as a child node vx for every x ∈ Av. Given a
distribution p over {−1, 1}n, an execution of T on p is a random walk (v1, . . . , vq) down the tree,
specifying a sequence of q samples (x1, . . . ,xq): starting at the root node and proceeding down
the tree, for the current node vi, sample xi ∼ p conditioned on xi ∈ Avi , and let vi+1 = (vi)xi .
Let Ep,T be the distribution supported on ({−1, 1}n)q which outputs the samples (x1, . . . ,xq) of
an execution of T on p.

We consider a protocol, SampleWalk which, without communication, generates an execution
of a given q-query tree T , and Alice decides whether or not to “accept” the samples at the end.
In more detail, SampleWalk takes as input a distribution p over {−1, 1}n, a q-query tree T , and
an error tolerance δ ∈ (0, 1), and using public randomness, will output a root-to-leaf walk of T
specified by nodes (v1, . . . , vq) and (x1, . . . ,xq), or “reject”. The protocol, SampleWalk follows
the “rejection sampling” paradigm. (See Figure 3 for a precise description of the protocol.)

24

LEARNING AND TESTING JUNTA DISTRIBUTIONS WITH SUBCUBE CONDITIONING

Protocol SampleWalk(p, T , δ)

Input: A distribution p supported on {−1, 1}n, a q-query tree T , and a parameter δ ∈ (0, 1).
Furthermore, we assume access to a public string of infinite uniformly random bits.
Output: A root-to-leaf walk down the decision tree T specified by nodes (v1, . . . , vq) and
samples (x1, . . . ,xq), or “reject”.16

1. Starting at the root of T and walking down the tree, Alice considers the current node in
v ∈ T , and the query Av ⊂ {−1, 1}n. She uses public randomness to generate a sample
xv ∼ Av drawn uniformly from Av, and considers the child node of T specified by xv.
Notice that this builds a walk (v1, . . . , vq) and (x1, . . . ,xq), and in particular, this step
is completely independent from p, and draws a sample from EU ,T .

2. Alice samples a private bit which is 1 with probability

min

(
1, δ ·

Ep,T (x1, . . . ,xq)

EU ,T (x1, . . . ,xq)

)
and −1 otherwise. If Alice’s sampled bit is 1, Alice “accepts” the sample (x1, . . . ,xq)
and the nodes (v1, . . . , vq), if it is −1, Alice “rejects”.

Figure 3: The SampleWalk Protocol.

Definition 22 For a q-query tree T , we letD◦p,T ,δ be a distribution supported on ({−1, 1}n)q∪{⊥}
given by the samples (x1, . . . ,xq) forming the output of one execution of SampleWalk(p, T , δ),
or ⊥ if it outputs “reject”. We let Dp,T ,δ be the distribution D◦p,T ,δ conditioned on it not outputting
⊥.

Lemma 23 There exists a sufficiently small constant ζ ∈ (0, 1) such that for any ε, δ ∈ (0, 1/2)
and

q ≤
⌊
ζ log(1/δ)

ε2

⌋
,

the following holds. Let T be a q-query tree and p be ε-almost uniform. Then,

dTV(Dp,T ,δ, Ep,T) ≤ δ and Pr
[
D◦p,T ,δ outputs ⊥

]
≤ 1− δ/2.

Proof: In particular, notice that in order for an execution of SampleWalk(p, T , δ) to output
“reject”, two events must occur:

• The first event is that the samples (x1, . . . ,xq) sampled in Step 1 satisfy

Ep,T (x1, . . . ,xq) < EU ,T (x1, . . . ,xq) ·
1

δ
. (13)

16. We note that outputting (v1, . . . , vq) is unnecessary, as the samples (x1, . . . ,xq) uniquely determine a root-to-leaf
walk down the tree T . We maintain the notation just for notational simplicity.

25

CHEN JAYARAM LEVI WAINGARTEN

• The second event is that a random bit sampled in Step 2 is set to −1, and the probability that
his occurs is

1− δ ·
Ep,T (x1, . . . ,xq)

EU ,T (x1, . . . ,xq)
.

We letR ⊂ ({−1, 1}n)q be the set of strings which satisfy (13), i.e.,

R =

{
(x1, . . . , xq) ∈ ({−1, 1}n)q : Ep,T (x1, . . . , xq) <

1

δ
· EU ,T (x1, . . . , xq)

}
,

and notice that

Pr
[
D◦p,T ,δ outputs ⊥

]
=
∑
x∈R
EU ,T (x)

(
1− δ ·

Ep,T (x)

EU ,T (x)

)
= Pr
x∼EU,T

[x ∈ R]− δ · Pr
x∼Ep,T

[x ∈ R] ,

(14)

so for simplicity in the notation, let

α
def
= Pr

x∼EU,T
[x ∈ R] and β

def
= Pr

x∼Ep,T
[x ∈ R] .

Furthermore, whenever x ∈ R,

Dp,T ,δ(x) =
∞∑
k=1

EU ,T (x) ·
(
δ ·
Ep,T (x)

EU ,T (x)

)
· D◦p,T ,δ(⊥)k−1 = δ · Ep,T (x)

(
1

1−D◦p,T ,δ(⊥)

)

=

(
δ

1− α+ δβ

)
Ep,T (x),

and whenever x /∈ R, Step 2 always accepts the sample, so

Dp,T ,δ(x) =

(
1

1− α+ δβ

)
· EU ,T (x).

Thus, we may write

dTV (Dp,T ,δ, Ep,T) =
1

2

∑
x∈({−1,1}n)q

|Dp,T ,δ(x)− Ep,T (x)|

≤ 1

2

∑
x/∈R

(Dp,T ,δ(x) + Ep,T (x)) +
1

2

∑
x∈R
Ep,T (x)

∣∣∣∣ δ

1− α+ δβ
− 1

∣∣∣∣
=

1

2

(
1− α

1− α+ δβ
+ (1− β)

)
+

1

2
β

∣∣∣∣δ(1− β)− (1− α)

1− α+ δβ

∣∣∣∣ , (15)

so it suffices to show

1− δ2/2 ≤ α, β ≤ 1

26

LEARNING AND TESTING JUNTA DISTRIBUTIONS WITH SUBCUBE CONDITIONING

in order to conclude that (15) is at most δ, and that (14) is at most 1 − δ/2. In order to do so, we
use the fact that p is ε-almost uniform to upper bound 1− α and 1− β. Notice that if x /∈ R, then,
considering the unique path (v1, . . . , vq) in T specified by x, we have

1

δ
≤
Ep,T (x)

EU ,T (x)
=

q∏
i=1

(
p(xi)

1
|Avi |

∑
y∈Avi

p(y)

)
=

q∏
i=1

(
1 +

p(xi)−Ez∼Avi [p(z)]

Ez∼Avi [p(z)]

)

≤ exp

(
q∑
i=1

p(xi)−Ez∼Avi [p(z)]

Ez∼Avi [p(z)]

)
. (16)

We first upper bound 1− α by considering the random sequence Y1, . . . ,Yq generated by starting
at the root v1 and walking down the tree T , while sampling xi ∼ Avi , setting Yi = (p(xi) −
Ez∼Avi [p(z)])/Ez∼Avi [p(z)], and letting vi+1 = (vi)xi . We upper-bound 1 − α by giving an
upper bound for the probability that

∑q
i=1 Yi ≥ ln(1/δ), which in turn upper bounds 1 − α by

(16). Notice that partial sums {
∑t

i=1 Yi}t∈[q] form a 0-centered martingale, and since p is ε-almost
uniform,

|Yi| ≤ max
v∈T
x∈Av

∣∣∣∣p(x)−Ez∼Av [p(z)]

Ez∼Av [p(z)]

∣∣∣∣ ≤ max
v∈T
x∈Av

∣∣∣∣Ez∼Av [p(x)− p(z)]

Ez∼Av [p(z)]

∣∣∣∣ ≤ 2ε

1− ε
≤ 4ε.

We may apply Azuma’s inequality to conclude

Pr
x∼EU,T

[
q∑
i=1

Yi ≥ ln(1/δ)

]
≤ exp

(
− ln2(1/δ)

2 · 16ε2 · q

)
≤ δ2/2

by setting of q with ζ being a sufficiently small constant, and hence lower bounds α by 1− δ2/2. In
order to upper bound 1 − β, we consider the sequence of random variables Y′1, . . . ,Y

′
q generated

by starting at the root v1 and walking down the tree T , but now we sample xi ∼ p conditioned on
xi ∈ Avi , setting Yi = (p(xi)−Ez∼Avi [p(z)])/Ez∼Avi [p(z)], and writing

Y′i = Yi −
Ez′∼p[p(z

′) | z′ ∈ Avi]−Ez∼Avi [p(z)]

Ez∼Avi [p(z)]
,

where the subsequent node vi+1 = (vi)xi . Notice that now the partial sums {
∑t

i=1 Y
′
i}t∈[q]

have expectation 0, form a martingale, where Y′i are obtained by shifting Yi by its expectation,
Ex∼Ep,T [Y]. Furthermore, we may upper bound this shift by importance sampling,

Ez′∼p [p(z′) | z′ ∈ Avi]−Ez∼Avi [p(z)]

Ez∼Avi [p(z)]
=

Ez∼Avi [p(z)2]−Ez∼Avi [p(z)]2

Ez∼Avi [p(z)]2

=

Ez∼Avi

[(
p(z)−Ez′∼Avi [p(z

′)]
)2
]

Ez∼Avi [p(z)]2
≤ 4ε2

1− ε
≤ 8ε2.

(17)

27

CHEN JAYARAM LEVI WAINGARTEN

so that similarly to the computation above, |Y′i| ≤ 4ε+ 8ε2 ≤ 12ε. We may again, apply Azuma’s
inequality, where we notice that the expectation of

Pr
x∼Ep,T

[
q∑
i=1

Yi ≥ ln(1/δ)

]
≤ Pr
x∼Ep,T

[
q∑
i=1

Y′i ≥ ln(1/δ)− 8qε2

]

≤ Pr
x∼Ep,T

[
q∑
i=1

Y′i ≥ ln(1/δ)/2

]
≤ exp

(
− ln2(1/δ)

2 · 4 · 144ε2q

)
≤ δ2/2,

where we used a small enough constant ζ > 0 so that 8qε2 ≤ ln(1/δ)/2, as well as for the final
inequality to hold.

We now use Lemma 23 to prove Lemma 17:
Proof of Lemma 17: We start with the easy case when q < 1/ε2. In this case, we apply Lemma 23
with δ = 1/(40)1/ζ . Notice that q ≤ bζ log(1/δ)/ε2c, so we let T be A, and Lemma 23 implies
a single call to SampleWalk(p,A, δ) succeeds in outputting a sample (x1, . . . ,xq) from Dp,A,δ
with probability at least δ/2, and if it does succeed, the output distribution is at most δ-far from
the distribution producing a sequence of q samples an execution of A on p. Alice and Bob use
public randomness to execute SampleWalk(p,A, δ) for t = O(1/δ) iterations, and Alice com-
municates the index of the first execution where SampleWalk(p,A, δ) did not output “reject”,
or the final index if all executions outputted “reject”. Notice that the distribution of the first time
SampleWalk(pS , T , δ) accepts is exactly DpS ,T ,δ. Furthermore, this uses O(log(1/δ)) = O(1)
bits of communication, and that the total variation distance between the samples (x1, . . . ,xq) from
this protocol and an execution ofA on p is at most δ+(1−δ/2)t ≤ 1/20, where the first δ captures
the case when some SampleWalk(p,A, δ) does not reject, and (1 − δ/2)t is the probability that
all SampleWalk(p,A, δ) output “reject”.

When q ≥ 1/ε2, we apply Lemma 23 with

δ =
1

ε2q · 1001/ζ
.

As per setting of (what we refer to as q′) from Lemma 23, where q′ = bζ log(1/δ)/ε2c ≥ 2 and
hence q′ ≥ ζ log(1/δ)/(2ε2). Alice and Bob break up the q-query algorithmA into dq/q′emany q′-
query trees. The trees are adaptively chosen so as to simulate an execution of A. For each q′-query
tree T , Alice and Bob use public randomness to execute SampleWalk(pS , T , δ) for O(1/δ) it-
erations such that with probability at least 1/2, at least one accepts. Alice then communicates
O(log(1/δ)) bits to Bob, indicating the first index where SampleWalk(pS , T , δ) accepts, or a spe-
cial message indicating none accepted. If some execution accepts, then Bob re-constructs the sam-
ples x1, . . . ,xq′ utilizes those samples to simulate the walk down T . If SampleWalk(pS , T , δ)
never accepts, Alice and Bob try again on the same tree.

Notice that by Lemma 23, since the distribution over the leaves of T is δ-close in total variation
distance from that of a true execution of T on p, after dq/q′e successive executions of Lemma 23,
the distribution over the leaves of A is at most δdq/q′e-close to that of a true execution of A on p,
where we have

δ

⌈
q

q′

⌉
≤ 1

ε2q · 1001/ζ

(
q · 2ε2

ζ log(1/δ)
+ 1

)
≤ 3

100

28

LEARNING AND TESTING JUNTA DISTRIBUTIONS WITH SUBCUBE CONDITIONING

In order to upper bound the communication complexity, notice that each round of dq/q′e sends
O(log(1/δ)) bits and succeeds with probability at least 1/2; which means that the expected com-
munication complexity of a round is O(log(1/δ)). Hence, the expected communication complexity
of the whole protocol is therefore

O

(⌈
q

q′

⌉
log(1/δ)

)
≤ O

(
q log(1/δ)

q′
+ log(1/δ)

)
= O

(
qε2 + log(qε2)

)
≤ O(qε2).

In order to bound the worst-case communication complexity, we use Markov’s inequality. Specifi-
cally, by losing another constant factor, we may assume the protocol sends O(qε2) bits except with
probability at most 1/100; in this case, Alice sends an arbitrary bits. Then, the distribution over the
samples that Bob may reconstruct is (3/100 + 1/100)-close to that of a true execution of A on p.

Appendix C. Testing Algorithm

We use FindRelevantVariables and MeanTester to give an algorithm for testing k-junta
distributions. The algorithm, TestingJuntas, is described in Figure 4; we prove the following
theorem:

Theorem 5 (Testing junta distributions) There is an algorithm, which takes subcube conditioning
access to an unknown distribution p over {−1, 1}n, an integer k ∈ N, and ε ∈ (0, 1/4]. It makes

Õ

(
k +
√
n

ε2

)
queries, runs in time Õ(n(k +

√
n)2/ε4) and achieves the following guarantee: It accepts with

probability at least 2/3 if p is a k-junta distribution, and rejects with probability at least 2/3 if p is
ε-far from a k-junta.

Proof of Theorem 5: We start with the soundness case to show that TestingJuntas rejects
with probability at least 2/3 when p is far from k-juntas. Assume without loss of generality that the
set J returned by FindRelevantVariables has size at most k; otherwise TestingJuntas
rejects.

Given |J | ≤ k and p is ε-far from k-junta distributions, the main structural lemma implies that

dlog2 2ne∑
j=1

E
ρ∼DJ (p)

[
E

ν∼D
σj

(p|ρ)

[∥∥µ((p|ρ)|ν)
∥∥

2

]]
≥ ε

logc(n/ε)
.

As a result, there exists a j ∈ dlog2 2ne (using the choice of ε′ in (18)) such that

E
ρ∼DJ (p)

[
E

ν∼D
σj

(p|ρ)

[∥∥µ((p|ρ)|ν)
∥∥

2

]]
≥ ε′.

Fix such a j and we apply the following claim (which is elementry and we delay its proof):

29

CHEN JAYARAM LEVI WAINGARTEN

Subroutine TestingJuntas(p, k, ε)

Input: Subcube conditioning access to a distribution p supported on {−1, 1}n, an integer
k ∈ N and a proximity parameter ε ∈ (0, 1/4].
Output: Either accept or reject.

1. Let c be the universal constant in the main structural lemma. We let

ε′ =
ε

dlog2 2ne · logc(n/ε)
, r =

⌈
log(2

√
n/ε′)

⌉
and ε∗ =

ε′

1600r
. (18)

2. Execute FindRelevantVariables(p, k, ε∗) and let J be the set it returns.

3. If |J | > k, reject.

4. For each j ∈ [dlog2 2ne] and ` ∈ [r] with r = dlog(2
√
n/ε′)e:

Repeat the following L ·R times, where

L =
4r
√
n

2`ε′
and R = O

(
log
(n
ε′

))
(A) Sample ρ ∼ DJ(p) and ν ∼ Dσj (p|ρ), execute

MeanTester((p|ρ)|ν , k, 2
−`) for

R times and take the majority of answers.

Reject if for at least R/2 rounds of (A), the majority of answers is “Not a
Junta”.

5. Accept if this line is reached.

Figure 4: The TestingJuntas algorithm for testing junta distributions.

Claim 24 Let X be a random variable that takes values between 0 and 1. If E[X] ≥ δ for some
δ ∈ (0, 1), then there exists an ` ∈ [dlog(2/δ)e] such that

Pr
[
X ≥ 2−`

]
≥ 2`δ

4dlog(2/δ)e

Scaling down by
√
n and applying Claim 24, there is an ` ∈ [r] with r = dlog(2

√
n/ε′)e such

that

Prρ,ν

[∥∥µ((p|ρ)|ν)
∥∥

2
≥
√
n
/

2`
]
≥ 2`ε′

4r
√
n
. (19)

It follows from a Chernoff bound that, with probability at least 1− on(1), the number of rounds of
(A) in which ρ,ν satisfy (19) is at least 2R/3 (since the expectation is at least R). It follows from
the promise we get from MeanTester (i.e., each run returns “Not a Junta” with probability
at least 2/3 when the event in (19) holds) that with probability at least 1 − on(1), the majority of

30

LEARNING AND TESTING JUNTA DISTRIBUTIONS WITH SUBCUBE CONDITIONING

answers returned by MeanTester is “Not a Junta” in each of these 2R/3 rounds of (A). So
overall the algorithm rejects with probability at least 1− on(1). This finishes the soundness case.

Next we work on the completeness case to show that TestingJuntas accepts with probabil-
ity at least 2/3 when p is a k-junta distribution. Suppose p is a k-junta distribution, and let K ⊂ [n]
be the set of at most k relevant variables (which is unknown to the algorithm). First it follows
from Lemma 13 that with probability at least 7/9, the output J of FindRelevantVariables
satisfies both conditions of Lemma 25. So let |J | ≤ k, and for every j ∈ [dlog2(2k)e],

E
ρ∼DJ (p)

[
E

ν∼D
σj

(p|ρ)

[
‖µ((p|ρ)|ν)‖2

]]
≤ ε∗. (20)

We will now use this fact, as well as the following simple claim (whose proof we defer), to derive
the bound (20) for all j ∈ [dlog2(2n)e], and not just up to dlog2(2k)e.

Claim 25 Fix m ∈ N and let h be any distribution over {−1, 1}m. For any 0 ≤ σ2 ≤ σ1 ≤ 1/m,
we have

E
ν∼Dσ2 (h)

[
‖µ(h|ν)‖2

]
≤ E
ν∼Dσ1 (h)

[
‖µ(h|ν)‖2

]
For every ρ ∈ supp(DJ(p)), let h(ρ) be the distribution over {−1, 1}K\J given by (p|ρ)K\J .

Since p is a junta over variables in K, for every ρ ∈ supp(DJ(p)), the distribution of p|ρ over
variables outside ofK is always uniform, irrespective of the restriction ρ. Hence, for any σ′ ∈ (0, 1),
the non-zero coordinates of the mean vector µ((p|ρ)ν) for ν ∼ Dσ′(p|ρ) are always supported on
those coordinates in K. Hence, for every σ′ ∈ (0, 1),

E
ν∼Dσ′ (p|ρ)

[
‖µ((p|ρ)ν)‖2

]
= E
ν∼Dσ′ (h(ρ))

[
‖µ(h

(ρ)
|ν)‖2

]
.

We let j∗ = dlog2(2k)e and note that σj
∗ ≤ 1/k. By Claim 25, we have that for j′ ∈ [dlog2(2n)e]

with j′ ≥ j∗,

E
ν∼D

σj
′ (p|ρ)

[
‖µ((p|ρ)|ν)‖2

]
= E
ν∼D

σj
′ (h(ρ))

[
‖µ(h

(ρ)
|ν)‖2

]
≤ E
ν∼D

σj
∗

[
‖µ(h

(ρ)
|ν)‖2

]
= E
ν∼D

σj
∗

[
‖µ((p|ρ)ν)‖2

]
.

Averaging over ρ ∼ DJ(p) implies that for all j ∈ [dlog2(2n)e],

E
ρ∼DJ (p)

[
E

ν∼D
σj

(p|ρ)

[
‖µ((p|ρ)|ν)‖2

]]
≤ ε∗,

which in turn, implies that for all j ∈ [dlog2(2n)e], and all ` ∈ [r],

Pr
ρ,ν

[
‖µ((p|ρ)|ν)‖2 ≥

√
n/(100 · 2`)

]
≤ 2`ε∗ · 100√

n
≤ 2`ε′

16r
√
n

(21)

using our choice of ε∗ in (18). Fix j and `. It follows from a Chernoff bound that with probability
at least 1−e−Ω(R), the number of rounds of (A) that satisfy the event in (21) is at mostR/2 (because
the expectation is at most R/4). The latter implies that the number of rounds of (A) that violate the

31

CHEN JAYARAM LEVI WAINGARTEN

event in (21) is at least LR − R/2. For each of these LR − R/2 rounds of (A), the majority of
runs of MeanTester in (A) returns “Is a Junta” with probability at least 1 − e−Ω(R) by a
Chernoff bound. By a union bound we have that all these LR − R/2 rounds have majority being
“Is a Junta” with probability at least 1 − (LR − R/2) · e−Ω(R). It follows that the main loop
with j and ` rejects with probability at most

1− e−Ω(R) − (LR−R/2) · e−Ω(R) ≤ 1− LR · e−Ω(R).

Using a union bound over all main loops, the algorithm rejects with probability at most

2

9
+ dlog 2ne · r · LR · e−Ω(R) <

1

3
.

Finally we bound the number of queries. Notice that both ε′ and ε∗ are ε/polylog(n/ε).
Hence the number of queries made by the call to FindRelevantVariables∗ is Õ(k/ε2) ·
polylog(n). On the other hand, the number of queries made by calls to MeanTester is (using
r = dlog2(2

√
n/ε′)e)

dlog2 2ne ·
r∑
`=1

4r
√
n

2`ε′
·O
(

log2
(n
ε′

))
· (k +

√
n) ·max

{
22`

n
,

2`√
n

}

= (k +
√
n) · polylog

(n
ε

)
·

r∑
`=1

√
n

2`ε
·max

{
22`

n
,

2`√
n

}
= Õ

(
k +
√
n

ε2

)
.

The upper bound on the running time can simply be verified from Figure 4 and Theorem 8. This
finishes the proof of the theorem.
Proof of Claim 24: Let r = dlog(2/δ)e, and assume for contradiction that the claim is not true for
any ` ∈ [r]. Then we have

δ ≤ E[X] <
r∑
`=1

2`δ

4r
· 2

2`
+ 1 · 1

2r
= δ,

a contradiction.
Proof of Claim 25: We simply note that for any restriction ν ∈ {−1, 1, ∗}m with stars(ν) = S,

Pr
ν∼Dσ1 (h)

[ν = ν] = Pr
S∼Sσ1

[S = S] · Pr
x∼hS

[
x = νS

]
≥ Pr

S∼Sσ2
[S = S] · Pr

x∼hS

[
x = νS

]
= Pr
ν∼Dσ2 (h)

[ν = ν] ,

where we used the fact that

d

dσ

[
Pr

S∼Sσ
[S = S]

]
= σ|S|−1 (1− σ)m−|S|−1 (|S| − σm) > 0

whenever 0 ≤ σ ≤ 1/m.

Appendix D. Lower Bound for Testing

In this section, we prove the following theorem showing a lower bound for testing whether a product
distribution is an k-junta distribution with k = n/2. We first state the theorem and proceed to show
it implies Theorem 6.

32

LEARNING AND TESTING JUNTA DISTRIBUTIONS WITH SUBCUBE CONDITIONING

Theorem 26 There exist two absolute constants ε1 > 0 and C1 ∈ N such that for all 0 < ε ≤
ε1 and n ≥ C2

1 , any algorithm which receives samples from an unknown product distribution p
supported on {−1, 1}n and distinguishes with probability at least 2/3 between the case p is an
(n/2)-junta distribution and the case p is ε-far from being an (n/2)-junta distribution must observe
at least Ω̃(n)/ε2 many samples from p.

Proof of Theorem 6 assuming Theorem 26: We first inspect the proof of Theorem 4.8 from
Canonne et al. (2017), which presents a lower bound on the sample complexity of testing whether
an unknown product distribution is uniform or far from uniform. Specifically, they show that there
are two constants ε2 > 0 and C2 ∈ N such that for any ε ∈ (0, ε2] and n ≥ C2, there are two
distributions Y andN , supported on product distributions over {−1, 1}n such that no algorithm can
determine whether a draw p belongs to Y orN with probability greater than 2/3 without observing
Ω(
√
n/ε2) samples from p. Moreover, the distribution Y always outputs Un and the distribution N

always outputs a distribution p that is ε-far from being a (n/2)-junta distribution. We are done if
k ≤
√
n so we are left with the case when k ≥

√
n. In the rest of the proof we prove a lower bound

of Ω̃(k)/ε2 with a reduction to Theorem 26.
We now prove Theorem 6 by setting the two constants ε0 = min(ε1, ε2) andC0 = max(C2

1 , C2).
Let ε ∈ (0, ε0], n ≥ C0 and 0 ≤ k ≤ n/2. Since Un is trivially a k-junta distribution and k ≤ n/2,
the properties of Y and N from Canonne et al. (2017) imply a lower bound of Ω(

√
n/ε2) for

distinguishing between the case p is a k-junta distribution and the case p is ε-far from a k-junta
distribution.

Note that k ≥
√
n ≥ C1. Consider an unknown product distribution g over {−1, 1}2k and

the task of distinguishing the case g is a k-junta distribution and the case g is ε-far from a k-junta
distribution. By Theorem 26, any algorithm for this task must observe Ω̃(k)/ε2 samples from g. On
the other hand, let g′ be the distribution supported on {−1, 1}n defined using g as follows: To draw
x ∼ g′ we first draw a sample y ∼ g and set y to be the first 2k bits of x; the last n− 2k bits of x
are drawn independently and uniformly at random. Notice that if g is a k-junta, then g′ is a k-junta,
and if g is ε-far from a k-junta, then g′ is ε-far from a k-junta. Given that sample access to g′ can be
simulated using sample access to g, the task of distinguishing between the case g′ is a k-junta and
the case g′ is ε-far from k-junta is at least as hard as the task for g. From this reduction we get a
sample complexity lower bound of Ω̃(k)/ε2.

The proof of Theorem 26 follows from the following lemma by simply noticing that any algo-
rithm which receives s independent samples from an unknown product distribution p over {−1, 1}n
can be simulated by an algorithm which receives a sample from the product distribution Bin(s, p1)×
· · · × Bin(s, pn).

Lemma 27 There exists an absolute constant ε0 > 0 such that for all ε ∈ (0, ε0] and n ∈ N, there
exist two distribution Dyes and Dno supported on product distributions over {−1, 1}n satisfying

Pr
p∼Dyes

[
p ∈ Junta(n/2)

]
≥ 1− on(1) and Pr

p∼Dno

[
dTV(p, Junta(n/2)) ≥ ε

]
≥ 1− on(1).

(22)
Moreover, letting s = dn/(ε2 log12 n)e, the two distributions Ryes = R(s,Dyes) and Rno =
R(s,Dno) supported on Nn satisfy dTV (Ryes,Rno) = on(1), where R(s,D) is specified by let-
ting

Pr
r∼R(s,D)

[r = r] = E
p∼D

[
n∏
i=1

Pr
`∼Bin(s,pi)

[` = ri]

]
, for every r ∈ Nn. (23)

33

CHEN JAYARAM LEVI WAINGARTEN

The proof of Lemma 27 constitutes the next two subsections. We give the construction of Dyes
and Dno and prove (22) in Section D.1, and bound the distance between Ryes and Rno in Section
D.2.

D.1. Construction of Dyes and Dno

Let p be a product distribution over {−1, 1}n. We prove the following lemma that lowerbounds
dTV(p,Un) using ‖µ(p)‖2:

Lemma 28 There is two constants c∗1, c
∗
2 > 0 such that any product distribution p over {−1, 1}n

satisfies

dTV(p,Un) ≥
(

1

8
− c∗1‖µ(p)‖∞
‖µ(p)‖2

)
·min

(
c∗2,
‖µ(p)‖2

4

)
.

We delay the proof of Lemma 28 to Section D.3. We fix the constant ε0 ∈ R≥0 in Lemma 27 to
be

ε0 =
c∗2
9
. (24)

For n ∈ N, let ` = dlog n/ log log ne. Given any vector α ∈ R` we let A(α) be the Vander-
monde matrix defined with respect to α, and e1 ∈ R` be the first basis vector:

A(α) =

α0
1 α0

2 α0
3 . . . α0

`

α1
1 α1

2 α1
3 . . . α1

`

α2
1 α2

2 α2
3 . . . α2

`
...

...
...

. . .
...

α`−1
1 α`−1

2 α`−1
3 . . . α`−1

`

and e1 =

1

0

0
...
0

 .

Recall the following closed form for the determinant of a Vandermonde matrix A(α):

det
(
A(α)

)
=
∏
i,j∈[`]
i<j

(αj − αi),

so that det(A(α)) 6= 0 whenever coordinates of α are distinct. For the rest of the section, consider
the vector α ∈ R` given by letting

αj = j3 ∀j ∈ [`], (25)

and let z ∈ R` be the unique solution to the system of ` linear equations where A(α)z = e1. Let

W = {j ∈ [`] : zj ≥ 0} and V = [`] \W.

We will need the following technical claim about z; we delay its proof to Subsection D.4.

Claim 29 There is an absolute constant C∗ > 0 such that for any ` ∈ N, the solution z ∈ R` to
the Vandermonde system A(α)z = e1 with α as in (25) satisfies ‖z‖1 ≤ C∗.

34

LEARNING AND TESTING JUNTA DISTRIBUTIONS WITH SUBCUBE CONDITIONING

We now describe Dno and Dyes using α,W and V given above. Let τ ∈ R≥0 be set as

τ = min

{
36
√
C∗ · ε,

√
n

2`3

}
, (26)

and notice that for large n, τ = 36
√
C∗ε = Θ(ε). First we let p ∼ Dno be the product distribution

supported on {−1, 1}n given by letting for each i ∈ [n], be independently set to

Pr
x∼p

[xi = 1] =
1

2
+
γi · τ√
n

such that γi =

0 w.p. 1−

∑
j∈W zj

‖z‖1
j3 w.p.

zj
‖z‖1

for j ∈ W .
. (27)

Notice that probabilities above are smaller than 1 since γi ≤ `3, for ` = dlog n/ log log ne and the
setting of τ . On the other hand, we let q ∼ Dyes be the product distribution supported on {−1, 1}n
given by letting for each i ∈ [n], be independently set to

Pr
x∼q

[xi = 1] =
1

2
+
δi · τ√
n

such that δi =

0 w.p. 1−

∑
j∈V −(zj)

‖z‖1
j3 w.p.

−zj
‖z‖1

for j ∈ V .
. (28)

Again, we note that the probabilities are at most 1 since δi ≤ `3 as well. We record a claim that
follows directly from the definition of z,W and V:

Claim 30 For all k = 1, . . . , `− 1, we have

E
δi

[
δki
]

= E
γi

[
γki
]
. (29)

Proof: The proof follows from the fact that

E
γ

[
γki
]
−E
δi

[
δki
]

=
1

‖z‖1

∑̀
j=1

αkj zj =
1

‖z‖1
(A(α)z)k+1 = 0,

since A(α)z = e1.
We show in the next two claims that (22) holds when n is sufficiently large.

Claim 31 We have p ∈ Junta(n/2) with probability at least 1−on(1) over the draw of p ∼ Dyes.

Proof: Let p ∼ Dyes, and let A ⊆ [n] be the set of coordinates i ∈ [n] with δi 6= 0. We will
show that, when n is sufficiently large, |A| ≤ n/2 with probability 1 − on(1), which implies that
p ∼ Dyes is an (n/2)-junta for Un with probability at least 1− on(1).

To see this is the case, we notice that each δi is 0 with probability

1−
∑

j∈V −zj
‖z‖1

=
1

2

(
1 +

∑
j∈W zj +

∑
j∈V zj

‖z‖1

)
=

1

2
+

1

2‖z‖1
≥ 1

2
+

1

2C∗
,

where we used the fact that z was the solution to (A(α)z)1 = 1 to deduce that
∑

j zj = 1.
Hence, for large n, we apply a Chernoff bound to deduce that |A| ≤ n/2 except with probabil-
ity on(1).

35

CHEN JAYARAM LEVI WAINGARTEN

Claim 32 We have p is ε-far from Junta(n/2) with probability at least 1 − on(1) over the draw
of p ∼ Dno.

Proof: By a similar computation, as the proof of Claim 31, if we let A be the subset of coordinates
i ∈ [n] with γi = 0 in p ∼ Dno, we have

|A| ≤ n
(

1

2
− 1

4C∗

)
except with probability on(1). Consider a fixed distribution p in the support ofDno where the above
event occurs, i.e., the set A ⊂ [n] of coordinates with zero γi (specifying the marginal distributions
of p as in (27)) is smaller than n/2 − n/(4C∗). Let q be any (n/2)-junta distribution and let S be
the influential variables of q’s p.d.f with |S| ≤ n/2. We have that, for each i ∈ A ∩ S,

|µ(p)i| ≥ 2τγi/
√
n ≥ 2τ/

√
n.

Let T be A ∩ S with

t
def
= |T | = |A ∩ S| ≥ n

(
1

2
+

1

4C∗

)
− n

2
≥ n

4C∗
.

Consider the distributions pT and qT given by taking a sample and projecting onto the coor-
dinates in T . Since T ⊂ S, and the p.d.f of q is constant for any setting of variables in S, the
distribution qT is the uniform distribution over t bits. We note

dTV(pT ,Ut) =
1

2

∑
x∈{−1,1}T

|pT (x)− qT (x)| = 1

2

∑
x∈{−1,1}T

∣∣∣∣∣∣
∑

y∈{−1,1}T
p(x, y)− q(x, y)

∣∣∣∣∣∣
≤ 1

2

∑
z∈{−1,1}n

|p(z)− q(z)| = dTV(p, q), (30)

where p(x, y) = p(z) with zi = xi for i ∈ T and zi = yi for i /∈ T , and q(x, y) is defined
analogously. We now apply Lemma 28 to deduce a lower bound on dTV(pT ,Ut), and by (30) lower
bound dTV(p, q). Since p is a product distribution, µ(p)i = µ(pT)i for all i ∈ T , and we have

‖µ(pT)‖∞ ≤
2τ`3√
n

and ‖µ(pT)‖2 ≥
√
t · 2τ√

n
=

τ√
C∗

. (31)

Applying Lemma 28, we have

dTV(pT ,Ut) ≥
(

1

8
− on(1)

)
·min

(
c∗2,

τ

4
√
C∗

)
≥ min

(
c∗2
9
,

τ

36
√
C∗

)
,

once n is a large enough constant. Finally, by the setting of ε0 in (24), and τ in (26), dTV(pT ,Ut) ≥
min(ε0, ε) = ε for large enough n. Since the distribution q was an arbitrary (n/2)-junta distribution,
this concludes the proof.

36

LEARNING AND TESTING JUNTA DISTRIBUTIONS WITH SUBCUBE CONDITIONING

D.2. Statistical Distance BetweenRyes andRno

Let s = dn/(ε2 log12 n)e. We show that distributions Ryes = R(s,Dyes) and Rno = R(s,Dno) as
defined in (23) using Dyes and Dno satisfy

dTV(Ryes,Rno) ≤ on(1). (32)

Recall thatRyes is the distribution supported on {0, . . . , s}n given by first sampling δ1, . . . , δn
independently according to (28) and then sampling from the product distribution

r ∼
n∏
i=1

Bin (s, qi) , where qi
def
= Pr

x∼q
[xi = 1] =

1

2
+
δi · τ√
n
. (33)

Notice that we always have

1

2
≤ qi ≤

1

2
+
τ`3√
n
≤ 1

2
+O

(
ε log3 n√

n

)
once n is a large enough constant.

Similarly, Rno is the distribution supported on {0, . . . , s}n given by first sampling γ1, . . . ,γn
according to (27), and then sampling from the product distribution

r ∼
n∏
i=1

Bin (s,pi) , where pi
def
= Pr

x∼p
[xi = 1] =

1

2
+
γi · τ√
n
,

and similarly, we have 1/2 ≤ pi ≤ 1/2 + O(ε log3 n/
√
n). In particular, if we denote the set

B ⊂ {0, . . . , s}n given by

B =
{
r = (r1, . . . , rn) ∈ {0, . . . , s}n : ∃j ∈ [n],

∣∣∣rj − s

2

∣∣∣ ≥ √s log2 n
}
.

It follows from our choice of s, that for every i ∈ [n] and any fixed setting of p1, . . . ,pn and
q1, . . . , qn,

s

2
≤ E
ri∼Bin(s,pi)

[ri] , E
ri∼Bin(s,qi)

[ri] ≤
s

2
+O

(
sε log3 n√

n

)
=
s

2
+O

(√
s
)
,

so that via a Chernoff bound and a union bound,

Pr
r∼Ryes

[r ∈ B], Pr
r∼Rno

[r ∈ B] = on(1).

Therefore, in order to show dTV(Ryes,Rno) = on(1), it suffices to show that for every r /∈ B,

Prr∼Ryes [r = r]

Prr∼Rno [r = r]
=

Eδ1,...,δn

[∏n
i=1

((
s
ri

) (
1
2 + δiτ√

n

)ri (1
2 −

δiτ√
n

)s−ri)]
Eγ1,...,γn

[∏n
i=1

((
s
ri

) (
1
2 + γiτ√

n

)ri (1
2 −

γiτ√
n

)s−ri)] ≤ 1 + on(1). (34)

37

CHEN JAYARAM LEVI WAINGARTEN

Toward this goal, consider a fixed r /∈ B, and notice that since δ1, . . . , δn are drawn independently,
the numerator in (34) is

n∏
i=1

E
δi

[(
s

ri

)(
1

2
+
δiτ√
n

)ri (1

2
− δiτ√

n

)s−ri]

=

n∏
i=1

(
s

ri

)
· 1

2s
·E
δi

[(
1−

(
2δiτ√
n

)2
)mi (

1− sgn(ti) ·
2δiτ√
n

)|ti|]
, (35)

where ti = s − 2ri and mi = min {ri, s− ri}; notice that |ti| ≤ 2
√
s log2 n since r /∈ B.

Similarly, the denominator in (34) may be expressed as (35) by replacing δi with γi. We analyze
(34) by considering each term in the product; in particular, it suffices to show that for every i ∈ [n],

Eδi

[(
1− 4δ2

i τ
2/n
)mi (1− sgn(ti) · 2δiτ/

√
n)
|ti|
]

Eγi

[(
1− 4γ2

i τ
2/n
)mi (1− sgn(ti) · 2γiτ/

√
n)
|ti|
] ≤ 1 + on(1/n). (36)

Using the choice of s and the fact that both δi and γi are no larger than log3 n, we always have(
1− 4δ2

i τ
2

n

)mi
,

(
1− sgn(ti) ·

2δiτ√
n

)|ti|
,

(
1− 4γ2

i τ
2

n

)mi
,

(
1− sgn(ti) ·

2γiτ√
n

)|ti|
= 1± on(1).

(37)

In addition, we have,(
1− 4δ2

i τ
2

n

)mi
=

mi∑
k=0

(
mi

k

)(
−4δ2

i τ
2

n

)k

=

`/4−1∑
k=0

(
mi

k

)(
−4δ2

i τ
2

n

)k
+

mi∑
k=`/4

(
mi

k

)(
−4δ2

i τ
2

n

)k
. (38)

For each term in the second sum, we upperbound δi ≤ `3 and use the approximation of
(
mi
k

)
≤

(emi/k)k. We also use k ≥ `/4, mi ≥ s/3 and the choice of ` = dlog n/ log logne. As a result,
the absolute value of the kth term in the second sum is at most(

emi · 4`6 ·O(ε2)

kn

)k
≤
(
O

(
s`5ε2

n

))k
≤
(

1

log6 n

)k
. (39)

As a result, the absolute value of the second sum is at most

mi∑
k=`/4

(
1

log6 n

)k
≤ 2 ·

(
1

log6 n

) logn
4 log logn

= on(1/n).

In fact, we have shown, by negating all terms in (38) of degree (in δi) at least `/4,(
1− 4δ2

i τ
2

n

)mi
=

`/4−1∑
k=0

(
mi

k

)(
−4τ2

n

)k
· δ2k

i ± on(1/n). (40)

38

LEARNING AND TESTING JUNTA DISTRIBUTIONS WITH SUBCUBE CONDITIONING

Similarly,

(
1− 2sgn(ti)δiτ√

n

)|ti|
=

|ti|∑
k=0

(
|ti|
k

)(
−2sgn(ti)δiτ√

n

)k

=

`/2−1∑
k=0

(
|ti|
k

)(
−2sgn(ti)δiτ√

n

)k
+

|ti|∑
k=`/2

(
|ti|
k

)(
−2sgn(ti)δiτ√

n

)k
.

Analogously to (39), the absolute value of the second sum can be bounded from above by

|ti|∑
k=`/2

(
O

(
|ti|
k
· ε`

3

√
n

))k
≤ 2

(
O

(
1

log2 n log2(log n)

)) logn
2 log logn

= on(1/n)

and we have(
1− 2sgn(ti)δiτ√

n

)|ti|
=

`/2−1∑
k=0

(
|ti|
k

)(
−2sgn(ti)τ√

n

)k
· δki ± on(1/n). (41)

Analogously, we may conclude that

(
1− 4γ2

i τ
2

n

)mi
=

`/4−1∑
k=0

(
mi

k

)(
−4τ2

n

)k
· γ2k

i ± on(1/n) and

(
1− 2sgn(ti)γiτ√

n

)|ti|
=

`/2−1∑
k=0

(
|ti|
k

)(
−2sgn(ti)τ√

n

)k
· γki ± on(1/n). (42)

It follows from (37) and all four approximations in (40), (41) and (42) that all four sums on the right
hand side are 1 ± on(1), and note that all these inequalities hold with probability 1 (over the draw
of δi and γ1). Putting (40), (41), (42) and (37) together, we have

E
δi

[(
1− 4δ2

i τ
2/n
)mi (1− sgn(ti) · 2δiτ/

√
n
)|ti|] (43)

≤ E
δi

`/4−1∑
k=0

(
mi

k

)(
−4τ2

n

)k
· δ2k

i + on(1/n)

`/2−1∑
k=0

(
|ti|
k

)(
−2sgn(ti)τ√

n

)k
· δki + on(1/n)

≤ E
δi

`/4−1∑
k=0

(
mi

k

)(
−4τ2

n

)k
· δ2k

i

`/2−1∑
k=0

(
|ti|
k

)(
−2sgn(ti)τ√

n

)k
· δki

+ on(1/n),

E
γi

[(
1− 4γ2

i τ
2/n
)mi (1− sgn(ti) · 2γiτ/

√
n
)|ti|] (44)

≥ E
γi

`/4−1∑
k=0

(
mi

k

)(
−4τ2

n

)k
· γ2k

i

`/2−1∑
k=0

(
|ti|
k

)(
−2sgn(ti)τ√

n

)k
· γki

− on(1/n).

39

CHEN JAYARAM LEVI WAINGARTEN

Hence, notice that (43) and (44) are both 1 ± on(1), and can each be expressed as the same linear
function of the first `−1 moments of δi and γi up to additive errors±on(1/n). Since the first `−1
moments of δi and γi are equal by Claim 30, we have shown (34), which completes the proof of
(32).

D.3. Proof of Lemma 28

We will use the fact that e−x ≤ 1− x/2 for all x ∈ [0, 1], which implies that

e−x ≤ max
(
e−1, 1− x/2

)
(45)

for all x ≥ 0. We set the constant c∗ in Lemma 28 to be 1− e−1.
Let µ = µ(p) for convenience and we assume without loss of generality that µi ≥ 0 for all

i ∈ [n]. A sample x ∼ p has all coordinates set independently, where the ith coordinate of xi is 1
with probability (1 + µi)/2 and −1 with probability (1− µi)/2. Given any x ∈ {−1, 1}n, we have

p(x) =
∏
i∈[n]
xi=1

(
1 + µi

2

)
·
∏
i∈[n]
xi=−1

(
1− µi

2

)
=

1

2n
·
∏
i∈[n]
xi=1

(1 + µi) ·
∏
i∈[n]
xi=−1

(1− µi).

We say a string x ∈ {−1, 1}n is good if

∑
i∈[n]

µixi ≤ −
‖µ‖2

2
.

The proof proceeds in two steps. First we show that there exists a constant c∗1 > 0 such that when x
is drawn uniformly at random from {−1, 1}n, x is good with probability at least

1

4
− c∗1‖µ‖∞
‖µ‖2

.

Next we show there exists a constant c∗2 > 0 that every good string x ∈ {−1, 1}n satisfies∣∣∣∣p(x)− 1

2n

∣∣∣∣ ≥ 1

2n
·min

(
c∗2,
‖µ‖2

4

)
.

The lemma follows since

dTV(p,Un) =
1

2

∑
x∈{−1,1}n

∣∣∣∣p(x)− 1

2n

∣∣∣∣ ≥ 1

2

∑
x∈{−1,1}n

good x

∣∣∣∣p(x)− 1

2n

∣∣∣∣
≥ 1

2
· Pr
x∼{−1,1}n

[
x is good

]
·min

(
c∗,
‖µ‖2

4

)
.

For the first step, we let x ∼ {−1, 1}n be drawn uniformly at random and write yi = µixi. We
recall the Berry–Esséen theorem:

40

LEARNING AND TESTING JUNTA DISTRIBUTIONS WITH SUBCUBE CONDITIONING

Theorem 33 (Berry–Esséen) There exists a universal constant c∗1 > 0 such that letting s = y1 +
· · · + yn, where y1, . . . ,yn be independent real-valued random variables with E[yi] = 0 and
Var[yi] = σ2

i , and suppose that |yi| ≤ τ with probability 1 for all i ∈ [n]. Let g be a Gaussian
random variable with mean 0 and variance

∑
i∈[n] σ

2
j , matching those of s. Then for all θ ∈ R we

have ∣∣∣Pr[s ≤ θ]−Pr[g ≤ θ]
∣∣∣ ≤ c∗1τ√∑

i∈[n] σ
2
i

.

Note that in our case, τ = ‖µ‖∞ and σ2
i = µ2

i and thus, the variance of g is ‖µ‖22.
Recall the following fact about Gaussian anti-concentration:

Fact 34 (Gaussian anti-concentration) Let g be a Gaussian random variable with variance σ2.
Then for all κ > 0 it holds that

sup
θ∈R

{
Pr
[
|g − θ| ≤ κσ

]}
≤ κ.

Setting κ = 1/2 and θ = 0 (and using the symmetry of g), we have that

Pr
g∼N (0,‖µ‖22)

[
g ≤ −‖µ‖2/2

]
≥ 1/4.

It follows from Berry-Esséen that

Pr
x∼{−1,1}n

∑
i∈[n]

µixi ≤ −
‖µ‖2

2

 ≥ 1

4
− c∗1‖µ‖∞
‖µ‖2

.

This finishes the proof of the first step. For the second we use the fact that ex ≥ 1 + x for all x ∈ R
and thus, for each good x ∈ {−1, 1}n we have

2n · p(x) ≤
∏
i∈[n]
xi=1

eµi ·
∏
i∈[n]
xi=1

e−µi = e
∑
i∈[n] µixi ≤ e−‖µ‖2/2 ≤ max

(
e−1, 1− ‖µ‖2/4

)
,

where we used (45) in the last inequality. As a result, we have∣∣1− 2n · p(x)
∣∣ = 1− 2n · p(x) ≥ min (c∗2, ‖µ‖2/4)

since we set c∗2 = 1− e−1. This finishes the proof of the lemma.

D.4. Proof of Claim 29

Applying Cramer’s rule, we have

|zi| =
∣∣∣∣det(Ai)

det(A)

∣∣∣∣ =
∏

j∈[`]\{i}

∣∣∣∣ αj
αi − αj

∣∣∣∣ , (46)

where Ai is the ` × ` matrix given by replacing the i-th column with e1, and notice that Ai is the
Vandermonde matrix A(α(i)), with α(i) ∈ R` being the vector which is exactly αj on all j 6= i and

41

CHEN JAYARAM LEVI WAINGARTEN

0 when j = i. We now show that there exists a constant i0 ∈ N (which does not depend on `) such
that for all ` ∈ N, the sequence {|zi|}i≥i0 is geometrically decreasing with constant bounded away
from 1. This suffices to bound ‖z‖1, since

‖z‖1 =
∑̀
i=1

|zi| ≤
i0−1∑
i=1

|zi|+
∑̀
i=i0

|zi| ≤ (i0 − 1) max
i<i0
|zi|+O(|zi0 |),

and for every i ∈ [`], we can upperbound the logarithm of (46) by

log2

(
|zi|
)
≤ (i− 1) log2 i+

∑
j>i

log2

(
1 +

i3

j3 − i3

)
≤ i3

1 +
∑
j>i

1

j3 − i3

 . i3.

The first inequality follows from the fact that |j3/(i3 − j3)| ≤ i for j < i; the second inequality
follows from upperbounding log(1 + x) ≤ x for x ≥ 0; the last inequality follows from the fact
j3 − i3 > (j − i)3 for all j > i, and the sums to a constant. From the upper bound on log2 |zi|, we
may conclude ‖z‖1 ≤ 2O(i30).

In order to pick i0 ∈ N, notice that for all i ∈ N, we use (46) on zi+1 and zi to obtain

|zi+1|
|zi|

=
i−1∏
j=0

i3 − j3

(i+ 1)3 − j3
·
∏̀
j=i+2

j3 − i3

j3 − (i+ 1)3
.

We first handle the case when ` ≥ 2i+ 1. In this case we break the product into

|zi+1|
|zi|

=
i∏

k=1

(
i3 − (i− k)3

(i+ 1)3 − (i− k)3
· (i+ 1 + k)3 − i3

(i+ 1 + k)3 − (i+ 1)3

) ∏̀
j=2i+2

j3 − i3

j3 − (i+ 1)3
. (47)

Using a3 − b3 = (a− b)(a2 + ab+ b2), the factor for each k ∈ [i] in the first product becomes

3i2 − 3ki+ k2

3i2 − 3(k − 1)i+ k2 − k + 1
· 3i2 + 3(k + 1)i+ (k + 1)2

3i2 + 3(k + 2)i+ k2 + 3k + 3
. (48)

Noting that the denominator of the first factor is

(i+ 1)2 + (i+ 1)(i− k) + (i− k)2 ≤ (2i+ 1− k)2

we can bound the first factor of (48) by

1− 3i− k + 1

(i+ 1)2 + (i+ 1)(i− k) + (i− k)2
≤ 1− 3i− k + 1

(2i+ 1− k)2
≤ 1− 1

2i+ 1− k
.

Similarly we have that the second factor of (48) is

1− 3i+ k + 2

(i+ 1 + k)2 + (i+ 1 + k)(i+ 1) + (i+ 1)2
≤ 1− 3i+ k + 2

(2i+ 2 + k)2
≤ 1− 1

2i+ k + 2
.

As a result, the first product in (48) is at most (using 1 + x ≤ ex)

exp

(
−

i∑
k=1

(
1

2i+ 1− k
+

1

2i+ k + 2

))
.

42

LEARNING AND TESTING JUNTA DISTRIBUTIONS WITH SUBCUBE CONDITIONING

We note that by re-indexing terms,

i∑
k=1

(
1

2i+ 1− k
+

1

2i+ k + 2

)
=

3i+2∑
h=i+1

1

h
−
(

1

2i+ 1
+

1

2i+ 2

)
≥
∫ 3i+2

i+1

1

x
· dx− 1

i

i→∞−→ ln(3)

where the sum approaches ln 3 as i grows so we fix our i0 to be sufficiently large so that when i ≥ i0
the above sum is at least 1 + 1

20 . For the second product of (48) we rewrite it as

∏̀
j=2i+2

j3 − i3

j3 − (i+ 1)3
=

`−i−1∏
k=i+1

(
1 +

3i2 + 3i+ 1

(i+ 1 + k)3 − (i+ 1)3

)

≤
`−i−1∏
k=i+1

(
1 +

3i2 + 3i+ 1

3(i+ 1)k2 + k3

)

≤
`−i−1∏
k=i+1

(
1 +

i

k2

)
≤ exp

 ∑
k≥i+1

i

k2

 ≤ e,
where the third inequality used 3i2 + 3i + 1 ≤ i(3i + 3 + k) and the last inequality used the
fact that

∑
k≥i+1 1/k2 ≤ 1/i. As a result, in this case (i ≥ i0 and ` ≥ 2i + 1) we have that

|zi+1|/|zi| ≤ e−1/20. We are almost done. For the case when ` < 2i+ 1, we simply note that

|zi+1|
|zi|

≤
i∏

k=1

i3 − (i− k)3

(i+ 1)3 − (i− k)3
· (i+ 1 + k)3 − i3

(i+ 1 + k)3 − (i+ 1)3

since we added more factors that are at least 1. Since i ≥ i0, the same argument used earlier implies
that the ratio is at most e−1−1/20.

Appendix E. Robust Mean Testing for k-Juntas

In this section, we consider a robust distribution testing algorithm which distinguishes between a
given distribution p having a mean vector µ(p) with large `2 norm, and p being a k-junta distribution
and having a mean vector with small `2 norm. Our tester is similar to the mean testing algorithm of
Canonne et al. (2019), however we will require a tighter analysis of the completeness case, which
in our setting is more general. The goal of this section is to demonstrate an algorithm that draws
a small number of samples from p to distinguish these two cases with probability at least 2/3. We
restate the main theorem of this section:

Theorem 8 (Robust mean testing for juntas) There is an algorithm which, given sample access to
a distribution p on {−1, 1}n, k ∈ N and a parameter ε ∈ (0, 1), has the following behavior:

1. If p is a k-junta distribution with ‖µ(p)‖2 ≤ ε
√
n/100, the algorithm returns “Is a

k-junta” with probability at least 2/3;

2. If p is a distribution that satisfies ‖µ(p)‖2 ≥ ε
√
n, the algorithm returns “Not a

k-junta” with probability at least 2/3.

43

CHEN JAYARAM LEVI WAINGARTEN

Moreover, the algorithms draws

q = O

(
max

{
k +
√
n

ε2n
,
k +
√
n

ε
√
n

})
(2)

samples from p and runs in time O(q2n).

To describe the testing algorithm we start with some notation.

Definition 35 Given x ∈ {−1, 1}n, we write x⊗ y to denote the tensor product of x and y:

x⊗ x = (x1x1, x1x2, . . . x1xn, x2x1, . . . xnxn) ∈ {−1, 1}n2
.

We also write x⊗r to denote the tensor product of r copies of x:

x⊗r = x⊗ x⊗ · · · ⊗ x︸ ︷︷ ︸
r

.

Given a distribution p over {−1, 1}n, we define the tensor-distribution �(p) of p, a distribution
over {−1, 1}n2

, as the distribution of x ⊗ x with x ∼ p. We define �r(p) recursively as �r(p) =
�(�r−1(p)) with�0(p) = p, which is a distribution of dimension n2r . We call�r(p) the r-th order
tensor distribution of p and note that, equivalently, �r(p) is the distribution of x⊗2r with x ∼ p.

The following claim follows from the definition of tensor-distributions since µ(�r+1(p)) is the
vectorization of the covariance matrix Σ(�r(p)).

Claim 36 Given p over {−1, 1}n and r ≥ 0, we have ‖µ(�r+1(p))‖2 = ‖Σ(�r(p))‖F .

Let p be a distribution over {−1, 1}n. The main test statistic used by our algorithm first draws
2q samples X1, . . . ,Xq and Y1, . . . ,Yq independently from p, for some q to be specified, and
construct

X =
1

q

q∑
i=1

Xi and Y =
1

q

q∑
i=1

Yi.

We then set Z = 〈X,Y〉. We use the following lemma (Lemma 4.1) from Canonne et al. (2019):

Proposition 37 Let p be a distribution over {−1, 1}n. Then we have

E
[
Z
]

=
∥∥µ(p)

∥∥2

2

Var
[
Z
]
≤ 1

q2
·
∥∥Σ(p)

∥∥2

F
+

4

q
·
∥∥µ(p)

∥∥2

2
·
∥∥Σ(p)

∥∥
F
.

We will use the above test statistic for higher order tensor distributions of p. For r ≥ 0, given
2q samples X1, . . . ,Xq and Y1, . . . ,Yq from p, we use them to obtain 2q samples X(r)

1 , . . . ,X
(r)
q

and Y
(r)
1 , . . . ,Y

(r)
q from �r(p), by setting

X
(r)
i = X⊗2r

i ∈ {−1, 1}n2r

.

We can then similarly form their averages X(r)
,Y

(r) and set Z(r) = 〈X(r)
,Y

(r)〉.
We record the following corollary from the above proposition:

44

LEARNING AND TESTING JUNTA DISTRIBUTIONS WITH SUBCUBE CONDITIONING

Algorithm 1: Robust Junta Mean Tester
input : Sample access to distribution p over {−1, 1}n and a distance parameter ε ∈ (0, 1)
Set r0 = dlog log ne.

Draw a sequence of 2q samples S = (X1, . . . ,Xq,Y1, . . . ,Yq) from p independently
for r = 0, 1, 2, . . . r0 do

Using samples from S to compute X
(r)
,Y

(r) and Z(r)

if Z(r) > τr then
output: Not a k-Junta

end
end
if All r0 tests pass then

output: Is a k-Junta
end

Figure 5: Robust Junta Mean Tester

Corollary 38 Let p be a distribution over {−1, 1}n and r ≥ 0. Then we have

E
[
Z(r)

]
=
∥∥µ(�r(p))

∥∥2

2

Var
[
Z(r)

]
≤ 1

q2
·
∥∥Σ(�r(p))

∥∥2

F
+

4

q
·
∥∥µ(�r(p))

∥∥2

2
·
∥∥Σ(�r(p))

∥∥
F
.

Next, we set

q = C ·max

{
k +
√
n

ε2n
,
1 + k/

√
n

ε

}
for some sufficiently large constant C > 0, and define a sequence (τr)r≥0 with τ0 = ε2n/2 and

τr =
1

5000
· q2τ2

r−1 (49)

for each r ≥ 1. Setting a = 1/5000, we have the following closed form for τr:

τr =
1

aq2

(
aq2ε2n

2

)2r

. (50)

Our main algorithm is presented in Figure 5 and we prove Theorem 8 in the rest of the section.
We divide the proof of correctness into a soundness and completeness case. The two cases are
addressed in Sections E.2 and E.1 respectively, where we prove the following two lemmas:

Lemma 39 (Soundness) Suppose p is a distribution over {−1, 1}n satisfying ‖µ(p)‖2 ≥ ε
√
n.

Then there exists an r ∈ {0, 1, . . . , r0} such that

Pr
[
Z(r) > τr

]
≥ 2

3
.

45

CHEN JAYARAM LEVI WAINGARTEN

Lemma 40 (Completeness) Suppose p is a k-junta distribution over {−1, 1}n with ‖µ(p)‖2 ≤
ε
√
n/100. Then for every r ∈ {0, 1, . . . , r0}, we have

Pr
[
Z(r) > τr

]
≤ 1

25
·
(

1

2

)2r−1

.

Proof of Theorem 8: The soundness case follows directly from Lemma 39. For completeness, we
can apply a union bound over all r ∈ {0, 1, . . . , r0}, giving

Pr
[
Z(r) > τr for some r ∈ {0, 1, . . . , r0}

]
≤
∑
r≥0

1

25
·
(

1

2

)2r−1

< 1/3. (51)

The sample complexity of the algorithm follows directly from our choice of q in (2). Finally, we
demonstrate that Z(r) from the r-th order tensor distribution can be computed in polynomial time in
n and q — much faster than the naive O(n2r) time required to compute samples X(r)

i from �r(p)
using samples Xi from p. To do this, we will use the following mixed-product property of tensor
products.

Fact 41 (Van Loan (2000)) If A,B,C,D are matrices with such that the products AC and BD
are well-defined, then we have (A⊗B)(C ⊗D) = (AC ⊗BD).

Let X1, . . . , Xq, Y1, . . . , Yq be strings in {−1, 1}n. Then our target Z(r) can be written as

Z(r) =
1

q2

〈
q∑
i=1

X⊗2r

i ,

q∑
i=1

Y ⊗2r

i

〉

=
1

q2

∑
1≤i,j≤q

(
X⊗2r

i

)T
Y ⊗2r

j

=
1

q2

∑
1≤i,j≤q

(
XT
i ⊗XT

i ⊗ · · · ⊗XT
i

)
(Yj ⊗ Yj ⊗ · · · ⊗ Yj)

=
1

q2

∑
1≤i,j≤q

(
XT
i Yj ⊗XT

i Yj ⊗ · · · ⊗XT
i Yj

)
=

1

q2

∑
1≤i,j≤q

〈Xi, Yj〉2
r
.

(52)

To compute Z(r) for each r = 0, 1, . . . , r0, we can first construct the q × q matrix M with Mi,j =
〈Xi, Yj〉 in time O(q2n). Then each Z(r) is just the average of 2r-th power of entries of M , namely
Z(r) = (1/q2) ·

∑
i,jM

2r
i,j . The time needed to compute Z(r) from M for r = 0, 1, . . . , r0 is o(q2n)

(recall that r = dlog log ne). This completes the analysis of running time of our algorithm.

E.1. Soundness: Proof of Lemma 39

We first prove the following lemma, which we will iteratively apply in the soundness case.

46

LEARNING AND TESTING JUNTA DISTRIBUTIONS WITH SUBCUBE CONDITIONING

Lemma 42 Let p be a distribution supported on {−1, 1}n and r ≥ 0. Suppose that

‖µ(�r(p))‖22 ≥ 2τ

for some τ > 0 and Pr[Z(r) ≤ τ] ≥ 1/3. Then we have ‖µ(�r+1(p))‖22 ≥ (τq/24)2.

Proof: By Proposition 37, we have E
[
Z(r)

]
= ‖µ(�r(p))‖22 ≥ 2τ . Thus

1

3
≤ Pr

[
Z(r) ≤ τ

]
≤ Pr

[∣∣∣Z(r) −E
[
Z(r)

]∣∣∣ ≥ E
[
Z(r)

]
2

]

≤ 4

‖µ(�r(p))‖42

(
1

q2
· ‖µ(�r+1(p))‖22 +

4

q
· ‖µ(�r(p))‖22 · ‖µ(�r+1(p))‖2

)
,

(53)

where in the last inequality we applied Chebyshev’s inequality. It follows that at least one of the two
terms on the last line of equation (53) must be greater than 1/6. Thus ‖µ(�r+1(p))‖22 ≥ τ2q2/3 or
‖µ(�r+1(p))‖2 ≥ τq/24, from which the lemmas follows.
Proof of Lemma 39: Assume for the sake of contradiction that Pr[Z(r) ≤ τr] ≥ 1/3 for every
r = 0, 1, . . . , r0. We apply Lemma 42 to prove by induction on r that ‖µ(�r(p))‖22 ≥ 2τr for
every r = 0, 1, 2, . . . , r0 + 1. The base case of r = 0 follows from the choice of τ0 = ε2n/2
and the assumption that ‖µ(�0(p))‖2 = ‖µ(p)‖2 ≥ ε

√
n. For the induction step, we have by the

inductive hypothesis that ‖µ(�r(p))‖22 ≥ 2τr for some r ≤ r0. It follows from Lemma 42 and
Pr[Z(r) ≤ τr] ≥ 1/3 that

∥∥µ(�r+1(p))
∥∥2

2
≥
(τrq

24

)2
≥ 1

2500
· q2τ2

r = 2τr+1.

Now to get a contradiction, we note that

∥∥µ(�r0+1(p))
∥∥2

2
≥ 2

aq2

(
aq2ε2n

2

)2r0+1

= q2r0+2−2 ·
(
ε
√
n
)2r0+2

·
(a

2

)2r0+1−1
.

Given that q ≥ C/ε and q ≥ C/(ε2
√
n) in (2), we have

q2r0+2−2 ≥
(
C

ε

)2r0+2−4

·
(

C

ε2
√
n

)2

=

(
1

ε

)2r0+2

· 1

n
· C2r0+2−2

and thus,

‖µ(�r0+1(p))‖22 ≥ n2r0+1 · 1

n
· C2r0+2−2 ·

(a
2

)2r0+1−1
,

which, after setting C to be a large enough constant and recalling that r0 = dlog log ne, contradicts
the fact that we always have ‖µ(�r0+1(p))‖22 ≤ n2r0+1

. This completes the proof of the lemma.

E.2. Completeness: Proof of Lemma 40

We will now need the following bound on the mean vector in the completeness case.

47

CHEN JAYARAM LEVI WAINGARTEN

Proposition 43 Suppose p is a k-junta distribution over {−1, 1}n. Then for each r ≥ 1 we have∥∥µ(�r(p))
∥∥2

2
≤
(
2 ·max{n, k2} · 2r

)2r−1

.

Proof: For r = 0, the result holds because µ(p) is k-sparse when p is a k-junta distribution.
Next consider the case when r > 0. Let R = 2r and let S ⊆ [n] be the set of influential

variables with |S| = k. (Note that if the number of influential variables is smaller than k we can
always add more variables to S to make it size k.) Without loss of generality we assume S = [k]
and by the definition of k-junta distributions, there is a distribution p′ over {−1, 1}k such that
x = (x1, . . . ,xn) ∼ p can be drawn by first drawing (x1, . . . ,xk) ∼ p′ and then drawing each xi,
i > k, independently and uniformly at random from {−1, 1}.

Now we consider the mean vector µ(�r(p)). Note that it has nR entries and each entry is
indexed by an R-tuple I = (i1, . . . , iR) ∈ [n]R: the entry indexed by I is given by

Ex∼p
[
xi1 · · ·xiR

]
.

We define Q ⊆ [n]R as the set of all R-tuples I = (i1, . . . , iR) ∈ [n]R such that every j /∈ S
appears an even number of times in I . Given that every xj , j /∈ S, is drawn independently from
other variables and is uniform over {−1, 1}, we have that entries of µ(�r(p)) are zero outside of
those indexed by tuples in Q. On the other hand, every nonzero entry of µ(�r(p)) trivially has
magnitude no larger than 1. As a result, ‖µ(�r(p))‖22 ≤ |Q| and we bound |Q| in the rest of the
proof.

To this end, let Qi ⊆ Q be the set of I = (i1, . . . , iR) ∈ Q such that {` ∈ [R] | i` /∈ S}| = i.
Then

|Qi| ≤
(
R

i

)
· kR−i · Li,

where Li is the number of ordered i-tuples, each entry selected from [n] (note that we relaxed it
from [n] \ S to [n] to simplify the presentation since this can only make Li bigger), in which every
j ∈ [n] appears an even number of times. Note that Li is trivially 0 when i is odd. We can bound Li
by noting that to pick a tuple (i1, . . . , iR) ∈ Qj , we can first pick i1 ∈ [n], and then pick an index
ij for some j > 1 and set ij = i1. Next, we pick i2 ∈ [n] (or i3 if i2 was chosen to be ij in the first
round) and then pick an unused index ij′ for some j′ > 2 and set ij′ = i2, and so on. Thus,

Li ≤ n(i− 1) · n(i− 3) · · ·n =
(n

2

)i/2
· i!

(i/2)!
≤
(n

2

)i/2
· ii/2

when i is even. Using that |Q0| = kR, we have

|Q| ≤
R/2∑
`=0

|Q2`| ≤ kR +

R/2∑
`=1

(
R

2`

)
· (n`)` · kR−2`.

Letting α = max{k2, n} so that k ≤
√
α and n ≤ α, we have

|Q| ≤ αR/2 +

R/2∑
`=1

(
R

2`

)
· `` · αR/2 ≤ αR/2

1 + (R/2)R/2 ·
R/2∑
`=1

(
R

2`

) ≤ αR/2 · (R/2)R/2 · 2R,

48

LEARNING AND TESTING JUNTA DISTRIBUTIONS WITH SUBCUBE CONDITIONING

which completes the proof.
We now start the proof of Lemma 40.

Proof of Lemma 40: Again, we set R = 2r. We show for each r ∈ {0, 1, . . . , r0} that

E
[
Z(r)

]
=
∥∥µ(�r(p))

∥∥2

2
≤ 1

100

(
1

2

)R−1

· τr and Var
[
Z(r)

]
≤ 1

100

(
1

2

)R−1

τ2
r .

(54)
Assuming this, by Chebyshev’s inequality we have

Pr
[
Z(r) > τr

]
≤ Pr

[∣∣∣Z(r) −E
[
Z(r)

]∣∣∣ > τr/2
]
≤ 4 · Var[Z(r)]

τ2
r

≤ 1

25
·
(

1

2

)R−1

(55)

and this finishes the proof of the lemma.
We start with the case when r = 0. The first part of (54) follows trivially from the assumption

that ‖µ(p)‖2 ≤ ε
√
n/100, and the second part follows from Lemma 43. To see the latter, we have

from Claim 36 and Lemma 43 that

Var
[
Z(0)

]
≤ 1

q2
·
(
4 ·max(n, k2)

)
+

4

q
· ε2n

10000
·
√

(4 ·max(n, k2)) ≤ 1

100

(
1

2

)R−1

· τ2
1 ,

where the last inequality used the choice of τ1, ε ≤ 1, and q ≥ C(k +
√
n)/(ε2n) for some

sufficiently large constant C.
Moving to the general case when r ≥ 1, we have R = 2r ≥ 2. Letting β = max(n, k2) and

using q ≥ C
√
β/(ε2n) and q ≥ C

√
β/(ε
√
n), we have

q2R−2 = q2R−4 · q2 ≥
(
C
√
β

ε
√
n

)2R−4

·
(
C
√
β

ε2n

)2

=
(
C2β

)R−1 ·
(

1

ε2n

)R
.

Plugging this in the closed form (50) of τr, we have

τr =
1

aq2

(
aq2ε2n

2

)R
≥ 1

2
·
(
aC2β

2

)R−1

.

Using Proposition 43, we have E
[
Z(r)

]
≤ (2Rβ)R/2 and thus,

E[Z(r)]

τr
≤

(
2R ·

(
2

aC2

)R−1

· 2R/2
)
·
(
R

β

)R/2−1

.

Note that r ≤ r0 = dlog logne and thus R/β < 1 when n is sufficiently large. As a result we have

E[Z(r)]

τr
≤ 2R ·

(
2

aC2

)R−1

· 2R/2 ≤ 2R ·
(

4

aC2

)R−1

≤ 1

100

(
1

2

)R−1

,

when C is sufficiently large. This completes the proof of the first part of (54). For the second part,
by Corollary 37 and using the first part of (54) and the recursive definition of τr in (49), we have

Var
[
Z(r)

]
≤ 1

q2
·
∥∥µ(�r+1(p))

∥∥2

2
+

4

q
·
∥∥µ(�r(p))

∥∥2

2
·
∥∥µ(�r+1(p))

∥∥
2

≤ 1

100 · q2 · 22R−1
· τr+1 +

1

250 · q · 2R−1
· τr ·

√
τr+1

=
1

100 · q2 · 22R−1
·
(
q2τ2

r

5000

)
+

1

250 · q · 2R−1
· τr ·

√
q2τ2

r

5000
<

1

100

(
1

2

)R−1

· τ2
r .

49

CHEN JAYARAM LEVI WAINGARTEN

This finishes the proof of the lemma.

Appendix F. Proof of the Main Structural Lemma: Lemma 7

In this section, we prove the main structural lemma. The goal is to relate the distance in total
variation from a distribution which is far from being a k-junta to the expected Euclidean distance of
its mean vector after applying random restrictions.

The proof of Lemma 7 uses the following results from Canonne et al. (2019), which we repro-
duce below.

Lemma 44 (Lemma 1.4 in Canonne et al. (2019)) Let p be a distribution over {−1, 1}n. For any
σ ∈ (0, 1),

dTV(p,U) ≤ E
S∼Sσ

[
dTV(pS,U)

]
+ E
ρ∼Dσ(p)

[
dTV(p|ρ,U)

]
.

Lemma 45 (Implicit in Canonne et al. (2019)) Let p be a distribution over {−1, 1}n. Then we
have

dTV(p,U)

n log n
. E

i∼[n]
ρ∼D{i}(p)

[∥∥µ(p|ρ)
∥∥

2

]
.

Proof: We follow Subsection 1.1.2 in Canonne et al. (2019). Let f : {−1, 1}n → [−1,∞) be

f(x) = 2n · p(x)− 1.

Then by the first part of (4) in Canonne et al. (2019) (scaled by 1/n), we have

dTV(p,U)

n log n
.

1

n
· E
x∼{−1,1}n

√√√√ n∑
i=1

((
f(x)− f(x(i))

)+)2

=
1

n
· E
x∼p

√√√√ n∑

i=1

((
f(x)− f(x(i))

)+
f(x) + 1

)2

≤ 1

n
· E
x∼p

[
n∑
i=1

∣∣∣∣∣
(
f(x)− f(x(i))

)+
f(x) + 1

∣∣∣∣∣
]

≤ 2

n
·
n∑
i=1

E
x∼p

[∣∣∣∣∣p(x)− p(x(i))

p(x) + p(x(i))

∣∣∣∣∣
]

= 2 E
i∼[n]

ρ∼D{i}(p)

[∣∣µ(p|ρ)i
∣∣],

where the first inequality uses a robust version of Pisier’s inequality on f (see Theorem 1.7 and (3)
in Canonne et al. (2019)); the next equation follows from importance sampling; the third inequality
uses Jensen’s inequality. Finally we note that since p|ρ is supported on a single bit, the absolute
value is the same as the Euclidean norm.

We point out that the two lemmas above hold even when n is a small constant. The next theorem
from Canonne et al. (2019) holds only when n is sufficiently large.

50

LEARNING AND TESTING JUNTA DISTRIBUTIONS WITH SUBCUBE CONDITIONING

Theorem 46 (Theorem 1.5 in Canonne et al. (2019)) Let p be a distribution over {−1, 1}n. For
any σ ∈ (0, 1),

E
ρ∼Dσ(p)

[∥∥µ(p|ρ)
∥∥

2

]
≥ σ

poly(log n)
· Ω̃
(

E
S∼Sσ

[
dTV(pS,U)

]
− 2e−min(σ,1−σ)n/10

)
. (56)

We are now ready to prove Lemma 7.
Proof of Lemma 7: Let q be the junta distribution on J such that its projection qJ is the same as pJ
(equivalently, one can draw x ∼ q by first drawing a string from {0, 1}J from pJ and then drawing
every other bit independently and uniformly at random). Given our assumption that p is ε-far from
every junta distribution over J , we have

ε ≤ dTV(p, q) = E
ρ∼DJ (p)

[
dTV

(
p|ρ, q|ρ

)]
= E
ρ∼DJ (p)

[
dTV

(
p|ρ,U

)]
. (57)

In the rest of the proof we consider a restriction ρ ∈ {−1, 1, ∗}n with stars(ρ) = J and lowerbound
dTV(p|ρ,U). For simplicity of notation, we let g = p|ρ be the distribution supported over {−1, 1}J .
The goal is to obtain a lower bound for dTV(g,U) in terms of mean vectors of random restrictions
of g, which is then plugged into (57) to finish the proof of Lemma 7.

Let m = |J |. We start with the case when m satisfies m ≤ C · log(m/ε) for some constant
C > 0. We apply Lemma 45 on g (with the parameter n set to m). There is a constant ĉ such that

dTV(g,U) ≤ ĉ log2(m/ε) · E
i∼[n]

ν∼D{i}(p)

[∥∥µ(g|ν)
∥∥

2

]
.

Letting j = dlog2 2me, the probability of ρ ∼ Dσj (g) having exactly one ∗ is at least

m · σj · (1− σj)m−1 ≥ m · 1

4m
·
(

1− 1

2m

)m−1

≥ 1

8
,

and when this happens, the ∗ is distributed uniformly at random. As a result, we have

dTV(g,U) ≤ ĉ log2(m/ε) · E
i∼[n]

ν∼D{i}(p)

[∥∥µ(g|ν)
∥∥

2

]
≤ 8 ĉ log2(m/ε) · E

ν∼Dσ(g)

[∥∥µ(g|ν)
∥∥

2

]
(58)

The lemma then follows by combining (57) and (58). We now turn to the case when

|J | = m ≥ C · log(m/ε) (59)

for some sufficiently large constant C > 0. We first prove by induction that for any t ∈ N,

dTV(g,U) ≤ E
ν∼Dσt (g)

[
dTV

(
g|ν ,U

)]
+

t∑
j=1

E
ν∼D

σj−1(g)

[
E

S∼Sσ(stars(ν))

[
dTV

(
(g|ν)S,U

)]]
. (60)

51

CHEN JAYARAM LEVI WAINGARTEN

Lemma 44 provides the base case when t = 1, as a draw from the distributionD1(g) always outputs
the all-∗ restriction (∗, ∗, . . . , ∗). For the induction step with t > 1, notice that

dTV(g,U) ≤ E
ν∼Dσt−1 (g)

[
dTV

(
g|ν ,U

)]
+

t−1∑
j=1

E
ν∼D

σj−1 (g)

[
E

S∼Sσ(stars(ν))

[
dTV

(
(gν)S,U

)]]
(61)

≤ E
ν∼Dσt−1(g)

[
E

S∼Sσ(stars(ν))

[
dTV

(
(g|ν)S,U

)]
+ E
ν′∼Dσ(g|ν)

[
dTV

(
(g|ν)|ν′ ,U

)]]
(62)

+
t−1∑
j=1

E
ν∼D

σj−1 (g)

[
E

S∼Sσ(stars(ν))

[
dTV

(
(gν)S,U

)]]
,

where we first applied the inductive hypothesis in (61) and then Lemma 44 to the distribution g|ν
supported on {−1, 1}stars(ν) in (62). We get (60) by noticing that the distribution over distributions
(g|ν)|ν′ where ν ∼ Dσt−1(g) and ν ′ ∼ Dσ(g|ν) is equivalent to g|ν with ν ∼ Dσt(g).

Next for each restriction ν ∈ {−1, 1, ∗}n we let

α(ν) = E
S∼Sσ(stars(ν))

[
dTV

(
(g|ν)S,U

)]
,

and let Gt ⊂ {−1, 1, ∗}n for each t ∈ N be the set of restrictions ν ∈ {−1, 1, ∗}n that satisfy

α(ν) ≥ max
{ ε

6t
, 4e−|stars(ν)|/20

}
.

For each restriction ν /∈ Gt we trivially have

α(ν) ≤ ε

6t
+ 4e−|stars(ν)|/20.

For each ν ∈ Gt we have

α(ν)− 2e−|stars(ν)|/20 ≥ α(v)/2 ≥ ε/(12t).

We can then apply Theorem 46 to get

α(ν) ≤
(
c0 ·

(
log n · log(12t/ε)

)c1) · E
ν′∼Dσ(g|ν)

[∥∥µ((g|ν)|ν′
)∥∥

2

]
for some universal constants c0 and c1. Therefore, we have for every ν ∈ {−1, 1, ∗}n that

α(ν) ≤
(
c0 ·

(
log n · log(12t/ε)

)c1) · E
ν′∼Dσ(g|ν)

[∥∥µ((g|ν)|ν′
)∥∥

2

]
+

ε

6t
+ 4e−|stars(ν)|/20.

52

LEARNING AND TESTING JUNTA DISTRIBUTIONS WITH SUBCUBE CONDITIONING

Combining this bound with (60), we get

dTV(g,U) ≤ E
ν∼Dσt (g)

[
dTV

(
g|ν ,U

)]
(63)

+
(
c0 ·

(
log n · log(12t/ε)

)c1) · t∑
j=1

E
ν∼D

σj−1 (g)

[
E

ν′∼Dσ(g|ν)

[∥∥µ((g|ν)|ν′
)∥∥

2

]]
(64)

+
ε

6
+ 4

t∑
j=1

E
ν∼D

σj−1 (g)

[
e−|stars(ν)|/20

]
. (65)

Setting (where C is the constant from (59))

t =

⌊
log

(
m

C · log(m/ε)

)⌋
+ 1 (66)

in the rest of the proof. We upper bound the right-hand side of (65) by noting that |stars(ν)|, when
ν ∼ Dσj−1(g) is a sum of n independent random variables, where each is set to 1 with probability
σj−1. Thus, we have

t∑
j=1

E
ν∼D

σj−1 (g)

[
e−|stars(ν)|/20

]
=

t∑
j=1

(
E

X∼Ber(σj−1)

[
e−X/20

])m
=

t∑
j=1

(
1− σj−1

(
1− e−1/20

))m
≤

t∑
j=1

(
1− σj−1

100

)m
≤ t · exp

(
−σ

t−1m

100

)
≤ ε

24
,

using our choice of t with σt−1m ≥ C · log(m/ε) and a sufficiently large constant C. Therefore,
the right-hand side of (65) can be bounded from above by ε/3.

Next we upperbound (64). Using again the fact that (g|ν)|ν′ with ν ∼ Dσj−1(g) and ν ′ ∼
Dσ(g|ν) is distributed as g|ν with ν ∼ Dσj (g), the right-hand side of (64) may be upper bounded
by

(
c0 ·

(
log n · log(12t/ε)

)c1) · t∑
j=1

E
ν∼D

σj
(g)

[∥∥µ(g|ν)
∥∥

2

]
. (67)

Finally we bound the right-hand side of (63) by considering the set of restrictions F ⊂ {−1, 1, ∗}n
where ν ∈ {−1, 1, ∗}n is in F iff |stars(ν)| ≤ 2C · log(m/ε), and note that by the setting of t,

Pr
ν∼Dσt (g)

[
ν /∈ F

]
≤ ε

6
.

Using the trivial bound of dTV(g|ν ,U) ≤ 1, we have

E
ν∼Dσt (g)

[
dTV

(
g|ν ,U

)]
≤ ε

6
+ E
ν∼Dσt (g)

[
dTV

(
g|ν ,U

)
· 1 {ν ∈ F}

]

53

CHEN JAYARAM LEVI WAINGARTEN

We apply Lemma 45 to every g|ν with ν ∈ F . So there exists a universal constant c2 such that

E
ν∼Dσt (g)

[
dTV

(
g|ν ,U

)
· 1 {ν ∈ F}

]
≤ c2 · log2(m/ε) · E

ν∼Dσt (g)

 E
i∼stars(ν)
ν′∼D{i}(g|ν)

[∥∥µ((g|ν)|ν′
)∥∥

2

] .
Note that the distribution on (g|ν)|ν′ is equivalent to the distribution g|ν which draws i ∼ [n] and
then sets ν ∼ D{i}(g). Hence, we can upperbound (63) by

ε

6
+ c2 · log2(m/ε) · E

i∼[n]
ν∼D{i}(g)

[∥∥µ(g|ν)∥∥2

]
≤ ε

6
+ 4c2 · log2(m/ε) · E

ν∼Dσr (g)

[∥∥µ(g|ν)∥∥2

]

where r = dlog2me. The inequality used the fact that ν ∼ Dσr(g) has stars(ν) = 1 with probabil-
ity at least 1/4 and when this happens, the star is distributed uniformly at random.

Finally, noting that t < r, we combine the upper bounds for (63), (64), and (65) to get

dTV(g,U) ≤ ε

2
+ c3 · logc4(n/ε) ·

dlog2 ne∑
j=1

E
ν∼D

σj
(g)

[∥∥µ(g|ν)
∥∥

2

]
for some universal constants c3 and c4. It follows from (57) that

ε ≤ ε

2
+ polylog(n/ε) ·

dlog2 ne∑
j=1

E
ρ∼DJ (p)

[
E

ν∼D
σj

(p|ρ)

[∥∥µ((p|ρ)|ν
)∥∥

2

]]
,

which completes the proof.

54

	Introduction
	Our results
	Technical overview

	Preliminaries
	Finding Relevant Variables
	Proof of Lemma 14
	Lower Bounds for Learning
	Proof of Theorem 3
	Proof of Theorem 4
	Compressing batches of conditional samples

	Testing Algorithm
	Lower Bound for Testing
	Construction of Dyes and Dno
	Statistical Distance Between Ryes and Rno
	Proof of Lemma 28
	Proof of Claim 29

	Robust Mean Testing for k-Juntas
	Soundness: Proof of Lemma 39
	Completeness: Proof of Lemma 40

	Proof of the Main Structural Lemma: Lemma 7

